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Relatively unramified elements
in cycle modules

by

BRUNO KAHN

Abstract

In a recent paper, Merkurjev showed that for a smooth proper varietyX over a
field k, the functorM� 7! A0.X;M0/ from cycle modules to abelian groups is
corepresented by a cycle module constructed on the Chow group of 0-cycles
of X . We show that if “proper" is relaxed, the result still holds by replacing
the Chow group of 0-cycles by the 0-th Suslin homology group of X .
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1. Introduction

LetX be a smooth proper variety over a field k, and letM� be a cycle module over k
in the sense of Rost [12]. The group A0.X;M0/ is an important birational invariant
of X . In particular, if X is rational, this group is reduced to M0.k/ for any cycle
module M . In [10, Th. 2.10], Merkurjev proves:

1.1 Theorem There is an isomorphism, natural in M

A0.X;M0/' HomCM.K
X ;M/

where CM is the category of cycle modules over k andKX is the cycle module given
by the formula

KXn .F /D A0.XF ;K
M
n /

for any function field F=k.

In this note we extend this theorem, when k is perfect, by relaxing the
properness hypothesis on X . The replacement of KX involves Suslin homology,
or more accurately motivic homology in the sense of Voevodsky [15]. That Suslin
homology should arise is clear via Déglise’s correspondence between cycle modules
and homotopy invariant Nisnevich sheaves with transfers [7]: if F is such a sheaf,
then we have

H 0.X;F/D HomDMeff
�
.M.X/;F Œ0�/D HomHI.h

Nis
0 .X/;F/
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where DMeff
� is Voevodsky’s triangulated category of motivic complexes and HI is

the category of homotopy invariant Nisnevich sheaves with transfers.
It is of interest to formulate the generalisation of Merkurjev’s theorem without

reference to Déglise’s theory, and this is what we do now. We first introduce the
corepresenting object:

1.2 Proposition Suppose k perfect. The assignment

F 7! .H�n.XF ;Z.�n///n2Z

defines a cycle module denoted by HX . If X is projective, we have HX DKX .

For nD 0 and F D k, we get Suslin homology HS
0 .X/DH0.X;Z.0//.

1.3 Theorem There is an isomorphism, natural in M

A0.X;M0/' HomCM.H
X ;M/:

Here is a complement to Theorem 1.3:

1.4 Theorem The isomorphism of Theorem 1.3 comes with another isomorphism

HomCM.H
X ;M/

�
�! HomPST.h

Nis
0 .X/;M0/

where M0.U /D A
0.U;M0/ is viewed as a presheaf with transfers.

Theorem 1.4 refines [10, Th. 2.11], see Corollary 4.7.
Finally, in [10, 2.3], Merkurjev associates to a cycle module M and a k-scheme

of finite type Y a new cycle module M Y defined by

M Y
� .F /D A0.YF ;M�/:

(In case M D K, we get the cycle module KY as above.) We elucidate the
structure of M Y in terms of Déglise’s theory:

1.5 Theorem Let Y be a scheme of finite type over a not necessarily perfect field
k. Then

(i) Suppose Y quasi-projective. Then, for any function field F=k, KYn .F / D
H c
�n.YF ;Z.�n// where the right hand side is defined in terms of Bloch’s

higher Chow groups.

(ii) Assume Hironaka resolution of singularities, but relax “quasi-projective".
Then we have a morphism HY ! KY which is the isomorphism of
Proposition 1.2 if Y is smooth and projective.
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(iii) Assume Hironaka resolution of singularities again, and suppose Y smooth-
able. For any cycle moduleM , let D.M/ be the associated homotopic module
in the sense of [7, Def. 1.15] (see [7, Th. 3.4]). Then

D.M Y /DD.KY /˝D.M/

where the tensor product is taken in the category of homotopic modules [7,
1.14]. In particular, if KY 'K, then M Y 'M for any M .

If we transport the tensor product of homotopic modules to CM via Déglise’s
equivalence of categories, Theorem 1.5 (iii) says that M Y D KY ˝M . For Y
smooth projective, we thus get that the stable birational invariance of M Y is in
some sense dual to that of A0.Y;M/.

While the formulations of Proposition 1.2 and Theorem 1.3 do not involve
Déglise’s theory, their proofs definitely do, as do those of Theorems 1.4 and 1.5.1

Note that from Theorem 1.3 we get canonical maps

ExtiCM.H
X ;M/! Ai .X;M0/ .i > 0/

(Yoneda Ext), but these are far from being isomorphisms in general, e.g. for
X D P1. One might hope to describe the higher Ai by replacing HX by a
complex of cycle modules, but Voevodsky’s theory dictates that the situation is
more complicated: using Gersten’s conjecture [12, Th. (6.1)] and a translation via
Déglise’s theory, this would more or less correspond to the hope that the natural
functor D�.HI/! DMeff

� is an equivalence of categories, which is false.
Proposition 1.2 is proven in §2, Theorem 1.3 is proven in §3, Theorem 1.4 is

proven in §4 and Theorem 1.5 is proven in §5. To prove Theorem 1.3, the method is
similar to Merkurjev’s: we construct two mutually inverse natural transformations.
The main differences are that the relations defining H0.X;Z/ are different from
those defining CH0.X/, and that the definition of the cycle module HX is not as
straighforward as that of KX . Also, when X is not proper, HX is usually not .�1/-
connected: for example,Hd .Gd

m;Z.d//D Z for any d . This makes the construction
of one natural transformation a little more subtle, and the proofs slightly different.

In §6, we complement this work by giving a vanishing range for motivic
homology and computing Hd .X;Z.d// for d D dimX when X has a smooth
compactification with complement a divisor with normal crossings (Proposition
6.8).
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1Déglise’s work is also used in [10, proof of Lemma 2.2].
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Convention

All morphisms of cycle modules are of degree 0: one recovers morphisms of
arbitrary degree by using the shift functor.

2. Proof of Proposition 1.2

2.A. Cycle modules and motivic complexes

The usual way to produce cycle modules is from a cohomology theory of Bloch-
Ogus type. Namely, if .Y;Z/ 7! H i

Z.Y;n/ is a twisted cohomology theory with
supports in the sense of Bloch and Ogus [2, (1.1)], defined on the category of
pairs .Y;Z/ with Y smooth and satisfying suitable axioms, then, for any r 2 Z,
the assignment

F 7! .Hn.F;nC r//n2Z (2.1)

will verifiy the axioms of a cycle module, whereH i .F;n/ WD lim
�!U

H i .U;n/ with U
running through the smooth varieties with function field F .

We shall only give an example. Given an object C 2 DMeff
� , define

H i
Z.Y;n/D

(
H i
Z.Y;C.n// if n� 0

H 2nCi�1
Z�.A�n�f0g/..Y � .A

�n�f0g/;Y � f1gIC/ if n� 0.
(2.2)

Here the cohomology is Nisnevich cohomology. If we take C D C �.X/ in (2.2),
the formula becomes

H i
Z.Y;n/D HomDMgm.M

Z.Y /;M.X/.n//

for any n 2 Z (cf. [13, §9]). The same formula is true for any C by computing in
DM, the homotopy category of Z.1/-spectra, rather than in DMeff

gm [11, p. 247].2

By [6, 6.2.1], (2.1) gives a cycle module. More concretely, we get the data
and rules of cycle premodules [12, §1] as follows. Data D1 and D2 (covariance
and contravariance for finite extensions) are respectively given by contravariance of
cohomology and the transfers. Datum D3 .KM� -module structure) is best obtained
in DM from the cup-products

Hn.U;Z.n//˝H i .U;m/!HnCi .U;nCm/

stemming from the isomorphisms

Z.n/˝C.m/
�
�! C.nCm/

2The category DM is constructed in [4, Ex. 6.25].
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together with the Suslin-Voevodsky isomorphisms [14, Th. 3.4]

Hn.F;Z.n//'KMn .F /: (2.3)

Datum D4 (residues) is obtained from the Gysin exact sequences

H i�2.Z;n� 1/!H i .U;n/!H i .U �Z;n/
@
�!H i�1.Z;n� 1//

for Z a smooth divisor in U . This uses the cancellation theorem [17], [1, prop. in
6.1] (recall that k is perfect).

Rules R1a, R1b and R1c (functoriality and exchange for D1 and D2) come from
the functoriality of cohomology and finite correspondences. Similarly for rules R2
(behaviour with respect to product). Finally, rules R3 (behaviour of D4 with respect
to the other data) come from the functoriality of the Gysin maps [6, Lemmas 5.4.7
and 5.4.8].

By [12, Th. (2.3)], to get a cycle module we are left to check the conditions
(FDL) (finite support) and (WL) (weak reciprocity) of loc. cit. The first one
is obvious from the definition of residues, and the second one follows from the
homotopy invariance of motivic cohomology.

2.1 Remark All cycle modules arise in this way: if we start from a cycle module
M , we may recover it by taking C DM0Œ0� in (2.2) (see Theorem 1.4 for M0).

2.B. Proof of Proposition 1.2

We get the cycle module of Proposition 1.2 by taking C D C �.X/ in (2.2) and r D 0
in (2.1).

If X is (smooth) projective of dimension d , Poincaré duality yields (for F D k):

Hn.X;Z.n//'H 2d�n.X;Z.d �n//:

If n > 0, this group is 0 since 2d � n > 2.d � n/. If n � 0, in the coniveau
spectral sequence

E
p;q
1 D

M
x2X.p/

H q�p.k.x/;Z.d �n�p//)HpCq.X;Z.d �n//

the only nonzero E1-term with pC q D 2d � n is for .p;q/ D .d;d � n/ (because
E
p;q
1 D 0 for p > d or q�p > d �n�p). HenceHn.X;Z.n// is the 0-th homology

group of the complex

��� !
M
x2X.1/

H�nC1.k.x/;Z.�nC 1//!
M
x2X.0/

H�n.k.x/;Z.�n//! 0
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that is, A0.X;KM�n/.
Thus HX

n D 0 for n < 0 if X is projective, but not necessarily in general. Under
resolution of singularities, one can show that HX

n D 0 for n < �d in general (see
Proposition 6.7).

In the sequel we shall use the following trivial lemma:

2.2 Lemma For any smooth X , any cycle module M and any n 2 Z, we have

Hn.X �Gm;Z.n//'Hn.X;Z.n//˚Hn�1.X;Z.n� 1//
A0.X �Gm;Mn/' A

0.X;Mn/˚A
0.X;Mn�1/:

3. Two natural transformations

3.A. In one direction

The map

HomDM.M.X/;M.X//DH
0
Nis.X;C �.X//

!H 0
Nis.k.X/;C �.X//DH

X
0 .k.X//

sends the identity map of M.X/ to a “generic element" �X 2 HX
0 .k.X//. If f W

HX !M is a morphism of cycle modules, f .�X / 2M0.k.X// defines an element.

3.1 Lemma f .�X / 2 A
0.X;M0/.

Proof: It suffices to do it in the universal case M D HX , f D Id . For this, it is
enough to see that the composition

H 0.X;C �.X//!H 0.k.X/;C �.X//!
M
x2X.1/

H�1.M.k.x//.1/;C �.X//

is 0. But the last map is obtained as a limit from the Gysin homomorphisms

Hom.M.U /;M.X//! Hom.M.Z/.1/Œ1�;M.X//

whereU runs through the open subsets ofX andZ runs through the smooth divisors
in U .

Lemma 3.1 yields a natural transformation

 X;M W HomCM.H
X ;M/! A0.X;M0/: (3.1)
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3.B. In the opposite direction

Let M be a cycle module, U;V two smooth varieties and � 2 c.V;U / a finite
correspondence in the sense of [15, §2.1]. Assume � irreducible: thus, � is a closed
subvariety of V � U such that the projection p W � ! V is finite and surjective
on a connected component of V . Letting q W � ! U denote the other projection,
covariant and contravariant functoriality of cycle cohomology [12, §§5 and 12] yield
a composition

�� W A0.U;M0/
q�

�! A0.�;M0/
p�
�! A0.V;M0/

which extends by linearity to a pairing

A0.U;M0/� c.V;U /! A0.V;M0/:

Taking U DX , V D Speck, this defines a pairing

A0.X;M0/�Z0.X/!M0.k/

where Z0.X/ is the group of 0-cycles of X . In particular, if ˛ 2 A0.X;M0/, we get
a map

Qf ˛ WZ0.X/!M0.k/:

3.2 Lemma The composition

c.A1;X/
s�0�s

�
1

�! Z0.X/
Qf ˛

�!M0.k/

is 0, where s0;s1 W Speck! A1 are the inclusions of 0 and 1.

Proof: Let � 2 c.A1;X/ be a finite correspondence. For i D 0;1, the diagram

A0.X;M0/
��

����! A0.A1;M0/

.s�
i
�/�
??y s�

i

??y
M0.k/ M0.k/

commutes (because .s�i �/
� D .� ı si /

� D s�i ı �
�, [5, Prop. 6.5]); the conclusion

follows from the homotopy invariance of cycle cohomology [12, Prop. (8.6)].

Lemma 3.2 yields an induced map

f ˛0 WH
S
0 .XF / WD Coker

�
c.A1F ;XF /

s�0�s
�
1

�! Z0.XF /

�
!M0.F /
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for any function field F=k. We extend this morphism to

f ˛n WH�n.XF ;Z.�n//!Mn.F /

for any n 2 Z as follows. If n� 0, the element

˛n 2 A0.X �Gn
m;Mn/ (3.2)

corresponding to ˛ under the decomposition

A0.X �Gn
m;Mn/D

nM
iD0

A0.X;Mi /
.ni/

(see Lemma 2.2) yields a map

f ˛
n

0 WH
S
0 ..X �Gn

m/F /!Mn.F /:

We define f ˛n as the component of f ˛
n

0 on H�n.XF ;Z.�n// (see Lemma 2.2
again).

If n < 0, we proceed à la Bass (cf. negative K-groups). For any n 2 Z, suppose
f ˛nC1 is defined. We then get a map

HX
nC1.F.t//

.f ˛nC1/�
�! MnC1.F.t//:

Using the isomorphism NnC1.F.t// ' NnC1.F /˚
L
x2A1F

Nn.F.x// valid for
any cycle module N (and natural in N ), we get a map Nf ˛n .F / WH

X
n .F /!Mn.F /,

defined as the component of f ˛nC1.F.t// at x D 0. If n < 0, this defines f ˛n .F /; if
n� 0, we have Nf ˛n .F /D f

˛
n .F / from the above definition of f ˛n .

3.3 Proposition .f ˛n /n2Z is a morphism of cycle modules.

Proof: We have to show that f ˛� commutes with the data D1, D2, D3, D4 of [12,
p. 329]. For D1 (contravariance for field extensions) and D2 (covariance for finite
field extensions), this is already true on the level of Qf ˛ (see before Lemma 3.2). For
D3 (cup-product with units) and D4 (residues), it follows from the definition of f ˛n
from f ˛0 , for n� 0 and n < 0, and the compatibility of these two definitions.

Proposition 3.3 yields a homomorphism

'X;M W A
0.X;M0/! HomCM.H

X ;M/: (3.3)

3.C. Compositions

3.4 Lemma The composition  X;M ı'X;M ((3.1) and (3.3)) is the identity.
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Proof: For ˛ 2 A0.X;M0/, we have to prove that f ˛0 .k.X//.�X / D ˛. It suffices
to show that Qf˛.k.X// W Z0.Xk.X// ! M0.k.X// sends the generic point �X to
˛. But, by construction, it sends �X to the specialisation at �X of the pull-back of
˛ 2 A0.X;M0/ in A0.Xk.X/;M0/, which is obviously equal to ˛.

3.5 Lemma The composition 'X;M ı X;M is the identity.

Proof: Let f WHX !M . We have to prove that f f .�X / D f . We first prove that
f
f .�X /
0 D f0. This amounts to showing, for any closed point x 2X.0/, the identity

Qf f .�x/.x/D f .�X /x :

But the left hand side equals the right hand side by definition.
We now prove that f f .�X /n D fn for all n 2 Z. For n � 0, we observe that, with

the notation of (3.2), f .�X /n is the image of f .�X�Gn
m
/: this is checked inductively

on n from the formula

�X�Gm
D �X � �Gm

stemming from the product

HX
0 .k.X//˝H

Gm

0 .k.Gm//!H
X�Gm

0 .k.X �Gm//

and the formula

@0f .�X � �Gm
/D f .@0.�X � �Gm

//D f .�X /

coming from the identity

@0.�Gm
/D 1

where @0 is the “residue" map A0.X �Gm;N1/! A0.X;N0/ for any cycle module
N .

For n < 0, we proceed by Bass induction from the case nD 0.

Theorem 1.3 is proven.

4. Proof of Theorem 1.4

To prove Theorem 1.4, we proceed in two steps. The first one gives a weaker result:
it is not logically necessary but is enlightening in its own way. In the second step,
we obtain Theorem 1.4 as a straightforward application of Déglise’s results.
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4.A. Generation by units

In [10], Merkurjev proceeds differently from here: instead of proving that 'X;M ı
 X;M is the identity, he shows that  X;M is injective. This is based on the fact that
KX is “generated" by the generic element via units. We shall show here that this is
still the case when X is not proper, which yields half of Theorem 1.4.

4.1 Definition Let N be a cycle module and n 2 Z. We say that NnC1 is generated
by Nn via units if, for any F=k, the map

M
ŒE WF �<1

Nn.E/˝E
� f
�!NnC1.F /

is surjective, where the component of f at E is n˝u 7!NE=F .n �u/.

4.2 Lemma Let ' WN !M be a morphism of cycle modules, and let n 2 Z.
a) If 'nC1 D 0 (resp. 'nC1 is a mono, an epi, an iso), the same is true of 'n.
b) Suppose thatNnC1 is generated byNn via units. If 'n D 0 (resp. is epi), the same
is true of 'nC1.

Proof: a) We argue as for the construction of f ˛ in §3.B: let F=k be a function
field. Then 'n.F / is a direct summand of 'nC1.F.t// (say, via the closed point 0 of
A1F ).

b) This is obvious.

4.3 Proposition Let F=k be a function field extension. For all n� 0, the mapM
x2X.0/

KMn .F.x//!H�n.XF ;Z.�n//

given on the component x by u 7!NF.x/=F .x �u/ (where x is viewed as an element
of H0.XF /) is surjective.

Proof: We may assume F D k. Recall (cf. §3.B) that H�n.X;Z.�n// is
functorially a direct summand of HS

0 .X �Gn
m/. I claim that there is a commutative

diagram M
�2.X�Gn

m/.0/

Z ����! HS
0 .X �Gn

m/

??y ??yM
x2X.0/

KMn .k.x// ����! H�n.X;Z.�n//

in which the right vertical map is the projection recalled above, the top horizontal
map is the natural map from 0-cycles and the bottom horizontal map is the one of
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Proposition 4.3. To define the left vertical map, map � 2 .X �Gn
m/.0/ to its image

x 2 X.0/; the component of � on Gn
m then defines a sequence .�1;:::;�n/ 2 k.x/�n,

and we take as the image of � the symbol f�1;:::;�ng 2KMn .k.x//.

4.4 Corollary For any cycle module M , the map

A0.X;M/' HomCM.H
X ;M/! Homfields=k.H

X
0 ;M0/

is injective, where fields=k denotes the category of function fields over k.

4.B. A refinement

For any cycle module M , X 7! A0.X;M0/ defines a homotopy invariant Nisnevich
sheaf with transfers M0: the structure of presheaf with transfers is described in the
beginning of §3.B ([7, Prop. 6.5] gives the functoriality), homotopy invariance is
proven in [12, Prop. (8.6)] and the sheaf property is proven in [6, proof of 6.10].
We note:

4.5 Proposition The functor

CM!HI
M 7!M0

has a left adjoint ˆ.

Proof: Let F 2HI. For n 2 Z, define (cf. [7, 1.16])

Fn D
(

G˝nm ˝F if n� 0
Hom.G˝nm ;F/ if n� 0

where tensor product and internal Hom are computed in HI. By [6, 6.2.1],
ˆ.F/n.F / D Fn.SpecF / defines a cycle module, which is easily seen to be the
desired left adjoint computed at F .

4.6 Proposition Let X be a smooth variety. For F D hNis
0 .X/, we have ˆ.F/ D

HX .

Proof: This is the content of [7, 1.3].

Propositions 4.5 and 4.6 together prove Theorem 1.4, since the inclusion functor
HI! PST is fully faithful. From this, we get the following generalisation of [10,
Th. 2.11]:

4.7 Corollary For a smooth variety X , the following conditions are equivalent:

(i) For every cycle module M , the map M0.k/! A0.X;M0/ is an isomorphism.
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(ii) The mapHX !K induced by the projection X ! Speck is an isomorphism,
where K is Milnor K-theory.

(iii) The degree map H0.XF ;Z/! Z is an isomorphism for any function field F .

(iv) The element �X from §3.A is defined over k.

These conditions are verified if X is A1-trivial, i.e. if for any function field F , all
points of X.F / are A1-equivalent where A1-equivalence is the equivalence relation
generated by x0 � x1 if there is a morphism f W A1 ! X with f .0/ D x0 and
f .1/D x1.

Proof: (i)) (iv): apply (i) to M DHX .
(iv)) (ii): via the isomorphism (3.3), �X corresponds to the identity map of

HX . If this map factors through K, HX !K must be an isomorphism.
(ii) () (iii): this follows from Theorem 1.4.
(ii) () (i): this follows from Theorem 1.3.
It remains to prove the last assertion. But the hypothesis implies (iii), by

definition of Suslin homology.

5. Proof of Theorem 1.5

5.A. Two Borel-Moore motivic homology theories

They are defined as follows:
a) In terms of Bloch’s higher Chow groups:

H c
i .Y;Z.n// WD CHn.Y;2i �n/:

b) In terms of quasi-finite correspondences:

H c
i .Y;Z.n// WD

(
HomDMeff

�
.Z.n/Œi �;C c�.Y // if n� 0

HomDMeff
�
.ZŒi �;C c�.Y /.�n// if n� 0

cf. [15, prop. 4.2.9].
Here are the features of these theories:

1. Over any k, the theory in a) verifies the localisation theorem if Y is quasi-
projective [3].

2. Over any k, there is a canonical map for the theory in b):

Hi .Y;Z.n//!H c
i .Y;Z.n//

induced by the map of complexes C �.Y /! C c�.Y / (see [15, 4.1]).
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3. If k admits resolution of singularities (in the sense of Hironaka), then the
theories in a) and b) coincide for any quasi-projective Y [15, prop. 4.2.9].
Moreover, the theory of b) verifies localisation for any Y (not necessarily
quasi-projective).

Moreover, motivic cohomology of smooth schemes coincides with higher Chow
groups over any k by [16], but we will not use this.

5.B. Proof of (i)

Here we use Definition a) of §5.A and assume Y quasi-projective. Let
!

Z D .; D

Z0 � ��� � Zd D Y / be an increasing chain of closed subsets, with dimZp � p.
The localisation theorem then yields a spectral sequence

E1p;q.
!

Z/DH c
pCq.Zp �Zp�1;Z.n//)H c

pCq.Y;Z.n//:

Passing to the the colimit, we get a niveau spectral sequence

E1p;q D
M
y2Y.p/

lim
�!
Uy

H c
pCq.Uy ;Z.n//)H c

pCq.Y;Z.n//

where the lim
�!Uy

are taken over the open neighbourhoods of y in fyg, for y 2 Y .
Passing from homological to cohomological higher Chow groups, we may rewrite
these colimits as:

lim
�!
Uy

H c
pCq.Uy ;Z.n//D lim

�!
Uy

Hp�q.U;Z.p�n//DHp�q.k.y/;Z.p�n//

which gives the final form of the niveau spectral sequence.
In particular, E1p;q D 0 for q < n and

E1p;n D
M
y2Y.p/

KMp�n.k.y//

(see (2.3)). This shows that H c
n .Y;Z.n// is canonically isomorphic to A0.Y;KM�n/.

5.C. Proof of (ii)

Here we assume that k admits resolution of singularities, but relax the quasi-
projectiveness assumption. Then all the above may be performed using Definition b)
of §5.A. Moreover, we get a map from motivic to Borel-Moore motivic homology,
which yields the promised map of cycle modules HY !KY . The fact that it gives
back the isomorphism of Proposition 1.2 when Y is smooth projective follows from
the proof of the latter.
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5.D. Proof of (iii)

This follows from (i) and the special case i D 0 of [7, Cor. 9.1].

6. Complement: vanishing range of motivic homology

6.A. A vanishing in any characteristic

6.1 Proposition Assume k perfect. For any smooth scheme X and any n 2 Z, one
has

Hi .X;Z.n//D 0 for i < n:

If X is projective (and n� 0), i < 2n is sufficient.
If U is an open subset of X , the map

Hn.U;Z.n//!Hn.X;Z.n//

is surjective for all n 2 Z. If the closed complement Z is of codimension � 2, it is
bijective. If Z is smooth and purely of codimension 1, we have exact sequences

Hn�1.Z;Z.n� 1//!Hn.U;Z.n//!Hn.X;Z.n//! 0:

Proof: We distinguish two cases: n� 0 and n� 0. If n� 0, we have in DMgm and
DMeff

�

Hi .X;Z.n//D Hom.Z.n/Œi �;M.X//

D Hom.Z.n/Œ2n�;M.X/Œ2n� i �/�H 2n�i
Nis .Pn;C �.X//

since Z.n/Œ2n� is a direct summand of M.Pn/. Since the complex C �.X/ is
concentrated in nonpositive degrees, H j

Nis.P
n;C �.X// D 0 for j > dimPn D n (by

the known Nisnevich cohomological dimension), which yields the desired bound.
If n� 0, we have

Hi .X;Z.n//D Hom.ZŒi �;M.X/.�n//

D Hom.ZŒi �n�;M.X/.�n/Œ�n�/�Hn�i .k;C�.X �G�nm //

since Z.�n/Œ�n� is a direct summand of M.G�nm /. Since C�.X � G�nm / is
concentrated in nonpositive degrees, this group vanishes for n� i > 0, as desired.

The surjectivity and exactness statements in the end of Proposition 6.1 are
proven similarly, using Gysin exact sequences.

If X is projective of dimension d , we have by Poincaré duality

Hi .X;Z.n//'H 2d�i .X;Z.d �n//:

This group is known to vanish as soon as 2d � i > 2.d � n/ (by the coniveau
spectral sequence), i.e. for i < 2n.
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6.B. Application to birational invariance

6.2 Definition A rational map f WXÜ Y between two varieties is coproper if the
projection N�f ! X is proper, where N�f � X �Y is the graph of f . (If U 	 X is a
defining open subset for f , N�f is the closure of the graph of f W U ! Y in X �Y .)

6.3 Example Any morphism is coproper. If Y is proper, f is coproper. If f W Y !
X is a birational morphism, the rational map f �1 WXÜ Y is coproper if and only
if f is proper.

6.4 Lemma Let f W XÜ Y and g W Y Ü Z be two composable rational maps.
If f and g are coproper, so is g ıf .

Proof: Let Uf 	 X be the domain of f and Ug 	 Y be the domain of g: then g
and f are composable if and only if f .Uf /\Ug ¤ ;. Then the domain of g ı f
contains Ugıf WD f �1.Ug/.

Let �f � Uf � Y , �g � Ug �Z and �gıf � Ugıf �Z be the graphs of the
respective morphisms, and let N�f � X � Y , N�g � Y �Z, N�gıf � X �Z be their
respective closures. We know that N�f ! X and N�g ! Y are proper, and we must
deduce that N�gıf !X is proper. The trick is to introduce the “double graph"

�g;f D f.x;f .x/;g ıf .x//g � Ugıf �Ug �Z

and to compare its closure N�g;f �X �Y �Z with N�f and N�gıf .

Since �g;f � Ugıf � �g , we also have N�g;f � X � N�g ; moreover, since
pXY .�f;g/	 �f , we have pXY . N�g;f /� N�f . In the commutative diagram

�g;f
j

����! N�g;f
i

����! X � N�g ����! X �Y �Z

j 0

??y p

??y q

??y pXY

??y
�f

j 00

����! N�f ����! X �Y X �Y

�

??y
X

i is a closed immersion and q is (by hypothesis) proper, hence p is also proper.
Moreover, j;j 0;j 00 are open immersions, hence p is birational. Since (by hypothe-
sis) � is also proper birational, we find that � ıp is proper birational. On the other
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hand, we have a similar commutative diagram:

�g;f
j1
����! N�g;f ����! X �Y �Z

j 01

??y p1

??y pXZ

??y
�gıf

j 001
����! N�gıf ����! X �Z:

�1

??y
X

Since �1 ıp1 D � ıp is proper, so is p1; but p1 is birational, hence surjective,
and therefore �1 is also proper, as requested.

6.5 Corollary a) Let f W XÜ Y be a coproper rational map between varieties,
with X smooth. Then f defines a map f� W Hn.X;Z.n// ! Hn.Y;Z.n// for any
n 2 Z.
b) If Y is also smooth and g W YÜZ is another coproper rational map composable
with f , then .g ıf /� D g� ıf�.
c) If f W X ! Y is a birational map with X;Y smooth and if f and f �1 are
coproper, f� is an isomorphism.
d) If f W X ! Y is a proper birational morphism between two smooth varieties,
then f� is an isomorphism.
e) If f WXÜ Y is a birational map between two smooth proper varieties, then f�
is an isomorphism.

Proof: This is standard, cf. [9, Ch. II, Th. 8.19]:
a) By the valuative criterion of properness, f is defined on an open subset U 	

X such that X �U has codimension � 2. The claim then follows from Proposition
6.1. b) is because in the proof of Lemma 6.4, X �Ugıf is of codimension � 2 in
X . c) follows from b). Via Example 6.3, d) and e) are special cases of c).

6.6 Remark Of course, the argument of Corollary 6.5 applies to any functor F on
the category of smooth varieties such that F.U /

�
�! F.X/ if X is smooth and

U 	X is a dense open subset such that X �U has codimension � 2 in X .

6.C. A vanishing under resolution of singularities

6.7 Proposition (cf. [7, Prop. 8.2]) Let X be smooth of dimension d . If cark D 0,
Hi .X;Z.n//D 0 for n > d and is finitely generated for nD d . If cark D p > 0, the
same is true up to p-torsion.
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Proof: IfX is projective, the vanishing is obvious from Poincaré duality (see end of
proof of Proposition 6.1). We get from this case to the general case in a well-known
manner by means of the Gysin exact sequences, from Hironaka’s resolution of
singularities in characteristic 0 and from Gabber’s refinement of de Jong’s theorem
in characteristic p.

(Is there a proof which avoids resolution?)

6.8 Proposition Let X be a smooth scheme of dimension d . Assume that X is an
open subscheme of a smooth projective NX , with complement D a normal crossing
divisor. Let D1;:::;Dr be the irreducible components of D; for J 	 f1;:::;rg, write
DJ WD

T
i2JDi (D; WD NX). Then

Hd .X;Z.d//' Coker

0
@ M
jJ jDd�1

CH 0.DJ /
ı
�!

M
jJ jDd

CH 0.DJ /

1
A

where ı is induced by the obvious restriction maps.

Proof: We shall do a slightly more general computation. Let n � 0. (Co)analog-
ously to [8, 3.3], we have a spectral sequence of cohomological type:

E
p;q
1 D

M
jJ jDp

HDJ
q . NX;Z.n//)Hq�p.X;Z.n//

where J runs through the subsets of f1;:::;rg, and HDJ
q . NX;Z.n// denotes motivic

homology of NX with supports in DJ . By purity, we may rewrite the E1-terms as

E
p;q
1 D

M
jJ jDp

Hq�2p.DJ ;Z.n�p//:

From Proposition 6.1, we find

E
p;q
1 D 0 for q < 2n or q�p < n:

Moreover, for i > 0,

E
nCi;2nCi
1 D

M
jJ jDnCi

H�i .DJ ;Z.�i//D
M
jJ jDnCi

CH�i .DJ /D 0

so the only E1-term contributing to Hn.X;Z.n// is

E
n;2n
1 D

M
jJ jDn

CH0.DJ /D
M
jJ jDn

CHd�n.DJ /
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and Hn.X;Z.n// is a quotient of this direct sum. The previous E1-term is

E
n�1;2n
1 D

M
jJ jDn�1

CH1.DJ /D
M
jJ jDn�1

CHd�n.DJ /

so En;2n2 is the cokernel of the obvious restriction mapM
jJ jDn�1

CHd�n.DJ /!
M
jJ jDn

CHd�n.DJ /:

For n D d , there is nothing above the row q D 2d and Ed;2d2 D Ed;2d1 . For
n < d , the term E

n�2;2nC1
2 is a subquotient of

E
n�2;2nC1
1 D

M
jJ jDn�2

H5.DJ ;Z.2//D
M
jJ jDn�2

Ad�n�1.DJ ;K
M
d�n/

corresponding to 3-cycles with coefficients in units. We stop this analysis here and
encourage the interested reader to pursue it.

6.9 Remark With the notation of Proposition 6.8, we also have exact sequences

rM
iD1

Hn�1.D
o
i ;Z.n� 1//

ı
�!Hn.X;Z.n//!Hn. NX;Z.n//! 0

for all n 2 Z, where Do
i DDi n

S
j¤iDj and ı is induced by the Gysin maps. Note

that the right hand side is 0 for n < 0. This may be obtained from the Gysin exact
sequence relative to the open immersion X � NX�

S
i¤jDi \Dj , with complement`

iD
o
i (by Proposition 6.1, Hn. NX �

S
i¤jDi \Dj ;Z.n//

�
�! Hn. NX;Z.n//), or as

the dual via Theorem 1.3 of the exact sequence

0! A0. NX;Mn/! A0.X;Mn/!

rM
iD1

A0.Do
i ;Mn�1/

valid for any cycle module M .
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