
A NOTE ON RELATIVE DUALITY FOR VOEVODSKY MOTIVES

LUCA BARBIERI-VIALE AND BRUNO KAHN

Abstract. Let k be a perfect field which admits resolution of singularities in the sense
of Friedlander and Voevodsky (for example, k of characteristic 0). Let X be a smooth
proper k-variety of pure dimension n and Y, Z two disjoint closed subsets of X. We prove
an isomorphism

M(X − Z, Y ) ' M(X − Y, Z)∗(n)[2n]

where M(X − Z, Y ) and M(X − Y,Z) are relative Voevodsky motives, defined in his
triangulated category DMgm(k).

Introduction

Relative duality is a useful tool in algebraic geometry and has been used several times.

Here we prove a version of it in Voevodsky’s triangulated category of geometric motives

DMgm(k) [10], where k is a (perfect) field which admits resolution of singularities. (Recall

that, according to [6, Def. 3.4], this means that every k-scheme of finite type may be

dominated by a smooth k-scheme via a proper surjective morphism, and that moreover

any modification with base a smooth k-scheme may be dominated by a composition of

blow-ups with smooth centres: this is the case if k is of characteristic 0, by Hironaka’s

main theorems.)

Namely, let X be a smooth proper k-variety of pure dimension n and Y, Z two disjoint

closed subsets of X. We prove in Theorem 3.1 an isomorphism

M(X − Z, Y ) ' M(X − Y, Z)∗(n)[2n]

where M(X −Z, Y ) and M(X −Y, Z) are relative Voevodsky motives, see Definition 1.1.

This isomorphism remains true after application of any ⊗-functor from DMgm(k), for

example one of the realisation functors appearing in [9, I.VI.2.5.5 and I.V.2], [7], [8] or [2].

In particular, taking the Hodge realisation, this makes the recourse to M. Saito’s theory

of mixed Hodge modules unnecessary in [1, Proof of 2.4.2].

The main tools in the proof of Theorem 3.1 are a good theory of extended Gysin

morphisms, readily deduced from Déglise’s work (Section 2), Voevodsky’s localisation

theorem for motives with compact supports [10, 4.1.5], and his theorem that, for any

scheme of finite type X ∈ Sch/k, the object M(X) := C∗(L(X)) of DMeff
− (k) actually

belongs to DMeff
gm(k) (ibid., 4.1.4). This may be used for an alternative presentation of
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some of the duality results of [10, §4.3]. The arguments seem axiomatic enough to be

transposable to other contexts.

We assume familiarity with Voevodsky’s paper [10], and use its notation throughout.

1. Relative motives and motives with supports

Definition 1.1. Let X ∈ Sch/k and Y ⊆ X, closed. We set

M(X, Y ) = C∗(L(X)/L(Y ))

MY (X) = C∗(L(X)/L(X − Y )).

Remark 1.2. This convention is different from the one of Déglise in [3, 4, 5] where what we

denote by MY (X) is written M(X, Y ) (and occasionally MY (X) as well). Like Déglise,

we shall only consider these motives for X smooth (but Y may be singular).

Note that L(Y ) → L(X) and L(X − Y ) → L(X) are monomorphisms, so that we have

functorial exact triangles

M(Y ) → M(X) → M(X, Y )
+1−→

M(X − Y ) → M(X) → MY (X)
+1−→ .(1)

We can mix the two ideas: for Y, Z ⊆ X closed, define

MZ(X, Y ) = C∗(L(X)/L(Y ) + L(X − Z)).

Lemma 1.3. If Y ∩ Z = ∅, the obvious map MZ(X) → MZ(X, Y ) is an isomorphism,

and we have an exact triangle

M(X − Z, Y ) → M(X,Y )
δ−→ MZ(X)

+1−→ . ¤

2. Extended Gysin

In the situation of Lemma 1.3, assume that Z is smooth of pure codimension c. F.

Déglise has then constructed a purity isomorphism

(2) pZ⊂X : MZ(X)
∼−→ M(Z)(c)[2c]

with the following properties:

(1) pZ⊂X coincides with Voevodsky’s purity isomorphism of [10, 3.5.4] (see [5, 1.11]).

(2) If f : X ′ → X is transverse to Z in the sense that Z ′ = Z×X X ′ is smooth of pure

codimension c in X ′, then the diagram

MZ′(X ′)
pZ′⊂X′−−−−→ M(Z ′)(c)[2c]

(f,g)∗

y g∗
y

MZ(X)
pZ⊂X−−−→ M(Z)(c)[2c]

commutes, where g = f|Z′ ([3, Rem. 4] or [4, 2.4.5]).
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(3) If i : T ⊂ Z is a closed subset, smooth of codimension d in X, the diagram

MZ(X)
pZ⊂X//

i∗

²²

M(Z)(c)[2c]

α

((PPPPPPPPPPPP

MT (Z)(c)[2c]
pT⊂Z

vvnnnnnnnnnnnn

MT (X)
pT⊂X// M(T )(d)[2d]

commutes, where α is the twist/shift of the second map in the triangle correspond-

ing to (1) [5, proof of 2.3].

Definition 2.1. We set:

gY
Z⊂X = pZ⊂X ◦ δ

where pZ⊂X is as in (2) and δ is the morphism appearing in Lemma 1.3.

In view of the properties of pZ⊂X , these extended Gysin morphisms have the following

properties:

Proposition 2.2. a) Let f : X ′ → X be a morphism of smooth schemes. Let Z ′ = f−1(Z)

and Y ′ = f−1(Y ). If f is transverse to Z, the diagram

M(X ′, Y ′)
gY ′

Z′⊂X′−−−−→ M(Z ′)(c)[2c]

f∗

y g∗
y

M(X, Y )
gY

Z⊂X−−−→ M(Z)(c)[2c]

commutes, with g = f|Z.

b) Let X ⊃ Z ⊃ Z ′ be a chain of smooth k-schemes of pure codimensions, and let

d = codimZZ ′. Let Y ⊂ X be closed, with Y ∩ Z = ∅. Then

gY
Z′⊂X = gZ′⊂Z(d)[2d] ◦ gY

Z⊂X .

3. Relative duality

In this section, X is a smooth proper variety purely of dimension n and Y, Z are two

disjoint closed subsets of X. Consider the diagonal embedding of X into X × X: its

intersection with (X − Y )× (X −Z) is closed and isomorphic to X − Y −Z. The closed

subset (X − Y ) × Y ∪ Z × (X − Z) is disjoint from X − Y − Z; from Definition 2.1 we

get a extended Gysin map

M((X − Y )× (X − Z), (X − Y )× Y ∪ Z × (X − Z)) → M(X − Y − Z)(n)[2n].
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Note that the left hand side is isomorphic to M(X − Y, Z) ⊗M(X − Z, Y ) by an ex-

plicit computation from the definition of relative motives. Composing with the projection

M(X − Y − Z)(n)[2n] → Z(n)[2n], we get a map

M(X − Y, Z)⊗M(X − Z, Y ) → Z(n)[2n]

hence a map

(3) M(X − Z, Y )
αY,Z

X−→ M(X − Y, Z)∗(n)[2n].

Theorem 3.1. The map (3) is an isomorphism.

The proof is given in the next section.

4. Proof of Theorem 3.1

Lemma 4.1. If Y = Z = ∅ and X is projective, then (3) is an isomorphism.

Proof. As pointed out in [10, p. 221], α∅,∅X corresponds to the class of the diagonal; then

Lemma 4.1 follows from the functor of [10, 2.1.4] from Chow motives to DMgm(k). (This

avoids a recourse to [10, 4.3.2 and 4.3.6].) ¤

The next step is when Z is empty. For any U ∈ Sch/k, write M c(U) := C∗(L
c(U)) [10,

p. 224]. Since X is proper, by [10, 4.1.5] there is a canonical isomorphism

M(X, Y )
∼−→ M c(X − Y )

induced by the map of Nisenvich sheaves

L(X)/L(Y ) → Lc(X − Y ).

Therefore, from αY,∅
X , we get a map

βY
X : M c(X − Y ) → M(X − Y )∗(n)[2n].

Lemma 4.2. The map βY
X only depends on X − Y .

Proof. Let U = X−Y . If X ′ is another smooth compactification of U , with Y ′ = X ′−U ,

we need to show that βY
X = βY ′

X′ . By resolution of singularities, X and X ′ may be

dominated by a third smooth compactification; therefore, without loss of generality, we

may assume that the rational map q : X ′ → X is a morphism. The point is that, in the

diagram

M(X ′, Y ′)

&&NNNNNNNNNNN

'

ÁÁ=
==

==
==

==
==

==
==

==
== αY ′,∅

X′

++WWWWWWWWWWWWWWWWWWWWWW

M(X, Y )
αY,∅

X

//

'
²²

M(U)∗(n)[2n]

M c(U)
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both triangles commute. For the left one it is obvious, and for the upper one this follows

from the naturality of the pairing (3). Indeed, the square

X ′ − Y ′ ∆′−−−→ (X ′ − Y ′)×X ′

q′
y q′×q

y
X − Y

∆−−−→ (X − Y )×X

is clearly transverse, where q′ = q|X′−Y ′ (an isomorphism) and ∆, ∆′ are the diagonal

embeddings; therefore we may apply Proposition 2.2 a). ¤

From now on, we write βX−Y for the map βY
X .

Lemma 4.3. a) Let U ∈ Sm/k of pure dimension n, T
i−→ U closed, smooth of pure

dimension m and V = U − T
j−→ U . Then the diagram

M c(T )
βT−−−→ M(T )∗(m)[2m]

i∗

y
yg∗T⊂U (n)[2n]

M c(U)
βU−−−→ M(U)∗(n)[2n]

j∗
y

yj∗

M c(V )
βV−−−→ M(V )∗(n)[2n]

commutes.

b) Suppose that βT is an isomorphism. Then βU is an isomorphism if and only if βV is.

Proof. a) The bottom square commutes by a trivial case of Proposition 2.2 a). For the

top square, the statement is equivalent to the commutation of the diagram

M c(T )⊗M(T )(c)[2c]

))RRRRRRRRRRRRR

M c(T )⊗M(U)

1⊗gT⊂U
55jjjjjjjjjjjjjjj

i∗⊗1 ))TTTTTTTTTTTTTTT
Z(n)[2n]

M c(U)⊗M(U)

55lllllllllllll

with c = n−m.

Take a smooth compactification X of U , and let T̄ be a desingularisation of the closure

of T in X. Let q : T̄ → X be the corresponding morphism, Y = X − U and W = T̄ − T :
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we have to show that the diagram

M(T̄ ,W )⊗M(T )(c)[2c]

))SSSSSSSSSSSSSS

M(T̄ ,W )⊗M(U)

1⊗gT⊂U
44iiiiiiiiiiiiiiii

q∗⊗1 **UUUUUUUUUUUUUUUU
Z(n)[2n]

M(X,Y )⊗M(U)

55kkkkkkkkkkkkkk

or equivalently

M(T̄ × T, W × T )(c)[2c]

))SSSSSSSSSSSSSS

M(T̄ × U,W × U)

f◦gW×U
T̄×T⊂T̄×U

44iiiiiiiiiiiiiiii

(q×1)∗ **UUUUUUUUUUUUUUUUU
Z(n)[2n]

M(X × U, Y × U)

55kkkkkkkkkkkkkk

commutes, where f is the map M(T̄ × T )(c)[2c] → M(T̄ × T,W × T )(c)[2c]. For this, it

is enough to show that the diagram

M(T̄ × T, W × T )(c)[2c]
gW×T

T⊂T̄×T
(c)[2c]

// M(T )(n)[2n]

i∗

²²

M(T̄ × U,W × U)

f◦gW×U
T̄×T⊂T̄×U

44iiiiiiiiiiiiiiii

(q×1)∗ **UUUUUUUUUUUUUUUUU

M(X × U, Y × U)
gY×U

U⊂X×U // M(U)(n)[2n]

commutes. Since extended Gysin extends Gysin, Proposition 2.2 a) shows that this

amounts to the commutatvity of

M(T̄ × U,W × U)
gW×U

T⊂T̄×U−−−−−→ M(T )(n)[2n]

(q×1)∗

y i∗

y

M(X × U, Y × U)
gY×U

U⊂X×U−−−−−→ M(U)(n)[2n]

which follows from the functoriality of the extended Gysin maps (Proposition 2.2 b)).

b) This follows immediately from a). ¤

Proposition 4.4. βU is an isomorphism for all smooth U .

Proof. We argue by induction on n = dim U , the case n = 0 being known by Lemma 4.1.

In general, let V be an open affine subset of U and pick a smooth projective compactifi-

cation X of V , with Z = X − V . Let Z ⊃ Z1 ⊃ · · · ⊃ Zr = ∅, where Zi+1 is the singular
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locus of Zi. Let also T = U − V and define similarly T ⊃ T1 ⊃ · · · ⊃ Ts = ∅ (all Zi and

Tj are taken with their reduced structure). Let Vi = X − Zi and Uj = U − Tj. Then

Vi−Vi−1 and Uj −Uj−1 are smooth for all i, j. Thus βU is an isomorphism by Lemma 4.1

(case of βX) and a repeated application of Lemma 4.3 b). ¤

Remark 4.5. We haven’t tried to check whether βU is the inverse of the isomorphism

appearing in the proof of [10, 4.3.7]: we leave this interesting question to the interested

reader.

End of proof of Theorem 3.1. By Lemma 1.3, the triangle

M(Z) → M(X − Y ) → M(X − Y, Z)
+1−→

and the duality pairings induce a map of triangles

M(X − Y, Z)∗(n)[2n] −−−→ M(X − Y )∗(n)[2n] −−−→ M(Z)∗(n)[2n]

αY,Z
X

x αY,∅
X

x Φ

x
M(X − Z, Y ) −−−→ M(X,Y ) −−−→ MZ(X).

(The left square commutes by a trivial application of Proposition 2.2 a), and Φ is some

chosen completion of the commutative diagram by the appropriate axiom of triangulated

categories.)

Consider the following diagram (which is the previous diagram with Y = ∅):
M(X, Z)∗(n)[2n] −−−→ M(X)∗(n)[2n] −−−→ M(Z)∗(n)[2n]

α∅,Z
X

x α∅,∅
X

x Φ

x
M(X − Z) −−−→ M(X) −−−→ MZ(X)

Note that α∅,ZX is dual to αZ,∅
X ; therefore it is an isomorphism by Lemma 4.2 and Propo-

sition 4.4. It follows that Φ is an isomorphism. Coming back to the first diagram and

using Lemma 4.2 and Proposition 4.4 a second time, we get the theorem. ¤

Remark 4.6. It would be interesting to produce a canonical pairing

∩(X,Z) : MZ(X)⊗M(Z) → Z(n)[2n]

playing the rôle of Φ in the above proof, i.e., compatible with αY,Z
X .
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