A NOTE ON RELATIVE DUALITY FOR VOEVODSKY MOTIVES
LUCA BARBIERI-VIALE AND BRUNO KAHN

ABSTRACT. Let k be a perfect field which admits resolution of singularities in the sense
of Friedlander and Voevodsky (for example, k of characteristic 0). Let X be a smooth
proper k-variety of pure dimension n and Y, Z two disjoint closed subsets of X. We prove
an isomorphism

M(X-2Z)Y)~M(X -Y,Z)"(n)[2n]
where M (X — Z,Y) and M(X — Y, Z) are relative Voevodsky motives, defined in his
triangulated category DMgy, (k).

INTRODUCTION

Relative duality is a useful tool in algebraic geometry and has been used several times.
Here we prove a version of it in Voevodsky’s triangulated category of geometric motives
DM, (k) [10], where k is a (perfect) field which admits resolution of singularities. (Recall
that, according to [6, Def. 3.4], this means that every k-scheme of finite type may be
dominated by a smooth k-scheme via a proper surjective morphism, and that moreover
any modification with base a smooth k-scheme may be dominated by a composition of
blow-ups with smooth centres: this is the case if k is of characteristic 0, by Hironaka’s
main theorems.)

Namely, let X be a smooth proper k-variety of pure dimension n and Y, Z two disjoint
closed subsets of X. We prove in Theorem 3.1 an isomorphism

M(X — Z,Y) ~ M(X — Y, Z)*(n)[2n]
where M (X — Z,Y) and M (X —Y, Z) are relative Voevodsky motives, see Definition 1.1.

This isomorphism remains true after application of any ®-functor from DM, (k), for
example one of the realisation functors appearing in [9, I.VI.2.5.5 and 1.V.2], [7], [8] or [2].
In particular, taking the Hodge realisation, this makes the recourse to M. Saito’s theory
of mixed Hodge modules unnecessary in [1, Proof of 2.4.2].

The main tools in the proof of Theorem 3.1 are a good theory of extended Gysin
morphisms, readily deduced from Déglise’s work (Section 2), Voevodsky’s localisation
theorem for motives with compact supports [10, 4.1.5], and his theorem that, for any
scheme of finite type X € Sch/k, the object M(X) := C,(L(X)) of DM** (k) actually
belongs to DMggl(k) (ibid., 4.1.4). This may be used for an alternative presentation of
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some of the duality results of [10, §4.3]. The arguments seem axiomatic enough to be
transposable to other contexts.
We assume familiarity with Voevodsky’s paper [10], and use its notation throughout.

1. RELATIVE MOTIVES AND MOTIVES WITH SUPPORTS
Definition 1.1. Let X € Sch/k and Y C X, closed. We set
M(X,Y) = C.(L(X)/L(Y))
MY (X) = C.(L(X)/L(X = Y)).
Remark 1.2. This convention is different from the one of Déglise in [3, 4, 5] where what we

denote by MY (X) is written M (X,Y) (and occasionally My (X) as well). Like Déglise,
we shall only consider these motives for X smooth (but Y may be singular).

Note that L(Y) — L(X) and L(X —Y) — L(X) are monomorphisms, so that we have
functorial exact triangles

M(Y) = M(X)— M(X,Y) 25
(1) M(X =Y) = M(X) — MY(X) 2.
We can mix the two ideas: for Y, Z C X closed, define
M?(X,Y) = C.(L(X)/L(Y) + L(X — Z)).
Lemma 1.3. IfY N Z = 0, the obvious map M?(X) — M%(X,Y) is an isomorphism,

and we have an ezxact triangle

M(X-Z2Y)— MX,Y)-> M%2(x)*5 . O
2. EXTENDED GYSIN

In the situation of Lemma 1.3, assume that Z is smooth of pure codimension c. F.
Déglise has then constructed a purity isomorphism
(2) pzex : MZ(X) = M(Z)(c)[2¢]
with the following properties:

(1) pzcx coincides with Voevodsky’s purity isomorphism of [10, 3.5.4] (see [5, 1.11]).
(2) If f: X' — X is transverse to Z in the sense that Z' = Z x x X’ is smooth of pure
codimension ¢ in X', then the diagram

M7 (X') =225 M(Z)(c)[2d]
(fvg)*l g
M#(X) =5 M(Z)(0)[2]
commutes, where g = fiz ([3, Rem. 4] or [4, 2.4.5]).
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(3) If i : T C Z is a closed subset, smooth of codimension d in X, the diagram

Pzcx

M?(X) —= M(Z)(c)[2]
i* MT(Z)(e)[2]

V

M(T)(d)[2d]

pPrcx
E——

MT(X)
commutes, where « is the twist /shift of the second map in the triangle correspond-
ing to (1) [5, proof of 2.3].
Definition 2.1. We set:
ggcx =Pzcx 00
where pzcy is as in (2) and § is the morphism appearing in Lemma 1.3.

In view of the properties of pzcx, these extended Gysin morphisms have the following
properties:

Proposition 2.2. a) Let f : X' — X be a morphism of smooth schemes. Let Z' = f~Y(Z)
and Y' = [f~YY). If f is transverse to Z, the diagram

!/

MXLYY) 225 0 (29()[2d)
f*l g*l
M(X,Y) Z=X5 M(2)(c)[2d]

commutes, with g = f|z.
b) Let X D Z D Z' be a chain of smooth k-schemes of pure codimensions, and let
d = codimyzZ'. LetY C X be closed, withY NZ = (. Then

g)Z/’cX = gzcz(d)[2d] o g}Z/cX-

3. RELATIVE DUALITY

In this section, X is a smooth proper variety purely of dimension n and Y, Z are two
disjoint closed subsets of X. Consider the diagonal embedding of X into X x X: its
intersection with (X —Y') x (X — Z) is closed and isomorphic to X —Y — Z. The closed
subset (X —Y) x Y UZ x (X — Z) is disjoint from X —Y — Z; from Definition 2.1 we
get a extended Gysin map

MI(X -Y)x (X=2)(X-Y)xYUZx(X—=2)— MX-Y — Z)(n)2n].
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Note that the left hand side is isomorphic to M(X —Y,Z) @ M(X — Z,Y) by an ex-
plicit computation from the definition of relative motives. Composing with the projection
M(X =Y — Z)(n)[2n] — Z(n)[2n], we get a map

M(X-Y,2)® M(X — 2,Y) — Z(n)[2n]

hence a map

Y,Z

(3) M(X —Z,Y) 25 M(X =Y, Z)*(n)[2n).
Theorem 3.1. The map (3) is an isomorphism.
The proof is given in the next section.

4. PROOF OF THEOREM 3.1
Lemma 4.1. If Y = Z = () and X is projective, then (3) is an isomorphism.

Proof. As pointed out in [10, p. 221], c&@ corresponds to the class of the diagonal; then
Lemma 4.1 follows from the functor of [10, 2.1.4] from Chow motives to DMy, (k). (This
avoids a recourse to [10, 4.3.2 and 4.3.6].) O
The next step is when Z is empty. For any U € Sch/k, write M¢(U) := C,(L°(U)) [10,
p. 224]. Since X is proper, by [10, 4.1.5] there is a canonical isomorphism
M(X,)Y) = MY(X —-Y)
induced by the map of Nisenvich sheaves
L(X)/L(Y) — LY(X =Y.
Therefore, from og(’@, we get a map
B MY(X =Y) = M(X —Y)*(n)[2n].
Lemma 4.2. The map 8% only depends on X —Y .

Proof. Let U = X —Y. If X’ is another smooth compactification of U, with Y/ = X' — U,
we need to show that 3% = ﬁ}Q By resolution of singularities, X and X’ may be
dominated by a third smooth compactification; therefore, without loss of generality, we
may assume that the rational map ¢ : X’ — X is a morphism. The point is that, in the
diagram

M(X'Y")

Y’ 0
\\K;

1
=
=
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both triangles commute. For the left one it is obvious, and for the upper one this follows

from the naturality of the pairing (3). Indeed, the square

X -y A (X —Y)x X'

q/l q/qu

X-Y 25 (X-YV)xX

is clearly transverse, where ¢ = ¢x/—y+ (an isomorphism) and A, A" are the diagonal
embeddings; therefore we may apply Proposition 2.2 a). 0

From now on, we write Sx_y for the map 3%.

Lemma 4.3. a) Let U € Sm/k of pure dimension n, T U closed, smooth of pure

dimension m and V =U — T -2 U. Then the diagram

M(T) 2T M(T)*(m)[2m]

l lg;wm) 2n]

Me(U) 2 MUY (n)[20]
Me(V) 2 MV (n)[20]

commutes.

b) Suppose that Br is an isomorphism. Then By is an isomorphism if and only if By is.

Proof. a) The bottom square commutes by a trivial case of Proposition 2.2 a). For the

top square, the statement is equivalent to the commutation of the diagram

MeT) @
& M(U)
Me(U)

Me(T)

\
Z(n)[2n]
/

M(T)(e)[2d]
® M

(U)

with ¢ =n —m.
Take a smooth compactification X of U, and let T be a desingularisation of the closure
of T'in X. Let ¢ : T — X be the corresponding morphism, Y = X —U and W =T — T
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we have to show that the diagram

M(T, W) @ M(T)(c)[2d]

® MU
M(X,Y

M(T,W) Z(n)[2n]

\/

)@ M(U)
or equivalently

o M(TXT,W x T)(0)[2]

W

M(T x U, W x U)

R

commutes, where f is the map M (T x T)(c)[2c] — M(T x T,W x T)(c)[2c]. For this, it
is enough to show that the diagram

Z(n)[2n]

\/

M(X xUY xU)

o M(T X T,W x T)(e)[2¢] —— M(T)(n)[2n]

W gTCTxT(C)[M

M(T x U,W x U) i

k o

M(X xU,Y x U)gUCXXU

M(U)(n)[2n]

commutes. Since extended Gysin extends Gysin, Proposition 2.2 a) shows that this
amounts to the commutatvity of

W xU

M(T x U,W x U) 25V M(T)(n)[2n]

Y xU

M(X xU,Y x U) 229 M(U)(n)[2n]
which follows from the functoriality of the extended Gysin maps (Proposition 2.2 b)).
b) This follows immediately from a). O

Proposition 4.4. Gy is an isomorphism for all smooth U.

Proof. We argue by induction on n = dim U, the case n = 0 being known by Lemma 4.1.
In general, let V' be an open affine subset of U and pick a smooth projective compactifi-
cation X of V, with Z =X —V. Let Z> Z; D -+- D Z, = (), where Z;,, is the singular
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locus of Z;. Let also T = U — V and define similarly T > T} D --- D Ty, = ) (all Z; and
T; are taken with their reduced structure). Let V; = X — Z; and U; = U — T;. Then
Vi—Vi_1 and U; — U;_; are smooth for all 7, j. Thus By is an isomorphism by Lemma 4.1
(case of Bx) and a repeated application of Lemma 4.3 b). O

Remark 4.5. We haven’t tried to check whether [y is the inverse of the isomorphism
appearing in the proof of [10, 4.3.7]: we leave this interesting question to the interested
reader.

End of proof of Theorem 3.1. By Lemma 1.3, the triangle
M(Z)—=M(X-Y)—MX-Y,2) 5

and the duality pairings induce a map of triangles
M(X =Y, Z)*(n)[2n] —— M(X =Y)*(n)[2n] —— M(2)"(n)[2n]

a?z T a§‘® T (0]
M(X —-2Y) — M(X,)Y) SN MZ(X).
(The left square commutes by a trivial application of Proposition 2.2 a), and ® is some
chosen completion of the commutative diagram by the appropriate axiom of triangulated

categories.)
Consider the following diagram (which is the previous diagram with Y = ()):

M(X, Z)"(n)[2n] —— M(X)*(n)[2n] —— M(Z)"(n)[2n]

ag}(,z T ag(’w T @T

M(X - 27) — M(X) — M%(X)

Note that o&z is dual to a)Z(’@; therefore it is an isomorphism by Lemma 4.2 and Propo-
sition 4.4. It follows that ® is an isomorphism. Coming back to the first diagram and

using Lemma 4.2 and Proposition 4.4 a second time, we get the theorem. 0

Remark 4.6. Tt would be interesting to produce a canonical pairing

Nix.z): MZ(X) ® M(Z) — Z(n)[2n]

playing the role of ® in the above proof, i.e., compatible with og(’z.
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