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On the Injectivity and Non-injectivity
of the /-Adic Cycle Class Maps

Bruno Kahn

Abstract We study the injectivity of the cycle class map with values
in Jannsen’s continuous étale cohomology, by using refinements that go
through étale motivic cohomology and the ‘tame’ version of Jannsen’s
cohomology. In particular, we use this to show that the Tate and the
Beilinson conjectures imply that its kernel is torsion in positive charac-
teristic, and to revisit recent counterexamples to injectivity.
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7.1 Introduction

7.1.1 The Cycle Class Map

Recently there has been renewed investigation of Jannsen’s cycle class map [17,
(6.14)]

1’1
CH"(X) ® Z) =5 H2" (X, Z/(n)) (7.1)

for X a smooth projective variety over a field k. Jannsen introduced continuous
étale cohomology in [17] in order to correct bad properties of the naive defi-
nition (by inverse limits) of /-adic cohomology when & is not separably closed.

201
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His definition agrees with the naive one when the Galois cohomology groups of
k with finite coefficients are finite, which happens only for special fields (finite,
p-adic, separably closed. . .) and not for any infinite finitely generated field.

Finitely generated fields are those for which (7.1) is especially interesting:
Jannsen then proves that it is injective for n = 1 ([17], Rem. 6.15 a)), and raises
the question of such injectivity for higher values of n, at least rationally; in [20,
Lemma 2.7] he shows that such injectivity would imply the Bloch—Beilinson—
Murre (BBM) conjectures on filtrations on (rational) Chow groups.

One may wonder whether the converse is true: I could not prove it even with
the strongest form of the BBM conjectures (existence of a category of mixed
motives, [20, §4]). One may then wonder whether the injectivity of clf ® Q
would follow from some other known conjectures. We shall see in Theorem
7.11 (c) that the answer is yes in positive characteristic, up to refining cly as
in Section 7.1.2; to the best of my knowledge, this question remains open in
characteristic 0. See Section 7.4 for elementary computations showing that the
Bass conjecture is not sufficient, and Section 7.5.7.

Given such an unclear situation, one may wonder whether the restriction
of (7.1) to the torsion subgroup of CH"(X) ® Z; is injective; this has been the
topic of [1, 8, 42, 43], where many examples (resp. counterexamples) have been
found.

7.1.2 Refining cl}y

The two ideas developed in this paper are the following.

(1) The map (7.1) is defined generally for smooth, not necessarily projective,
varieties, and this extension can be useful even to study the projective case: it
was the central tool in [28] for a simple reduction of the Tate conjecture in
codimension 1 to the case of surfaces over the prime field, and will be used
similarly for the proof of Theorem 7.11.

(2) As exploited previously in [26], (7.1) gains in understanding if it is
factored through finer cycle class maps, namely

CH"(X) ® Z) — H(X. Z(n)) ® Z,

ﬁ”
X

r72n
> H cont

y (7.2)
(X, Zy(n)) —> HZ (X, Zy(n))

where Hét(X ,Z(j)) is étale motivic cohomology and
Hion (X, Z0()) = lim | Hio (X, Zi()) (7.3)

is Jannsen’s refinement of H' (X, Z;(j)) from [18, 11.6, 11.7]; here X runs
through models of X regular, separated and of finite type over Z[1/I]. This
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group maps to H' (X, Z;(j)), but not isomorphically in general since contin-
uous étale cohomology does not commute with filtering limits of schemes: for
example, Al (C,Z,(1)) = C* ® Z; while H!  (C,Z/(1)) = 0; for [ # 2,
AZ,,(Q.Zi(1)) =~ P, Z; while Hg,, (Q,Z(1)) is the l-adic completion of
D,z

The extension of (7.1) to étale motivic cohomology, namely, the map y5 8y
of (7.2), was initially constructed in [23] using Bloch’s cycle complexes; in pos-
itive characteristic, this is sufficient to refine it to the middle map B, because
the models are then defined over a (finite) field.

In characteristic 0, the situation would the same if one did not care about
the groups I:Iéom(X, Z,(n)), but is more delicate otherwise because of the Z-
models X'. A construction of cl')’( is essentially done in [42, §5]; namely, Saito
defines cycle classes in étale cohomology with finite coefficients, but one can
then promote them to continuous étale cohomology as in [17, Th. 3.23]; to
prove that they pass to rational equivalence, the use of P! in the proof of [17,
Lemma 6.14 i)] can be advantageously replaced by that of A!, to exploit the
Al-invariance of étale cohomology. To define B> we need to use étale motivic
cohomology of arithmetic schemes: this is done in Section 7.3.

In the sequel, it will be convenient to use the abbreviations

CH!(X) = H¥(X,Z(n)), cly = Bral. (7.4)

t

The groups CHY (X) are in general very amenable to computation, which
can be used to simplify and clarify reasonings which did not involve them; we
hope that this technique will be taken up by others in future work.

The factorisation (7.2) also indicates facts on cl}. For example, as an imme-
diate consequence we see that it can be injective on torsion only if @ is. This
holds for n < 2 thanks to the short exact sequence [26, Prop. 2.9]

0 — CH*(X) -5 CH2(X) — H3.(X,Q/Z(2)) — 0 (7.5)

but not for n > 2 in general, for example [24, p. 998]. We shall see in
Section 7.7 that the counterexamples previously obtained for n > 2 are all
explained in this way.

On the other hand, one should not make too much of CH, (X) beyond being
a convenient computational tool: for example, it is far from being finitely gen-
erated in general, see Proposition 7.10. Regarding A2 (X, Z;(n)), (7.2) raises
the following question.

Question 7.1 (cf. Th. 7.11) Does there exist a finitely generated field %, a
smooth projective k-variety X and an integer n > 0 such that Ker 51; ®Q #
Kercly ® Q?
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Another thing which can be done is to find ‘obvious’ cases where Ker cl} is
finite or 0, by reduction to the case n = 1. Morally, this might happen when X
has a decomposition of the diagonal a la Bloch—Srinivas, because the reduced
motive of X then has coniveau > 0, hence CH" (X) is approximately CH"~'(Y)
for some other smooth projective Y, and similarly for continuous étale coho-
mology. Nevertheless, working out the argument turns out to involve the size
of the ground field k (see Theorem 7.18 and Remark 7.20 b).

7.1.3 Contents

In Section 7.2 we prove some basic facts, the most notable being Theorem 7.6.
In Section 7.3, we extend (7.2) to other bidegrees by using motivic cohomology
ala Bloch-Levine (see (7.6)); the main result is Theorem 7.8. In Section 7.4 we
analyse an attempt to deduce the injectivity of cly ® Q over finitely generated
fields from the Bass conjecture, showing how it fails. In Section 7.5, we explain
that the situation is much better in positive characteristic. In Section 7.6, we
prove some results when X has a decomposition of the diagonal: this originates
from a letter to Colliot-Thélene of 1 December 2021.

In Sections 7.7, 7.8 and 7.9, we revisit the counterexamples from [1, 8, 43].
Section 7.7 concerns those where n > 2 as said before, we show that they are all
explained by non-injectivity of @y, so have nothing to do with continuous €étale
cohomology. In particular, the counterexamples of Alexandrou and Schreieder
in [1] are proven without using refined Bloch maps.

The next two sections concern the case n = 2. In Section 7.8, we refine a
counterexample of Scavia and Suzuki [43] involving the Rost motive; in Sec-
tion 7.9 we reformulate parts of the paper of Colliot-Théleéne and Scavia [8] in
a more concise way. Still, Section 7.7 takes a little more than one page, Section
7.8 two pages and Section 7.9 five pages.

7.1.4 Notation

We write V(k) for the category of smooth projective varieties over a field k,
and Reg(S) (resp. Sm(S)) for the category of regular (resp. smooth) separated
schemes of finite type over a base scheme S. An arithmetic scheme is a con-
nected object of Reg(Spec Z) which is either smooth or not flat over SpecZ
(hence in the latter case, smooth over a finite field). We recall the following
basic fact [37, 11 7.1].

Theorem 7.2 Let X be an arithmetic scheme. If F is a constructible sheaf on
X such that mF = 0 for some integer m > O which is invertible on X, then the
étale cohomology groups H(X, F) are finite. O
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7.1.5 Acknowledgements
I thank Marc Levine for his help in the proof of Lemma 7.9.

7.2 Some General Facts

7.2.1 Algebra

Lemma 73 Let0 - A — B — C — 0 be an exact sequence of abelian
groups. Assume that the inverse systems (pA) and (;vB) are Mittag-Leffler.
Then there is an exact sequence

O—>T1A—>TIB—>T1C—>A—>B
where " means l-adic completion.

Proof Let Tli be the derived functors of 7;: Ab — Ab. Write T} = liLnOUl,
where U;(A) = (j»A): this is a composition of two left exact functors. Since any
injective abelian group / is divisible, U;(1) is Mittag-Leffler hence liLn—acyclic,
and there is a Grothendieck spectral sequence

E)Y =1im” U} (4) = T} (A)

for any abelian group A. Note that Uzl (A) = (A/l”) and lim” = Ulq = 0 for
—
p,q > 1;thus T ]’" = 0 for m > 2, and even for m = 2 again by Mittag-Leffler.
Finally we get a short exact sequence
0— lim' A - T/A — limA/lY =A — 0
— —
forany A € Ab.If 0 - A — B — C — 0 is an exact sequence, we thus get a

commutative diagram of exact sequences:

liml vA ——— ]11’1’11 vB —— lll’n1 vC
I I} I}
«— «— —

1 l l

0->TA—->TB—->TC—> T/1A —— T/B —— T/C

1 l

A P

A — _— C.

~

o ——

Under the hypothesis of the lemma, the liLn] vanish, hence the conclusion.
|

Let Ab be the category of abelian groups; as in previous works, we shall use
the category Ab ®Q of abelian groups up to isogenies, namely, the localisation
of Ab by the Serre subcategory of groups of finite exponent.
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Lemma 7.4 (a) For an abelian group A, the following conditions are equiva-
lent.

(i) A is the direct sum of a free finitely generated group and a group of finite
exponent.
(i) Aiors is of finite exponent and A = A /A is free finitely generated.
(iii) A is a sum of a finitely generated subgroup and a subgroup of finite
exponent.
(iv) The image of A in Ab ®Q is isomorphic to a finitely generated group.

We say that such A is finitely generated modulo isogenies (in short: fgmi).
(b) The fgmi abelian groups form a Serre subcategory of Ab.

Proof (a) (i) & (ii) = (iii) = (iv) are trivial. (iv) = (i):let f: A = M be
an isomorphism in Ab ®Q, where M is finitely generated. If M is the quotient
of M by its torsion subgroup, then M — M is an isomorphism in Ab ®Q; thus
we may assume M torsion-free, that is, free. By calculus of fractions, there is a
diagram in Ab:

MEiLa
where the kernel and cokernel of u and f are of finite exponent, and such that
f = fu~!in Ab®Q. Replacing M by Im u, we may assume u surjective, hence

split by some homomorphism v: M — M. Then Ker fv and Coker fv have
finite exponent; hence the composition
Sfv o=
M—A—>A
is injective and its cokernel has finite exponent, say N. Then NA C M is free
finitely generated, hence so is A. But then 7 is split and A ~ A @ Ao. Finally,
since Coker fv has finite exponent, so does A¢ors.

(b)Let 0 > A” - A — A” — 0 be an exact sequence in Ab. We must
show that A is fgmi if and only if so are A” and A”. Suppose that A is fgmi. By
Condition (iii), so is A””. Moreover, Ay
A’ as well by Condition (ii). Suppose now that A” and A" are fgmi. The exact
sequence

< Airs and A” = A, hence so is

0— A

"
tors Ators —A

tors
shows that A has finite exponent. Moreover, if N is an exponent of A{ ., the
image of the map
A" — Ker(A — A”)
contains N Ker(A — A”). Therefore Ker(A — A”’) is free finitely gener-

ated; since so is A", the surjection A — A" is split and A is also free finitely
generated. We conclude with Condition (ii) again. O
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7.2.2 Geometry

For a scheme X, write cd;(X) for its étale I-cohomological dimension and
cd;(X) for the inf of those i > 0 such that H. (X, (F,)) = 0 for all inverse
systems (F) of sheaves of [-primary torsion on Xg. The following lemma puts
[8, Prop. 2.3] in its right generality (same proof).

Lemma 7.5 cd;(X) = cd;(X). O

We also note the following result, whose proof is identical to that of [42, Th.
5.1] and which implies this theorem.

Theorem 7.6 Let X € Sm(Speck), where k is a finitely generated field of
characteristic # . For any n > 0, the image of 51;, and a fortiori that of cly,, is
a finitely generated Z;-module. O

(This proof is clarified if one promotes Saito’s argument to a commutative

diagram
CH'(X)®Z, —» CH'(X)®Z,

cl'l\{l El;l(l
(Xv Z[(ﬂ)) — F]ggm(X, Z[(i’l))

where X is an arithmetic model of X, using the finite generation of
chgm(X , Z;(n)) which follows from Theorem 7.2.)

H2n

cont

7.3 Motivic Cohomology
7.3.1 Refined Motivic Cycle Class Maps

In the sequel we shall use a generalisation of (7.2) to all motivic cohomology:

HI(X.Z(n)) ® Z) — HL (X, Z(n)) ® Z, 06

1,0 n,i

B . b% .
= He o (X, Zi(n)) = HE o (X, Zi(n)).

This was done in [26, §§2 and 3Al, except for H! (X, Z;(n)). The same
comments as in Section 7.1.2 apply, except that one should explain which ver-
sion of motivic cohomology is used for arithmetic schemes. We use Levine’s
extension of Bloch’s complexes to schemes over a Dedekind domain [35],
developed by Geisser in [12]: more precisely, the Zariski (resp. étale) hyper-
cohomology of Bloch’s cycle complexes, namely the complexes of Zariski
sheaves

Z(n) := 7" (=, %) [-2n]

and their étale versions Z(n)g, as in [12, §3].
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To define ﬁ’)’éi for an arithmetic scheme X', we use the isomorphism
Z(n)g ®LJIV ~ uﬁ"; (71.7)

extended to arithmetic schemes in [12, Th. 1.2 4]. Since the étale cohomology
of X with finite coefficients is finite (Theorem 7.2), ,8';5 may simply be seen as
l-adic completion. To pass to smooth schemes over a field, we use the continuity
of motivic and étale motivic cohomology (commutation with filtering inverse
limits of schemes with affine transition morphisms): this follows from

e continuity of the cycle complexes themselves,
e continuity of Zariski and étale cohomology.

At the referee’s request, we give details. The first point is seen explicitly
from the definition of the terms of Z(n): for any scheme A" over a Dedekind
scheme S, one has by definition

2(X,Q) = @Z
Z

where Z runs through the integral closed subschemes of codimension n of X’ Xg
A which meet all faces properly.

In the second point, continuity for sheaves is classical: see [14, Th. 5.7]
for étale cohomology. We reduce to this case by a hypercohomology spectral
sequence argument. Details on the delicate points to deal with complexes of
sheaves which are not [known to be] bounded below, and how to solve them,
are given in [26, §2C] in the case of schemes over a field; here one can proceed
exactly in the same way by using (7.7) and [12, Prop. 3.6].

Lemma 7.7 Let X € Sm(k), where k is a field. In (7.6), ﬁ;’gi, y;’(’i and y;‘(’iﬁ;’i
have divisible kernels and torsion-free cokernels, while oz;l(” has torsion kernel
and cokernel. Moreover, a;'(’zn = ay is bijective for n = 1 and injective for

n=2.

Proof For y;’iﬁ;’(’i, see [26, Cor. 3.5]; the proof is the same for ﬁ;’gi and y;'(’i. For

a;‘i, see [26, Th. 2.6 ¢)]. The last claim follows from the isomorphism
Z(1) = Gy [-1] (7.8)
for n = 1 and from (7.5) for n = 2. O

Note that if cly is not injective, neither is B§ in (7.2), and then CHY (X)
is not finitely generated since it contains a non-zero divisible subgroup; see
Proposition 7.10 for (minimal) examples and Theorem 7.15 for positive cases
over a finite field.
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7.3.2 Naive and Non-naive Higher Chow Groups

For an arithmetic scheme X, write H* (X, Z(n)), for the cohomology groups
of the Bloch-Levine cycle complex 7 (X, *): more precisely, H (X, Z(n)), =
H?"!("(X, %)). These are the naive higher Chow groups. They map to motivic
cohomology, but this map is mysterious in general. Nevertheless we have the
following.

Theorem 7.8 The map H (X, Z(n)), — H'(X,Z(n)) is bijective for i > 2n;
in particular, CH"(X) — H*'(X,Z(n)).

This will be used in the proof of Theorem 7.18.

Proof If X were smooth over a field, this would follow from Bloch’s localisa-
tion theorem for naive higher Chow groups: the latter is extended in [35] only
to smooth schemes over a semi-local Dedekind ring. The strategy is to reduce
to the field case.

Let X be the generic fibre of X’ over Spec Z, and for each prime p let X}, be
its fibre at p (it may be empty). By [35, Th. 1.7], we have a long exact sequence

s HTNX Z(n) > (D H (X, Z(n - 1)
P (7.9)
— H'(X,Z(n)) — H (X, Z(n)) — -~

Let i > 2n. The claim is that H (X, Z(n)) = 0: this follows from (7.9), since
H(X,Z(n)) = H2(X,,Z(n—-1)) = 0.

For i = 2n, we compare (7.9) with an exact sequence for (ordinary)
Chow groups. Namely, we have the following commutative diagram of exact
sequences

AUXEM) S P CeHTN (X)) o CHYX) —>  CH'(X)
p

bll cl dl(
H™ (X, Z(n))i@ HY (X, Z(n - 1))—>H*(X,Z(n)) —H* (X, Z(n)).
p

(7.10)

Here, b and d are bijective because we are over fields, and the top exact
sequence is the one of Fulton [10, Prop. 1.8], extended to the left thanks to the
Gersten complexes associated to X', X and &), as in Rost [41, p. 356]. This
already gives the surjectivity of ¢, and its injectivity follows from the next
lemma. |

Lemma 7.9 Let W'(X,1) = Ker("(X, 1) 4, 7(X,0)), where d’ is the differ-
ential of the complex 7" (X, ). There exists a homomorphism ©: i"(X,1) —
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A"V (X, KM) such that §'m = b6 o ©, where n: h'(X,1) — H*'"Y(X,Z(n)) is
the natural surjection.

Proof In order to motivate the construction, we first review the definition of an
isomorphism 6: H*'~1(X,Z(n)) — A"~'(X,KM): as we are over a field, we
only need to use Bloch’s results. The localisation theorem of [5, Cor. (0.2)]
implies Gersten’s conjecture for the cohomology sheaves H?(Z(n)) [4, Th.
(10.1)]. This in turn implies that Z(n) is acyclic in degrees > n and, by the
theorem of Nesterenko—Suslin and Totaro [40, Th. 4.9], [47], we get an isomor-
phism of H"(Z(n)) with the nth unramified Milnor K-sheaf X of [41, p. 360]
(see [40, p. 144]). Thus we get an exact triangle

TenZ(n) — Z(n) — KM[-n] 25
which yields a long exact sequence of hypercohomology groups

o HPNX, T Z(n)) — HY N (X Z(n)) S HYV (X, M)
— H*(X, 7y Z(n)) — - -

and H"~'(X, KM) is canonically isomorphic to A"~ (X, K¥) by Gersten’s con-
jecture (cf. [41, Cor. 6.5]). Finally, Gersten’s conjecture also implies that
HP (X, H(Z(n))) =0 for p > g, hence H" (X, 7<,Z(n)) = 0 for m > 2n — 2 by
the hypercohomology spectral sequence.

Ideally, one should then show that b60 = ¢’. For this, we would need a
description of € on the chain level. Instead we shall only prove the statement of
the lemma, using the following construction due to Marc Levine.

Define a map ©p: *(X, 1) — C"1(X, kM) as follows. We identify A! with
A! by sending (0, 1) to 0 and (1,0) to 1. It suffices to define @, on the integral
generators W of (X, 1) ¢ Z"(X x A'). Let Z c X be the closure of py(W).
If W — Z is not generically finite, we set ®g(W) = 0. In this case, W =
Z x A is the boundary of Z x A%, so we can neglect these cycles. If W — Z
is generically finite, the function ¢/(¢ — 1) on A! restricts to a function f on W,
and W(0) — W(1) = div(g) where g = Niw)/k(z)(f) [10, Prop. 1.4 and §1.6].
We set Op(W) = (Z,8) € P ,cxu-1 k(x)*. By construction, the diagram

(X kM) —Ls Cn(x, kM) = Z(X)
o ] (7.11)

2x1) — s m(x0)=2(%)

commutes. In particular ® sends Kerd’ to Ker d, hence defines a map © as in
the lemma.
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It is likely that ® represents 6, but this is not necessary: we only need the
statement of the lemma to conclude the proof of Theorem 7.8. But we can
repeat the same construction verbatim by replacing X with X'; we get a com-
mutative diagram similar to (7.11), which receives a map from (7.11) by the
operation ‘closing a cycle of X in X”. For both localisation sequences: the one
involving Rost cycle complexes and the one involving Bloch—Levine cycle com-
plexes, the boundary map & (resp. ¢”) is obtained by closing up a cycle on X in
X and then applying the differential of the complex. (In the second case, the
point is that there are no cycles to move, so the construction can done glob-
ally on Spec Z.) This shows that, if w € A"(X, 1), then the boundary of (the
cohomology class of) w coincides with that of ®(w).

This concludes the proof of Theorem 7.8. O

7.4 A Naive Calculation

Here we mimick for n > 1 the argument giving injectivity of cl§ for n = 1 by
using étale motivic cohomology, and see what goes wrong.
The isomorphism (7.7) yields short exact sequences

0 — H (X, Z(n))/I" — H (X, u") — pHI (X, Z(n)) - 0. (7.12)

&

Taking the inverse limit and using Mittag-Leffler, we get a short exact
sequence

. h . . n .
0 — H}(X, Z(n)" = lim H} (X, u") — Ty(HL (X, Z(n))) — 0

A

where " means [-adic completion. For j = 2n, this yields a commutative

diagram, with notation as in (7.2):

(Yn )IB”
CH"(X) ® Z) —— CH!.(X) ® Z; —— H" (X, Z(n))

! .| |
CH'(X)) —— CHI(X)" ——s lim H2" (X, 12")
where b is injective. This shows that Kercly C Ker(a%c).

If n = 1, y is an isomorphism, hence so is &y. By hypothesis, CH' (X)
is finitely generated [25], hence c is an isomorphism and cl)l( is injective, cf.
[17, Rem. 6.15 a)]. Suppose now that n > 2. If CH"(X) is finitely generated
(Bass conjecture), c is an isomorphism and Ker a7 is finite (Lemma 7.7). But
the same is far from clear for Ker &}: for example, nothing prevents a priori

CH,(X) from being [-divisible, hence CHg‘t(X)A from being 0!
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We can approach this latter kernel via Lemma 7.3, neglecting the finite group
Kera¥. If X is of finite type over Spec Z[1/!], the groups He?t"‘l (X,yl%”) are
finite and the Mittag-Leffler hypotheses of this lemma are verified; hence we

get an exact sequence, up to a finite group
Ti(C g:(X)) - T;(Cokera;‘() — Ker&/;‘( 0.

For n = 2, we are contemplating the effect of 7; on the map on the right of
(7.5). It seems difficult to get further in general with such an approach.

Finally, one might hope to reason directly with CHY, (X) rather than CH" (X).
However this approach is doomed.

Proposition 7.10 The map ﬁ)z( is not injective in general in (7.2), and CH;( X)
is in general not finitely generated for arithmetic schemes X.

Proof For the first point, simply take X = Spec k with cd;(k) = 3: on the one
hand we have an isomorphism

0 # H*(k, Qi/Z4(2)) = CHZ (k) ® Zi

(this non-vanishing is classically proven by using two successive discrete val-
uations of rank 1 to descend to the cohomology of a finite field, see [43, Rem.
6.4]). On the other hand, A% (k,Z;(2)) = 0 by Lemma 7.5 because a cofinal
system of models of Spec k over Spec Z[1/I] has cohomological dimension 3,
so 3% is not injective.

The same holds for any such model: for example, taking X = &p X G,
with Xy either the spectrum of a ring of S-integers in a number field (with S
containing all places above /), or a smooth affine curve over F, (with p # I),
the Gysin exact sequence and A'-invariance of étale motivic cohomology away
from p give an isomorphism

CHZ(X) ® Z(y) — H; (X0, Z()(1)) = Br(Xp) ® Z(

where Br(Xp) is the Brauer group of Xp. Here again, ¥, = 0 and CHZ (X){l}
= CH; (X) ® Z(;) is non-zero and divisible. o

The first example in this proof seems basic; it already appears in [43] and
[8], and will reappear in Sections 7.8 and 7.9.

7.5 The Case of Positive Characteristic

7.5.1 The Tate-Beilinson Conjecture

We start with a smooth projective variety X over k = F,. Let k be an algebraic
closure of k, G = Gal(k/k) and X* = X ® k. There are two basic conjectures.
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Tate’s conjecture: For all n > 0, the order of the pole of the zeta function
{(X,s) at s = nis equal to the rank of A] (X), the group of cycles of
codimension n on X modulo numerical equivalence.

Beilinson’s conjecture: rational and numerical equivalences agree on X

(with rational coefficients).

We call these two conjectures, taken together, the Tate—Beilinson conjecture.

Of course, Beilinson’s conjecture implies the injectivity of cly ® Q (because
it implies that rational and homological equivalences agree). We shall recall
in Section 7.5.5 that the Tate—Beilinson conjecture extends this injectivity to
open Xs.

Tate’s conjecture taken alone implies the following.

Cohomological Tate conjecture: the cycle class map CH"(X) ® Q; —
H>"(X,Q(n))¢ is surjective for all n > 0.

Conversely, the cohomological Tate conjecture implies Tate’s conjecture
in the presence of the Grothendieck—Serre conjecture (semi-simplicity of the
action of G on the cohomology of X) [46, Th. 2.9].

Since ¢d;(G) = 1, one has short exact sequences

0 — H'(X,Qu(n)G — Hony (X, Qu(n)) — H*(X,Qu(n))® — 0.

But the left hand side is O by (Deligne’s proof of) the Weil conjectures (the
Frobenius eigenvalues are Weil numbers of weight 2n — 1 — 2n = —1), so the
cohomological Tate conjecture is equivalent to the surjectivity of cly ® Q.

7.5.2 Function Fields

Suppose now that V is a smooth variety over a function field K/F,. The aim of
this section is to prove the following.

Theorem 7.11 The Tate—Beilinson conjecture implies that
(a) CH"(V) is fgmi (see Lemma 7.4).
(b) The kernel of the refined cycle class map

By CHE(V) ® Zy — HZ (V. Zy(n))

is torsion (and divisible).
(c) The kernel of the refined cycle class map

cly: CH"(V) ® Z; — H>" (V. Zi(n))

has finite exponent.
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For the proof, see Section 7.5.6.
As an application, assume V affine and let n = dim V. By the cohomological
(K HY(V,Zy(n))) = 0 for b > n. If more-
over trdeg(K/F,) < n— 1, the same holds for a > n, hence ch(’)’m(v, Z,(n)) =0
by the Hochschild—Serre spectral sequence of [17, Th. 3.3] and we get.

dimension of affine schemes, HS,

Corollary 7.12 Under the above hypotheses, the Tate—Beilinson conjecture
implies that CHy(V) is a group of finite exponent. O

7.5.3 Nilpotence

Let N(k) € V(k) be the class of varieties X such that the ideal of Chow self-
correspondences

Ker(CHI™X (X x X)q — AYMX (X x X)q)

num

is nil, where AYmMX (X x X) denotes cycles modulo numerical equivalence. The

following is a version of the main result of [24].

Theorem 7.13 Let X € N(k). If X satisfies Tate’s conjecture, it also satisfies
Beilinson’s conjecture.

(Conversely, if X verifies Beilinson’s conjecture then obviously X € N(k).)

Theorem 7.13 is a consequence of the following more precise theorem,
in which we use Voevodsky’s triangulated category of geometric motives
DM, (k) [49] to interpret motivic cohomology as Hom groups. It refines [27,
Prop. 10.5.1], under stronger hypotheses.

Theorem 7.14 (a) If X € N(k) verifies Tate’s conjecture, its motivic cohomol-
ogy groups H'(X,Z.(n)) are all fgmi. Moreover, they are torsion unless i = 2n,
in which case the projection of H*'(X,Z(n)) ~ CH"(X) onto Al (X)) is the
projection on its maximal torsion-free quotient. Here, Al} . (X) denotes cycles
modulo numerical equivalence.

(b) If N(k) = V(k) and all X € V(k) verify Tate’s conjecture, then the
H(U,Z(n)) are fgmi for all smooth k-varieties U and all n > 0, i € Z. More
generally, all Hom groups in DMgy, (k) are fgmi, and the pairings

Hom(Z, M) x Hom(M,Z) — Hom(Z,Z) = Z
are perfect in Ab ®Q for M € DMy, (k) (i.e. the induced homomorphisms
Hom(Z,M) — Hom(M, Z)*

are isomorphisms in this category).
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Proof As in [24], it is an elaboration of an argument going back to Soulé [44]
and Geisser [11].

The various absolute Frobenius endomorphisms assemble to yield a ®-
endomorphism F of the identity functor of DMy, (k). Namely, finite correspon-
dences clearly commute with Frobenius endomorphisms; this extends them to
Cor(k), then to its bounded homotopy category, etc. Since Fyxy = Fy X Fy,
this endomorphism is indeed monoidal. Moreover, it is compatible with the
Frobenius action on Chow motives via the ®-functor

®: Chow(k) — DMy, (k) (7.13)
of [49, Prop. 2.1.4]. This allows us to compute Fz,,)[;] for any n, i: first
Fzmli) = Fzm) = Fg )
then
Fz) = Fz(y2) = @(FL)

where L is the Lefschetz motive, and it is known that Fi, = p (this is also
obvious from (7.8)). Finally we get:

n

Fzmi=pr

Therefore, for any smooth U and any n > 0, i € Z, we have for any ¢ €
H(U,Z(n)) = Hom(M(U), Z(n)[i]):

Fup=¢oFy=Fzuod=p"e. (7.14)

(a) Let X € V (k). Write the (rational) numerical motive /p,, (X) as a direct
sum of simple motives @a S, thanks to Jannsen’s theorem [19]. If X € N(k),
we can lift this decomposition to a decomposition of the Chow motive of X (see

[20, Lemma 5.4]):
h(X) = P ..

Moreover, if F, is the Frobenius endomorphism of S, and if P, is its
minimal polynomial, there exists N, > 0 such that P, (F,)e = 0.
In DMy, (k) ® Q, we therefore have a decomposition

M(X) = (P ()

hence a decomposition in Ab ®Q

Hom(M(X), Z(n)[i]) = ) Hom(®(3,), Z(n)[i])
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where Hom are the refined Hom groups of [26, Rem. 4.13]). By (7.14), we
therefore have

Po(P")NeHom(®(3,), Z(n)[i]) = 0 Va
hence
Hom(®(S,), Z(n)[i]) = 0if Py (p") # 0.

Suppose moreover that X verifies the Tate conjecture. By [38, Prop. 2.6] (see
also [11, Th. 2.7]), P, (p") =0 & S, ~L". Thus we get

0 ifi #2n

%(M(X)’Z(n)[i]):{m (X) ifi=2n

which is equivalent to (a).

In (b), the first statement is a special case of the second; thanks to Lemma
7.4 b), to get it we reduce to (a) by de Jong’s theorem [21], observing that the
statement of (c) (taken for M([i], all i € Z) is stable under cones and direct
summands. O

7.5.4 Examples

As in [24, Def. 1], let B(k) denote the class of X € V(k) whose Chow motive
h(X) is a direct summand of #(Ag), where A is an abelian variety over k and E
is a finite extension of k; and let By, (k) denotes the class of members of B(k)
which verify the cohomological Tate conjecture. We have

Buae (k) € B(k) € N(k) € V(k)

where the second inclusion follows from the nilpotence theorem of Kimura—
O’Sullivan [34, Prop. 7.5]. Since the Galois action on cohomology is semi-
simple for any X € B(k) [24, Lemme 1.9], members of By, (k) also verify the
strong form of the Tate conjecture and Theorem 7.14 (a) thus applies to them.

Conversely, the Tate conjecture implies that every smooth projective vari-
ety is of abelian type modulo numerical equivalence [38, Rem. 2.7], hence
modulo rational equivalence under the Beilinson conjecture; therefore the
Tate—Beilinson conjecture implies that By (k) = V (k).

All varieties known to belong to N (k) actually belong to B(k).

7.5.5 Weil-Etale Cohomology

In positive characteristic, there is another cohomology introduced by Lichten-
baum [36] for X € Sm(k): Weil-étale cohomology. Tt gives rise to Weil-étale
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motivic cohomology, that we denote by Hy, (X, Z(n)). By [13, Th. 6.1], there
are long exact sequences

[ S H
- > Hy (X, Z(n) — Hyy (X, Z(n)) (7.15)

i—1 o i1
— H (X,Z(n)) > H (X,Z(n)) — - -
where 0 is given by the composition
- - o e
Hy (X,Z(n)) ® Q = Hy (X,Q(n)) — Hy (X, Q/Z(n)) —
i B
Hi (X, Q/Z(n)) = Hi' (X, Z(n))

in which e is the canonical generator of Hclom(Fp» Z;) = Hom¢on (G, Z;) given
by the arithmetic Frobenius. They rely on the similar exact sequences of [22,
Prop. 4.2], plus [13, Th. 5.1 and 5.3]. (See [27, App. A] for a different proof of

the latter.)
The étale cycle class map ﬁ;’(” extends to a Weil-étale cycle class map

Hiy (X, Z(n)) ® Zj = Hin(X. Zi(n)) (7.16)
and to the following.

Theorem 7.15 The Tate—Beilinson conjecture implies that, for all (i,n) €
Z xN,

@) HQV(X, Z.(n)) is finitely generated for all X € V(k);
(i) H(X,Z(n)) = Hi,(X,Z(n)) ifi < 2n for all X € V(k);
(iii) (7.16) is an isomorphism for all X € Sm(k).

For i = 2n, (ii) together with (7.15) predicts a precise description of the
l-adic cycle class map and in particular of its kernel, which is seen to be torsion.

Proof These facts are proven unconditionally in [24, Th. 3.6 and Cor. 3.8] for
all X € By (k); but the Tate—Beilinson conjecture implies that By (k) = V(k)
as seen in Section 7.5.4. For the open case in (iii), one proceeds by dévissage
from the projective case as in the proof of [23, Lemma 3.8]. O

Remark 7.16 Conversely, items (i) and (iii) of Theorem 7.15 imply the Tate—
Beilinson conjecture, see [13, Th. 8.4]; this will not be used here.

7.5.6 Proof of Theorem 7.11

Proof We can choose a smooth model S of K, and (up to shrinking ) a smooth
model U — S of V. Since CH"(V) is a quotient of CH"(U), a) follows from
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Theorem 7.14 b) and Lemma 7.4 b). (b) follows from (7.15) and the isomor-
phism (7.16) (Theorem 7.15 (iii)) by passing to the limit over U. Finally, (c)
follows from (a) and (b) since Ker(CH" (V) — Hgt"(V, Z(n))) is torsion. O

Remark 7.17 If X is smooth projective, Theorem 7.11 can be strengthened by
replacing f{czgm with chgm, arguing as in [22, Th. 8.32]: use a smooth projec-
tive spread and Deligne’s criterion for the degeneration of the Leray spectral
sequence generalising that of [17, Cor. 3.4] (see also [28, Proof of Prop. 7]). I

don’t know how to obtain such a strengthening for open Xs.

Unfortunately, it is not easy to give interesting examples where the conclu-
sions of Theorem 7.11 hold unconditionally. The issue is the following: suppose
that we start from X € By (k), so that the Tate—Beilinson conjecture is known
for X, and fibre it over some variety Y with function field K. We would like to
get a conclusion for the generic fibre V of X — Y. But to pass from X to V, we
have to remove closed subvarieties Z on which we have no control, even after
de Jong desingularisation. If we are in weight n, purity will reduce us to the
cohomology of (desingularisations of) Z in weights < n, but even for n = 2 this
leads to the Tate conjecture in codimension 1, which is not known in full gener-
ality. The best that can be done unconditionally is for n = 2 and dim X = 2 [24,
Prop. 4.4], butif Y is 1-dimensional, so will be the generic fibre V and we get an
already known statement. At least, [24, Cor. 2.5] gives the Beilinson—Soulé con-
jecture for function fields K of surfaces of abelian type over k. (Consequences
of this, like the existence of an abelian category of mixed Tate motives over K,
do not seem to have been explored.)

7.5.7 Characteristic 0

Two fundamental aspects of the picture in characteristic p are as follows.

e Having the Tate and the Beilinson conjectures jointly allows us to extend
conjectural statements from smooth projective varieties to all smooth vari-
eties, because they allow us to strengthen conjectural injectivity/surjectivity
to conjectural bijectivity (then allowing for dévissages by purity).

e The Weil-étale cohomology provides the right conjectural statement in terms
of finite generation.

I don’t know any conjectural statements which imply the same conclusions
as Theorem 7.11 in characteristic 0. One could try the Tate conjecture over num-
ber fields k, plus the Bloch—Beilinson conjecture that the /-adic Abel-Jacobi
map should be injective for all X € V(k) [3, Lemma 5.6] (a higher analogue of
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Beilinson’s conjecture over finite fields), but I am not able to use this conjunc-
tion to pass from projective to open varieties. It seems that more is needed, like
perhaps the right version of Weil-étale cohomology.

The issue of having the ‘right’ conjectures in characteristic 0 is also dis-
cussed in [22, §12]. Hopefully, current research on Weil-étale cohomology in
characteristic 0 (e.g. [39]) will shed light on this question.

7.6 Decomposition of the Diagonal

Let k be a finitely generated field, and let X be a smooth projective k-variety.

Theorem 7.18 Assume that CHo(Xy(x)) ®Q w Q is an isomorphism. Let
6 = | Cokerdeg |. Then Ker cli is killed by 6, Ker ﬁ)2( is torsion and we have the
following.

(a) If chark = 0, CH*(X) is an extension of a finitely generated group by a
group of exponent 8. If k is of Kronecker dimension < 2, Ker 01)2( is finite and
CH?(X) is finitely generated.

(b) If chark = p > 0, the above is true up to p-primary groups of finite
exponent.

Recall that the Kronecker dimension of k is its transcendence degree over F,
in characteristic p, and 1+ its transcendence degree over Q in characteristic 0.

Proof The hypothesis means that X has a (rational) decomposition of the diag-
onal in the sense of Bloch—Srinivas [6], that is, there exists n > 0 such that
nAy = a + B € CH*(X x X) (d = dimX), where « (resp. f3) is supported on
D x X (resp. X X V), D (resp. V) being a divisor (resp. a finite number of closed
points).

We proceed in four steps.

(1) The statements are true with ¢ replaced by n.

(2) The case X(k) # 0.

(3) Refining n to 6 in 1).

(4) The case of Kronecker dimension < 2.

(1) We apply the technique of Bloch—Srinivas [6]: by Chow’s moving lemma,
we reduce to the case where D NV = 0(; if we are in characteristic 0, we
choose a (not necessarily connected) resolution D of D. Since CH?*(V) = 0,
multiplication by n on CH?(X) factors as

cH (X) 5 cH (D) & cH2(x)
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where @* is induced by @ and p is induced by the composition D — D — X.
This gives the claims, because CH' (D) is finitely generated, cycle class maps
are compatible with the action of correspondences [17, prop. 3.25 and lemma
6.14] and cl}) is injective as we saw in Section 7.4.

If we are in characteristic p > 0, we can proceed similarly by using de Jong’s
alteration theorem [21], refined by Gabber [16, Exp. X, th. 2.1], as in [31, proof
of Th. 2.4.2]: this gives the statement because [ is prime to p. This implies that
Ker ,8)2( is torsion, thanks to Lemma 7.7.

For the sequel, we consider the commutative diagram of exact sequences

H*(X,Z(2)) ® Qi/Z; —H*(X,Qi/Z(2))—(CH*(X) ® Z})iors— O
al:alf@Q,/Z, blinj Cl:cl)z(

0 = Hoo (X, Z4(2)) ®z7, Qi) Zi—H (X, Qu/Zi(2)) = Ho (X, Z(2))

o)

(7.17)

where the upper row is motivic cohomology. The injectivity of b follows from
the Merkurjev—Suslin theorem. The snake lemma therefore gives a short exact
sequence

0 — Kerc — Cokera — Coker b. (7.18)

(2) Let x be a rational point of X. We may choose V = {x} and 8 = n(X X x).
In the correspondence ring CHY(X x X), the identity 1 = Ay is the sum of
the two idempotents 7o = X X x and 1 — mg, and any module M over this ring
decomposes accordingly as a direct sum My @® M., where My = Im mp and M, =
Im(1 — 7). We have the same decomposition for morphisms between such
modules. Since CH?(X)o = CH?(Speck) = 0, we have CH?>(X) = CH?*(X),
and Kerc = Kerc,.

Lemma 7.19 a, is surjective, and c. (hence c) is injective.
Proof Since a = n(ly — mp), reasoning as in (1) yields a commutative diagram

HXZ2),0Q/L —— H'(DZ1)eQ/L —— HXZ2)2Q/L

H2 (X Z(2))s ®7, Q)2 ——— H. (D Z(1)) &z, Q/Z 2 H L (X Z0(2))s @2, Qi/Z

in which each composition is multiplication by n. Here we use the fact that
the generalised cycle class maps from motivic cohomology to continuous étale
cohomology commute with the action of correspondences, which may be seen
most concisely using (7.13).

In particular, the two maps p in the diagram are surjective (especially the
bottom one), and we reduce to seeing that the middle map a’ is surjective.
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In the Milnor exact sequence of [17, (2.1)], the liLnl disappears, which
identifies Hclom(b, Z,(1)) with the middle term of the exact sequence

0 — lim ['(D, G) /I" — lim Hy (D, up) — Ti(CH' (D).

But 7;(CH' (D)) = 0 since CH'(D) is finitely generated, hence a’ boils
down to the isomorphism

(D, Gn) ® Qi/Zi — T (D, Gy) ® Qi/Zi.
The injectivity of ¢, now follows from the + part of (7.18). O

(3) Let x be a closed point of X. Applying (2) to Xi(x), we see by the usual
transfer argument that Ker cli is killed by [k(x): k]; hence it is killed by §
which is the gcd of these degrees. On the other hand, we know by (1) (see
Lemma 7.4 (i)) that CH*(X) is the direct sum of a free finitely generated sub-
group and a group 7 of finite exponent n. By Theorem 7.6, cl)zf(T) is finite, thus
T ® Z; = T{l} is an extension of a finite group by a group killed by §; in partic-
ular, it is finite for / 1 ¢ (and O for [ ¥ n). Applying this to all [ # p, we get the
promised structure of CH?(X).

(4) Choose a model X of X, smooth projective over a regular scheme S of
finite type over Spec Z[1/I] with function field k. We have the same diagram
as (7.17) for X.

We first give the argument in characteristic p > 0: then S is smooth over F,.
We may choose S such that all the constructions of (1) spread to X, in particular
DtoD, VtoV,withDnV = 0. We have the theory of Chow correspondences
of Deninger—Murre over S [9]; the argument of (a) then shows that the finite
generation of CH?(X’) up to a group of finite exponent would follow from that
of CH' (D) and from the vanishing of CH? (V). The first is true by [25, cor. 1]. If
8(k) < 1, then CH*(V) = 0 for dimension reasons. If §(k) = 2, then dim § = 2;
by [33, Th. 2], CH*(T) is therefore finite(ly generated) for any 7 regular and
finite over S, so up to shrinking S we may achieve again CH>()) = 0, and the
conclusions of (1) hold for X. In particular, Ker ¢y is torsion of finite exponent
(with obvious notation).

Since Hgom(.)c' ,Z2;(2)) is a finitely generated Z;-module, it follows from
(7.18) (applied to X) that Ker c y is finite.

But Hgom(X,Zl(Z)){l} is also finite; it follows that CH?(X){I} is finite.
Thus CH?*(X) ® Z(; is a finitely generated Z ;) -module and so is its quotient
CH?(X)®Z ;). Therefore CH>(X){l} = (CH*(X)®Z;)){l} is finite, and Ker cl%
is finite.
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In fine, CH?(X)ors is a group of finite exponent whose I-primary torsion is
finite for any [ # p, hence is finite away from p. This concludes the proof of (4)
in positive characteristic.

In characteristic 0, S is flat over Spec Z[1/I]; up to shrinking, we may
assume it to be smooth. Thanks to [10, §20.2], the theory of Chow correspon-
dences over a base then goes through as in Deninger—Murre. To conclude the
argument, we need to extend (7.17) and (7.18) to X. We use motivic coho-
mology as in Section 7.3; by Theorem 7.8, we have indeed CH"(X) —
H?"(X,Z(n)). Moreover, the map b is still injective by [12, Th. 1.2 2], so we
are done. O

Remarks 7.20 (a) The only essentially new thing in Theorem 7.18 is the case
of Kronecker dimension 2: indeed, in characteristic O the finite generation of
CHz(X) goes back to [7, th. 4.3.10] when § = 1 or k is a number field, and
the injectivity of cli on torsion when § = 1 goes back to [42] under the
weaker hypotheses H' (X, Ox) = H*(X,Ox) = 0. The proofs given here are
different.

(b) The case of Kronecker dimension 3 fails because we cannot prove that
CH?*(V) = 0 for S small enough: this would follow from the finite generation
of CH? for arithmetic 3-folds, which is wide open in general.

(c) All that is used in the proof is the existence of a smooth projective variety
D and two correspondences @* and p (of degrees —1 and +1) such that p&* acts
on H'(X,Z(2)) and Héom(X, Z,(2)) by multiplication by n for i = 3, 4 and some
n > 0. This implies the conditions of [42] cited in (a); expecting the converse
is closely related to Bloch’s conjecture on surfaces. This discussion will show
up again in Section 7.9.

(d) If we try to relax the hypothesis as in [7, th. 4.3.10 (i)], assuming only
that the birational motive of X (in the sense of [31]) is a rational direct summand
of the motive of a curve C, part (1) of the proof goes through because C does not
contribute to CH?(X). But in part (2), the map a of the diagram is not surjective
for C.

(e) It would be nice to get rid of p-primary torsion in Theorem 7.18 b).

7.7 Counterexamples: Codimension > 2

In the last three sections, we examine the examples of [1, 43, 8], in the light
of the above ideas. They concern torsion classes x € CH"(X), for X smooth
projective, which are killed by clf. In this section, n > 3 and we show as
promised in the introduction that one already has o’ (x) = 0, with the notation
of (7.2). In7.7.1,7.7.3 and 7.8, this comes with a new and simpler proof.
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7.7.1 [43, Th. 2.3]

In this reference, a counterexample to the injectivity of CH3(X) ® Zo —
Hgom(X, Z,(3)) is given for a smooth projective variety X over a field kg of
characteristic # 2, which is a Godeaux—Serre variety associated to a finite 2-
group G; the culprit comes from a class @ € CH?(BG) such that a, # 0
but clzG(a)k = 0 for some finite extension k of kg. In fact, we already have
ong(a),-(O = 0, hence a/gG(a/)k = 0 for suitable k since étale motivic cohomol-
ogy commutes with filtering limits of schemes (Section 7.3.1: this trivialises
the delicate descent argument in the proof of Scavia and Suzuki (2023, Lemma
2.1 (b))). Indeed, by [30, Th. 7.1], we have

H. (BGy,, Z(n)) =~ Hy (ko, Z(n)) & H'(G, Z)(n)

(where H'(G, Z) is the integral cohomology of G and the twist n takes care of
the Galois action), so we are reduced to a computation in the cohomology of G,
which is done in [48, §5]. (Recall that Hgt(%o, Z.(n)) is uniquely 2-divisible [30,
Lemma 7.3 1)].)

7.7.2 [43, §8§4 and 5]

The set up is the same as previously, but the counterexamples rely on the fact
that Bloch’s map

At CH? (X3 ) {2} — H3(Xz,. Q2/Z2(3))
is not injective. We observe that the Bockstein map

H (X7 Q2/2(3)) = Hoon (X, 22(3))
factors through CH;(X,;O) ®Z, = Hgt(X,-CO, 7Z(3))®Z,.

Question 7.21 The origin of the counterexample in [43, §4] is a non-zero class
X € H;‘r(X, Q2/7Z,(3)) [43, Lemma 4.1]; by the exact sequence of [24, p. 998],
this group surjects onto Ker a/)3(. Can one prove directly that the image of x in
CH?(X) by this map is non-zero? It would explain the counterexample in the
spirit of this paper.

7.7.3 [1, Th. 1.2 and 1.5]

Here X = SXE, where S is a surface and E an elliptic curve; z = 7;®7 € CH? X)
where z; € CH*(S), T € ;CH'(E) and cI(z1) maps to 0 in H2 (S, uP?) (see [1,
§7]). In view of the exact sequence

1
CHZ,(S) = CH(S) — Hy (S, 1P?)
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we have aﬁ(zl) = It for some t € Hgt(S, Z(2)), hence

af((z) = aé(zl) ® a;:(T) =lt® aé(r) =0.

Remark 7.22 (see [8, Rem. 5.4]) For n > 2 itis easy to produce an example of
an X and an element x € CH"(X) such that a (x) # 0 but Sya’(x) = 0, hence
also cly (x) = 0. Namely, start from one of the examples X, from the next two
sections, and let xo € Ker clf(o; just take X = Xo x P"% and x = x( ® 6, where 6
is the canonical generator of CH"~2(P"~?) = Z, and use the projective bundle
formula in all theories.

7.8 The Counterexample of [43, Th. 6.3]

Here X is a norm variety of dimension > — 1 over F = k(t) in the sense of
[45] and [32], where k is a global field,! associated to a non-trivial symbol
s € HS[(F , yf’z). Let R be the associated Rost motive: it is a direct summand
of the Chow motive of X with coefficients Z;), and CH?*(R) = Z/1[43, proof
of Th. 6.3].

Scavia and Suzuki prove that cl%2 = 0. We shall recover this result by passing
through étale motivic cohomology; namely by using, the following.

Proposition 7.23 (a) The canonical map

CH(F) ® Z() — CH3(R)
is an isomorphism.
(b) The map ,8%2 is 0.

Proof (a) Morally, this is because R splits (i.e. becomes a direct sum of powers
of the Lefschetz motive) in the étale topology. This could be given a cor-
rect meaning in the étale version of DMZﬁ(F ); we give a more elementary
proof, computing the Hochschild—Serre spectral sequence for the weight 2 étale
motivic cohomology of X rather than for its continuous étale cohomology as in
[43]. Namely, this spectral sequence is

EYI(X) = HY (F,HY (X, Z(2))) = H (X, Z(2)). (7.19)

As in [43], after tensoring with Z(; it acquires, as a direct summand, a
spectral sequence for the étale motivic cohomology of R:

ENY(R) = HY (F,HL(R,Z;)(2))) = HY (R, Z;) (2)).

1" Of characteristic 0 if / # 2.
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Here R = Rf. Following the tracks of [43], we use the fact that R =~
EB{:OI L/*D) where L is the Lefschetz motive [32, beg. §3]. Since we are
over an algebraically closed field, we have Hgt(Li,Z(l)(Z))) =0ifi > 2;
since [ + 1 > 3, the only summand which contributes is therefore 1, which
yields Hf (R.Z(2))) = HL (F.Z(2))). But (7.12) shows that this group is
uniquely divisible for ¢ # 1 and that there is an exact sequence

0 — Qi/Zi(2) — H}(F,Z)(2)) — H(F,Q(2)) — 0.

For p + g = 4, we therefore have Eg’q(R) = 0 except for g = 1, when its
value is

EY'(R) = H' (F.Qu/Z)(2)).

By unique divisibility and the vanishing of Hgt(F ,Zy(2))), these are per-
manent cycles, whence an isomorphism H>(F, Q;/Z;(2)) — CH2(R), which
is obviously induced by the canonical morphism R — 1.

(b) This follows from a) by functoriality, since Hj L (F Zi(2)) =0. O

O]

Remark 7.24 As the proof shows, (a) is valid for any Rost motive over any
field F, regardless of its cohomological dimension.

Let « be a generator of CH?(R); Proposition 7.23 (a) identifies o («) with
an element of H3(F,Q;/Z;(2)). Since it is killed by /, it comes by Merkurjev—
Suslin from a unique element ¢ € H>(F,Z/1(2)).

Proposition 7.25 Ifl =2, thent =s.

Proof Here again, this is valid over any F (of characteristic # 2). We may
assume that X is a Pfister quadric. Let K be its function field. Then R splits
over K, hence CH?>(R) = 0 and tx = 0 by functoriality. Since ¢ # 0, we have
t = s by Arason’s theorem [2, Satz 5.6]. O

I suppose the same result and proof work for / odd, up to an element of F;,
but I am lacking a reference for an analogue of Arason’s theorem.

7.9 The Counterexample of [8, Th. 5.3]

This is by far the most delicate of all.

Here X is a rational surface over k = Q(+/=p)(¢), where p is a prime number
= —1 (mod 3). More generally, Colliot-Théléne and Scavia consider smooth
projective surfaces satisfiying strong conditions in the spirit of [42]. Here is a
version of their results in this generality, using CHgt (X) and ,8)2(. For simplicity,
we invert p if k is of characteristic p > 0.
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We shall use Hypothesis (H4) of [8, §3], that we now recall:

(H4) H'(X,0x) =0fori=1,2, H3(X*,Q;) = 0and, forall [, H'(X*, Z){l} = 0
if i < 4. Here X* = X ®; ky; where k; is a separable closure of k.

Remark 7.26 Hypothesis (H4) includes the vanishing of Br(X){l}, or equiv-

alently of the ‘transcendental’ part of H2,(X,Qy). Bloch’s conjecture then

predicts that the Albanese kernel of X vanishes, hence that CH2(X)0 and
CHgt(X ) are torsion. This is true, for example, for rational surfaces.

Theorem 7.27 Let X be a surface over a field k, verifying Hypothesis (H4).
(a) Let CHe?t(X)O be the kernel of the degree map

CH(X) L5 CHO (Speck) = Z

where f: X — Speck is the structural morphism. Let S be the Néron—Severi
torus of [8, p. 6]. Then there is a canonical map

CHA(X)* 2% H(k,S) (7.20)
such that Ker ,8}2( C Ker®¢ ® Z;, hence Ker cli C Ker® ® Z; where ® =
(I)ét o Ck)z(.

(b) If cd;(k) < 3, ®g is surjective. If cdi(k) < 2 or if X has a 0-cycle of
degree 1, Ker @ is uniquely divisible and B}zf, cli are injective.
(c) There are compatible exact sequences

S(k) — H3 (kQ/Z(2))

, o0 ) (7.21)
- CHét(X)torS — H (k’ S) - Hét(k’ Q/Z(z))
S(k) = N — CH*(X)iors — H'(k,S) — H(k, Q/Z(2)) (7.22)

where N = Ker(Hj (k, Q/Z(2)) — Hp. (X, Q/Z(2)) (cf. [8, (4.1)]).
(d) If cd;(k) < 3, the inclusions in (a) refine to equalities

Ker ,8}2( = (Ker®g ® Zj)iors, Ker cl}z( = (Ker® ® Z;)ors
(cf- [8 Th. 4.8]).
To prove Theorem 7.27, we need the following Propositions 7.28 and 7.29.

Proposition 7.28 Under the hypotheses of Theorem 7.27, the Chow motive
h(X*) has the following integral decomposition:

h(X) =1@ NSy QL& & L?

where (as previously) L is the Lefschetz motive and NSy is the Artin motive
associated to the geometric Néron—Severi group NS(X*), and t, represents the
Albanese kernel.
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Proof This is the decomposition of [29, Prop. 14.2.1 and 14.2.3], with two
refinements: the summands A;(X) and h3(X) vanish because Pic’(X*) = 0
(Hypothesis (H1) of [8]), and all Chow—Kiinneth projectors have integral coef-
ficients. For those of degrees 0 and 4, this is obvious since we can choose a
rational point. For NSy ®L we use the fact that, under [8, (H1)], the intersec-
tion pairing on the (torsion-free) Néron—Severi lattice NS(X*) is perfect, so the
idempotent defining it in [29, p. 465] is integral. O

A problem with the decomposition of Proposition 7.28 is that it is not Galois-
equivariant in the absence of a 0-cycle of degree 1, a crucial condition for the
counterexample of [8] (see [8, Th. 4.2] and part (b) of Theorem 7.27). This
makes a direct use of the Hochschild—Serre spectral sequence (7.19) delicate.
The most conceptual way to get around this would be to replace it by the finer
slice spectral sequence of [15, (3.2)]:

EYY(X.n) = Hi *(cq(X). Z(n - @)a) = H' (X, Z(n)) (7.23)

but justifying a computation of the slices c,(X) € DME?(k) appears too
complicated.” Instead, we proceed with a more down-to-earth dévissage as
follows.

First, the structural map X — Spec k induces a morphism of Chow motives
h(X) — 1, hence another one L> — h(X) by Poincaré duality. This induces in
turn two morphisms of complexes, with composition O:

RUe(k,Z(2)) — RT&(X,Z(2)) — RU& (L%, Z(2)). (7.24)

Write RT¢(X,Z(2))* for the homotopy fibre of the second morphism.
Taking cohomology, we get a short exact sequence

0 — H*(RT«(X,Z(2))*) — CHA(X) — CHO(k) = Z

which identifies H*(RT¢ (X, Z(2))*) with the kernel CHZ (X)° of the degree
map.

Then the first morphism of (7.24) lifts to a morphism Rl (k,Z(2)) —
RT«(X,Z(2))* (in the derived category); write R (X, Z(2)) for its homotopy
cofibre and H ét(X , Z(2)) for the cohomology groups of the latter. This time, we
have an exact sequence

H: (X, Z(2))) — H (k,Z(2))

- CH2(X)" & B4 (X, Z(2))) — H3 (k,Z(2)) 729
et et ’ ety

2 One should have cq(X) =0forg > 2,cr(X) =Z, c;(X) = NSx[0], and an exact triangle
t) = cg(X) — Z — 1r[1]. One issue is to justify that the motive #, of Proposition 7.28 does
define an object of DMgiI (k).
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in which the first (resp. last) term identifies with H;(k,Q/Z(Z)) (resp.
H{ (k,Q/Z(2))). In particular, p is surjective if cd;(k) < 3.

Proposition 7.29 There is an isomorphism I:Igt(X, Z(2)) ~ ud®S(k) and a
(split) exact sequence

0 —ud > H{(X,Z(2)) » H'(k,S) > 0 (7.26)
where ud stands for uniquely divisible.

Proof We compute the Hochschild—Serre spectral sequence for RT¢ (X, Z(2)):
g _ T ryp+
EN? = HP (k, H (X*, 2(2))) = H}™(X,Z(2)) (7.27)

where ﬁ;t(XS ,Z.(2)) is defined similarly, for X*. Here, we can use Proposition
7.28 to write

RT«(X,Z(2)) = RT&(NSx QL & 15, Z(2)).

We now note that the idempotent in CH? (X*xX*) defining NSy ®L is Galois-
invariant by [29, Lemma 14.2.2], which works for the Z-perfect pairing on
NS(X*). Accordingly, the direct sum decomposition

RT&(X*,Z(2)) = RU«(t2, Z(2)) ® RT&(NSy ®L, Z(2)) (7.28)

gives a corresponding decomposition of the E,-terms of (7.27). For the first
summand, we have

Lemma 7.30 The groups Hgt(lz, Z.(2)) are uniquely [-divisible.
Proof One has a decomposition with coefficients Z/I"
HI(X,2)1"(2)) = HY(K. 21" (2)) @ HY (0. 2/1"(2)) ® HE (R, 2/1") (7.29)

for any integer n > 0, which already gives Hgt(tz,Z/ I"(2)) = 0 for g ¢
[1,3]. Then, [8, (H1) and (H3)] also yield Hgt(tz,Z/l”(Z)) =0 forg = 1,3.
Finally, Hypothesis (H1) implies that Br(X*) = 0 and that Hgom(XS ,2,(2)) >
Hgt (X5,Z/1"(2)) is surjective; since the image of the projector defining #, act-
ing on H2, (X*,Z,(2)) equals T;(Br(X*))(1), we also get Hz (12, Z/I"(2)) = 0.

The unique divisibility follows from the long cohomology exact sequence. O

Coming back to the proof of Proposition 7.29, the second summand of (7.28)
gives

HI (NSy ®L,Z(2)) = NSy ®H’*(k, Z(1)) = NSy ®H (k, G,).

This is 0 for ¢ # 3 and S(k) for ¢ = 3.
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All this allows us to write the E,-terms of (7.27) as follows:

0 ifp#0andqg#3
gra_ JAPKS) ifp#0andg=3
2 ud ifp=0andq #3

ud®S(k) ifp=0andgqg=3.

This gives the first isomorphism and the exact sequence (7.26), except that
there is a priori a uniquely divisible term as the cokernel; but it vanishes since
H'(k,S) is torsion. O

Remark 7.31 Under Bloch’s conjecture, [29, Cor. 14.4.9] shows that ¢, is tor-
sion; then the groups Hgt(l‘z, Z(2)) of Lemma 7.30 all vanish and so do those
marked ud in the E,-terms of the previous proof. In particular, CH?(t,) C
CHgl(tz) vanishes; applying this over all extensions of k, we get 1, = 0 by a
birational Manin identity principle.

Proof of Theorem 7.27 Composing the map of (7.26) with the map p of (7.25)
we get the map @, of (a). Thanks to Proposition 7.29, the exact sequence (7.25)
yields (7.21), and (7.22) follows from confronting it with (7.5). Hence (c).

We may now compute the continuous étale cohomology of X in a parallel
way to Propositions 7.28 and 7.29; for the last part, we get that the cohomology
of 1, vanishes and that H! _ (NSx ®L, Z;(2)) is 0 for g # 2 and NSy ®Z;(1) for

cont
q = 2, hence with similar notation

Hon (X, Z1(2)) = Hioqi (k. NSx ®Zy(1))
and the étale cycle class map HZ (X, Z(2)) ® Z; — HY (X,Z/(2)) reads as a
map

H'(k,S) ® Z; — H>,,, (k,NSx ®Z,(1)) (7.30)

which can be interpreted as stemming from the ‘Kummer’ exact sequences
lV
0-»>pS—>5S—>85—>0

because of the canonical isomorphisms »S =~ NSg/I”. Hence (7.30) is injec-
tive by [8, Prop. 2.2 (c)], since H'(k,S) is a torsion group. Thus we get a
commutative diagram

Y/
CHA(X)®Z) —=2  H'(kS) ®Z

<c1§>"l linj

H?ont(X’Zl(z)) E— chont(k’NSX ®Z[(1))
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which shows that Ker cli = Ker(cl)z()0 C Ker ®¢;, completing the proof of (a)
and yielding the assertions of (b) (use Theorem 7.18 for the vanishing of Ker ﬂ)z(
and Kercl}).

For (d), the point is simply that the commutative square above extends to a
larger commutative diagram of exact sequences

D ®Z
CH (k) ®Z) —— CHA(X)'®Z —=  H'(kS)®Z

l (c1§)0l linj
Ho (k, Z4(2)) ——— H (X, Z4(2)) ——— Hipp (k,NSx ®Z,(1))

and that the bottom left term is 0. O

Remarks 7.32 (1) In order to get back the counterexample of [8, Th. 5.3], it
would remain to see that the map S(k) — Hgt(k, Q/Z(2)) of (7.22) agrees with
that of [8, (4.1)] (presumably the two sequences coincide).

(2) In [8, Th. 4.8/Th. A.1], an analogue of Theorem 7.27 (d) is stated for
Ker ®@ without assuming cd;(k) < 3.
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