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On the Injectivity and Non-injectivity
of the l-Adic Cycle Class Maps

Bruno Kahn

Abstract We study the injectivity of the cycle class map with values

in Jannsen’s continuous étale cohomology, by using refinements that go

through étale motivic cohomology and the ‘tame’ version of Jannsen’s

cohomology. In particular, we use this to show that the Tate and the

Beilinson conjectures imply that its kernel is torsion in positive charac-

teristic, and to revisit recent counterexamples to injectivity.
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7.1 Introduction

7.1.1 The Cycle Class Map

Recently there has been renewed investigation of Jannsen’s cycle class map [17,

(6.14)]

CHn(X) ⊗ Zl

clnX−−→ H2n
cont (X, Zl (n)) (7.1)

for X a smooth projective variety over a field k. Jannsen introduced continuous

étale cohomology in [17] in order to correct bad properties of the naı̈ve defi-

nition (by inverse limits) of l-adic cohomology when k is not separably closed.
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His definition agrees with the naı̈ve one when the Galois cohomology groups of

k with finite coefficients are finite, which happens only for special fields (finite,

p-adic, separably closed. . . ) and not for any infinite finitely generated field.

Finitely generated fields are those for which (7.1) is especially interesting:

Jannsen then proves that it is injective for n = 1 ([17], Rem. 6.15 a)), and raises

the question of such injectivity for higher values of n, at least rationally; in [20,

Lemma 2.7] he shows that such injectivity would imply the Bloch–Beilinson–

Murre (BBM) conjectures on filtrations on (rational) Chow groups.

One may wonder whether the converse is true: I could not prove it even with

the strongest form of the BBM conjectures (existence of a category of mixed

motives, [20, §4]). One may then wonder whether the injectivity of clnX ⊗ Q

would follow from some other known conjectures. We shall see in Theorem

7.11 (c) that the answer is yes in positive characteristic, up to refining clnX as

in Section 7.1.2; to the best of my knowledge, this question remains open in

characteristic 0. See Section 7.4 for elementary computations showing that the

Bass conjecture is not sufficient, and Section 7.5.7.

Given such an unclear situation, one may wonder whether the restriction

of (7.1) to the torsion subgroup of CHn (X) ⊗ Zl is injective; this has been the

topic of [1, 8, 42, 43], where many examples (resp. counterexamples) have been

found.

7.1.2 Refining cl
n

X

The two ideas developed in this paper are the following.

(1) The map (7.1) is defined generally for smooth, not necessarily projective,

varieties, and this extension can be useful even to study the projective case: it

was the central tool in [28] for a simple reduction of the Tate conjecture in

codimension 1 to the case of surfaces over the prime field, and will be used

similarly for the proof of Theorem 7.11.

(2) As exploited previously in [26], (7.1) gains in understanding if it is

factored through finer cycle class maps, namely

CHn(X) ⊗ Zl

�n
X−−→ H2n

ét (X, Z(n)) ⊗ Zl

�n
X−−→ H̃2n

cont(X, Zl (n))

n

X−−→ H2n
cont (X, Zl (n))

(7.2)

where Hi
ét
(X, Z( �)) is étale motivic cohomology and

H̃i
cont (X, Zl ( �)) = lim−−→X

Hi
cont (X , Zl ( �)) (7.3)

is Jannsen’s refinement of Hi
cont (X, Zl ( �)) from [18, 11.6, 11.7]; here X runs

through models of X regular, separated and of finite type over Z[1/l]. This
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7 Injectivity and Non-injectivity of Cycle Class Maps 203

group maps to Hi
cont (X, Zl ( �)), but not isomorphically in general since contin-

uous étale cohomology does not commute with filtering limits of schemes: for

example, H̃1
cont(C, Zl (1))  C∗ ⊗ Zl while H1

cont (C, Zl (1)) = 0; for l ≠ 2,

H̃2
cont (Q, Zl (1))  

⊕
p Zl while H2

cont(Q, Zl (1)) is the l-adic completion of⊕
p Z.

The extension of (7.1) to étale motivic cohomology, namely, the map �n
X
�n

X

of (7.2), was initially constructed in [23] using Bloch’s cycle complexes; in pos-

itive characteristic, this is sufficient to refine it to the middle map �n
X

, because

the models are then defined over a (finite) field.

In characteristic 0, the situation would the same if one did not care about

the groups H̃i
cont (X, Zl (n)), but is more delicate otherwise because of the Z-

models X . A construction of cln
X

is essentially done in [42, §5]; namely, Saito

defines cycle classes in étale cohomology with finite coefficients, but one can

then promote them to continuous étale cohomology as in [17, Th. 3.23]; to

prove that they pass to rational equivalence, the use of P1 in the proof of [17,

Lemma 6.14 i)] can be advantageously replaced by that of A1, to exploit the

A1-invariance of étale cohomology. To define �n
X

, we need to use étale motivic

cohomology of arithmetic schemes: this is done in Section 7.3.

In the sequel, it will be convenient to use the abbreviations

CHn
ét (X) = H2n

ét (X, Z(n)), c̃l
n

X = �n
X�n

X . (7.4)

The groups CHn
ét
(X) are in general very amenable to computation, which

can be used to simplify and clarify reasonings which did not involve them; we

hope that this technique will be taken up by others in future work.

The factorisation (7.2) also indicates facts on clnX . For example, as an imme-

diate consequence we see that it can be injective on torsion only if �n
X

is. This

holds for n ≤ 2 thanks to the short exact sequence [26, Prop. 2.9]

0 → CH2(X)
�2

X−−→ CH2
ét (X) → H3

nr (X, Q/Z(2)) → 0 (7.5)

but not for n > 2 in general, for example [24, p. 998]. We shall see in

Section 7.7 that the counterexamples previously obtained for n > 2 are all

explained in this way.

On the other hand, one should not make too much of CHn
ét
(X) beyond being

a convenient computational tool: for example, it is far from being finitely gen-

erated in general, see Proposition 7.10. Regarding H̃2n
cont (X, Zl (n)), (7.2) raises

the following question.

Question 7.1 (cf. Th. 7.11) Does there exist a finitely generated field k, a

smooth projective k-variety X and an integer n ≥ 0 such that Ker c̃l
n

X ⊗ Q ≠

Ker clnX ⊗ Q?
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Another thing which can be done is to find ‘obvious’ cases where Ker cl2X is

finite or 0, by reduction to the case n = 1. Morally, this might happen when X

has a decomposition of the diagonal à la Bloch–Srinivas, because the reduced

motive of X then has coniveau > 0, hence CHn (X) is approximately CHn−1 (Y)
for some other smooth projective Y , and similarly for continuous étale coho-

mology. Nevertheless, working out the argument turns out to involve the size

of the ground field k (see Theorem 7.18 and Remark 7.20 b).

7.1.3 Contents

In Section 7.2 we prove some basic facts, the most notable being Theorem 7.6.

In Section 7.3, we extend (7.2) to other bidegrees by using motivic cohomology

à la Bloch–Levine (see (7.6)); the main result is Theorem 7.8. In Section 7.4 we

analyse an attempt to deduce the injectivity of clnX ⊗ Q over finitely generated

fields from the Bass conjecture, showing how it fails. In Section 7.5, we explain

that the situation is much better in positive characteristic. In Section 7.6, we

prove some results when X has a decomposition of the diagonal: this originates

from a letter to Colliot-Thélène of 1 December 2021.

In Sections 7.7, 7.8 and 7.9, we revisit the counterexamples from [1, 8, 43].

Section 7.7 concerns those where n > 2 as said before, we show that they are all

explained by non-injectivity of �n
X

, so have nothing to do with continuous étale

cohomology. In particular, the counterexamples of Alexandrou and Schreieder

in [1] are proven without using refined Bloch maps.

The next two sections concern the case n = 2. In Section 7.8, we refine a

counterexample of Scavia and Suzuki [43] involving the Rost motive; in Sec-

tion 7.9 we reformulate parts of the paper of Colliot-Thélène and Scavia [8] in

a more concise way. Still, Section 7.7 takes a little more than one page, Section

7.8 two pages and Section 7.9 five pages.

7.1.4 Notation

We write V(k) for the category of smooth projective varieties over a field k,

and Reg(S) (resp. Sm(S)) for the category of regular (resp. smooth) separated

schemes of finite type over a base scheme S. An arithmetic scheme is a con-

nected object of Reg(Spec Z) which is either smooth or not flat over Spec Z

(hence in the latter case, smooth over a finite field). We recall the following

basic fact [37, II 7.1].

Theorem 7.2 Let X be an arithmetic scheme. If F is a constructible sheaf on

X such that mF = 0 for some integer m > 0 which is invertible on X , then the

étale cohomology groups Hi(X , F) are finite. �
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7.2 Some General Facts

7.2.1 Algebra

Lemma 7.3 Let 0 → A → B → C → 0 be an exact sequence of abelian

groups. Assume that the inverse systems (l�A) and (l�B) are Mittag-Leffler.

Then there is an exact sequence

0 → TlA → TlB → TlC → Â → B̂

where ˆ means l-adic completion.

Proof Let T i
l

be the derived functors of Tl : Ab → Ab. Write Tl = lim←−−◦Ul,

where Ul (A) = (l�A): this is a composition of two left exact functors. Since any

injective abelian group I is divisible, Ul (I) is Mittag-Leffler hence lim←−−-acyclic,

and there is a Grothendieck spectral sequence

E
pq

2
= lim←−−

p U
q

l
(A) ⇒ T

p+q

l
(A)

for any abelian group A. Note that U1
l
(A) = (A/l�) and lim←−−

p = U
q

l
= 0 for

p, q > 1; thus Tm
l

= 0 for m > 2, and even for m = 2 again by Mittag-Leffler.

Finally we get a short exact sequence

0 → lim←−−
1

l�A → T1
l A → lim←−−A/l� = Â → 0

for any A ∈ Ab. If 0 → A → B → C → 0 is an exact sequence, we thus get a

commutative diagram of exact sequences:

lim←−−
1

l�A −−−−−−→ lim←−−
1

l�B −−−−−−→ lim←−−
1

l�C⏐⏐F ⏐⏐F ⏐⏐F
0 → TlA → TlB → TlC → T1

l
A −−−−−−→ T1

l
B −−−−−−→ T1

l
C⏐⏐F ⏐⏐F ⏐⏐F

Â −−−−−−→ B̂ −−−−−−→ Ĉ.

Under the hypothesis of the lemma, the lim←−−
1 vanish, hence the conclusion.

�

Let Ab be the category of abelian groups; as in previous works, we shall use

the category Ab ⊗Q of abelian groups up to isogenies, namely, the localisation

of Ab by the Serre subcategory of groups of finite exponent.
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Lemma 7.4 (a) For an abelian group A, the following conditions are equiva-

lent.

(i) A is the direct sum of a free finitely generated group and a group of finite

exponent.

(ii) Ators is of finite exponent and Ā := A/Ators is free finitely generated.

(iii) A is a sum of a finitely generated subgroup and a subgroup of finite

exponent.

(iv) The image of A in Ab ⊗Q is isomorphic to a finitely generated group.

We say that such A is finitely generated modulo isogenies (in short: fgmi).

(b) The fgmi abelian groups form a Serre subcategory of Ab.

Proof (a) (i) ⇐⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial. (iv) ⇒ (i): let � : A
∼−→ M be

an isomorphism in Ab ⊗Q, where M is finitely generated. If M̄ is the quotient

of M by its torsion subgroup, then M → M̄ is an isomorphism in Ab ⊗Q; thus

we may assume M torsion-free, that is, free. By calculus of fractions, there is a

diagram in Ab:

M
u←− M̃

	̃
−→ A

where the kernel and cokernel of u and � are of finite exponent, and such that

� = �̃ u−1 in Ab ⊗Q. Replacing M by Im u, we may assume u surjective, hence

split by some homomorphism v : M → M̃. Then Ker � v and Coker � v have

finite exponent; hence the composition

M
	 v
−−→ A

�−→ Ā

is injective and its cokernel has finite exponent, say N. Then NĀ ⊆ M is free

finitely generated, hence so is Ā. But then � is split and A  Ā ⊕ Ators. Finally,

since Coker � v has finite exponent, so does Ators.

(b) Let 0 → A′ → A → A′′ → 0 be an exact sequence in Ab. We must

show that A is fgmi if and only if so are A′ and A′′. Suppose that A is fgmi. By

Condition (iii), so is A′′. Moreover, A′tors ↩→ Ators and Ā′ ↩→ Ā, hence so is

A′ as well by Condition (ii). Suppose now that A′ and A′′ are fgmi. The exact

sequence

0 → A′tors → Ators → A′′tors

shows that Ators has finite exponent. Moreover, if N is an exponent of A′′tors, the

image of the map

Ā′ → Ker(Ā → Ā′′)

contains N Ker(Ā → Ā′′). Therefore Ker(Ā → Ā′′) is free finitely gener-

ated; since so is Ā′′, the surjection Ā → Ā′′ is split and Ā is also free finitely

generated. We conclude with Condition (ii) again. �
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7.2.2 Geometry

For a scheme X, write cdl (X) for its étale l-cohomological dimension and

ĉdl(X) for the inf of those i ≥ 0 such that Hi
cont (X, (F�)) = 0 for all inverse

systems (F�) of sheaves of l-primary torsion on Xét. The following lemma puts

[8, Prop. 2.3] in its right generality (same proof).

Lemma 7.5 ĉdl (X) = cdl (X). �

We also note the following result, whose proof is identical to that of [42, Th.

5.1] and which implies this theorem.

Theorem 7.6 Let X ∈ Sm(Spec k), where k is a finitely generated field of

characteristic ≠ l. For any n ≥ 0, the image of c̃l
n

X , and a fortiori that of clnX , is

a finitely generated Zl-module. �

(This proof is clarified if one promotes Saito’s argument to a commutative

diagram

CHn (X ) ⊗ Zl −→→ CHn (X) ⊗ Zl

cln
X

⏐⏐F c̃l
n
X

⏐⏐F
H2n

cont(X , Zl (n)) −−−−−−→ H̃2n
cont (X, Zl (n))

where X is an arithmetic model of X, using the finite generation of

H2n
cont (X , Zl (n)) which follows from Theorem 7.2.)

7.3 Motivic Cohomology

7.3.1 Refined Motivic Cycle Class Maps

In the sequel we shall use a generalisation of (7.2) to all motivic cohomology:

Hi(X, Z(n)) ⊗ Zl

�
n,i
X−−−→ Hi

ét(X, Z(n)) ⊗ Zl

�
n,i
X−−→ H̃i

cont(X, Zl (n))



n,i
X−−→ Hi

cont (X, Zl (n)).
(7.6)

This was done in [26, §§2 and 3A], except for H̃i
cont (X, Zl (n)). The same

comments as in Section 7.1.2 apply, except that one should explain which ver-

sion of motivic cohomology is used for arithmetic schemes. We use Levine’s

extension of Bloch’s complexes to schemes over a Dedekind domain [35],

developed by Geisser in [12]: more precisely, the Zariski (resp. étale) hyper-

cohomology of Bloch’s cycle complexes, namely the complexes of Zariski

sheaves

Z(n) := zn(−, ∗)[−2n]

and their étale versions Z(n)ét, as in [12, §3].
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To define �
n,i
X

for an arithmetic scheme X , we use the isomorphism

Z(n)ét ⊗ Z/l�  �⊗n
l�

; (7.7)

extended to arithmetic schemes in [12, Th. 1.2 4]. Since the étale cohomology

of X with finite coefficients is finite (Theorem 7.2), �
n,i
X

may simply be seen as

l-adic completion. To pass to smooth schemes over a field, we use the continuity

of motivic and étale motivic cohomology (commutation with filtering inverse

limits of schemes with affine transition morphisms): this follows from

• continuity of the cycle complexes themselves,

• continuity of Zariski and étale cohomology.

At the referee’s request, we give details. The first point is seen explicitly

from the definition of the terms of Z(n): for any scheme X over a Dedekind

scheme S, one has by definition

zn(X , i) =
⊕

Z

Z

where Z runs through the integral closed subschemes of codimension n of X ×S

Δi
S

which meet all faces properly.

In the second point, continuity for sheaves is classical: see [14, Th. 5.7]

for étale cohomology. We reduce to this case by a hypercohomology spectral

sequence argument. Details on the delicate points to deal with complexes of

sheaves which are not [known to be] bounded below, and how to solve them,

are given in [26, §2C] in the case of schemes over a field; here one can proceed

exactly in the same way by using (7.7) and [12, Prop. 3.6].

Lemma 7.7 Let X ∈ Sm(k), where k is a field. In (7.6), �
n,i
X

, �
n,i
X

and �
n,i
X

�
n,i
X

have divisible kernels and torsion-free cokernels, while �
n,i
X

has torsion kernel

and cokernel. Moreover, �
n,2n
X

= �n
X

is bijective for n = 1 and injective for

n = 2.

Proof For �
n,i
X

�
n,i
X

, see [26, Cor. 3.5]; the proof is the same for �
n,i
X

and �
n,i
X

. For

�
n,i
X

, see [26, Th. 2.6 c)]. The last claim follows from the isomorphism

Z(1)  Gm [−1] (7.8)

for n = 1 and from (7.5) for n = 2. �

Note that if clnX is not injective, neither is �n
X

in (7.2), and then CHn
ét
(X)

is not finitely generated since it contains a non-zero divisible subgroup; see

Proposition 7.10 for (minimal) examples and Theorem 7.15 for positive cases

over a finite field.
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7.3.2 Naı̈ve and Non-naı̈ve Higher Chow Groups

For an arithmetic scheme X , write H∗(X , Z(n))n for the cohomology groups

of the Bloch–Levine cycle complex zn(X , ∗): more precisely, Hi(X , Z(n))n =

H2n−i(zn (X , ∗)). These are the naı̈ve higher Chow groups. They map to motivic

cohomology, but this map is mysterious in general. Nevertheless we have the

following.

Theorem 7.8 The map Hi(X , Z(n))n → Hi(X , Z(n)) is bijective for i ≥ 2n;

in particular, CHn (X ) ∼−→ H2n(X , Z(n)).

This will be used in the proof of Theorem 7.18.

Proof If X were smooth over a field, this would follow from Bloch’s localisa-

tion theorem for naı̈ve higher Chow groups: the latter is extended in [35] only

to smooth schemes over a semi-local Dedekind ring. The strategy is to reduce

to the field case.

Let X be the generic fibre of X over Spec Z, and for each prime p let Xp be

its fibre at p (it may be empty). By [35, Th. 1.7], we have a long exact sequence

· · · → Hi−1 (X, Z(n)) →
⊕

p

Hi−2 (Xp, Z(n − 1))

→ Hi(X , Z(n)) → Hi(X, Z(n)) → · · ·.
(7.9)

Let i > 2n. The claim is that Hi(X , Z(n)) = 0: this follows from (7.9), since

Hi(X, Z(n)) = Hi−2(Xp, Z(n − 1)) = 0.

For i = 2n, we compare (7.9) with an exact sequence for (ordinary)

Chow groups. Namely, we have the following commutative diagram of exact

sequences

An−1 (X, KM
n )

�−→
⊕

p

CHn−1 (Xp) → CHn (X ) →→ CHn(X)

b
⏐⏐F� c

⏐⏐F d
⏐⏐F�

H2n−1 (X, Z(n)) �′−−→
⊕

p

H2n−2 (Xp, Z(n − 1))→H2n (X , Z(n))→H2n(X, Z(n)).

(7.10)

Here, b and d are bijective because we are over fields, and the top exact

sequence is the one of Fulton [10, Prop. 1.8], extended to the left thanks to the

Gersten complexes associated to X , X and Xp as in Rost [41, p. 356]. This

already gives the surjectivity of c, and its injectivity follows from the next

lemma. �

Lemma 7.9 Let hn(X, 1) = Ker(zn(X, 1) d′−→ zn(X, 0)), where d′ is the differ-

ential of the complex zn(X, ∗). There exists a homomorphism Θ : hn (X, 1) →

Bruno Kahn

www.cambridge.org/9781009497190
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-49719-0 — Moduli, Motives and Bundles
Pedro L. del Ángel R. , Frank Neumann , Alexander H. W. Schmitt
More Information

www.cambridge.org© Cambridge University Press & Assessment

210 Bruno Kahn

An−1 (X, KM
n ) such that �′� = b� ◦ Θ, where � : hn (X, 1) → H2n−1 (X, Z(n)) is

the natural surjection.

Proof In order to motivate the construction, we first review the definition of an

isomorphism � : H2n−1 (X, Z(n)) ∼−→ An−1 (X, KM
n ): as we are over a field, we

only need to use Bloch’s results. The localisation theorem of [5, Cor. (0.2)]

implies Gersten’s conjecture for the cohomology sheaves Hq(Z(n)) [4, Th.

(10.1)]. This in turn implies that Z(n) is acyclic in degrees > n and, by the

theorem of Nesterenko–Suslin and Totaro [40, Th. 4.9], [47], we get an isomor-

phism of Hn(Z(n)) with the nth unramified Milnor K-sheaf KM
n of [41, p. 360]

(see [40, p. 144]). Thus we get an exact triangle

�<nZ(n) → Z(n) → KM
n [−n] +1−−→

which yields a long exact sequence of hypercohomology groups

· · ·H2n−1 (X, �<nZ(n)) → H2n−1 (X, Z(n)) �−→ Hn−1 (X,KM
n )

→ H2n(X, �<nZ(n)) → · · ·

and Hn−1 (X,KM
n ) is canonically isomorphic to An−1 (X, KM

n ) by Gersten’s con-

jecture (cf. [41, Cor. 6.5]). Finally, Gersten’s conjecture also implies that

Hp(X,Hq(Z(n))) = 0 for p > q, hence Hm(X, �<nZ(n)) = 0 for m > 2n − 2 by

the hypercohomology spectral sequence.

Ideally, one should then show that b�� = �′. For this, we would need a

description of � on the chain level. Instead we shall only prove the statement of

the lemma, using the following construction due to Marc Levine.

Define a map Θ0 : zn(X, 1) → Cn−1 (X, KM
n ) as follows. We identify Δ1 with

A1 by sending (0, 1) to 0 and (1, 0) to 1. It suffices to define Θ0 on the integral

generators W of zn(X, 1) ⊂ Zn (X × A1). Let Z ⊂ X be the closure of p1 (W).
If W → Z is not generically finite, we set Θ0(W) = 0. In this case, W =

Z × A1 is the boundary of Z × Δ2, so we can neglect these cycles. If W → Z

is generically finite, the function t/(t − 1) on A1 restricts to a function � on W,

and W (0) − W (1) = div(g) where g = Nk(W )/k(Z) ( � ) [10, Prop. 1.4 and §1.6].

We set Θ0(W) = (Z, g) ∈
⊕

x∈X (n−1) k(x)∗. By construction, the diagram

Cn−1 (X, KM
n )

d−−−−−−→ Cn (X, KM
n ) = Zn (X)

Θ0

G⏐⏐ | |
G⏐⏐

zn(X, 1) d′−−−−−−→ zn(X, 0) = Zn (X)

(7.11)

commutes. In particular Θ0 sends Ker d′ to Ker d, hence defines a map Θ as in

the lemma.
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It is likely that Θ represents �, but this is not necessary: we only need the

statement of the lemma to conclude the proof of Theorem 7.8. But we can

repeat the same construction verbatim by replacing X with X ; we get a com-

mutative diagram similar to (7.11), which receives a map from (7.11) by the

operation ‘closing a cycle of X in X ’. For both localisation sequences: the one

involving Rost cycle complexes and the one involving Bloch–Levine cycle com-

plexes, the boundary map � (resp. �′) is obtained by closing up a cycle on X in

X and then applying the differential of the complex. (In the second case, the

point is that there are no cycles to move, so the construction can done glob-

ally on Spec Z.) This shows that, if w ∈ hn (X, 1), then the boundary of (the

cohomology class of) w coincides with that of Θ(w).
This concludes the proof of Theorem 7.8. �

7.4 A Naı̈ve Calculation

Here we mimick for n > 1 the argument giving injectivity of clnX for n = 1 by

using étale motivic cohomology, and see what goes wrong.

The isomorphism (7.7) yields short exact sequences

0 → H
�

ét
(X, Z(n))/l� → H

�

ét
(X, �⊗n

l�
) → l�H

�+1

ét
(X, Z(n)) → 0. (7.12)

Taking the inverse limit and using Mittag-Leffler, we get a short exact

sequence

0 → H
�

ét
(X, Z(n))∧ b−→ lim←−−H

�

ét
(X, �⊗n

l�
) → Tl (H �+1

ét
(X, Z(n))) → 0

where ∧ means l-adic completion. For � = 2n, this yields a commutative

diagram, with notation as in (7.2):

CHn (X) ⊗ Zl

�n
X−−−−−−→ CHn

ét
(X) ⊗ Zl


n
X
�n

X−−−−−−→ H2n
cont (X, Zl (n))

c
⏐⏐F cét

⏐⏐F d
⏐⏐F

CHn(X)∧
�̂n

X−−−−−−→ CHn
ét
(X)∧ b−−−−−−→ lim←−−H2n

ét
(X, �⊗n

l�
)

where b is injective. This shows that Ker clnX ⊆ Ker(�̂n
X

c).
If n = 1, �1

X
is an isomorphism, hence so is �̂1

X
. By hypothesis, CH1 (X)

is finitely generated [25], hence c is an isomorphism and cl1X is injective, cf.

[17, Rem. 6.15 a)]. Suppose now that n ≥ 2. If CHn(X) is finitely generated

(Bass conjecture), c is an isomorphism and Ker �n
X

is finite (Lemma 7.7). But

the same is far from clear for Ker �̂n
X

: for example, nothing prevents a priori

CHn
ét
(X) from being l-divisible, hence CHn

ét
(X)∧ from being 0!
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We can approach this latter kernel via Lemma 7.3, neglecting the finite group

Ker �n
X

. If X is of finite type over Spec Z[1/l], the groups H2n−1
ét

(X, �⊗n
l�
) are

finite and the Mittag-Leffler hypotheses of this lemma are verified; hence we

get an exact sequence, up to a finite group

Tl (CHn
ét (X)) → Tl (Coker �n

X) → Ker �̂n
X → 0.

For n = 2, we are contemplating the effect of Tl on the map on the right of

(7.5). It seems difficult to get further in general with such an approach.

Finally, one might hope to reason directly with CHn
ét
(X) rather than CHn (X).

However this approach is doomed.

Proposition 7.10 The map �2
X

is not injective in general in (7.2), and CH2
ét
(X )

is in general not finitely generated for arithmetic schemes X .

Proof For the first point, simply take X = Spec k with cdl (k) = 3: on the one

hand we have an isomorphism

0 ≠ H3(k, Ql/Zl (2))
∼−→ CH2

ét (k) ⊗ Zl

(this non-vanishing is classically proven by using two successive discrete val-

uations of rank 1 to descend to the cohomology of a finite field, see [43, Rem.

6.4]). On the other hand, H̃4
cont (k, Zl (2)) = 0 by Lemma 7.5 because a cofinal

system of models of Spec k over Spec Z[1/l] has cohomological dimension 3,

so �2
X

is not injective.

The same holds for any such model: for example, taking X = X0 × Gm

with X0 either the spectrum of a ring of S-integers in a number field (with S

containing all places above l), or a smooth affine curve over Fp (with p ≠ l),

the Gysin exact sequence and A1-invariance of étale motivic cohomology away

from p give an isomorphism

CH2
ét(X ) ⊗ Z(l)

∼−→ H3
ét (X0, Z(l) (1)) = Br(X0) ⊗ Z(l)

where Br(X0) is the Brauer group of X0. Here again, �2
X

= 0 and CH2
ét
(X ){l}

= CH2
ét
(X ) ⊗ Z(l) is non-zero and divisible. �

The first example in this proof seems basic; it already appears in [43] and

[8], and will reappear in Sections 7.8 and 7.9.

7.5 The Case of Positive Characteristic

7.5.1 The Tate–Beilinson Conjecture

We start with a smooth projective variety X over k = Fp. Let k̄ be an algebraic

closure of k, G = Gal(k̄/k) and Xs = X ⊗k k̄. There are two basic conjectures.

Bruno Kahn

www.cambridge.org/9781009497190
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-49719-0 — Moduli, Motives and Bundles
Pedro L. del Ángel R. , Frank Neumann , Alexander H. W. Schmitt
More Information

www.cambridge.org© Cambridge University Press & Assessment

7 Injectivity and Non-injectivity of Cycle Class Maps 213

Tate’s conjecture: For all n ≥ 0, the order of the pole of the zeta function

� (X, s) at s = n is equal to the rank of An
num (X), the group of cycles of

codimension n on X modulo numerical equivalence.

Beilinson’s conjecture: rational and numerical equivalences agree on X

(with rational coefficients).

We call these two conjectures, taken together, the Tate–Beilinson conjecture.

Of course, Beilinson’s conjecture implies the injectivity of cl∗X ⊗Q (because

it implies that rational and homological equivalences agree). We shall recall

in Section 7.5.5 that the Tate–Beilinson conjecture extends this injectivity to

open Xs.

Tate’s conjecture taken alone implies the following.

Cohomological Tate conjecture: the cycle class map CHn(X) ⊗ Ql →
H2n(X̄, Ql (n))G is surjective for all n ≥ 0.

Conversely, the cohomological Tate conjecture implies Tate’s conjecture

in the presence of the Grothendieck–Serre conjecture (semi-simplicity of the

action of G on the cohomology of X̄) [46, Th. 2.9].

Since cdl (G) = 1, one has short exact sequences

0 → H2n−1 (X̄, Ql (n))G → H2n
cont (X, Ql (n)) → H2n (X̄, Ql (n))G → 0.

But the left hand side is 0 by (Deligne’s proof of) the Weil conjectures (the

Frobenius eigenvalues are Weil numbers of weight 2n − 1 − 2n = −1), so the

cohomological Tate conjecture is equivalent to the surjectivity of clnX ⊗ Q.

7.5.2 Function Fields

Suppose now that V is a smooth variety over a function field K/Fp. The aim of

this section is to prove the following.

Theorem 7.11 The Tate–Beilinson conjecture implies that

(a) CHn (V) is fgmi (see Lemma 7.4).

(b) The kernel of the refined cycle class map

�n
V : CHn

ét (V) ⊗ Zl → H̃2n
cont (V , Zl (n))

is torsion (and divisible).

(c) The kernel of the refined cycle class map

c̃l
n

V : CHn (V) ⊗ Zl → H̃2n
cont (V , Zl (n))

has finite exponent.
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For the proof, see Section 7.5.6.

As an application, assume V affine and let n = dim V . By the cohomological

dimension of affine schemes, H̃a
cont (K, Hb (V̄ , Zl (n))) = 0 for b > n. If more-

over trdeg(K/Fp) < n− 1, the same holds for a ≥ n, hence H̃2n
cont (V , Zl (n)) = 0

by the Hochschild–Serre spectral sequence of [17, Th. 3.3] and we get.

Corollary 7.12 Under the above hypotheses, the Tate–Beilinson conjecture

implies that CH0 (V) is a group of finite exponent. �

7.5.3 Nilpotence

Let N (k) ⊆ V(k) be the class of varieties X such that the ideal of Chow self-

correspondences

Ker(CHdim X (X × X)Q → Adim X
num (X × X)Q)

is nil, where Adim X
num (X × X) denotes cycles modulo numerical equivalence. The

following is a version of the main result of [24].

Theorem 7.13 Let X ∈ N (k). If X satisfies Tate’s conjecture, it also satisfies

Beilinson’s conjecture.

(Conversely, if X verifies Beilinson’s conjecture then obviously X ∈ N (k).)
Theorem 7.13 is a consequence of the following more precise theorem,

in which we use Voevodsky’s triangulated category of geometric motives

DMgm(k) [49] to interpret motivic cohomology as Hom groups. It refines [27,

Prop. 10.5.1], under stronger hypotheses.

Theorem 7.14 (a) If X ∈ N (k) verifies Tate’s conjecture, its motivic cohomol-

ogy groups Hi(X, Z(n)) are all fgmi. Moreover, they are torsion unless i = 2n,

in which case the projection of H2n (X, Z(n))  CHn (X) onto An
num (X) is the

projection on its maximal torsion-free quotient. Here, An
num (X) denotes cycles

modulo numerical equivalence.

(b) If N (k) = V(k) and all X ∈ V(k) verify Tate’s conjecture, then the

Hi (U, Z(n)) are fgmi for all smooth k-varieties U and all n ≥ 0, i ∈ Z. More

generally, all Hom groups in DMgm(k) are fgmi, and the pairings

Hom(Z, M) × Hom(M, Z) → Hom(Z, Z) = Z

are perfect in Ab ⊗Q for M ∈ DMgm(k) (i.e. the induced homomorphisms

Hom(Z, M) → Hom(M, Z)∗

are isomorphisms in this category).
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Proof As in [24], it is an elaboration of an argument going back to Soulé [44]

and Geisser [11].

The various absolute Frobenius endomorphisms assemble to yield a ⊗-

endomorphism F of the identity functor of DMgm(k). Namely, finite correspon-

dences clearly commute with Frobenius endomorphisms; this extends them to

Cor(k), then to its bounded homotopy category, etc. Since FU×V = FU × FV ,

this endomorphism is indeed monoidal. Moreover, it is compatible with the

Frobenius action on Chow motives via the ⊗-functor

Φ : Chow(k) → DMgm(k) (7.13)

of [49, Prop. 2.1.4]. This allows us to compute FZ(n) [i] for any n, i: first

FZ(n) [i] = FZ(n) = F⊗n
Z(1)

then

FZ(1) = FZ(1) [2] = Φ(FL)

where L is the Lefschetz motive, and it is known that FL = p (this is also

obvious from (7.8)). Finally we get:

FZ(n) [i] = pn.

Therefore, for any smooth U and any n ≥ 0, i ∈ Z, we have for any 	 ∈
Hi(U, Z(n)) = Hom(M(U), Z(n) [i]):

F∗
U	 = 	 ◦ FU = FZ(n) [i] ◦ 	 = pn	. (7.14)

(a) Let X ∈ V(k). Write the (rational) numerical motive hnum (X) as a direct

sum of simple motives
⊕

� S�, thanks to Jannsen’s theorem [19]. If X ∈ N (k),
we can lift this decomposition to a decomposition of the Chow motive of X (see

[20, Lemma 5.4]):

h(X)  
⊕
�

S̃�.

Moreover, if F� is the Frobenius endomorphism of S� and if P� is its

minimal polynomial, there exists N� > 0 such that P� (F�)N� = 0.

In DMgm(k) ⊗ Q, we therefore have a decomposition

M(X)  
⊕
�

Φ(S̃�)

hence a decomposition in Ab ⊗Q

HHom(M(X), Z(n) [i])  
⊕
�

HHom(Φ(S̃�), Z(n) [i])
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where HHom are the refined Hom groups of [26, Rem. 4.13]). By (7.14), we

therefore have

P� (pn)N�HHom(Φ(S̃�), Z(n) [i]) = 0 ∀�

hence HHom(Φ(S̃�), Z(n) [i]) = 0 if P� (pn) ≠ 0.

Suppose moreover that X verifies the Tate conjecture. By [38, Prop. 2.6] (see

also [11, Th. 2.7]), P� (pn) = 0 ⇐⇒ S�  Ln. Thus we get

HHom(M(X), Z(n) [i])  
{

0 if i ≠ 2n

An
num(X) if i = 2n

which is equivalent to (a).

In (b), the first statement is a special case of the second; thanks to Lemma

7.4 b), to get it we reduce to (a) by de Jong’s theorem [21], observing that the

statement of (c) (taken for M[i], all i ∈ Z) is stable under cones and direct

summands. �

7.5.4 Examples

As in [24, Def. 1], let B(k) denote the class of X ∈ V(k) whose Chow motive

h(X) is a direct summand of h(AE), where A is an abelian variety over k and E

is a finite extension of k; and let Btate (k) denotes the class of members of B(k)
which verify the cohomological Tate conjecture. We have

Btate (k) ⊆ B(k) ⊆ N (k) ⊆ V(k)

where the second inclusion follows from the nilpotence theorem of Kimura–

O’Sullivan [34, Prop. 7.5]. Since the Galois action on cohomology is semi-

simple for any X ∈ B(k) [24, Lemme 1.9], members of Btate (k) also verify the

strong form of the Tate conjecture and Theorem 7.14 (a) thus applies to them.

Conversely, the Tate conjecture implies that every smooth projective vari-

ety is of abelian type modulo numerical equivalence [38, Rem. 2.7], hence

modulo rational equivalence under the Beilinson conjecture; therefore the

Tate–Beilinson conjecture implies that Btate(k) = V(k).
All varieties known to belong to N (k) actually belong to B(k).

7.5.5 Weil-Étale Cohomology

In positive characteristic, there is another cohomology introduced by Lichten-

baum [36] for X ∈ Sm(k): Weil-étale cohomology. It gives rise to Weil-étale
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motivic cohomology, that we denote by H∗
W
(X, Z(n)). By [13, Th. 6.1], there

are long exact sequences

· · · �−→ Hi
ét (X, Z(n)) → Hi

W (X, Z(n))

→ Hi−1
ét (X, Z(n)) �−→ Hi+1

ét (X, Z(n)) → · · ·
(7.15)

where � is given by the composition

Hi−1
ét (X, Z(n)) ⊗ Q = Hi−1

ét (X,Q(n)) → Hi−1
ét (X, Q/Z(n)) ·e→

Hi
ét (X, Q/Z(n))

�
→ Hi+1

ét (X, Z(n))

in which e is the canonical generator of H1
cont (Fp, Zl) = Homcont (G, Zl) given

by the arithmetic Frobenius. They rely on the similar exact sequences of [22,

Prop. 4.2], plus [13, Th. 5.1 and 5.3]. (See [27, App. A] for a different proof of

the latter.)

The étale cycle class map �
n,i
X

extends to a Weil-étale cycle class map

Hi
W (X, Z(n)) ⊗ Zl → Hi

cont (X, Zl (n)) (7.16)

and to the following.

Theorem 7.15 The Tate–Beilinson conjecture implies that, for all (i, n) ∈
Z × N,

(i) Hi
W
(X, Z(n)) is finitely generated for all X ∈ V(k);

(ii) Hi
ét
(X, Z(n)) ∼−→ Hi

W
(X, Z(n)) if i ≤ 2n for all X ∈ V(k);

(iii) (7.16) is an isomorphism for all X ∈ Sm(k).

For i = 2n, (ii) together with (7.15) predicts a precise description of the

l-adic cycle class map and in particular of its kernel, which is seen to be torsion.

Proof These facts are proven unconditionally in [24, Th. 3.6 and Cor. 3.8] for

all X ∈ Btate (k); but the Tate–Beilinson conjecture implies that Btate(k) = V(k)
as seen in Section 7.5.4. For the open case in (iii), one proceeds by dévissage

from the projective case as in the proof of [23, Lemma 3.8]. �

Remark 7.16 Conversely, items (i) and (iii) of Theorem 7.15 imply the Tate–

Beilinson conjecture, see [13, Th. 8.4]; this will not be used here.

7.5.6 Proof of Theorem 7.11

Proof We can choose a smooth model S of K, and (up to shrinking S) a smooth

model U → S of V . Since CHn (V) is a quotient of CHn(U), a) follows from
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Theorem 7.14 b) and Lemma 7.4 b). (b) follows from (7.15) and the isomor-

phism (7.16) (Theorem 7.15 (iii)) by passing to the limit over U. Finally, (c)

follows from (a) and (b) since Ker(CHn (V) → H2n
ét
(V , Z(n))) is torsion. �

Remark 7.17 If X is smooth projective, Theorem 7.11 can be strengthened by

replacing H̃2n
cont with H2n

cont, arguing as in [22, Th. 8.32]: use a smooth projec-

tive spread and Deligne’s criterion for the degeneration of the Leray spectral

sequence generalising that of [17, Cor. 3.4] (see also [28, Proof of Prop. 7]). I

don’t know how to obtain such a strengthening for open Xs.

Unfortunately, it is not easy to give interesting examples where the conclu-

sions of Theorem 7.11 hold unconditionally. The issue is the following: suppose

that we start from X ∈ Btate(k), so that the Tate–Beilinson conjecture is known

for X, and fibre it over some variety Y with function field K. We would like to

get a conclusion for the generic fibre V of X → Y . But to pass from X to V , we

have to remove closed subvarieties Z on which we have no control, even after

de Jong desingularisation. If we are in weight n, purity will reduce us to the

cohomology of (desingularisations of) Z in weights < n, but even for n = 2 this

leads to the Tate conjecture in codimension 1, which is not known in full gener-

ality. The best that can be done unconditionally is for n = 2 and dim X = 2 [24,

Prop. 4.4], but if Y is 1-dimensional, so will be the generic fibre V and we get an

already known statement. At least, [24, Cor. 2.5] gives the Beilinson–Soulé con-

jecture for function fields K of surfaces of abelian type over k. (Consequences

of this, like the existence of an abelian category of mixed Tate motives over K,

do not seem to have been explored.)

7.5.7 Characteristic 0

Two fundamental aspects of the picture in characteristic p are as follows.

• Having the Tate and the Beilinson conjectures jointly allows us to extend

conjectural statements from smooth projective varieties to all smooth vari-

eties, because they allow us to strengthen conjectural injectivity/surjectivity

to conjectural bijectivity (then allowing for dévissages by purity).

• The Weil-étale cohomology provides the right conjectural statement in terms

of finite generation.

I don’t know any conjectural statements which imply the same conclusions

as Theorem 7.11 in characteristic 0. One could try the Tate conjecture over num-

ber fields k, plus the Bloch–Beilinson conjecture that the l-adic Abel–Jacobi

map should be injective for all X ∈ V(k) [3, Lemma 5.6] (a higher analogue of
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Beilinson’s conjecture over finite fields), but I am not able to use this conjunc-

tion to pass from projective to open varieties. It seems that more is needed, like

perhaps the right version of Weil-étale cohomology.

The issue of having the ‘right’ conjectures in characteristic 0 is also dis-

cussed in [22, §12]. Hopefully, current research on Weil-étale cohomology in

characteristic 0 (e.g. [39]) will shed light on this question.

7.6 Decomposition of the Diagonal

Let k be a finitely generated field, and let X be a smooth projective k-variety.

Theorem 7.18 Assume that CH0 (Xk(X) ) ⊗Q
deg ⊗Q
−−−−−→ Q is an isomorphism. Let

� = | Coker deg |. Then Ker cl2X is killed by �, Ker �2
X

is torsion and we have the

following.

(a) If char k = 0, CH2 (X) is an extension of a finitely generated group by a

group of exponent �. If k is of Kronecker dimension ≤ 2, Ker cl2X is finite and

CH2 (X) is finitely generated.

(b) If char k = p > 0, the above is true up to p-primary groups of finite

exponent.

Recall that the Kronecker dimension of k is its transcendence degree over Fp

in characteristic p, and 1+ its transcendence degree over Q in characteristic 0.

Proof The hypothesis means that X has a (rational) decomposition of the diag-

onal in the sense of Bloch–Srinivas [6], that is, there exists n > 0 such that

nΔX = � + � ∈ CHd (X × X) (d = dim X), where � (resp. �) is supported on

D×X (resp. X ×V), D (resp. V) being a divisor (resp. a finite number of closed

points).

We proceed in four steps.

(1) The statements are true with � replaced by n.

(2) The case X(k) ≠ ∅.

(3) Refining n to � in 1).

(4) The case of Kronecker dimension ≤ 2.

(1) We apply the technique of Bloch–Srinivas [6]: by Chow’s moving lemma,

we reduce to the case where D ∩ V = ∅; if we are in characteristic 0, we

choose a (not necessarily connected) resolution D̃ of D. Since CH2(V) = 0,

multiplication by n on CH2 (X) factors as

CH2(X) �̃∗−−→ CH1 (D̃)
�
−→ CH2 (X)
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where �̃∗ is induced by � and � is induced by the composition D̃ → D → X.

This gives the claims, because CH1(D̃) is finitely generated, cycle class maps

are compatible with the action of correspondences [17, prop. 3.25 and lemma

6.14] and cl1
D̃

is injective as we saw in Section 7.4.

If we are in characteristic p > 0, we can proceed similarly by using de Jong’s

alteration theorem [21], refined by Gabber [16, Exp. X, th. 2.1], as in [31, proof

of Th. 2.4.2]: this gives the statement because l is prime to p. This implies that

Ker �2
X

is torsion, thanks to Lemma 7.7.

For the sequel, we consider the commutative diagram of exact sequences

H3(X, Z(2)) ⊗ Ql/Zl →H3(X, Ql/Zl (2))→(CH2 (X) ⊗ Zl)tors→ 0

a
⏐⏐F=cl

2,3
X
⊗Ql/Zl b

⏐⏐Finj c
⏐⏐F=cl2X

0 →H3
cont (X, Zl (2)) ⊗Zl

Ql/Zl→H3
ét
(X, Ql/Zl (2))→ H4

cont (X, Zl (2))
(7.17)

where the upper row is motivic cohomology. The injectivity of b follows from

the Merkurjev–Suslin theorem. The snake lemma therefore gives a short exact

sequence

0 → Ker c → Coker a → Coker b. (7.18)

(2) Let x be a rational point of X. We may choose V = {x} and � = n(X × x).
In the correspondence ring CHd (X × X), the identity 1 = ΔX is the sum of

the two idempotents �0 = X × x and 1 − �0, and any module M over this ring

decomposes accordingly as a direct sum M0⊕M+, where M0 = Im �0 and M+ =
Im(1 − �0). We have the same decomposition for morphisms between such

modules. Since CH2 (X)0 = CH2 (Spec k) = 0, we have CH2 (X) = CH2 (X)+
and Ker c = Ker c+.

Lemma 7.19 a+ is surjective, and c+ (hence c) is injective.

Proof Since � = n(1X − �0), reasoning as in (1) yields a commutative diagram

H3 (X, Z(2) )+ ⊗ Ql/Zl
�̃∗

−−−−−−−→ H1 (D̃, Z(1) ) ⊗ Ql/Zl

�
−−−−−−−→ H3 (X, Z(2) )+ ⊗ Ql/Zl

a+
⏐⏐F a′

⏐⏐F a+
⏐⏐F

H3
cont (X, Zl (2) )+ ⊗Zl

Ql/Zl
�̃∗

−−−−−−−→ H1
cont (D̃, Zl (1) ) ⊗Zl

Ql/Zl

�
−−−−−−−→ H3

cont (X, Zl (2) )+ ⊗Zl
Ql/Zl

in which each composition is multiplication by n. Here we use the fact that

the generalised cycle class maps from motivic cohomology to continuous étale

cohomology commute with the action of correspondences, which may be seen

most concisely using (7.13).

In particular, the two maps � in the diagram are surjective (especially the

bottom one), and we reduce to seeing that the middle map a′ is surjective.
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In the Milnor exact sequence of [17, (2.1)], the lim←−−
1 disappears, which

identifies H1
cont(D̃, Zl (1)) with the middle term of the exact sequence

0 → lim←−− Γ(D̃,Gm)/ln → lim←−−H1
ét (D̃, �ln) → Tl (CH1 (D̃)).

But Tl (CH1 (D̃)) = 0 since CH1 (D̃) is finitely generated, hence a′ boils

down to the isomorphism

Γ(D̃,Gm) ⊗ Ql/Zl
∼−→ IΓ(D̃,Gm) ⊗ Ql/Zl.

The injectivity of c+ now follows from the + part of (7.18). �

(3) Let x be a closed point of X. Applying (2) to Xk(x) , we see by the usual

transfer argument that Ker cl2X is killed by [k(x) : k]; hence it is killed by �

which is the gcd of these degrees. On the other hand, we know by (1) (see

Lemma 7.4 (i)) that CH2 (X) is the direct sum of a free finitely generated sub-

group and a group T of finite exponent n. By Theorem 7.6, cl2X (T) is finite, thus

T ⊗ Zl = T{l} is an extension of a finite group by a group killed by �; in partic-

ular, it is finite for l � � (and 0 for l � n). Applying this to all l ≠ p, we get the

promised structure of CH2 (X).
(4) Choose a model X of X, smooth projective over a regular scheme S of

finite type over Spec Z[1/l] with function field k. We have the same diagram

as (7.17) for X .

We first give the argument in characteristic p > 0: then S is smooth over Fp.

We may choose S such that all the constructions of (1) spread to X , in particular

D̃ to D̃, V to V , with D ∩ V = ∅. We have the theory of Chow correspondences

of Deninger–Murre over S [9]; the argument of (a) then shows that the finite

generation of CH2 (X ) up to a group of finite exponent would follow from that

of CH1 (D) and from the vanishing of CH2 (V). The first is true by [25, cor. 1]. If

�(k) ≤ 1, then CH2 (V) = 0 for dimension reasons. If �(k) = 2, then dim S = 2;

by [33, Th. 2], CH2 (T) is therefore finite(ly generated) for any T regular and

finite over S, so up to shrinking S we may achieve again CH2(V) = 0, and the

conclusions of (1) hold for X . In particular, Ker cX is torsion of finite exponent

(with obvious notation).

Since H3
cont(X , Zl (2)) is a finitely generated Zl-module, it follows from

(7.18) (applied to X ) that Ker cX is finite.

But H4
cont (X , Zl (2)){l} is also finite; it follows that CH2 (X ){l} is finite.

Thus CH2 (X ) ⊗ Z(l) is a finitely generated Z(l) -module and so is its quotient

CH2 (X)⊗Z(l) .Therefore CH2 (X){l} = (CH2 (X)⊗Z(l) ){l} is finite, and Ker cl2X
is finite.
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In fine, CH2 (X)tors is a group of finite exponent whose l-primary torsion is

finite for any l ≠ p, hence is finite away from p. This concludes the proof of (4)

in positive characteristic.

In characteristic 0, S is flat over Spec Z[1/l]; up to shrinking, we may

assume it to be smooth. Thanks to [10, §20.2], the theory of Chow correspon-

dences over a base then goes through as in Deninger–Murre. To conclude the

argument, we need to extend (7.17) and (7.18) to X . We use motivic coho-

mology as in Section 7.3; by Theorem 7.8, we have indeed CHn (X ) ∼−→
H2n(X , Z(n)). Moreover, the map b is still injective by [12, Th. 1.2 2], so we

are done. �

Remarks 7.20 (a) The only essentially new thing in Theorem 7.18 is the case

of Kronecker dimension 2: indeed, in characteristic 0 the finite generation of

CH2 (X) goes back to [7, th. 4.3.10] when � = 1 or k is a number field, and

the injectivity of cl2X on torsion when � = 1 goes back to [42] under the

weaker hypotheses H1(X,OX) = H2 (X,OX) = 0. The proofs given here are

different.

(b) The case of Kronecker dimension 3 fails because we cannot prove that

CH2 (V) = 0 for S small enough: this would follow from the finite generation

of CH2 for arithmetic 3-folds, which is wide open in general.

(c) All that is used in the proof is the existence of a smooth projective variety

D̃ and two correspondences �̃∗ and � (of degrees −1 and +1) such that ��̃∗ acts

on Hi(X, Z(2)) and Hi
cont(X, Zl (2)) by multiplication by n for i = 3, 4 and some

n > 0. This implies the conditions of [42] cited in (a); expecting the converse

is closely related to Bloch’s conjecture on surfaces. This discussion will show

up again in Section 7.9.

(d) If we try to relax the hypothesis as in [7, th. 4.3.10 (i)], assuming only

that the birational motive of X (in the sense of [31]) is a rational direct summand

of the motive of a curve C, part (1) of the proof goes through because C does not

contribute to CH2 (X). But in part (2), the map a of the diagram is not surjective

for C.

(e) It would be nice to get rid of p-primary torsion in Theorem 7.18 b).

7.7 Counterexamples: Codimension > 2

In the last three sections, we examine the examples of [1, 43, 8], in the light

of the above ideas. They concern torsion classes x ∈ CHn (X), for X smooth

projective, which are killed by clnX . In this section, n ≥ 3 and we show as

promised in the introduction that one already has �n
X
(x) = 0, with the notation

of (7.2). In 7.7.1, 7.7.3 and 7.8, this comes with a new and simpler proof.
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7.7.1 [43, Th. 2.3]

In this reference, a counterexample to the injectivity of CH3 (X) ⊗ Z2 →
H6

cont (X, Z2 (3)) is given for a smooth projective variety X over a field k0 of

characteristic ≠ 2, which is a Godeaux–Serre variety associated to a finite 2-

group G; the culprit comes from a class � ∈ CH3 (BG) such that �k̄0
≠ 0

but cl3BG(�)k = 0 for some finite extension k of k0. In fact, we already have

�3
BG
(�)k̄0

= 0, hence �3
BG
(�)k = 0 for suitable k since étale motivic cohomol-

ogy commutes with filtering limits of schemes (Section 7.3.1: this trivialises

the delicate descent argument in the proof of Scavia and Suzuki (2023, Lemma

2.1 (b))). Indeed, by [30, Th. 7.1], we have

Hi
ét (BGk̄0

, Z(n))  Hi
ét(k̄0, Z(n)) ⊕ Hi(G, Z)(n)

(where Hi(G, Z) is the integral cohomology of G and the twist n takes care of

the Galois action), so we are reduced to a computation in the cohomology of G,

which is done in [48, §5]. (Recall that H6
ét
(k̄0, Z(n)) is uniquely 2-divisible [30,

Lemma 7.3 1)].)

7.7.2 [43, §§4 and 5]

The set up is the same as previously, but the counterexamples rely on the fact

that Bloch’s map


 : CH3 (Xk̄0
){2} → H5

ét (Xk̄0
, Q2/Z2 (3))

is not injective. We observe that the Bockstein map

H5
ét (Xk̄0

, Q2/Z2 (3)) → H6
cont (Xk̄0

, Z2 (3))

factors through CH3
ét
(Xk̄0

) ⊗ Z2 = H6
ét
(Xk̄0

, Z(3)) ⊗ Z2.

Question 7.21 The origin of the counterexample in [43, §4] is a non-zero class

x ∈ H4
nr (X, Q2/Z2 (3)) [43, Lemma 4.1]; by the exact sequence of [24, p. 998],

this group surjects onto Ker �3
X

. Can one prove directly that the image of x in

CH3 (X) by this map is non-zero? It would explain the counterexample in the

spirit of this paper.

7.7.3 [1, Th. 1.2 and 1.5]

Here X = S×E, where S is a surface and E an elliptic curve; z = z1⊗� ∈ CH3 (X)
where z1 ∈ CH2 (S), � ∈ lCH1(E) and cl2S (z1) maps to 0 in H4

ét
(S, �⊗2

l
) (see [1,

§7]). In view of the exact sequence

CH2
ét (S)

l−→ CH2
ét (S) → H4

ét (S, �⊗2
l
)
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we have �2
S
(z1) = lt for some t ∈ H4

ét
(S, Z(2)), hence

�3
X (z) = �2

S (z1) ⊗ �1
E (�) = lt ⊗ �1

E (�) = 0.

Remark 7.22 (see [8, Rem. 5.4]) For n > 2 it is easy to produce an example of

an X and an element x ∈ CHn (X) such that �n
X
(x) ≠ 0 but �n

X
�n

X
(x) = 0, hence

also clnX (x) = 0. Namely, start from one of the examples X0 from the next two

sections, and let x0 ∈ Ker cl2X0
; just take X = X0 × Pn−2 and x = x0 ⊗ �, where �

is the canonical generator of CHn−2 (Pn−2) = Z, and use the projective bundle

formula in all theories.

7.8 The Counterexample of [43, Th. 6.3]

Here X is a norm variety of dimension l2 − 1 over F = k(t) in the sense of

[45] and [32], where k is a global field,1 associated to a non-trivial symbol

s ∈ H3
ét
(F, �⊗2

l
). Let R be the associated Rost motive: it is a direct summand

of the Chow motive of X with coefficients Z(l) , and CH2 (R)  Z/l [43, proof

of Th. 6.3].

Scavia and Suzuki prove that cl2
R

= 0. We shall recover this result by passing

through étale motivic cohomology; namely by using, the following.

Proposition 7.23 (a) The canonical map

CH2
ét (F) ⊗ Z(l) → CH2

ét (R)

is an isomorphism.

(b) The map �2
R

is 0.

Proof (a) Morally, this is because R splits (i.e. becomes a direct sum of powers

of the Lefschetz motive) in the étale topology. This could be given a cor-

rect meaning in the étale version of DMeff
gm(F); we give a more elementary

proof, computing the Hochschild–Serre spectral sequence for the weight 2 étale

motivic cohomology of X rather than for its continuous étale cohomology as in

[43]. Namely, this spectral sequence is

E
p,q

2
(X) = H

p

ét
(F, H

q

ét
(X̄, Z(2))) ⇒ H

p+q

ét
(X, Z(2)). (7.19)

As in [43], after tensoring with Z(l) it acquires, as a direct summand, a

spectral sequence for the étale motivic cohomology of R:

E
p,q

2
(R) = H

p

ét
(F, H

q

ét
(R̄, Z(l) (2))) ⇒ H

p+q

ét
(R, Z(l) (2)).

1 Of characteristic 0 if l ≠ 2.
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Here R̄ = RF̄ . Following the tracks of [43], we use the fact that R̄  ⊕ �−1

i=0
L � (l+1) where L is the Lefschetz motive [32, beg. §3]. Since we are

over an algebraically closed field, we have H
q

ét
(Li, Z(l) (2))) = 0 if i > 2;

since l + 1 ≥ 3, the only summand which contributes is therefore 1, which

yields H
q

ét
(R̄, Z(l) (2))) = H

q

ét
(F̄, Z(l) (2))). But (7.12) shows that this group is

uniquely divisible for q ≠ 1 and that there is an exact sequence

0 → Ql/Zl (2) → H1
ét (F̄, Z(l) (2)) → H1

ét (F̄, Q(2)) → 0.

For p + q = 4, we therefore have E
p,q

2
(R) = 0 except for q = 1, when its

value is

E
3,1
2
(R) = H3(F, Ql/Zl (2)).

By unique divisibility and the vanishing of H3
ét
(F̄, Z(l) (2))), these are per-

manent cycles, whence an isomorphism H3(F, Ql/Zl (2))
∼−→ CH2

ét
(R), which

is obviously induced by the canonical morphism R→ 1.

(b) This follows from a) by functoriality, since H4
cont (F, Zl (2)) = 0. �

Remark 7.24 As the proof shows, (a) is valid for any Rost motive over any

field F, regardless of its cohomological dimension.

Let � be a generator of CH2 (R); Proposition 7.23 (a) identifies �2
R
(�) with

an element of H3 (F, Ql/Zl (2)). Since it is killed by l, it comes by Merkurjev–

Suslin from a unique element t ∈ H3 (F, Z/l(2)).

Proposition 7.25 If l = 2, then t = s.

Proof Here again, this is valid over any F (of characteristic ≠ 2). We may

assume that X is a Pfister quadric. Let K be its function field. Then R splits

over K, hence CH2 (RK) = 0 and tK = 0 by functoriality. Since t ≠ 0, we have

t = s by Arason’s theorem [2, Satz 5.6]. �

I suppose the same result and proof work for l odd, up to an element of F∗
l
,

but I am lacking a reference for an analogue of Arason’s theorem.

7.9 The Counterexample of [8, Th. 5.3]

This is by far the most delicate of all.

Here X is a rational surface over k = Q(√−p)(t), where p is a prime number

≡ −1 (mod 3). More generally, Colliot-Thélène and Scavia consider smooth

projective surfaces satisfiying strong conditions in the spirit of [42]. Here is a

version of their results in this generality, using CH2
ét
(X) and �2

X
. For simplicity,

we invert p if k is of characteristic p > 0.
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We shall use Hypothesis (H4) of [8, §3], that we now recall:

(H4) Hi(X,OX) = 0 for i = 1, 2, H3 (X̄s, Ql) = 0 and, for all l, Hi(Xs, Z){l} = 0

if i ≤ 4. Here Xs = X ⊗k ks where ks is a separable closure of k.

Remark 7.26 Hypothesis (H4) includes the vanishing of Br(X̄){l}, or equiv-

alently of the ‘transcendental’ part of H2
cont (X̄, Ql). Bloch’s conjecture then

predicts that the Albanese kernel of X̄ vanishes, hence that CH2 (X)0 and

CH2
ét
(X)0 are torsion. This is true, for example, for rational surfaces.

Theorem 7.27 Let X be a surface over a field k, verifying Hypothesis (H4).

(a) Let CH2
ét
(X)0 be the kernel of the degree map

CH2
ét (X)

	∗−→ CH0
ét (Spec k) = Z

where � : X → Spec k is the structural morphism. Let S be the Néron–Severi

torus of [8, p. 6]. Then there is a canonical map

CH2
ét (X)

0 Φét−−→ H1 (k, S) (7.20)

such that Ker �2
X
⊆ KerΦét ⊗ Zl, hence Ker cl2X ⊆ KerΦ ⊗ Zl where Φ =

Φét ◦ �2
X

.

(b) If cdl (k) ≤ 3, Φét is surjective. If cdl (k) ≤ 2 or if X has a 0-cycle of

degree 1, KerΦét is uniquely divisible and �2
X

, cl2X are injective.

(c) There are compatible exact sequences

S(k) → H3
ét (k,Q/Z(2))

→ CH2
ét (X)tors

Φét−−→ H1(k, S) → H4
ét (k, Q/Z(2))

(7.21)

S(k) → N → CH2 (X)tors
Φ−→ H1 (k, S) → H4

ét (k, Q/Z(2)) (7.22)

where N = Ker(H3
ét
(k, Q/Z(2)) → H3

nr (X, Q/Z(2)) (cf. [8, (4.1)]).

(d) If cdl (k) ≤ 3, the inclusions in (a) refine to equalities

Ker �2
X = (KerΦét ⊗ Zl)tors, Ker cl2X = (KerΦ ⊗ Zl)tors

(cf. [8, Th. 4.8]).

To prove Theorem 7.27, we need the following Propositions 7.28 and 7.29.

Proposition 7.28 Under the hypotheses of Theorem 7.27, the Chow motive

h(Xs) has the following integral decomposition:

h(Xs) = 1 ⊕ NSX ⊗L ⊕ t2 ⊕ L2

where (as previously) L is the Lefschetz motive and NSX is the Artin motive

associated to the geometric Néron–Severi group NS(Xs), and t2 represents the

Albanese kernel.

Bruno Kahn

www.cambridge.org/9781009497190
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-49719-0 — Moduli, Motives and Bundles
Pedro L. del Ángel R. , Frank Neumann , Alexander H. W. Schmitt
More Information

www.cambridge.org© Cambridge University Press & Assessment

7 Injectivity and Non-injectivity of Cycle Class Maps 227

Proof This is the decomposition of [29, Prop. 14.2.1 and 14.2.3], with two

refinements: the summands h1 (X) and h3 (X) vanish because Pic0(Xs) = 0

(Hypothesis (H1) of [8]), and all Chow–Künneth projectors have integral coef-

ficients. For those of degrees 0 and 4, this is obvious since we can choose a

rational point. For NSX ⊗L we use the fact that, under [8, (H1)], the intersec-

tion pairing on the (torsion-free) Néron–Severi lattice NS(Xs) is perfect, so the

idempotent defining it in [29, p. 465] is integral. �

A problem with the decomposition of Proposition 7.28 is that it is not Galois-

equivariant in the absence of a 0-cycle of degree 1, a crucial condition for the

counterexample of [8] (see [8, Th. 4.2] and part (b) of Theorem 7.27). This

makes a direct use of the Hochschild–Serre spectral sequence (7.19) delicate.

The most conceptual way to get around this would be to replace it by the finer

slice spectral sequence of [15, (3.2)]:

E
p,q

2
(X, n) = H

p−q

ét
(cq (X), Z(n − q)ét) ⇒ H

p+q

ét
(X, Z(n)) (7.23)

but justifying a computation of the slices cq (X) ∈ DMeff
ét
(k) appears too

complicated.2 Instead, we proceed with a more down-to-earth dévissage as

follows.

First, the structural map X → Spec k induces a morphism of Chow motives

h(X) → 1, hence another one L2 → h(X) by Poincaré duality. This induces in

turn two morphisms of complexes, with composition 0:

RΓét (k, Z(2)) → RΓét (X, Z(2)) → RΓét (L2, Z(2)). (7.24)

Write RΓét (X, Z(2))+ for the homotopy fibre of the second morphism.

Taking cohomology, we get a short exact sequence

0 → H4(RΓét (X, Z(2))+) → CH2
ét (X) → CH0

ét (k) = Z

which identifies H4(RΓét(X, Z(2))+) with the kernel CH2
ét
(X)0 of the degree

map.

Then the first morphism of (7.24) lifts to a morphism RΓét (k, Z(2)) →
RΓét (X, Z(2))+ (in the derived category); write R̄Γét (X, Z(2)) for its homotopy

cofibre and H̄i
ét
(X, Z(2)) for the cohomology groups of the latter. This time, we

have an exact sequence

H̄3
ét(X, Z(2))) → H4

ét (k, Z(2))

→ CH2
ét (X)

0 �
−→ H̄4

ét (X, Z(2))) → H5
ét (k, Z(2))

(7.25)

2 One should have cq (X) = 0 for q > 2, c2 (X) = Z, c1 (X) = NSX [0], and an exact triangle
t2 → c0 (X) → Z → t2 [1]. One issue is to justify that the motive t2 of Proposition 7.28 does
define an object of DMeff

ét
(k) .

Bruno Kahn

www.cambridge.org/9781009497190
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-49719-0 — Moduli, Motives and Bundles
Pedro L. del Ángel R. , Frank Neumann , Alexander H. W. Schmitt
More Information

www.cambridge.org© Cambridge University Press & Assessment

228 Bruno Kahn

in which the first (resp. last) term identifies with H3
ét
(k, Q/Z(2)) (resp.

H4
ét
(k, Q/Z(2))). In particular, � is surjective if cdl (k) ≤ 3.

Proposition 7.29 There is an isomorphism H̄3
ét
(X, Z(2))  ud ⊕S(k) and a

(split) exact sequence

0 → ud → H̄4
ét (X, Z(2)) → H1(k, S) → 0 (7.26)

where ud stands for uniquely divisible.

Proof We compute the Hochschild–Serre spectral sequence for R̄Γét (X, Z(2)):

E
p,q

2
= Hp (k, H̄

q

ét
(Xs, Z(2))) ⇒ H̄

p+q

ét
(X, Z(2)) (7.27)

where H̄∗
ét
(Xs, Z(2)) is defined similarly, for Xs. Here, we can use Proposition

7.28 to write

R̄Γét (Xs, Z(2)) = RΓét(NSX ⊗L ⊕ t2, Z(2)).

We now note that the idempotent in CH2 (Xs×Xs) defining NSX ⊗L is Galois-

invariant by [29, Lemma 14.2.2], which works for the Z-perfect pairing on

NS(Xs). Accordingly, the direct sum decomposition

R̄Γét (Xs, Z(2)) = RΓét (t2, Z(2)) ⊕ RΓét(NSX ⊗L, Z(2)) (7.28)

gives a corresponding decomposition of the E2-terms of (7.27). For the first

summand, we have

Lemma 7.30 The groups H
q

ét
(t2, Z(2)) are uniquely l-divisible.

Proof One has a decomposition with coefficients Z/ln

H̄
q

ét
(Xs, Z/ln (2)) = H

q

ét
(k̄, Z/ln (2)) ⊕ H

q

ét
(t2, Z/ln (2)) ⊕ H

q−4

ét
(k̄, Z/ln) (7.29)

for any integer n > 0, which already gives H
q

ét
(t2, Z/ln (2)) = 0 for q ∉

[1, 3]. Then, [8, (H1) and (H3)] also yield H
q

ét
(t2, Z/ln (2)) = 0 for q = 1, 3.

Finally, Hypothesis (H1) implies that Br(Xs) = 0 and that H2
cont (Xs, Zl (2)) →

H2
ét
(Xs, Z/ln (2)) is surjective; since the image of the projector defining t2 act-

ing on H2
cont (Xs, Zl (2)) equals Tl (Br(Xs))(1), we also get H2

ét
(t2, Z/ln (2)) = 0.

The unique divisibility follows from the long cohomology exact sequence. �

Coming back to the proof of Proposition 7.29, the second summand of (7.28)

gives

H
q

ét
(NSX ⊗L, Z(2)) = NSX ⊗H

q−2

ét
(k̄, Z(1)) = NSX ⊗H

q−3

ét
(k̄,Gm).

This is 0 for q ≠ 3 and S(k̄) for q = 3.
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All this allows us to write the E2-terms of (7.27) as follows:

E
p,q

2
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if p ≠ 0 and q ≠ 3

Hp (k, S) if p ≠ 0 and q = 3

ud if p = 0 and q ≠ 3

ud ⊕S(k) if p = 0 and q = 3.

This gives the first isomorphism and the exact sequence (7.26), except that

there is a priori a uniquely divisible term as the cokernel; but it vanishes since

H1(k, S) is torsion. �

Remark 7.31 Under Bloch’s conjecture, [29, Cor. 14.4.9] shows that t2 is tor-

sion; then the groups H
q

ét
(t2, Z(2)) of Lemma 7.30 all vanish and so do those

marked ud in the E2-terms of the previous proof. In particular, CH2 (t2) ⊆
CH2

ét
(t2) vanishes; applying this over all extensions of k̄, we get t2 = 0 by a

birational Manin identity principle.

Proof of Theorem 7.27 Composing the map of (7.26) with the map � of (7.25)

we get the map Φét of (a). Thanks to Proposition 7.29, the exact sequence (7.25)

yields (7.21), and (7.22) follows from confronting it with (7.5). Hence (c).

We may now compute the continuous étale cohomology of X in a parallel

way to Propositions 7.28 and 7.29; for the last part, we get that the cohomology

of t2 vanishes and that H
q
cont (NSX ⊗L, Zl (2)) is 0 for q ≠ 2 and NSX ⊗Zl (1) for

q = 2, hence with similar notation

H̄n
cont (X, Zl (2)) = Hn−2

cont (k, NSX ⊗Zl (1))

and the étale cycle class map H̄4
ét
(X, Z(2)) ⊗ Zl → H̄4

cont (X, Zl (2)) reads as a

map

H1(k, S) ⊗ Zl → H2
cont (k, NSX ⊗Zl (1)) (7.30)

which can be interpreted as stemming from the ‘Kummer’ exact sequences

0 → l�S → S
l�−→ S → 0

because of the canonical isomorphisms l�S  NSS/l� . Hence (7.30) is injec-

tive by [8, Prop. 2.2 (c)], since H1(k, S) is a torsion group. Thus we get a

commutative diagram

CH2
ét
(X)0 ⊗ Zl

Φét⊗Zl−−−−−−→ H1(k, S) ⊗ Zl

(cl2X )0⏐⏐F ⏐⏐Finj

H4
cont (X, Zl (2)) −−−−−−→ H2

cont (k, NSX ⊗Zl (1))

Bruno Kahn

www.cambridge.org/9781009497190
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-49719-0 — Moduli, Motives and Bundles
Pedro L. del Ángel R. , Frank Neumann , Alexander H. W. Schmitt
More Information

www.cambridge.org© Cambridge University Press & Assessment

230 Bruno Kahn

which shows that Ker cl2X = Ker(cl2X)0 ⊆ KerΦét, completing the proof of (a)

and yielding the assertions of (b) (use Theorem 7.18 for the vanishing of Ker �2
X

and Ker cl2X).

For (d), the point is simply that the commutative square above extends to a

larger commutative diagram of exact sequences

CH2
ét
(k) ⊗ Zl −−−−−−→ CH2

ét
(X)0 ⊗ Zl

Φét⊗Zl−−−−−−→ H1 (k, S) ⊗ Zl⏐⏐F (cl2X )0⏐⏐F ⏐⏐Finj

H4
cont (k, Zl (2)) −−−−−−→ H4

cont (X, Zl (2)) −−−−−−→ H2
cont (k, NSX ⊗Zl (1))

and that the bottom left term is 0. �

Remarks 7.32 (1) In order to get back the counterexample of [8, Th. 5.3], it

would remain to see that the map S(k) → H3
ét
(k, Q/Z(2)) of (7.22) agrees with

that of [8, (4.1)] (presumably the two sequences coincide).

(2) In [8, Th. 4.8/Th. A.1], an analogue of Theorem 7.27 (d) is stated for

KerΦ without assuming cdl (k) ≤ 3.
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mologie étale des schémas (SGA 4), Tomor 2, Lect. Notes in Math. 270, Springer,

1972, 341–365.

[15] A. Huber, B. Kahn The slice filtration and mixed Tate motives, Compositio Math.

142 (2006), 907–936.

[16] L. Illusie, M. Temkin Travaux de Gabber sur l’uniformisation locale et la coho-
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