# The derived functors of unramified cohomology 

Bruno Kahn ${ }^{1}$ • R. Sujatha ${ }^{2}$

To the memory of Vladimir Voevodsky
© Springer International Publishing AG 2017


#### Abstract

We study the first "derived functors of unramified cohomology" in the sense of Kahn and Sujatha (IMRN 2016. doi:10.1093/imrn/rnw184), applied to the sheaves $\mathbb{G}_{m}$ and $\mathcal{K}_{2}$. We find interesting connections with classical cycle-theoretic invariants of smooth projective varieties, involving notably a version of the Griffiths group and the group of indecomposable $(2,1)$-cycles.


Mathematics Subject Classification 19E15 - 14E99

## Contents

## Introduction

1 Some results on birational motives
2 Computational tools
3 Varieties of dimension $\leq 2$
4 Birational motives and indecomposable (2,1)-cycles
5 The case of $\mathbb{G}_{m}$ : proof of Theorems 1, 2 and 5 (i)
6 The case of $\mathcal{K}_{2}$ : proof of Theorems 3 and 5 (ii)
7 Proof of Theorem 4
8 Questions and remarks
References

The first author acknowledges the support of Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005 and the second author that of NSERC Grant 402071/2011.

[^0]
## Introduction

To a perfect field $F$, Voevodsky associates in [25] a triangulated category of (bounded above) effective motivic complexes $\mathbf{D} \mathbf{M}_{-}^{\text {eff }}(F)=\mathbf{D} \mathbf{M}_{-}^{\text {eff }}$. In [15], we rather worked with the unbounded version $\mathbf{D} \mathbf{M}^{\mathrm{eff}}$. We introduced a triangulated category of birational motivic complexes $\mathbf{D M}^{\mathbf{0}}$, and constructed a triple of adjoint functors

$$
\mathbf{D M}^{\mathrm{eff}} \underset{\xrightarrow{R_{\mathrm{nr}}}}{\stackrel{i^{\circ}}{i_{\leq 0}}} \mathbf{D M}^{\mathbf{0}}
$$

with $i^{\mathrm{o}}$ fully faithful. Via $i^{\mathrm{o}}$, the homotopy $t$-structure of $\mathbf{D M}{ }^{\text {eff }}$ induces a $t$-structure on $\mathbf{D M}^{0}$ (also called the homotopy $t$-structure), and the functors $\nu_{\leq 0}, i^{0}$ and $R_{\mathrm{nr}}$ are respectively right exact, exact and left exact.

The heart of $\mathbf{D M}{ }^{\text {eff }}$ is the abelian category $\mathbf{H I}$ of homotopy invariant Nisnevich sheaves with transfers (see [25]). The heart of $\mathbf{D M}{ }^{0}$ is the thick subcategory $\mathbf{H I}^{0} \subset \mathbf{H I}$ of birational sheaves: an object $\mathcal{F} \in \mathbf{H I}$ lies in $\mathbf{H I}^{\mathbf{o}}$ if and only if it is locally constant for the Zariski topology.

In [15] we also started to study the right adjoint $R_{\mathrm{nr}}$. Let $R_{\mathrm{nr}}^{0}=\mathcal{H}^{0} \circ R_{\mathrm{nr}}: \mathbf{H I} \rightarrow \mathbf{H I}^{0}$ be the induced functor. We proved that $R_{\mathrm{nr}}^{0}$ is given by the formula $R_{\mathrm{nr}}^{0} \mathcal{F}=\mathcal{F}_{\mathrm{nr}}$, where for a homotopy invariant sheaf $\mathcal{F} \in \mathbf{H I}, \mathcal{F}_{\mathrm{nr}}$ is defined by

$$
\begin{equation*}
\mathcal{F}_{\mathrm{nr}}(X)=\operatorname{Ker}\left(\mathcal{F}(K) \rightarrow \prod_{v} \mathcal{F}_{-1}(F(v))\right) . \tag{1}
\end{equation*}
$$

Here $X$ is a smooth connected $F$-variety, $K$ is its function field, $v$ runs through all divisorial discrete valuations on $K$ trivial on $F$, with residue field $F(v)$, and $\mathcal{F}_{-1}$ denotes the contraction of $\mathcal{F}$ (see [24] or [18, Lect. 23]). Thus $R_{\mathrm{nr}}^{0} \mathcal{F}$ is the unramified part of $\mathcal{F}$.

Here is the example which connects the above to the classical situation of unramified cohomology. Let $i \geq 0, n \in \mathbf{Z}$ and let $m$ be an integer invertible in $F$. Then the Nisnevich sheaf $\mathcal{F}=\mathcal{H}_{\mathrm{et}}^{i}\left(\mu_{m}^{\otimes n}\right)$ associated to the presheaf

$$
U \mapsto H_{\mathrm{ett}}^{i}\left(U, \mu_{m}^{\otimes n}\right)
$$

defines an object of $\mathbf{H I}$, and $R_{\mathrm{nr}}^{0} \mathcal{F}$ is the usual unramified cohomology [6].
But the functor $R_{\mathrm{nr}}$ contains more information: for a general sheaf $\mathcal{F} \in \mathbf{H I}$, the birational sheaves

$$
R_{\mathrm{nr}}^{q} \mathcal{F}=\mathcal{H}^{q}\left(R_{\mathrm{nr}} \mathcal{F}\right)
$$

need not be 0 for $q>0$. Can we compute them, at least in some cases?
In this paper, we try our hand at the simplest examples: $\mathcal{F}=\mathbb{G}_{m}\left(=\mathcal{K}_{1}\right)$ and $\mathcal{F}=\mathcal{K}_{2}$. We cannot compute explicitly further than $q=2$, except for varieties of dimension $\leq 2$; but this already yields interesting connections with other birational invariants. For simplicity, we restrict to the case where $F$ is algebraically closed;
throughout this paper, the cohomology we use is Nisnevich cohomology. The main results are the following:

Theorem 1 Let $X$ be a connected smooth projective $F$-variety. Then
(i) $R_{\mathrm{nr}}^{0} \mathbb{G}_{m}(X)=F^{*}$.
(ii) $R_{\mathrm{nr}}^{1} \mathbb{G}_{m}(X) \xrightarrow{\sim} \operatorname{Pic}^{\tau}(X)$.
(iii) There is a short exact sequence

$$
0 \rightarrow D^{1}(X) \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m}(X) \rightarrow \operatorname{Hom}\left(\operatorname{Griff}_{1}(X), \mathbf{Z}\right) \rightarrow 0
$$

(iv) For $q \geq 3$, we have short exact sequences

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}_{\mathbf{Z}}\left(\mathrm{NS}_{1}(X, q-3), \mathbf{Z}\right) & \rightarrow R_{\mathrm{nr}}^{q} \mathbb{G}_{m}(X) \\
& \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(\mathrm{NS}_{1}(X, q-2), \mathbf{Z}\right) \rightarrow 0
\end{aligned}
$$

Here the notation is as follows: $\operatorname{Pic}^{\tau}(X)$ is the group of cycle classes in $\operatorname{Pic}(X)=$ $C H^{1}(X)$ which are numerically equivalent to 0 . We write $\operatorname{Griff}_{1}(X)=\operatorname{Ker}\left(A_{1}^{\mathrm{alg}}(X)\right.$ $\rightarrow N_{1}(X)$ ), where $A_{1}^{\text {alg }}(X)$ (resp. $\left.N_{1}(X)\right)$ denotes the group of 1-cycles on $X$ modulo algebraic (resp. numerical) equivalence, and

$$
D^{1}(X)=\operatorname{Coker}\left(N^{1}(X) \rightarrow \operatorname{Hom}\left(N_{1}(X), \mathbf{Z}\right)\right)
$$

where $N^{1}(X)=\operatorname{Pic}(X) / \operatorname{Pic}^{\tau}(X)$ and the map is induced by the intersection pairing. Finally, the groups $\mathrm{NS}_{1}(X, r)$ are those defined by Ayoub and Barbieri-Viale in [1, 3.25].

Note that $D^{1}(X)$ is a finite group since $N_{1}(X)$ is finitely generated.
After Colliot-Thélène complained that there was no unramified Brauer group in sight, we tried to invoke it by considering

$$
\mathbb{G}_{m}^{\text {ét }}=R \alpha_{*} \alpha^{*} \mathbb{G}_{m}
$$

where $\alpha$ is the projection of the étale site on smooth $k$-varieties onto the corresponding Nisnevich site. There is a natural map $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}^{e t}$, and

Theorem 2 The map $R_{\mathrm{nr}}^{q} \mathbb{G}_{m} \rightarrow R_{\mathrm{nr}}^{q} \mathbb{G}_{m}^{\text {ét }}$ is an isomorphism for $q \leq 1$, and for $q=2$ there is an exact sequence for any smooth projective $X$ :

$$
0 \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m}(X) \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m}^{\text {et }}(X) \rightarrow \operatorname{Br}(X)
$$

Considering now $\mathcal{F}=\mathcal{K}_{2}$ :

Theorem 3 We have an exact sequence

$$
\begin{aligned}
0 \rightarrow \operatorname{Pic}^{\tau}(X) F^{*} & \rightarrow R_{\mathrm{nr}}^{1} \mathcal{K}_{2}(X) \rightarrow H_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right) \\
& \stackrel{\bar{s}}{\rightarrow} \operatorname{Hom}\left(\operatorname{Griff}_{1}(X), F^{*}\right) \rightarrow R_{\mathrm{nr}}^{2} \mathcal{K}_{2}(X) \rightarrow C H^{2}(X)
\end{aligned}
$$

for any smooth projective variety $X$. Here

$$
H_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right)=\operatorname{Coker}\left(\operatorname{Pic}(X) \otimes F^{*} \rightarrow H^{1}\left(X, \mathcal{K}_{2}\right)\right)
$$

and

$$
\operatorname{Pic}^{\tau}(X) F^{*}=\operatorname{Im}\left(\operatorname{Pic}^{\tau}(X) \otimes F^{*} \rightarrow H^{1}\left(X, \mathcal{K}_{2}\right)\right)
$$

The group $H^{1}\left(X, \mathcal{K}_{2}\right)$ appears in other guises, as the higher Chow group $C H^{2}(X, 1)$ or as the motivic cohomology group $H^{3}(X, \mathbf{Z}(2))$; its quotient $H_{\text {ind }}^{1}\left(X, \mathcal{K}_{2}\right)$ has been much studied and is known to be often nonzero. Note that, while it is not clear from the literature whether there exist smooth projective varieties $X$ such that $\operatorname{Hom}\left(\operatorname{Griff}_{1}(X), \mathbf{Z}\right) \neq 0$, no such issue arises for $\operatorname{Hom}\left(\operatorname{Griff}_{1}(X), F^{*}\right)$ since $F^{*}$ is divisible.

The following theorem was suggested by James Lewis. For a prime $l \neq$ char $F$, write $e_{l}$ for the exponent of the torsion subgroup of the $l$-adic cohomology group $H^{3}\left(X, \mathbf{Z}_{l}\right)$. Then $e_{l}=1$ for almost all $l$ : in characteristic 0 this follows from comparison with Betti cohomology, and in characteristic $>0$ it is a famous theorem of Gabber [9]. Set $e=\operatorname{lcm}\left(e_{l}\right)$ : in characteristic $0, e$ is the exponent of $H_{B}^{3}(X, \mathbf{Z})_{\text {tors }}$, where $H_{B}^{*}$ denotes Betti cohomology.

Theorem 4 Assume that homological equivalence equals numerical equivalence on $C H_{1}(X) \otimes \mathbf{Q}$. Then, $e \bar{\delta}=0$ in Theorem 3.
0.1 Remarks (1) This hypothesis holds if char $F=0$ by Lieberman [17, Cor. 1]. His argument shows that, in characteristic $p$, it holds for $l$-adic cohomology if and only if the Tate conjecture holds for divisors on $X$ - more correctly, for divisors on a model of $X$ over a finitely generated field. In particular, it holds if $X$ is an abelian variety; in this case, $e=1$.
(2) The prime to the characteristic part of the unramified Brauer group also appears in the exact sequence of Theorem 3 as a Tate twist of the torsion of $H_{\text {ind }}^{1}\left(X, \mathcal{K}_{2}\right)$ [13, Th. 1].

Theorem 5 Suppose $\operatorname{dim} X \leq 2$ in Theorems 1 and 3. Then there exists an integer $t>0$ such that
(i) $R_{\mathrm{nr}}^{2} \mathbb{G}_{m}(X) \simeq D^{1}(X), \quad R_{\mathrm{nr}}^{3} \mathbb{G}_{m}(X) \simeq \operatorname{Ext}_{\mathbf{Z}}\left(A_{1}^{\mathrm{alg}}(X), \mathbf{Z}\right) \simeq$ $\operatorname{Hom}_{\mathbf{Z}}\left(\mathrm{NS}(X)_{\text {tors }}, \mathbf{Q} / \mathbf{Z}\right)$ and $t R_{\mathrm{nr}}^{q} \mathbb{G}_{m}(X)=0$ for $q>3$.
(ii) $t R_{\mathrm{nr}}^{q} \mathcal{K}_{2}(X)=0$ for $q>3$ and $R_{\mathrm{nr}}^{3} \mathcal{K}_{2}(X)=0$. Moreover, if $\operatorname{dim} X=2$, the last map of Theorem 3 identifies $R_{\mathrm{nr}}^{2} \mathcal{K}_{2}(X)$ with an extension of the Albanese kernel by a finite group.

We have $t=1$ if $\operatorname{dim} X<2$, and $t$ only depends on the Picard variety $\operatorname{Pic}_{X / F}^{0}$ if $\operatorname{dim} X=2$.

Let $C H^{2}(X)_{\text {alg }}$ denote the subgroup of $C H^{2}(X)$ consisting of cycle classes algebraically equivalent to 0 . Recall Murre's higher Abel-Jacobi map

$$
A J^{3}: C H^{2}(X)_{\mathrm{alg}} \rightarrow J^{3}(X)
$$

where $J^{3}(X)$ is an algebraic intermediate Jacobian of $X$ [20]. Theorem 5 (ii) suggests that in general, $\operatorname{Im}\left(R_{\mathrm{nr}}^{2}\left(\mathcal{K}_{2}\right)(X) \rightarrow C H^{2}(X)\right)$ should be contained in Ker $A J^{3}$.

A key ingredient in the proofs of Theorems 1 and 3 is the work of Ayoub and Barbieri-Viale [1], which identifies the "maximal 0-dimensional quotient" of the Nisnevich sheaf (with transfers) associated to the presheaf $U \mapsto C H^{n}(X \times U)$ with the group $A_{\text {alg }}^{n}(X)$ of cycles modulo algebraic equivalence (see (5.3)).

The example $\mathcal{F}=\mathcal{H}_{\text {ett }}^{i}\left(\mu_{m}^{\otimes i}\right)$ considered at the beginning relates to the sheaves studied in Theorems 1 and 3 through the Bloch-Kato conjecture: Kummer theory for $\mathcal{K}_{1}$ and the Merkurjev-Suslin theorem for $\mathcal{K}_{2}$. Unfortunately, Theorem 1 barely suffices to compute $R_{\mathrm{nr}}^{q}\left(\mathbb{G}_{m} / m\right)$ for $q \leq 1$ and we have not been able to deduce from Theorem 3 any meaningful information on $R_{\mathrm{nr}}^{*}\left(\mathcal{K}_{2} / m\right)$. We give the result for $R_{\mathrm{nr}}^{1}\left(\mathbb{G}_{m} / m\right)$ without proof; there is an exact sequence, where $\mathrm{NS}(X)$ is the NéronSeveri group of $X$ :

$$
0 \rightarrow\left(\mathrm{NS}(X)_{\text {tors }}\right) / m \rightarrow R_{\mathrm{nr}}^{1}\left(\mathbb{G}_{m} / m\right) \rightarrow{ }_{m} D^{1}(X) \rightarrow 0
$$

and encourage the reader to test his or her insight on this issue.
Let us end this introduction by a comment on the content of the statement "the assignment $X \mapsto \mathcal{F}(X)$ makes $\mathcal{F}$ an object of $\mathbf{H I}^{\circ}$ ", which applies to the objects appearing in Theorems 1 and 3. It implies of course that $\mathcal{F}(X)$ is a (stable) birational invariant of smooth projective varieties, which was already known in most cases; but it also implies some non-trivial functoriality, due to the additional structure of presheaf with transfers on $\mathcal{F}$. For example, it yields a contravariant map $i^{*}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ for any closed immersion $i: Y \rightarrow X$. This does not seem easy to prove a priori, say for $\mathcal{F}(X)=D^{1}(X)=R_{\mathrm{nr}}^{2} \mathbb{G}_{m}(X)_{\text {tors }}$ in Theorem 1 (iii).

## 1 Some results on birational motives

We recall here some results from [15].
1.1 Lemma For any birational sheaf $\mathcal{F} \in \mathbf{H I}^{\mathbf{0}}$ and any smooth variety $X$, $H^{q}(X, \mathcal{F})=0$ for $q>0$.

Proof See [15, Prop. 1.3.3 b)].
For the next proposition, let us write

$$
\begin{equation*}
\nu^{\geq 1} M:=\underline{\operatorname{Hom}}(\mathbf{Z}(1), M)(1) \tag{1.1}
\end{equation*}
$$

for $M \in \mathbf{D M}^{\text {eff }}$, where Hom is the internal Hom [25, Prop. 3.2.8].
1.2 Proposition For $M$ as above, we have a functorial exact triangle

$$
v^{\geq 1} M \rightarrow M \rightarrow i^{\mathrm{o}} \nu_{\leq 0} M \xrightarrow{+1} .
$$

Moreover, $M \in \operatorname{Im} i^{0}$ if and only if $\underline{\operatorname{Hom}(\mathbf{Z}(1), M)=0 .}$
Proof See [15, Prop. 3.6.2 and Lemma 3.5.4].
1.3 Proposition For any $\mathcal{F} \in \mathbf{H I}$, the counit map

$$
i^{\mathrm{o}} R_{\mathrm{nr}}^{0} \mathcal{F} \rightarrow \mathcal{F}
$$

is a monomorphism.
Proof See [15, Prop. 1.6.3].
1.4 Proposition Let $\mathcal{F} \in \mathbf{H I}$. Then $\mathcal{F} \in \mathbf{H I}^{0}$ if and only if $\mathcal{F}_{-1}=0$, where $\mathcal{F}_{-1}$ is the contraction of $\mathcal{F}$ ([24] or [18, Lect. 23]).

Proof This is [15, Prop. 1.5.2].
1.5 Proposition Let $C \in \mathbf{D M}^{\mathrm{eff}}$, and let $D=\underline{\operatorname{Hom}(\mathbf{Z}(1)[1], C) . \text { Then }}$

$$
\mathcal{H}^{i}(D)=\mathcal{H}^{i}(C)_{-1}
$$

for any $i \in \mathbf{Z}$.
Proof This is [15, (4.1)].

## 2 Computational tools

For $q \geq 0$, the $R_{\mathrm{nr}}^{q}$ 's define a cohomological $\delta$-functor from $\mathbf{H I}$ to $\mathbf{H I}{ }^{\mathbf{0}}$. Since $\mathbf{H I}$ is a Grothendieck category (it has a set of generators and exact filtering direct limits), it has enough injectives, so it makes sense to wonder if $R_{\mathrm{nr}}^{q}$ is the $q$-th derived functor of $R_{\mathrm{nr}}^{0}$. However, if $\mathcal{I} \in \mathbf{H I}$ is injective, while $R_{\mathrm{nr}}^{0} \mathcal{I}$ is clearly injective in $\mathbf{H I}^{\mathrm{o}}$, it is not clear whether $R_{\mathrm{nr}}^{q} \mathcal{I}=0$ for $q>0$ : the problem is similar to the one raised in [25, Rk. 1 after Prop. 3.1.8]. (In particular, the title of this paper should be taken with a pinch of salt.) Thus one cannot a priori compute the higher $R_{\mathrm{nr}}^{q}$ 's via injective resolutions; we give here another approach.
2.1 Lemma Let $\mathcal{F} \in \mathbf{H I}$, and let $X$ be a smooth variety. Then the hypercohomology spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(X, R_{\mathrm{nr}}^{q} \mathcal{F}\right) \Rightarrow H^{p+q}\left(X, R_{\mathrm{nr}} \mathcal{F}\right)
$$

degenerates, yielding isomorphisms

$$
H^{n}\left(X, R_{\mathrm{nr}} \mathcal{F}\right) \simeq H^{0}\left(X, R_{\mathrm{nr}}^{n} \mathcal{F}\right)
$$

Proof Indeed, $E_{2}^{p, q}=0$ for $p>0$ by Lemma 1.1.
2.2 Proposition Let $C \in \mathbf{D M}^{\text {eff }}$, and let $X$ be a smooth variety. Then we have a long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{n}\left(X, R_{\mathrm{nr}} C\right) \rightarrow H^{n}(X, C) \\
& \rightarrow \mathbf{D M}^{\text {eff }}\left(v^{\geq 1} M(X), C[n]\right) \rightarrow H^{n+1}\left(X, R_{\mathrm{nr}} C\right) \rightarrow \ldots
\end{aligned}
$$

In particular, if $C=\mathcal{F}[0]$ for $\mathcal{F} \in \mathbf{H I}$, we get a long exact sequence

$$
\begin{aligned}
0 & \rightarrow R_{\mathrm{nr}}^{0} \mathcal{F}(X) \rightarrow \mathcal{F}(X) \rightarrow \mathbf{D M}^{\mathrm{eff}}\left(v^{\geq 1} M(X), \mathcal{F}[0]\right) \rightarrow \ldots \\
& \rightarrow R_{\mathrm{nr}}^{n} \mathcal{F}(X) \rightarrow H^{n}(X, \mathcal{F}) \rightarrow \mathbf{D M}^{\mathrm{eff}}\left(v^{\geq 1} M(X), \mathcal{F}[n]\right) \rightarrow \ldots
\end{aligned}
$$

Proof By iterated adjunction, we have

$$
\begin{aligned}
& H^{n}\left(X, R_{\mathrm{nr}} C\right) \simeq \mathbf{D M}^{\mathrm{eff}}\left(M(X), i^{\mathrm{o}} R_{\mathrm{nr}} C[n]\right) \\
& \quad \simeq \mathbf{D M}^{\mathrm{o}}\left(v_{\leq 0} M(X), R_{\mathrm{nr}} C[n]\right) \simeq \mathbf{D M}^{\mathrm{eff}}\left(i^{\mathrm{o}} v_{\leq 0} M(X), C[n]\right)
\end{aligned}
$$

The first exact sequence then follows from Proposition 1.2. The second follows from the first, Lemma 2.1 and Proposition 1.3 (b).
2.3 Proposition Let $X$ be smooth and proper, and let $n \geq 0$. Then

$$
\underline{\operatorname{Hom}}(\mathbf{Z}(n)[2 n], M(X)) \in\left(\mathbf{D} \mathbf{M}^{\mathrm{eff}}\right)^{\leq 0} .
$$

Moreover,

$$
\mathcal{H}^{0}(\underline{\operatorname{Hom}}(\mathbf{Z}(n)[2 n], M(X)))=\underline{C H}_{n}(X)
$$

with

$$
\underline{C H}_{n}(X)(U)=C H_{n}\left(X_{F(U)}\right)
$$

for any smooth connected variety $U$. Similarly, we have

$$
\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(n)[2 n]) \in\left(\mathbf{D} \mathbf{M}^{\mathrm{eff}}\right)^{\leq 0}
$$

and

$$
\mathcal{H}^{0}(\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(n)[2 n]))=\underline{C H}^{n}(X)
$$

with

$$
\underline{C H}^{n}(X)(U)=C H^{n}\left(X_{F(U)}\right) .
$$

Proof The first statement is [11, Th. 2.2]. The second is proven similarly.
2.4 Lemma Let $\mathcal{F} \in \mathbf{H I}^{\mathrm{o}}$. Then $R_{\mathrm{nr}}^{q} i^{\circ} \mathcal{F}=0$ for $q>0$.

Proof This is obvious from the adjunction isomorphism (due to the full faithfulness of $\left.i^{\mathrm{o}}\right) \mathcal{F}[0] \xrightarrow{\sim} R_{\mathrm{nr}} i^{\circ} \mathcal{F}[0]$.

## 3 Varieties of dimension $\leq 2$

As in [25, §3.4], let $d_{\leq 0} \mathbf{D M}^{\text {eff }}$ be the localising subcategory of $\mathbf{D} \mathbf{M}^{\text {eff }}$ generated by motives of varieties of dimension 0 : since $F$ is algebraically closed, this category is equivalent to the derived category $D(\mathbf{A b})$ of abelian groups [25, Prop. 3.4.1]. In [1, Cor. 2.3.3], Ayoub and Barbieri-Viale show that the inclusion functor

$$
j: d_{\leq 0} \mathbf{D M}^{\mathrm{eff}} \hookrightarrow \mathbf{D M}^{\mathrm{eff}}
$$

has a left adjoint $L \pi_{0}$.
3.1 Lemma (a) For any smooth connected variety $X$, the structural map $X \rightarrow$ Spec $F$ induces an isomorphism $L \pi_{0} M(X) \xrightarrow{\sim} L \pi_{0} \mathbf{Z}=\mathbf{Z}$.
(b) We have $L \pi_{0} \mathbb{G}_{m}=0$.
(c) If C is a smooth projective irreducible curve with Jacobian J (viewed as an object of $\mathbf{H I}$ ), then $L \pi_{0} J=0$.
(d) If $A$ is an abelian variety, viewed as an object of HI (cf. [23, Lemma 3.2] or [2, Lemma 1.4.4]), then there exists an integer $t>0$ such that $t L \pi_{0} A=0$. Moreover, $L_{0} \pi_{0}(A):=H_{0}\left(L \pi_{0}(A)\right)=0$.

Proof (a) By adjunction and Yoneda's lemma, we have to show that for any object $C \in D(\mathbf{A b})$, the map

$$
H_{\mathrm{Nis}}^{*}(F, C) \rightarrow H_{\mathrm{Nis}}^{*}(X, C)
$$

is an isomorphism. This is well-known: by a hypercohomology spectral sequence, reduce to $C$ being a single abelian group; then $C$ is flasque (see [21, Lemma 1.40]).
(b) follows from (a), applied to $X=\mathbf{P}^{1}$ (note that $M\left(\mathbf{P}^{1}\right) \simeq \mathbf{Z} \oplus \mathbb{G}_{m}[1]$ ).
(c) Let $M^{0}(C)$ be the fibre of the map $M(C) \rightarrow \mathbf{Z}$. By (a), $L \pi M^{0}(C)=0$. By [25, Th. 3.4.2], we have an exact triangle

$$
\begin{equation*}
\mathbb{G}_{m}[1] \rightarrow M^{0}(C) \rightarrow J[0] \xrightarrow{+1} \tag{3.1}
\end{equation*}
$$

so the claim follows from (a) and (b).
(d) As is well-known, there exists a curve $C$ with Jacobian $J$ and an epimorphism $J \rightarrow A$, which is split up to some integer $t$ by complete reducibility. The first claim then follows from (c).

Let NST be the category of Nisnevich sheaves with transfers [25]. To see that $L_{0} \pi_{0}(A)=0$, it is equivalent by adjunction to see that $\operatorname{Hom}_{\mathbf{N S T}}(A, \mathcal{F})=0$ for any constant $\mathcal{F} \in$ NST. We may identify $\mathcal{F}$ with its value on any connected $X \in \mathbf{S m}$. Let $f: A \rightarrow \mathcal{F}$ be a morphism in NST. Evaluating it on $1_{A} \in A(A)$, we get an element $f\left(1_{A}\right) \in \mathcal{F}(A)=\mathcal{F}$. If $X \in \mathbf{S m}$ is connected and $a \in A(X)=\operatorname{Hom}_{F}(X, A)$, then $f(a)=a^{*} f\left(1_{A}\right)=f\left(1_{A}\right)$. So $f$ is constant, and since it is additive it must send 0 to 0 . This proves that $f=0$, and thus $\operatorname{Hom}_{\mathbf{N S T}}(A, \mathcal{F})=0$.
3.2 Proposition Let $X / F$ be a smooth projective variety of dimension $\leq 2$. Then there exists an integer $t=t(X)>0$ such that $t \mathrm{NS}_{1}(X, i)=0$ for $i>0$. We have $t=1$ for $\operatorname{dim} X \leq 1$, and we may take for the integer associated to $\operatorname{Pic}^{0}(X)$ in Lemma 3.1 (d) for $\operatorname{dim} X=2$.

Proof Recall that $\mathrm{NS}_{1}(X, i):=H_{i}\left(L \pi_{0} \underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X))\right)$ [1, Def. 3.2.5]. For simplicity, write $C_{X}=\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X))$. We go case by case, using Poincaré duality as in [11, Lemma B.1]:

If $\operatorname{dim} X=0$, then $X=\operatorname{Spec} F$ and hence $M(X) \simeq \mathbf{Z}$ is a birational motive; therefore $C_{X}=0$ (Proposition 1.2) and $L \pi_{0} C_{X}=0$.

If $\operatorname{dim} X=1$, then Poincaré duality produces an isomorphism

$$
C_{X} \simeq \underline{\operatorname{Hom}}(M(X), \mathbf{Z}) \simeq \mathbf{Z}[0] .
$$

Hence $L \pi_{0} C_{X}=\mathbf{Z}[0]$.
Now suppose that $X$ is a smooth projective surface. By Poincaré duality, we get an isomorphism

$$
\begin{equation*}
C_{X} \simeq \underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[2]) . \tag{3.2}
\end{equation*}
$$

By evaluating the latter complex against a varying smooth variety, one computes its homology sheaves as $\operatorname{Pic}_{X / F}$ and $\mathbb{G}_{m}$ in degrees 0 and 1 respectively and zero elsewhere. Hence we have an exact triangle ${ }^{1}$

$$
\begin{equation*}
\mathbb{G}_{m}[1] \rightarrow C_{X} \rightarrow \operatorname{Pic}_{X / F}[0] \xrightarrow{+1} . \tag{3.3}
\end{equation*}
$$

We have $L \pi_{0} \mathbb{G}_{m}[1]=0$ by Lemma 3.1 (b). On the other hand, the representability of $\operatorname{Pic}_{X / F}$ yields an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Pic}_{X / F}^{0} \rightarrow \operatorname{Pic}_{X / F} \rightarrow \mathrm{NS}_{X / F} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

where $\operatorname{Pic}_{X / F}^{0}$ is the Picard variety of $X$ and $\mathrm{NS}_{X / F}$ is the (constant) sheaf of connected components of the group scheme $\operatorname{Pic}_{X / F}$. Hence an exact triangle

$$
L \pi_{0} \operatorname{Pic}_{X / F}^{0} \rightarrow L \pi_{0} \operatorname{Pic}_{X / F} \rightarrow L \pi_{0} \mathrm{NS}_{X / F} \xrightarrow{+1}
$$

[^1]where $L \pi_{0} \mathrm{NS}_{X / F}=\mathrm{NS}(X)$. By Lemma 3.1 (d), $L \pi_{0} \operatorname{Pic}_{X / F}^{0}$ is torsion, which concludes the proof. (The vanishing of $L_{0} \pi_{0} \mathrm{Pic}_{X / F}^{0}$ gives back the isomorphism $L_{0} \pi_{0} C_{X} \xrightarrow{\sim} \mathrm{NS}(X)$ of [1], see (5.3) below.)

## 4 Birational motives and indecomposable (2, 1)-cycles

In this section, we only assume $F$ perfect; we give proofs of two results promised in [15, Rks 3.6.4 and 3.4.2]. These results are not used in the rest of the paper.

For the first one, let $X$ be a smooth projective variety, and let $M=\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(2)$ [4]). Note that $M \simeq M(X)$ if $\operatorname{dim} X=2$ by Poincaré duality (cf. proof of Proposition 3.2). The functor $v_{\leq 0}$ is right $t$-exact as the left adjoint of the $t$-exact functor $i^{0}[15$, Th. 3.4.1], so $v_{\leq 0} M \in\left(\mathbf{D M}^{0}\right)^{\leq 0}$ since $M \in\left(\mathbf{D M}^{\text {eff }}\right)^{\leq 0}$ by Proposition 2.3. We want to compute the last two non-zero cohomology sheaves of $v_{\leq 0} M$. Here is the result:
4.1 Theorem With the above notation, we have

$$
\mathcal{H}^{i}\left(v_{\leq 0} M\right)= \begin{cases}\underline{C H^{2}}(X) & \text { for } i=0 \\ \underline{H}_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right) & \text { for } i=-1\end{cases}
$$

where the sections of $\underline{H}_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right)$ over a smooth connected $F$-variety $U$ with function field $K$ are given by the formula

$$
\underline{H}_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right)(U)=\operatorname{Coker}\left(\bigoplus_{[L: K]<\infty} \operatorname{Pic}\left(X_{L}\right) \otimes L^{*} \rightarrow H^{1}\left(X_{K}, \mathcal{K}_{2}\right)\right)
$$

in which the map is given by products and transfers.
Proof We use the exact triangle of Proposition 1.2. From the cancellation theorem ([26], [11, Prop. A.1]), we get an isomorphism

$$
v^{\geq 1} M \simeq \underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[4])(1) \simeq C_{X} \otimes \mathbb{G}_{m}[1]
$$

where $C_{X}=\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[2])$.
By Proposition 2.3, $C_{X} \in\left(\mathbf{D M}^{\text {eff }}\right) \leq 0$. On the other hand, $\otimes$ is right $t$-exact because it is induced by a right $t$-exact $\otimes$-functor on $D$ (NST) via the right $t$-exact functor $L C: D(\mathbf{N S T}) \rightarrow \mathbf{D M}^{\text {eff }}$. Hence $\nu^{\geq 1} M \in\left(\mathbf{D M}^{\mathrm{eff}}\right)^{\leq-1}$.

Using Proposition 2.3 again, this shows the assertion in the case $i=0$ (compare [11, Th. 2.2 and its proof]). For the case $i=-1$, the long exact sequence of cohomology sheaves yields an exact sequence:

$$
\cdots \rightarrow \mathcal{H}^{0}\left(C_{X} \otimes \mathbb{G}_{m}\right) \rightarrow \mathcal{H}^{-1}(M) \rightarrow \mathcal{H}^{-1}\left(i^{0} \nu_{\leq 0} M\right) \rightarrow 0
$$

Let $\mathcal{F}=\mathcal{H}^{0}\left(C_{X}\right)=\underline{C H^{1}}(X)$; then $\mathcal{H}^{0}\left(C_{X} \otimes \mathbb{G}_{m}\right)=\mathcal{F} \otimes_{\mathbf{H I}} \mathbb{G}_{m}$ by right $t$ exactness of $\otimes$; here $\otimes_{\mathbf{H I}}$ is the tensor structure induced by $\otimes$ on $\mathbf{H I}$. For any function
field $K / F$, the map induced by transfers

$$
\bigoplus_{L: K]<\infty} \mathcal{F}(L) \otimes \mathbb{G}_{m}(L) \rightarrow\left(\mathcal{F} \otimes_{\mathbf{H I}} \mathbb{G}_{m}\right)(K)
$$

is surjective [16, 2.14], which concludes the proof.
The second result which was promised in [15, Rk. 4.3.2] is:
4.2 Proposition Let $E$ be an elliptic curve over $F$. Then the sheaf

$$
\operatorname{Tor}_{1}^{\mathrm{DM}}(E, E):=\mathcal{H}^{-1}(E[0] \otimes E[0])
$$

is not birational. Here $E$ is viewed as an object of $\mathbf{H I}$ [2, Lemma 1.4.4].
(This contrasts with the fact that the tensor product of two birational sheaves is birational, [15, Th. 4.3.1].)

Proof Up to extending scalars, we may and do assume that $\operatorname{End}(E)=\operatorname{End}\left(E_{\bar{F}}\right)$. Consider the surface $X=E \times E$. The choice of the rational point $0 \in E$ yields a Chow-Künneth decomposition of the Chow motive of $E$, hence by [25, Prop. 2.1.4] an isomorphism

$$
M(E) \simeq \mathbf{Z}[0] \oplus E[0] \oplus \mathbf{Z}(1)[2]
$$

(compare also [25, Th. 3.4.2]). Therefore

$$
M(X) \simeq \mathbf{Z}[0] \oplus 2 E[0] \oplus 2 \mathbf{Z}(1)[2] \oplus E[0] \otimes E[0] \oplus 2 E(1)[2] \oplus \mathbf{Z}(2)[4]
$$

This allows us to compute $\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], E[0] \otimes E[0])$ as a direct summand of


$$
\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], \mathbf{Z}[0])=\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], E[0])=0 .
$$

The first vanishing is [11, Lemma A.2], while the second one follows from the Poincaré duality isomorphism $\underline{\operatorname{Hom}(\mathbf{Z}}(1)[2], M(E)) \simeq \underline{\operatorname{Hom}}(M(E), \mathbf{Z})=\mathbf{Z}[12$, Lemma 2.1 a)]. Hence, using the cancellation theorem:

$$
C_{X} \simeq 2 \mathbf{Z}[0] \oplus \underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], E[0] \otimes E[0]) \oplus 2 E[0] \oplus \mathbf{Z}(1)[2]
$$

and

$$
\operatorname{Pic}_{X / F}=\mathcal{H}^{0}\left(C_{X}\right) \simeq 2 \mathbf{Z} \oplus \mathcal{H}^{0}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], E[0] \otimes E[0])) \oplus 2 E .
$$

On the other hand, using Weil's formula for the Picard group of a product, we have a canonical decomposition
$\operatorname{Pic}_{E \times E / F} \simeq \operatorname{Pic}_{E \times E / F}^{0} \oplus \mathrm{NS}(E) \oplus \mathrm{NS}(E) \oplus \operatorname{Hom}(E, E)=2 E \oplus 2 \mathbf{Z} \oplus \operatorname{End}(E)$.

One checks that the idempotents involved in the two decompositions of $\operatorname{Pic}_{X / F}$ match to yield an isomorphism

$$
\mathcal{H}^{0}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], E[0] \otimes E[0])) \simeq \operatorname{End}(E)
$$

where $\operatorname{End}(E)$ is viewed as a constant sheaf. By the $t$-exactness of Voevodsky's contraction functor $(-)_{-1}=\underline{\operatorname{Hom}}\left(\mathbb{G}_{m},-\right)$ [15, Prop. 4.1.1], this yields an isomorphism $\operatorname{End}(E) \xrightarrow{\sim} \operatorname{Tor}_{1}^{\mathbf{D M}}(E, E)_{-1}$, which proves that $\operatorname{Tor}_{1}^{\mathbf{D M}}(E, E)$ is not birational (see Proposition 1.4).

## 5 The case of $\mathbb{G}_{m}$ : proof of Theorems 1, 2 and 5 (i)

### 5.1 Proof of Theorem 1

We apply Proposition 2.2 to $\mathcal{F}=\mathbb{G}_{m}$. The Nisnevich cohomology of $\mathbb{G}_{m}$ is wellknown: we have

$$
H^{n}\left(X, \mathbb{G}_{m}\right)= \begin{cases}F^{*} & \text { if } n=0 \\ \operatorname{Pic}(X) & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Noting that $\mathbb{G}_{m}[0]=\mathbf{Z}(1)[1]$ in $\mathbf{D} \mathbf{M}^{\text {eff }}$, we get

$$
\begin{aligned}
& \mathbf{D M}^{\mathrm{eff}}\left(\nu^{\geq 1} M(X), \mathbb{G}_{m}[n]\right)= \\
& \mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1), M(X))(1), \mathbf{Z}(1)[n+1]) \\
& \quad=\mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}[n-1])
\end{aligned}
$$

by using the cancellation theorem. Thus

$$
\begin{align*}
& \mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}[n-1]) \\
& \quad \simeq d_{\leq 0} \mathbf{D M}^{\mathrm{eff}}\left(L \pi_{0} \underline{\operatorname{Hom}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}[n-1])}\right. \\
& \quad=D(\mathbf{A b})\left(L \pi_{0} \underline{\operatorname{Hom}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}[n-1])=: F_{n}(X) .}\right. \tag{5.1}
\end{align*}
$$

The homology group $H_{s}\left(L \pi_{0} \underline{\operatorname{Hom}(\mathbf{Z}(1)[2], M(X))) \text { is denoted by } \mathrm{NS}_{1}(X, s) \text { in }, ~(X)}\right.$ [1,3.25]. The universal coefficients theorem then gives an exact sequence

$$
\begin{align*}
0 \rightarrow \operatorname{Ext}_{\mathbf{A b}}\left(\mathrm{NS}_{1}(X, n-2), \mathbf{Z}\right) \rightarrow & F_{n}(X) \\
& \rightarrow \mathbf{A b}\left(\mathrm{NS}_{1}(X, n-1), \mathbf{Z}\right) \rightarrow 0 . \tag{5.2}
\end{align*}
$$

By Proposition 2.3, $\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)) \in\left(\mathbf{D M}^{\mathrm{eff}}\right) \leq 0$. Since the inclusion functor $j$ is $t$-exact, $L \pi_{0}$ is right $t$-exact by a general result on triangulated categories [3, Prop. 1.3.17], hence $\mathrm{NS}_{1}(X, n)=0$ for $n<0$. For $n=0$, Ayoub and Barbieri-Viale find

$$
\begin{equation*}
\mathrm{NS}_{1}(X, 0)=A_{1}^{\mathrm{alg}}(X) \tag{5.3}
\end{equation*}
$$

in $[1, \mathrm{Th} .3 .1 .4]^{2}$.
Gathering all this, we get (i) (which also follows from (1)), an exact sequence

$$
\begin{equation*}
0 \rightarrow R_{\mathrm{nr}}^{1} \mathbb{G}_{m}(X) \rightarrow \operatorname{Pic}(X) \xrightarrow{\delta} \operatorname{Hom}\left(A_{1}^{\mathrm{alg}}(X), \mathbf{Z}\right) \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m}(X) \rightarrow 0 \tag{5.4}
\end{equation*}
$$

and isomorphisms

$$
\begin{equation*}
F_{n}(X) \xrightarrow{\sim} R_{\mathrm{nr}}^{n+1} \mathbb{G}_{m}(X) \tag{5.5}
\end{equation*}
$$

for $n \geq 2$, which yield (iv) thanks to (5.4).
In Lemma 5.1 below, we shall show that $\delta$ is induced by the intersection pairing. Granting this for the moment, (ii) is immediate and we get a cross of exact sequences

in which the triangle commutes, and where we used that $N_{1}(X)$ is a free finitely generated abelian group. The exact sequence of (iii) then follows from a diagram chase.
5.1 Lemma The map $\delta$ of (5.4) is induced by the intersection pairing.

Proof This map comes from the composition

$$
\begin{align*}
& \mathbf{D M}^{\mathrm{eff}}(M(X), \mathbf{Z}(1)[2]) \\
& \quad \rightarrow \mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X))(1)[2], \mathbf{Z}(1)[2]) \\
& \quad=\mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}) \\
& \quad \rightarrow \operatorname{Hom}_{\mathbf{Z}}(\operatorname{Hom}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}) \tag{5.6}
\end{align*}
$$

in which the first map is induced by the canonical morphism $v^{\geq 1} M(X) \rightarrow M(X)$, the equality follows from the cancellation theorem [26] and the third is by taking global sections at $\operatorname{Spec} k$.

[^2]Consider the natural pairing
$\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[2]) \otimes \underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X))$
$\rightarrow \underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], \mathbf{Z}(1)[2])=\mathbf{Z}[0]$.

By Proposition 2.3, this pairing factors through a pairing

$$
\underline{C H}^{1}(X)[0] \otimes \underline{C H}_{1}(X)[0] \rightarrow \mathbf{Z}[0] .
$$

Taking global sections, we clearly get the intersection pairing.
From the above, we get a commutative diagram


Applying the functor $\mathbf{D} \mathbf{M}^{\mathrm{eff}}(\mathbf{Z},-)$ to this diagram, we get a commutative diagram of abelian groups


In this diagram, one checks easily that $a$ corresponds to (5.6) via the cancellation theorem. On the other hand, $b$ is an isomorphism. Now the evaluation functor at Spec $F, \mathcal{F} \mapsto \mathcal{F}(F)$, yields a commutative triangle

where $\cap$ is the intersection pairing (see above). But we saw that $\mathbf{D M}{ }^{\text {eff }}\left(\underline{C H}_{1}(X)[0]\right.$, $\mathbf{Z}[0]) \simeq \operatorname{Hom}\left(A_{1}^{\mathrm{alg}}(X), \mathbf{Z}\right)\left((5.1),(5.2)\right.$ and (5.3)); via this isomorphism, $e v_{F}$ is induced by the surjection $C H^{1}(X) \rightarrow A_{\text {alg }}^{1}(X)$, hence is injective. This concludes the proof.

### 5.2 Proof of Theorem 2

We use the following lemma:
5.2 Lemma In $\mathbf{D M}^{\text {eff }}$, the map $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}^{\text {ét }}$ is an isomorphism on $H^{0}$; moreover, $R^{1} \alpha_{*} \alpha^{*} \mathbb{G}_{m}=0$ and $R^{2} \alpha_{*} \alpha^{*} \mathbb{G}_{m}$ is the Nisnevich sheaf Br associated to the presheaf $U \mapsto \operatorname{Br}(U)^{3}$. Here, $\alpha: \mathbf{S m}_{\text {ét }} \rightarrow \mathbf{S m}_{\text {Nis }}$ is the change of topology morphism.

Proof The first statement is obvious, the second one follows from the local vanishing of Pic and the third one is tautological.

To compute $R_{\mathrm{nr}} \mathbb{G}_{m}^{\text {ét }}$, we may use the "hypercohomology" spectral sequence

$$
E_{2}^{p, q}=R_{\mathrm{nr}}^{p} R^{q} \alpha_{*} \alpha^{*} \mathbb{G}_{m} \Rightarrow R_{\mathrm{nr}}^{p+q} \mathbb{G}_{m}^{\mathrm{ét}}
$$

From Lemma 5.2, we find an isomorphism

$$
R_{\mathrm{nr}}^{1} \mathbb{G}_{m} \xrightarrow{\sim} R_{\mathrm{nr}}^{1} \mathbb{G}_{m}^{\mathrm{ét}}
$$

and a five term exact sequence

$$
0 \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m} \rightarrow R_{\mathrm{nr}}^{2} \mathbb{G}_{m}^{\mathrm{ét}} \rightarrow R_{\mathrm{nr}}^{0} \mathrm{Br} \rightarrow R_{\mathrm{nr}}^{3} \mathbb{G}_{m} \rightarrow R_{\mathrm{nr}}^{3} \mathbb{G}_{m}^{\mathrm{ét}}
$$

which yields (a more precise form of) Theorem 2 in view of the obvious isomorphism $R_{\mathrm{nr}}^{0} \mathrm{Br}=\mathrm{Br}_{\mathrm{nr}}$, where $\mathrm{Br}_{\mathrm{nr}}$ is the unramified Brauer group.

### 5.3 Proof of Theorem 5 (i)

Since $\operatorname{dim} X \leq 2, \operatorname{Griff}_{1}(X)$ is torsion hence $\operatorname{Hom}\left(\operatorname{Griff}_{1}(X), \mathbf{Z}\right)=0$, which gives the first statement. Then, Theorem 1 (iv) and Proposition 3.2 yield isomorphisms

$$
\operatorname{Ext} \mathbf{Z}\left(\mathrm{NS}_{1}(X, q-3), \mathbf{Z}\right) \xrightarrow{\sim} R_{\mathrm{nr}}^{q} \mathbb{G}_{m}(X), \quad q \geq 3 .
$$

For $q>3$, the left hand group is killed by the integer $t$ of Proposition 3.2. Suppose $q=3$; then $\mathrm{NS}_{1}(X, q-3)=A_{1}^{\text {alg }}(X)$, which proves Theorem 5 (i) except for the isomorphism involving $\mathrm{NS}(X)_{\text {tors }}$. For this we distinguish 3 cases:
(1) If $\operatorname{dim} X=0, A_{1}^{\text {alg }}(X)=\operatorname{NS}(X)=0$ and the statement is true.
(2) If $\operatorname{dim} X=1, A_{1}^{\text {alg }}(X) \simeq \mathbf{Z} \simeq \operatorname{NS}(X)$ and the statement is still true.
(3) If $\operatorname{dim} X=2, A_{1}^{\text {alg }}(X)=\operatorname{NS}(X)$. But for any finitely generated abelian group $A$, there is a string of canonical isomorphisms

$$
\operatorname{Ext}_{\mathbf{Z}}(A, \mathbf{Z}) \xrightarrow{\sim} \operatorname{Ext}_{\mathbf{Z}}\left(A_{\text {tors }}, \mathbf{Z}\right) \stackrel{\sim}{\leftarrow} \operatorname{Hom}_{\mathbf{Z}}\left(A_{\text {tors }}, \mathbf{Q} / \mathbf{Z}\right)
$$

This concludes the proof.

[^3]
## 6 The case of $\mathcal{K}_{2}$ : proof of Theorems 3 and 5 (ii)

### 6.1 Preparations

6.1 Lemma (a) The natural map

$$
\begin{equation*}
\mathbf{Z}(2)[2] \rightarrow \mathcal{K}_{2}[0] \tag{6.1}
\end{equation*}
$$

induces an isomorphism

$$
\operatorname{cone}\left(i^{\mathrm{o}} R_{\mathrm{nr}} \mathbf{Z}(2)[2] \rightarrow \mathbf{Z}(2)[2]\right) \xrightarrow{\sim} \operatorname{cone}\left(i^{\mathrm{o}} R_{\mathrm{nr}} \mathcal{K}_{2}[0] \rightarrow \mathcal{K}_{2}[0]\right)
$$

(b) The map (6.1) induces an isomorphism

$$
\mathbf{D M}^{\mathrm{eff}}\left(\nu^{\geq 1} C, \mathbf{Z}(2)[2]\right) \xrightarrow{\sim} \mathbf{D M}^{\mathrm{eff}}\left(v^{\geq 1} C, \mathcal{K}_{2}[0]\right)
$$

for any $C \in \mathbf{D M}^{\text {eff }}$. (See (1.1) for the definition of $\nu^{\geq 1} C$.)
Proof By the cancellation theorem, we have

$$
\underline{\operatorname{Hom}}(\mathbf{Z}(1)[1], \mathbf{Z}(2)[2]) \simeq \mathbf{Z}(1)[1] \simeq \mathbb{G}_{m}[0]
$$

in $\mathbf{D M}{ }^{\text {eff }}$.
Let $\mathcal{H}^{i}(C)$ denote the $i$-th cohomology sheaf of an object $C \in \mathbf{D M}^{\text {eff }}$. By Proposition 1.5 , the $i$-th cohomology sheaf of the left hand side is $\mathcal{H}^{i}(\mathbf{Z}(2)[2])_{-1}$. Thus the latter sheaf is 0 for $i \neq 0$. By Proposition 1.4, $\mathcal{H}^{i}(\mathbf{Z}(2)[2]) \in \mathbf{H I}^{0}$ for $i \neq 0$, hence $\tau_{<0}(\mathbf{Z}(2)[2]) \in \mathbf{D M}^{0}$. By adjunction, we deduce

$$
\operatorname{cone}\left(i^{\mathrm{o}} R_{\mathrm{nr}} \tau_{<0}(\mathbf{Z}(2)[2]) \rightarrow \tau_{<0}(\mathbf{Z}(2)[2])\right)=0
$$

which in turn implies (a).
To pass from (a) to (b), use the fact that, for $C, D \in \mathbf{D M}^{\text {eff }}$, adjunction transforms the exact sequence

$$
\mathbf{D M}^{\mathrm{eff}}\left(i^{\mathrm{o}} \nu_{\leq 0} C, D\right) \rightarrow \mathbf{D} \mathbf{M}^{\mathrm{eff}}(C, D) \rightarrow \mathbf{D M}^{\mathrm{eff}}\left(\nu^{\geq 1} C, D\right)
$$

into the exact sequence

$$
\begin{aligned}
& \mathbf{D M}^{\mathrm{eff}}\left(C, i^{\mathrm{o}} R_{\mathrm{nr}} D\right) \rightarrow \mathbf{D M}^{\mathrm{eff}}(C, D) \\
& \quad \rightarrow \mathbf{D M}^{\mathrm{eff}}\left(C, \text { cone }\left(i^{\mathrm{o}} R_{\mathrm{nr}} D \rightarrow D\right)\right) .
\end{aligned}
$$

Applying the exact sequence of Proposition 2.2 to $C=\mathcal{K}_{2}[0]$ and using Lemma 6.1 (b), we get a long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{n}\left(X, R_{\mathrm{nr}} \mathcal{K}_{2}\right) \rightarrow H^{n}\left(X, \mathcal{K}_{2}\right) \\
& \rightarrow \mathbf{D M}^{\mathrm{eff}}\left(\nu^{\geq 1} M(X), \mathbf{Z}(2)[n+2]\right) \rightarrow H^{n+1}\left(X, R_{\mathrm{nr}} \mathcal{K}_{2}\right) \rightarrow \ldots
\end{aligned}
$$

Using the cancellation theorem, we get an isomorphism

$$
\mathbf{D M}^{\mathrm{eff}}\left(v^{\geq 1} M(X), \mathbf{Z}(2)[n+2]\right) \simeq \mathbf{D M}^{\mathrm{eff}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}(1)[n])
$$

Since $\mathbf{Z}(1)[n]=\mathbb{G}_{m}[n-1]$, using Lemma 2.1 we get an exact sequence

$$
\begin{align*}
0 & \rightarrow\left(R_{\mathrm{nr}}^{1} \mathcal{K}_{2}\right)(X) \rightarrow H^{1}\left(X, \mathcal{K}_{2}\right) \\
& \stackrel{\delta}{\rightarrow} \mathbf{D M} \mathbf{M}^{\mathrm{eff}}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[0]\right) \rightarrow\left(R_{\mathrm{nr}}^{2} \mathcal{K}_{2}\right)(X) \rightarrow C H^{2}(X) \\
& \xrightarrow{\varphi} \mathbf{D} \mathbf{M}^{\mathrm{eff}}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[1]\right) \rightarrow\left(R_{\mathrm{nr}}^{3} \mathcal{K}_{2}\right)(X) \rightarrow 0 \tag{6.2}
\end{align*}
$$

and isomorphisms for $q>3$

$$
\begin{equation*}
\mathbf{D M}^{\mathrm{eff}}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[q-2]\right) \xrightarrow{\sim}\left(R_{\mathrm{nr}}^{q} \mathcal{K}_{2}\right)(X) \tag{6.3}
\end{equation*}
$$

where we also used that $H^{2}\left(X, \mathcal{K}_{2}\right) \simeq C H^{2}(X)$ and $H^{i}\left(X, \mathcal{K}_{2}\right)=0$ for $i>2$.

### 6.2 Proof of Theorem 3

The group $\mathbf{D} \mathbf{M}^{\text {eff }}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[0]\right)$ may be computed as follows:

$$
\begin{align*}
& \mathbf{D M}^{\mathrm{eff}}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[0]\right) \\
& \quad \stackrel{1}{\sim} \mathbf{H I}\left(\mathcal{H}_{0}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X))), \mathbb{G}_{m}\right) \\
& \stackrel{2}{\sim} \mathbf{H I}\left(\underline{C H_{1}}(X), \mathbb{G}_{m}\right) \stackrel{3}{\simeq} \mathbf{H I}^{\mathrm{o}}\left(\underline{C H}_{1}(X), R_{\mathrm{nr}}^{0} \mathbb{G}_{m}\right) \\
& \stackrel{4}{\sim} \mathbf{H I}\left(\underline{C H_{1}}(X), j F^{*}\right) \stackrel{5}{\simeq} \mathbf{A b}\left(L_{0} \pi_{0} \underline{C H_{1}}(X), F^{*}\right) \\
& \stackrel{6}{\simeq} \mathbf{A b}\left(A_{1}^{\text {alg }}(X), F^{*}\right) . \tag{6.4}
\end{align*}
$$

Here, isomorphism 1 follows from the fact that $\operatorname{Hom}(\mathbf{Z}(1)[2], M(X)) \in\left(\mathbf{D M}^{\text {eff }}\right)^{\leq 0}$ (Proposition 2.3), 2 comes from the computation of $\mathcal{H}_{0}$ (ibid.), 3 follows from adjunction, knowing that $\underline{C H_{1}}(X)$ is a birational sheaf (ibid.), 4 follows from Theorem 1 (i), 5 comes from adjunction and 6 follows from (5.3).

Thus the homomorphism $\delta$ corresponds to a pairing

$$
H^{1}\left(X, \mathcal{K}_{2}\right) \times A_{1}^{\mathrm{alg}}(X) \rightarrow F^{*} .
$$

Let $d=\operatorname{dim} X$. An argument analogous to that in the proof of Lemma 5.1 shows that this pairing comes from the "intersection" pairing

$$
\begin{align*}
& H^{3}(X, \mathbf{Z}(2)) \times H^{2 d-2}(X, \mathbf{Z}(d-1)) \xrightarrow{\cap} H^{2 d+1}(X, \mathbf{Z}(d+1)) \\
& \quad \xrightarrow{\pi_{*}} H^{1}(F, \mathbf{Z}(1))=F^{*} \tag{6.5}
\end{align*}
$$

where the last map is induced by the "Gysin" morphism ${ }^{t} \pi: \mathbf{Z}(d)[2 d] \rightarrow M(X)$. Here we used the isomorphisms

$$
H^{1}\left(X, \mathcal{K}_{2}\right) \simeq H^{3}(X, \mathbf{Z}(2)), \quad C H_{1}(X) \simeq H^{2 d-2}(X, \mathbf{Z}(d-1))
$$

In particular, (6.5) factors through algebraic equivalence. This was proven by Coombes [8, Cor. 2.14] in the special case of a surface; we shall give a different proof below, which avoids the use of (5.3).

Consider the product map

$$
c: C H^{1}(X) \otimes F^{*}=H^{1}\left(X, \mathcal{K}_{1}\right) \otimes H^{0}\left(X, \mathcal{K}_{1}\right) \rightarrow H^{1}\left(X, \mathcal{K}_{2}\right) .
$$

By functoriality, we have a commutative diagram of pairings

where the top pairing is the intersection pairing $C H^{1}(X) \times A_{1}^{\text {alg }}(X) \rightarrow \mathbf{Z}$, tensored with $F^{*}$. Since the latter is 0 when restricted to $\operatorname{Griff}_{1}(X)$, we get an induced pairing

$$
H_{\text {ind }}^{1}\left(X, \mathcal{K}_{2}\right) \times \operatorname{Griff}_{1}(X) \rightarrow F^{*}
$$

yielding a commutative diagram


In this diagram, all rows and columns are complexes. The middle row and the two columns are exact; moreover, $\alpha$ is surjective as one sees by tensoring with $F^{*}$ the exact sequence

$$
0 \rightarrow \operatorname{Pic}^{\tau}(X) \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Hom}\left(A_{1}^{\text {num }}(X), \mathbf{Z}\right) \rightarrow D^{1}(X) \rightarrow 0
$$

Then a diagram chase yields an exact sequence

$$
\operatorname{Pic}^{\tau}(X) \otimes F^{*} \rightarrow\left(R_{\mathrm{nr}}^{1} \mathcal{K}_{2}\right)(X) \rightarrow H_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right) \xrightarrow{\bar{\delta}} \operatorname{Hom}\left(\operatorname{Griff}_{1}(X), F^{*}\right)
$$

and the surjectivity of $\alpha$ implies that the map $\operatorname{Hom}\left(A_{1}^{\mathrm{alg}}(X), F^{*}\right) \rightarrow\left(R_{\mathrm{nr}}^{2} \mathcal{K}_{2}\right)(X)$ given by (6.2) and (6.4) factors through $\operatorname{Hom}\left(\operatorname{Griff}_{1}(X), F^{*}\right)$. This concludes the proof.

### 6.3 Direct proof that (6.5) factors through algebraic equivalence

Consider classes $\alpha \in H^{3}(X, \mathbf{Z}(2))$ and $\beta \in C H^{d-1}(X)$ : assuming that $\beta$ is algebraically equivalent to 0 , we must prove that $\pi_{*}(\alpha \cdot \beta)=0$, where $\pi$ is the projection $X \rightarrow \operatorname{Spec} F$.

By hypothesis, there exists a smooth projective curve $C$, two points $c_{0}, c_{1} \in C$ and a cycle class $\gamma \in C H^{d-1}(X \times C)$ such that $\beta=c_{0}^{*} \gamma-c_{1}^{*} \gamma$. Let $\pi_{X}: X \times C \rightarrow X$ and $\pi_{C}: X \times C \rightarrow C$ be the two projections.

The Gysin morphism ${ }^{t} \pi: \mathbf{Z}(d)[2 d] \rightarrow M(X)$ used in the definition of (6.5) extends trivially to give morphisms $M(d)[2 d] \rightarrow M \otimes M(X)$ for any $M \in \mathbf{D} \mathbf{M}^{\text {eff }}$, which are clearly natural in $M$ : this applies in particular to $M=M(C)$, giving a Gysin morphism ${ }^{t} \pi_{C}: M(C)(d)[2 d] \rightarrow M(X \times C)$ which induces a map

$$
\left(\pi_{C}\right)_{*}: H^{2 d+1}(X \times C, \mathbf{Z}(d+1)) \rightarrow H^{1}(C, \mathbf{Z}(1)) .
$$

The naturality of these Gysin morphisms then gives

$$
\begin{aligned}
& \left.\pi_{*}(\alpha \cdot \beta)=\pi_{*}\left(\alpha \cdot\left(c_{0}^{*} \gamma-c_{1}^{*} \gamma\right)\right)\right) \\
& \quad=\pi_{*}\left(c_{0}^{*}\left(\pi_{X}^{*} \alpha \cdot \gamma\right)-c_{1}^{*}\left(\pi_{X}^{*} \alpha \cdot \gamma\right)\right)=\left(c_{0}^{*}-c_{1}^{*}\right)\left(\pi_{C}\right)_{*}\left(\pi_{X}^{*} \alpha \cdot \gamma\right)
\end{aligned}
$$

But $c_{i}^{*}: H^{1}(C, \mathbf{Z}(1)) \rightarrow H^{1}(F, \mathbf{Z}(1))$ is left inverse to $\pi^{\prime *}: H^{1}(F, \mathbf{Z}(1)) \rightarrow$ $H^{1}(C, \mathbf{Z}(1))$ (where $\pi^{\prime}: C \rightarrow \operatorname{Spec} F$ is the structural map), which is an isomorphism since $C$ is proper. Hence $c_{0}^{*}=c_{1}^{*}$ on $H^{1}(C, \mathbf{Z}(1))$, and the proof is complete.

### 6.4 Proof of Theorem 5 (ii)

Note that $\operatorname{Griff}_{1}(X)$ is finite if $\operatorname{dim} X \leq 2$. In view of (6.2) and (6.3), it therefore suffices to prove
6.2 Proposition (a) If $\operatorname{dim} X \leq 2$, we have

$$
t \mathbf{D M}^{\mathrm{eff}}\left(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbb{G}_{m}[i]\right)=0
$$

for $i>1$, and also for $i=1$ if $\operatorname{dim} X<2$.
(b) Suppose $\operatorname{dim} X=2$. Then the map $\varphi$ of (6.2) is the Albanese map from [14, (8.1.1)].
(a) is a dévissage similar to the one for Proposition 3.2 (using (3.3) and (3.4) for $\operatorname{dim} X=2$ ); we leave details to the reader. As for (b), we have a diagram in $\mathbf{D M}{ }^{\text {eff }}$

$$
\begin{array}{cl}
\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(2)[4]) & \underline{\operatorname{Hom}}(\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)), \mathbf{Z}(1)[2]) \\
\Delta \uparrow_{2} & \Delta^{*} \uparrow_{2}  \tag{6.6}\\
M(X) & \xrightarrow{\varepsilon_{X}} \underline{\operatorname{Hom}}(\underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[2]), \mathbf{Z}(1)[2])
\end{array}
$$

defined as follows. The top row is obtained by applying $\underline{\operatorname{Hom}(-, \mathbf{Z}(2)[4]) \text { to the }}$ map $v^{\geq 1} M(X) \rightarrow M(X)$ of Proposition 1.2, and using the cancellation theorem. The bottom row is obtained by adjunction from the evaluation morphism $M(X) \otimes$ Hom $(M(X), \mathbf{Z}(1)) \rightarrow \mathbf{Z}(1)$. The Poincaré duality isomorphism $\Delta$ is induced by adjunction by the map

$$
M(X \times X) \simeq M(X) \otimes M(X) \rightarrow \mathbf{Z}(2)[4]
$$

defined by the class of the diagonal $\Delta_{X} \in C H^{2}(X \times X)=\mathbf{D M}^{\text {eff }}(M(X \times$ $X), \mathbf{Z}(2)$ [4]) (see [2, Prop. 2.5.4]). The isomorphism $\Delta^{*}$ is induced by the isomorphism $\underline{\operatorname{Hom}}(\mathbf{Z}(1)[2], M(X)) \xrightarrow{\sim} \underline{\operatorname{Hom}}(M(X), \mathbf{Z}(1)[2])$ of (3.2), deduced by adjunction from the composition

$$
\begin{aligned}
& \xrightarrow{\operatorname{Hom}(\mathbf{Z}(1)[2], M(X)) \otimes M(X)} \rightarrow \underline{\operatorname{Hom}(\mathbf{Z}(1)[2], M(X) \otimes M(X))} \\
& \xrightarrow{(\Delta x) *} \\
& \operatorname{Hom}(\mathbf{Z}(1)[2], \mathbf{Z}(2)[4])
\end{aligned} \underline{\mathbf{Z}(1)[2]}
$$

where the last isomorphism follows again from the cancellation theorem. ${ }^{4}$ A tedious but trivial bookkeeping yields:
6.3 Lemma The diagram (6.6) commutes.

We are therefore left to identify $\mathbf{D} \mathbf{M}^{\mathrm{eff}}\left(\mathbf{Z}, \varepsilon_{X}\right)$ (where $\varepsilon_{X}$ is as in (6.6)) with the Albanese map. For simplicity, let us write in the sequel $\mathcal{F}$ rather than $\mathcal{F}[0]$ for a sheaf $\mathcal{F} \in \mathbf{H I}$ placed in degree 0 in $\mathbf{D M}{ }^{\text {eff }}$. Let $\mathcal{A}_{X}$ be the Albanese scheme of $X$ in the sense of Serre-Ramachandran, and let $a_{X}: M(X) \rightarrow \mathcal{A}_{X}$ be the map defined by [23, (7)]. On the other hand, write $D$ for the (contravariant) endofunctor $M \mapsto \underline{\operatorname{Hom}}\left(M, \mathbb{G}_{m}[1]\right)$ of $\mathbf{D} \mathbf{M}^{\text {eff }}$, and $\varepsilon: I d_{\mathbf{D M}^{\text {eff }}} \Rightarrow D^{2}$ for the biduality morphism, so that $\varepsilon_{X}=\varepsilon_{M(X)}$. We get a commutative diagram:

$$
\begin{array}{cc}
M(X) & \xrightarrow{\varepsilon_{M(X)}} D^{2} M(X) \\
a_{X} \downarrow & D^{2}\left(a_{X}\right) \downarrow  \tag{6.7}\\
\mathcal{A}_{X} & \xrightarrow{\varepsilon_{\mathcal{A}_{X}}} \quad D^{2} \mathcal{A}_{X}
\end{array}
$$

It is sufficient to show:

[^4]6.4 Proposition After application of $\mathbf{D M}^{\mathrm{eff}}(\mathbf{Z},-)=H_{\mathrm{Nis}}^{0}(k,-)$ to (6.7), we get a commutative diagram
\[

$$
\begin{array}{ccc}
C H_{0}(X) & \longrightarrow & \mathcal{A}_{X}(k) \\
a_{X}(k) \downarrow & & u \downarrow \\
\mathcal{A}_{X}(k) & \longrightarrow & \mathcal{A}_{X}(k) \oplus Q
\end{array}
$$
\]

where $a_{X}(k)$ is the Albanese map, $Q$ is some abelian group and $u, v$ are the canonical injections.

The main lemma is:
6.5 Lemma Let $A$ be an abelian $F$-variety. Then there is a canonical isomorphism

$$
D A \simeq A^{*} \oplus \tau_{\geq 2} D A
$$

where $A^{*}$ is the dual abelian variety of $A$.
Proof Note that (3.3) holds for any smooth projective variety $Y$, if we replace $C_{Y}$ by $D(M(Y))$. We shall take $Y=A$ and $Y=A \times A$. Let $p_{1}, p_{2}, m: A \times A \rightarrow$ $A$ be respectively the first and second projection and the multiplication map. The composition

$$
M(A \times A) \xrightarrow{\left(p_{1}\right)_{*}+\left(p_{2}\right)_{*}-m_{*}} M(A) \xrightarrow{a_{A}} \mathcal{A}_{A}
$$

is 0 . One characterisation of $\operatorname{Pic}_{A / F}^{0} \subset \operatorname{Pic}_{A / F}$ is as the kernel of $\left(p_{1}\right)^{*}+\left(p_{2}\right)^{*}-m^{*}$ (e.g. [19, § before Rk. 9.3]). Therefore, the composition

$$
D A \rightarrow D \mathcal{A}_{A} \xrightarrow{D\left(a_{A}\right)} D(M(A)) \xrightarrow{(3.3)} \operatorname{Pic}_{A / F}
$$

induces a morphism

$$
\begin{equation*}
D A \rightarrow \operatorname{Pic}_{A / F}^{0}=A^{*} . \tag{6.8}
\end{equation*}
$$

Here we used the canonical splitting of the extension

$$
0 \rightarrow A \rightarrow \mathcal{A}_{A} \rightarrow \mathbf{Z} \rightarrow 0
$$

given by the choice of the origin $0 \in A$. In view of the exact triangle

$$
\tau_{\leq 1} D A \rightarrow D A \rightarrow \tau_{\geq 2} D A \xrightarrow{+1},
$$

to prove the lemma we have to show that (6.8) becomes an isomorphism after applying the truncation $\tau_{\leq 1}$ to its left hand side.

For this, we may evaluate on smooth $k$-varieties, or even on their function fields $K$ by "Gersten's principle" $[2, \S 2.4]$. For such $K$, we have to show that the homomorphism

$$
\operatorname{Ext}_{\mathbf{N S T}}^{1+i}\left(A_{K}, \mathbb{G}_{m}\right) \rightarrow H_{\mathrm{Nis}}^{i}\left(K, A^{*}\right)
$$

is an isomorphism for $i \leq 1$. This is clear for $i<-1$. For $i=-1,0,1$, let EST be the category of étale sheaves with transfers of [18, Lect. 6], and ES the category of sheaves of abelian groups on $\mathbf{S m}_{\text {ét }}$, so that we have exact functors

$$
\text { NST } \xrightarrow{\alpha^{*}} \text { EST } \xrightarrow{\omega} \text { ES }
$$

where $\alpha^{*}$ is étale sheafification and $\omega$ is "forgetting transfers". If $\alpha_{*}$ denotes the right adjoint of $\alpha^{*}$, the hyperext spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{\mathbf{N S T}}^{p}\left(A_{K}, R^{q} \alpha_{*} \alpha^{*} \mathbb{G}_{m}\right) \Rightarrow \operatorname{Ext}_{\mathbf{E S T}}^{p+q}\left(\alpha^{*} A_{K}, \alpha^{*} \mathbb{G}_{m}\right)
$$

and the vanishing of $R^{1} \alpha_{*} \alpha^{*} \mathbb{G}_{m}$ (Hilbert 90!) yield isomorphisms

$$
\operatorname{Ext}_{\mathbf{N S T}}^{1+i}\left(A_{K}, \mathbb{G}_{m}\right) \xrightarrow{\sim} \operatorname{Ext}_{\mathbf{E S T}}^{1+i}\left(\alpha^{*} A_{K}, \alpha^{*} \mathbb{G}_{m}\right), \quad i \leq 0
$$

and an injection

$$
\operatorname{Ext}_{\mathbf{N S T}}^{2}\left(A_{K}, \mathbb{G}_{m}\right) \hookrightarrow \operatorname{Ext}_{\mathbf{E S T}}^{2}\left(\alpha^{*} A_{K}, \alpha^{*} \mathbb{G}_{m}\right) .
$$

Finally, by [2, Th. 3.14.2 a)], we have an isomorphism

$$
\operatorname{Ext}_{\mathbf{E S T}}^{i}\left(\mathcal{F}_{K}, \mathcal{G}\right) \xrightarrow{\sim} \operatorname{Ext}_{\mathbf{E S}}^{i}\left(\omega \mathcal{F}_{K}, \omega \mathcal{G}\right)
$$

when $\mathcal{F}, \mathcal{G} \in$ EST are " 1 -motivic", e.g. $\mathcal{F}=\alpha^{*} A, \mathcal{G}=\alpha^{*} \mathbb{G}_{m}$; moreover, these groups vanish for $i \geq 2$. Lemma 6.5 now follows from the obvious vanishing of $H_{\text {Nis }}^{1}\left(K, A^{*}\right)$, the vanishing of $\operatorname{Hom}_{\mathbf{E S}}\left(A_{K}, \mathbb{G}_{m}\right)$ and the isomorphism

$$
\operatorname{Ext}_{\mathbf{E S}}^{1}\left(A_{K}, \mathbb{G}_{m}\right) \xrightarrow{\sim} A^{*}(K)
$$

deduced from the Weil-Barsotti formula.
Proof of Proposition 6.4 Let $A=\mathcal{A}_{X / F}^{0}$ be the Albanese variety of $X$. Lemma 6.5 yields an isomorphism

$$
D^{2} A \simeq A \oplus \tau_{\geq 2} D A^{*} \oplus D\left(\tau_{\geq 2} D A\right)
$$

hence a split exact triangle

$$
\mathcal{A}_{X} \xrightarrow{\varepsilon_{\mathcal{A}_{X}}} D^{2} \mathcal{A}_{X} \rightarrow \tau_{\geq 2} D A^{*} \oplus D\left(\tau_{\geq 2} D A\right) \xrightarrow{+1} .
$$

Let now $M^{0}(X)$ be the reduced motive of $X$, sitting in the (split) exact triangle $M^{0}(X) \rightarrow M(X) \rightarrow \mathbf{Z} \xrightarrow{+1}$, as in the proof of Lemma 3.1 (c). The map $a_{X}$ induces a map $a_{X}^{0}: M^{0}(X) \rightarrow A$, hence a dual map

$$
D\left(a_{X}^{0}\right): A^{*} \oplus \tau_{\geq 2} D A \simeq D A \rightarrow D M^{0}(X) \simeq \operatorname{Pic}_{X / F}
$$

where the left (resp. right) hand isomorphism follows from Lemma 6.5 (resp. from (3.3)). By construction, $D\left(a_{X}^{0}\right)$ restricts to the isomorphism $A^{*} \xrightarrow{\sim} \operatorname{Pic}_{X / F}^{0}$. Dualising the resulting exact triangle $A^{*} \rightarrow D M^{0}(X) \rightarrow \mathrm{NS}_{X} \xrightarrow{+1}$ and reusing Lemma 6.5, we get an exact triangle

$$
\mathrm{NS}_{X}^{*}[1] \rightarrow D^{2} M^{0}(X) \rightarrow A \oplus \tau_{\geq 2} D A^{*} \xrightarrow{+1}
$$

where $\mathrm{NS}_{X}^{*}$ is the Cartier dual of $\mathrm{NS}_{X}$. It follows that

$$
H^{0}\left(k, D^{2} M^{0}(X)\right)=A(k)
$$

and therefore that $H^{0}\left(k, D^{2} M(X)\right)=\mathcal{A}_{X}(k)$, the map induced by $D^{2}\left(a_{X}\right)$ being the canonical injection. We thus get the requested diagram, with $Q=H^{0}\left(k, D\left(\tau_{\geq 2} D A\right)\right)$.

## 7 Proof of Theorem 4

Instead of Lewis' idea to use the complex Abel-Jacobi map, we use the $l$-adic AbelJacobi map in order to cover the case of arbitrary characteristic.

We may find a regular $\mathbf{Z}$-algebra $R$ of finite type, a homomorphism $R \rightarrow F$, and a smooth projective scheme $p: \mathcal{X} \rightarrow \operatorname{Spec} R$, such that $X=\mathcal{X} \otimes_{R} F$. By a direct limit argument, it suffices to show the theorem when $F$ is the algebraic closure of the quotient field of $R$ and, moreover, to show that the composition

$$
H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right) \rightarrow H_{\mathrm{ind}}^{1}\left(X, \mathcal{K}_{2}\right) \xrightarrow{\bar{\delta}} \operatorname{Hom}\left(\operatorname{Griff}_{1}(X), F^{*}\right)
$$

has image killed by $e$.
Let $l$ be a prime number different from char $F$. We may assume that $l$ is invertible in $R$. We have $l$-adic regulator maps

$$
H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right) \xrightarrow{c} H_{\mathrm{et}}^{3}\left(\mathcal{X}, \mathbf{Z}_{l}(2)\right), \quad H^{d-1}\left(\mathcal{X}, \mathcal{K}_{d-1}\right) \xrightarrow{c^{\prime}} H_{\mathrm{et}}^{2 d-2}\left(\mathcal{X}, \mathbf{Z}_{l}(d-1)\right)
$$

and two compatible pairings

$$
\begin{align*}
& H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right) \times H^{d-1}\left(\mathcal{X}, \mathcal{K}_{d-1}\right) \rightarrow H^{d}\left(\mathcal{X}, \mathcal{K}_{d+1}\right) \\
& \quad \xrightarrow{p_{*}} H^{0}\left(R, \mathcal{K}_{1}\right)=R^{*}  \tag{7.1}\\
& H_{\mathrm{et}}^{3}\left(\mathcal{X}, \mathbf{Z}_{l}(2)\right) \times H_{\mathrm{et}}^{2 d-2}\left(\mathcal{X}, \mathbf{Z}_{l}(d-1)\right) \rightarrow H_{\mathrm{et}}^{2 d+1}\left(\mathcal{X}, \mathbf{Z}_{l}(d+1)\right) \\
& \quad \xrightarrow{p_{*}} H_{\mathrm{et}}^{1}\left(R, \mathbf{Z}_{l}(1)\right) . \tag{7.2}
\end{align*}
$$

The Leray spectral sequence for the projection $p$ yields a filtration $F^{r} H_{\text {ett }}^{*}\left(\mathcal{X}, \mathbf{Z}_{l}(\bullet)\right)$ on the $l$-adic cohomology of $\mathcal{X}$.

Let $H^{d-1}\left(\mathcal{X}, \mathcal{K}_{d-1}\right)_{0}=c^{\prime-1}\left(F^{1} H_{\mathrm{ett}}^{2 d-2}\left(\mathcal{X}, \mathbf{Z}_{l}(d-1)\right)\right)$ and $H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right)_{0}=$ $c^{-1}\left(F^{1} H_{\mathrm{et}}^{3}\left(\mathcal{X}, \mathbf{Z}_{l}(2)\right)\right)$.
7.1 Lemma The restriction of (7.1) to $H^{1}\left(\mathcal{X}, \mathcal{K}_{2}\right)_{0} \times H^{d-1}\left(\mathcal{X}, \mathcal{K}_{d-1}\right)_{0}$ has image in $R^{*}\left\{l^{\prime}\right\}$, the subgroup of $R^{*}$ of torsion prime to $l$.

Proof Since $R$ is a finitely generated $\mathbf{Z}$-algebra, its group of units $R^{*}$ is a finitely generated $\mathbf{Z}$-module, hence the map $R^{*} \otimes \mathbf{Z}_{l} \rightarrow H_{\mathrm{et}}^{1}\left(R, \mathbf{Z}_{l}(1)\right)$ from Kummer theory is injective; therefore the induced map $R^{*} \rightarrow H_{\text {ett }}^{1}\left(R, \mathbf{Z}_{l}(1)\right)$ has finite kernel of cardinality prime to $l$. It therefore suffices to show that the restriction of (7.2) to

$$
F^{1} H_{\mathrm{et}}^{3}\left(\mathcal{X}, \mathbf{Z}_{l}(2)\right) \times F^{1} H_{\mathrm{et}}^{2 d-2}\left(\mathcal{X}, \mathbf{Z}_{l}(d-1)\right)
$$

is 0 . By multiplicativity of the Leray spectral sequences, it suffices to show that $p_{*}\left(F^{2} H_{\mathrm{ett}}^{2 d+1}\left(\mathcal{X}, \mathbf{Z}_{l}(d+1)\right)\right)=0$.

Since $\operatorname{dim} X=d$, we have $H_{\mathrm{et}}^{0}\left(R, H_{\mathrm{et}}^{2 d+1}\left(X, \mathbf{Z}_{l}(d+1)\right)=0\right.$ and hence $\left.\left.H_{\mathrm{et}}^{2 d+1}\left(\mathcal{X}, \mathbf{Z}_{l}(d+1)\right)\right)=F^{1} H_{\mathrm{et}}^{2 d+1}\left(\mathcal{X}, \mathbf{Z}_{l}(d+1)\right)\right)$. The edge map

$$
\left.F^{1} H_{\mathrm{et}}^{2 d+1}\left(\mathcal{X}, \mathbf{Z}_{l}(d+1)\right)\right) \rightarrow H_{\mathrm{et}}^{1}\left(R, H_{\mathrm{et}}^{2 d}\left(X, \mathbf{Z}_{l}(d+1)\right)\right)
$$

coincides with the map $p_{*}$ of (7.2) via the isomorphism

$$
H_{\mathrm{et}}^{2 d}\left(X, \mathbf{Z}_{l}(d+1)\right) \xrightarrow{p_{*}} H_{\mathrm{et}}^{0}\left(F, \mathbf{Z}_{l}(1)\right)=\mathbf{Z}_{l}(1) .
$$

This concludes the proof.
Passing to the $\underset{\longrightarrow}{\lim }$ in Lemma 7.1, we find that the pairing

$$
H^{1}\left(X, \mathcal{K}_{2}\right)_{0} \times C H^{d-1}(X)_{0} \rightarrow F^{*}
$$

has image in $F^{*}\left\{l^{\prime}\right\}$.
7.2 Lemma The group $H^{1}\left(X, \mathcal{K}_{2}\right) / H^{1}\left(X, \mathcal{K}_{2}\right)_{0}$ is finite of exponent dividing $e_{l}$.

Proof It suffices to observe that the regulator map

$$
H^{1}\left(X, \mathcal{K}_{2}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbf{Z}_{l}(2)\right)
$$

has finite image [7, Th. 2.2].
Lemmas 7.1 and 7.2 show that the pairing $H^{1}\left(X, \mathcal{K}_{2}\right) \times C H^{d-1}(X) \rightarrow F^{*}$ has image in a group of roots of unity whose $l$-primary component is finite of exponent $e_{l}$ for all primes $l \neq$ char $F$. This completes the proof of Theorem 4.

## 8 Questions and remarks

(1) Does the conclusion of Proposition 3.2 remain true when $\operatorname{dim} X>2$ ?
(2) Can one give an a priori, concrete, description of the extension in Theorem 1 (iii)?
(3) It is known that $\operatorname{Griff}_{1}(X) \otimes \mathbf{Q}\left(\right.$ resp $\operatorname{Griff}_{1}(X) / l$ for some primes $\left.l\right)$ may be nonzero for some threefolds $X[4,10]$; these groups may not even be finite dimensional, e.g. [5,22]. Can one find examples for which $\operatorname{Hom}\left(\operatorname{Griff}_{1}(X), \mathbf{Z}\right) \neq 0$ ?
(4) To put the previous question in a wider context, let $A$ be a torsion-free abelian group. Replacing $\mathbb{G}_{m}$ by $\mathcal{F}=\mathbb{G}_{m} \otimes A$ in Theorem 1 yields the following computation (with same proofs):
(i) $R_{\mathrm{nr}}^{0} \mathcal{F}(X)=F^{*} \otimes A$.
(ii) $R_{\mathrm{nr}}^{1} \mathcal{F}(X) \xrightarrow{\sim} \operatorname{Pic}^{\tau}(X) \otimes A$.
(iii) There is a short exact sequence

$$
\begin{equation*}
0 \rightarrow D^{1}(X) \otimes A \rightarrow R_{\mathrm{nr}}^{2} \mathcal{F}(X) \rightarrow \operatorname{Hom}\left(\operatorname{Griff}_{1}(X), A\right) \rightarrow 0 \tag{8.1}
\end{equation*}
$$

Taking $A=\mathbf{Q}$ we get examples, from the nontriviality of $\operatorname{Griff}_{1}(X) \otimes \mathbf{Q}$, where $R_{\mathrm{nr}}^{2} \mathcal{F}(X)$ is not reduced to $D^{1}(X) \otimes A$. But, choosing $X$ such that $\operatorname{Griff}_{1}(X) \otimes \mathbf{Q}$ is not finite dimensional and varying $A$ among $\mathbf{Q}$-vector spaces, (8.1) also shows that the functor $\mathcal{F} \mapsto R_{\mathrm{nr}}^{2} \mathcal{F}$ does not commute with infinite direct sums. (Therefore $R_{\mathrm{nr}}$ cannot have a right adjoint.) This is all the more striking as $R_{\mathrm{nr}}^{0}$ does commute with infinite direct sums, which is clear from formula (1) in the introduction.

We don't know whether $R_{\mathrm{nr}}^{1}$ commutes with infinite direct sums or not.

## References

1. Ayoub, J., Barbieri-Viale, L.: 1-Motivic sheaves and the Albanese functor. J. Pure Appl. Algebra 213(5), 809-839 (2009)
2. Barbieri-Viale, L., Kahn, B.: On the derived category of 1-motives. Astérisque 381, 1-254 (2016)
3. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 5-171 (1984)
4. Bloch, S., Esnault, H.: The coniveau filtration and non-divisibility for algebraic cycles. Math. Ann. 304, 303-314 (1996)
5. Clemens, H.: Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. Math. IHÉS 58, 19-38 (1983)
6. Colliot-Thélène, J.-L.: Unramified cohomology, birational invariants and the Gersten conjecture. Proc. Sympos. Pure Math. vol. 58, Part 1. American Mathematical Society, Providence (1995)
7. Colliot-Thélène, J.-L., Raskind, W.: $\mathcal{K}_{2}$-cohomology and the second Chow group. Math. Ann. 270, 165-199 (1985)
8. Coombes, K.: The arithmetic of zero cycles on surfaces with geometric genus and irregularity zero. Math. Ann. 291, 429-452 (1991)
9. Gabber, O.: Sur la torsion dans la cohomologie $l$-adique d'une variété. C. R. Acad. Sci. Paris 297, 179-182 (1983)
10. Griffiths, P.A.: On the periods of certain rational integrals. I, II. Ann. Math. 90, 460-495, 496-541 (1969)
11. Huber, A., Kahn, B.: The slice filtration and mixed Tate motives. Compos. Math. 142, 907-936 (2006)
12. Kahn, B.: Motivic cohomology of smooth geometrically cellular varieties. Proc. Symp. Pure Math. 67, 149-174 (1999)
13. Kahn, B.: The Brauer group and indecomposable (2, 1)-cycles. Compos. Math. 152, 1041-1051 (2016)
14. Kahn, B., Sujatha, R.: Birational motives, I: pure birational motives. Ann. K-Theory 1, 379-440 (2016)
15. Kahn, B., Sujatha, R.: Birational motives, II: triangulated birational motives. IMRN (2016). doi:10. 1093/imrn/rnw 184
16. Kahn, B., Yamazaki, T.: Voevodsky's motives and Weil reciprocity. Duke Math. J. 162(14), 2751-2796 (2013). (erratum: 164, 2093-2098, 2015)
17. Lieberman, D.: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. Am. J. Math. 90, 366-374 (1968)
18. Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. Clay Mathematics Monographs, vol. 2. AMS, Providence (2006)
19. Milne, J.: Abelian varieties. In: Cornell, G., Silverman, J. (eds.) Arithmetic Geometry, rev. printing, pp. 103-150. Springer, Berlin (1998)
20. Murre, J.P.: Un résultat en théorie des cycles algébriques de codimension deux. C. R. Acad. Sci. Paris 296, 981-984 (1983)
21. Riou, J.: Théorie homotopique des $S$-schémas, mémoire de DEA, Paris 7 (2002). http://www.math.upsud.fr/~riou/dea/dea.pdf
22. Schoen, C.: Complex varieties for which the Chow group mod $n$ is not finite. J. Algebr. Geom. 11, 41-100 (2002)
23. Spieß, M., Szamuely, T.: On the Albanese map for smooth quasi-projective varieties. Math. Ann. 325, 1-17 (2003)
24. Voevodsky, V.: Cohomological theory of presheaves with transfers. In: Friedlander, E., Suslin, A., Voevodsky, V. (eds.) Cycles, Transfers and Motivic Cohomology Theories, Annals of Mathematics Studies, vol. 143, pp. 187-188. Princeton University Press, Princeton (2000)
25. Voevodsky, V.: Triangulated categories of motives over a field. In: Friedlander, E., Suslin, A., Voevodsky, V. (eds.) Cycles, Transfers and Motivic Cohomology Theories, Annals of Mathematics Studies, vol. 143, pp. 188-238. Princeton University Press, Princeton (2000)
26. Voevodsky, V.: Cancellation theorem, Doc. Math. 2010, Extra volume: Andrei A. Suslin sixtieth birthday, pp. 671-685

[^0]:    $\boxtimes$ Bruno Kahn
    bruno.kahn@imj-prg.fr
    R. Sujatha
    sujatha@math.ubc.ca
    1 IMJ-PRG, Case 247, 4 Place Jussieu, 75252 Paris Cedex 05, France
    2 Department of Mathematics, University of British Columbia, Vancouver V6T1Z2, Canada

[^1]:    ${ }^{1}$ It is split by the choice of a rational point of $X$, but this is useless for the proof.

[^2]:    ${ }^{2}$ The hypothesis $F$ algebraically closed is sufficient for their proof.

[^3]:    ${ }^{3}$ This presheaf is in fact already a Nisnevich sheaf.

[^4]:    ${ }^{4}$ Note that evaluation and adjunction yield a tautological morphism $\underline{\operatorname{Hom}}(A, B) \otimes C \rightarrow \underline{\operatorname{Hom}}(A, B \otimes C)$ for $A, B, C \in \mathbf{D} \mathbf{M}^{\mathrm{eff}}$.

