POINTWISE INTERSECTION PRODUCTS

BRUNO KAHN

This is a development of [2, Rem. 2.3 b$)]$.
Lemma 1. Let k be a field, and

be a Cartesian square of k-schemes, where g is proper and f, f^{\prime} are l.c.i. morphisms of same codimension. Then

$$
f^{!} g_{*}=g_{*}^{\prime}\left(f^{\prime}\right)^{!}
$$

as homomorphisms from $C H_{*}\left(T^{\prime}\right)$ to $C H_{*}(S)$.
Proof. This follows from [1, Th. 6.6 (c)].
Suppose k perfect; let B be a smooth connected separated k-scheme of finite type with generic point $\eta=\operatorname{Spec} K$, and let $f: \mathcal{X} \rightarrow B$ be a dominant projective morphism, with \mathcal{X} smooth; let $f^{\prime}: X \rightarrow \eta$ be the generic fibre of f. We assume X irreducible of dimension d, and f^{\prime} smooth.

Let $C H_{\text {num }}^{i}(X)$ denote the subgroup of $C H^{i}(X)$ formed of cycles numerically equivalent to 0 ; write j for the inclusion $X \hookrightarrow \mathcal{X}$.

Lemma 2. For $\alpha \in C H^{i}(\mathcal{X})$, the following are equivalent:
(1) $j^{*} \alpha \in C H_{\text {num }}^{i}(X)$;
(2) for any $\beta \in C H^{d-i}(\mathcal{X}), f_{*}(\alpha \cdot \beta)=0$.

Proof. (2) \Rightarrow (1) because of the surjectivity of j^{*} and the formula

$$
\begin{equation*}
\jmath^{*} f_{*}(\alpha \cdot \beta)=f_{*}^{\prime} j^{*}(\alpha \cdot \beta)=f_{*}^{\prime}\left(j^{*} \alpha \cdot j^{*} \beta\right) \tag{1}
\end{equation*}
$$

[1, Prop. 1.7 and 8.3 (a)] where $\jmath: \eta \hookrightarrow B$ is the inclusion, and $(1) \Rightarrow$ (2) because of (1) and the injectivity of $\jmath^{*}: C H^{0}(B) \rightarrow C H^{0}(\eta)$.

Date: June 11, 2023.
2010 Mathematics Subject Classification. 14C17,14E15.
Key words and phrases. Intersection theory, alteration theory, category theory.

Let $r \geq 0$ and $b \in B^{(r)}$; write $Z=\overline{\{b\}}$. Recall the cap-product [1, p. 131]

$$
\begin{aligned}
\cdot_{\iota}: C H^{i}(\mathcal{X}) \times C H_{l}\left(\mathcal{X}_{Z}\right) & \rightarrow C H_{l-i}\left(\mathcal{X}_{Z}\right) \\
(\alpha, \beta) & \mapsto \gamma_{l}^{\prime}(\beta \times \alpha)
\end{aligned}
$$

where ι is the closed immersion $\mathcal{X}_{Z} \hookrightarrow \mathcal{X}$. We record two useful formulas:

$$
\begin{equation*}
\alpha \cdot \iota_{*} \beta=\iota_{*}(\alpha \cdot \iota \beta) \in C H_{l-i}(\mathcal{X}) \tag{2}
\end{equation*}
$$

which follows from Lemma 1 applied to the Cartesian diagram

$$
\begin{array}{ccc}
\mathcal{X}_{Z} \xrightarrow{\gamma_{\iota}} & \mathcal{X}{ }_{Z} \times \mathcal{X} \\
\iota \downarrow & & \iota \times 1 \\
\downarrow & \\
\mathcal{X} \xrightarrow[X]{ } & \mathcal{X} \times \mathcal{X}
\end{array}
$$

of regular embeddings of codimension $d+\delta$. Hence

$$
\begin{equation*}
f_{*}\left(\alpha \cdot \iota_{*} \beta\right)=f_{*} \iota_{*}\left(\alpha \cdot{ }_{\iota} \beta\right)=\iota_{*}^{\prime}\left(f_{Z}\right)_{*}(\alpha \cdot \iota \beta), \tag{3}
\end{equation*}
$$

where ι^{\prime} is the closed immersion $Z \hookrightarrow B$.
Take $l=\delta+i-r$. Composing with $\left(f_{Z}\right)_{*}$, we get a pairing

$$
C H^{i}(\mathcal{X}) \times C H_{\delta+i-r}\left(\mathcal{X}_{Z}\right) \rightarrow C H_{\delta-r}(Z)=C H^{0}(Z)=\mathbf{Z}
$$

Removing proper closed subsets from Z and passing to the limit, we see that this pairing factors through a pairing

$$
\begin{equation*}
\langle,\rangle_{b}: C H^{i}(\mathcal{X}) \times C H_{i-r}\left(\mathcal{X}_{b}\right) \rightarrow \mathbf{Z} \tag{4}
\end{equation*}
$$

(Note the drop on dimension of cycles from $C H_{\delta+i-r}\left(\mathcal{X}_{Z}\right)$ to $C H_{i-r}\left(\mathcal{X}_{b}\right)$; compare with the relative dimensions of $[1, \S 20.1]$.)

Lemma 3. If \mathcal{X}_{b} is smooth over $k(b)$, then

$$
\langle\alpha, \beta\rangle_{b}=\left\langle\iota^{*} \alpha, \beta\right\rangle_{\mathcal{X}_{b}}
$$

where $\left\rangle_{\mathcal{X}_{b}}\right.$ is the intersection product on \mathcal{X}_{b}.
Proof. Up to removing a proper closed subset from Z, we may assume that \mathcal{X}_{Z} itself is smooth. Then this is clear since $\alpha \cdot{ }_{\iota} \beta=\iota^{*} \alpha \cdot \beta$, as follows from [1, Th. 6.4] applied to the Cartesian square

$$
\begin{array}{lll}
\mathcal{X}_{Z} \xrightarrow{\delta} & \mathcal{X}_{Z} \times{ }_{k} \mathcal{X}_{Z} \\
\| \downarrow & & 1 \times \iota \\
\downarrow & & \\
\mathcal{X}_{Z} \xrightarrow{\gamma_{\iota}} & \mathcal{X}_{Z} \times \mathcal{X} .
\end{array}
$$

Let $b^{\prime} \in Z^{(1)} \subset B^{(r+1)}$ be a specialisation of b; we define a specialisation homomorphism

$$
\sigma_{b \rightarrow b^{\prime}}: C H_{*}\left(\mathcal{X}_{b}\right) \rightarrow C H_{*-1}\left(\mathcal{X}_{b^{\prime}}\right)
$$

as follows (compare [1, Ex. 1.2.3]). Let R be the integral closure of $\mathcal{O}_{Z, b^{\prime}}$ in $k(b), \pi: \operatorname{Spec} R \rightarrow \operatorname{Spec} \mathcal{O}_{Z, b^{\prime}}$ the projection and write the cycle $\pi^{*}\left(b^{\prime}\right)$ as $\sum n_{i} b_{i}^{\prime}$ where the b_{i}^{\prime} are closed points and $n_{i}>0$. For each i, let $\mathcal{X}_{b_{i}^{\prime}}$ be the pull-back of $\mathcal{X}_{b^{\prime}}$, and let $\varphi_{i}: \mathcal{X}_{b_{i}^{\prime}} \rightarrow \mathcal{X}_{b^{\prime}}$ be the projection. Then

$$
\sigma_{b \rightarrow b^{\prime}}(x)=\sum_{i} n_{i}\left(\varphi_{i}\right)_{*} \sigma_{b \rightarrow b_{i}^{\prime}}(x)
$$

where $\sigma_{b \rightarrow b_{i}^{\prime}}$ is the specialisation homomorphism of $[1, \S 20.3]$. We set

$$
e_{b \rightarrow b^{\prime}}=\sum_{i} n_{i}
$$

Proposition 4. For $(x, y) \in C H^{i}(\mathcal{X}) \times C H_{i-r}\left(\mathcal{X}_{b}\right)$, one has

$$
e_{b \rightarrow b^{\prime}}\langle x, y\rangle_{b}=\left\langle x, \operatorname{sp}_{b \rightarrow b^{\prime}}(y)\right\rangle_{b^{\prime}}
$$

Proof. Let $\lambda_{i}: b_{i}^{\prime} \hookrightarrow \operatorname{Spec} R$ be the closed immersion. By definition $\operatorname{sp}_{b \rightarrow b_{i}^{\prime}}(y)=\lambda_{i}^{!} \tilde{y}$ where \tilde{y} is a lift of y in $C H_{*}\left(\mathcal{X}_{\text {Spec } R}\right)$. Thus:

$$
\begin{equation*}
\left\langle x, \operatorname{sp}_{b \rightarrow b^{\prime}}(y)\right\rangle_{b^{\prime}}=\sum_{i} n_{i}\left\langle x,\left(\varphi_{i}\right)_{*} \lambda_{i}^{\prime} \tilde{y}\right\rangle_{b^{\prime}} \tag{5}
\end{equation*}
$$

We need to spread this situation. Consider the Cartesian diagrams

where $Z^{\prime}=\overline{\left\{b^{\prime}\right\}}$ and \tilde{Z} is the normalisation of Z in $Z-Z^{\prime}$ (the second is the pull-back of the first under the projection $\left.f_{Z}: \mathcal{X}_{Z} \rightarrow Z\right)$. Up to removing a large enough proper closed subset from Z^{\prime}, we may and do assume that \tilde{Z} is regular (hence smooth over k) and that $\tilde{Z}^{\prime}=\coprod_{i} Z_{i}^{\prime}$ where each Z_{i}^{\prime} is irreducible with generic point b_{i}^{\prime}. Then $\mathcal{X}_{\tilde{Z}^{\prime}}$ splits accordingly. We keep the notations $\varphi_{i}: Z_{i}^{\prime} \rightarrow Z^{\prime}, \lambda_{i}: Z_{i}^{\prime} \hookrightarrow Z$ in this spread context.

We can lift \tilde{y} further to $z \in C H_{*}\left(\mathcal{X}_{\tilde{Z}}\right)$. First, the diagram of Cartesian squares

where $\tilde{\iota}$ is the composition $\mathcal{X}_{\tilde{Z}} \xrightarrow{\psi} \mathcal{X}_{Z} \xrightarrow{\iota} \mathcal{X}$, yields

$$
\begin{aligned}
\langle x, y\rangle_{b}= & \left(f_{Z}\right)_{*} \gamma_{\iota}^{\prime}\left(\psi_{*} z \times x\right)=\left(f_{Z}\right)_{*} \gamma_{\iota}^{\prime}(\psi \times 1)_{*}(z \times x) \\
& \stackrel{(a)}{=}\left(f_{Z}\right)_{*} \psi_{*} \gamma_{\tilde{L}}^{\prime}(z \times x)=\psi_{*}^{\prime}\left(f_{\tilde{Z}}\right)_{*} \gamma_{\tilde{L}}^{\prime}(z \times x) \stackrel{(b)}{=}\left(f_{\tilde{Z}}\right)_{*} \gamma_{\tilde{L}}^{\prime}(z \times x)
\end{aligned}
$$

where (a) follows from Lemma 1 and (b) uses the isomorphism ψ_{*} : $C H^{0}(\tilde{Z}) \xrightarrow{\sim} C H^{0}(Z)=\mathbf{Z}$.

Then we note that $\varphi_{*} \lambda^{!}: \mathbf{Z}=C H^{0}(\tilde{Z}) \rightarrow C H^{0}(Z)=\mathbf{Z}$ is multiplication by $e_{b \rightarrow b^{\prime}}$, hence

$$
\begin{array}{r}
e_{b \rightarrow b^{\prime}}\left(f_{\tilde{Z}}\right) * \gamma_{\tilde{L}}^{\prime}(z \times x)=\varphi_{*} \lambda^{!}\left(f_{\tilde{Z}}\right) * \gamma_{\tilde{L}}^{\prime}(z \times x) \stackrel{(a)}{=} \varphi_{*}\left(f_{\tilde{Z}^{\prime}}\right)_{*} \lambda^{\prime} \gamma_{\tilde{\imath}}^{\prime}(z \times x) \\
\left.\stackrel{(b)}{=} \varphi_{*}\left(f_{\tilde{Z}^{\prime}}\right)\right)_{*} \gamma_{\hat{\imath}}^{\prime}!^{\prime}(z \times x) \stackrel{(c)}{=} \varphi_{*}\left(f_{\tilde{Z}^{\prime}}\right) * \gamma_{\tilde{\Lambda}^{\prime}}^{\prime} \lambda^{\prime}(z \times x) \\
\\
\left.=\varphi_{*}\left(f_{\tilde{Z}^{\prime}}\right)\right)_{*} \gamma_{\tilde{L}^{\prime}}^{\prime}\left(\lambda^{\prime} z \times x\right) .
\end{array}
$$

Here (a) follows as usual from Lemma 1, (b) follows from [1, Th. 6.4] applied to the diagram of Cartesian squares

and (c) from [1, Th. 6.2 (c)] applied to the same diagram. Now, using the diagram

we get

$$
\begin{array}{r}
\varphi_{*}\left(f_{\tilde{Z}^{\prime}}\right)_{*} \gamma_{\tilde{\imath}^{\prime}}^{\prime}\left(\lambda^{\prime} z \times x\right)=\left(f_{\tilde{Z}}\right)_{*} \Phi_{*} \gamma_{\tilde{\iota}^{\prime}}^{\prime}\left(\lambda^{\prime} z \times x\right) \stackrel{(a)}{=}\left(f_{\tilde{Z}}\right)_{*} \gamma_{\iota^{\prime}}^{\prime}\left(\Phi_{*} \lambda^{\prime} z \times x\right) \\
=\left\langle x, \mathrm{sp}_{b \rightarrow b^{\prime}}(y)\right\rangle_{b^{\prime}}
\end{array}
$$

(see (5)), where (a) uses Lemma 1 again.
Definition 5. Let $\alpha \in C H^{i}(\mathcal{X})$ and $b \in B^{(r)}$. We write $\alpha \equiv_{b} 0$ if $\langle\alpha, \beta\rangle_{b}=0$ for all $\beta \in C H_{i-r}\left(\mathcal{X}_{b}\right)$.

Lemma 6. Let η be the generic point of B. Then $\alpha \equiv_{\eta} 0 \Longleftrightarrow$ $j^{*} \alpha \in C H_{\text {num }}^{i}(X)$.
Proof. This follows from Lemma 2.
We have the following corollary to Proposition 4:
Corollary 7. Let b^{\prime} be a specialisation of b. Then $\alpha \equiv_{b^{\prime}} 0 \Rightarrow \alpha \equiv_{b}$ 0.

Proof. By catenarity, we reduce to the case where $\operatorname{codim}_{B}\left(b^{\prime}\right)=\operatorname{codim}_{B}(b)$ +1 .

References

[1] W. Fulton Intersection theory, Springer, 1984.
[2] B. Kahn Refined height pairing (with an appendix by Qing Liu), to appear in Alg \& Number theory.

CNRS, Sorbonne Université and Université Paris Cité, IMJ-PRG, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France

Email address: bruno.kahn@imj-prg.fr

