

A SPECIALISATION THEOREM FOR LANG-NÉRON GROUPS

BRUNO KAHN AND LONG LIU

ABSTRACT. We show that, for a polarised smooth projective variety $B \hookrightarrow \mathbb{P}_k^n$ of dimension ≥ 2 over an infinite field k and an abelian variety A over the function field of B , there exists a dense Zariski open set of smooth geometrically connected hyperplane sections h of B such that A has good reduction at h and the specialisation homomorphism of Lang-Néron groups at h is injective (up to a finite p -group in positive characteristic p). This gives a positive answer to a conjecture of the first author, which is used to deduce a negative definiteness result on his refined height pairing. This also sheds a new light on Néron's specialisation theorem.

CONTENTS

1. Introduction	1
2. Auxiliary results	2
3. Proof of Theorem 1.1	3
References	5

1. INTRODUCTION

Let K/k be a finitely generated regular extension of fields, and let A be an abelian variety over K . Then A has a K/k -trace $T = \text{Tr}_{K/k} A$, and a celebrated theorem of Lang and Néron says that the *Lang-Néron group*

$$\text{LN}(K/k, A) = A(K)/T(k)$$

is finitely generated ([LN59], see also [Con06] and [Kah09]).

Let B be a smooth model of K/k , and let $h \in B$ be a point of codimension 1 whose residue field E is also regular over k . If A has good reduction at h , there is a commutative diagram of specialisation maps [Kah24, § 6B]

$$(1) \quad \begin{array}{ccc} A(K) & \longrightarrow & \text{LN}(A, K/k) \\ \downarrow \varphi & & \downarrow \psi \\ A_h(E) & \longrightarrow & \text{LN}(A_h, E/k) \end{array}$$

where A_h is the special fibre of A .

Date: June 27, 2024.

2020 Mathematics Subject Classification. 11G99, 14K99.

Key words and phrases. Abelian varieties, K/k -trace, Lang-Néron theorem.

Theorem 1.1. *Assume that B is smooth projective of dimension $d \geq 2$. For any projective embedding $B \hookrightarrow \mathbb{P}_k^n$, there exists a dense open subset \mathcal{U} of the dual projective space \mathcal{P} of \mathbb{P}_k^n such that if H lies in $\mathcal{U}(k)$, then*

- (a) *the hyperplane section $h := H \cap B$ is smooth geometrically connected of dimension $d-1$,*
- (b) *A has good reduction at h ,*
- (c) *the maps φ and ψ of Diagram (1) are injective and have the same cokernel, up to finite p -groups in positive characteristic p .*

(If k is infinite, so is $\mathcal{U}(k)$. When k is finite, $\mathcal{U}(k)$ may be empty because in general there are no smooth hyperplane sections in B defined over k ; this issue can presumably be solved by composing the given projective embedding with a suitable Veronese embedding (see [Gab01, Corollary 1.6] and [Poo04, Theorem 3.1]).)

Besides Bertini's theorem, our main tool is a form of the weak Lefschetz theorem due to Deligne [Kat93, A.5], which renders the proof almost trivial.

The first application is to a negative definiteness result for the height pairing introduced in [Kah24]. For a smooth projective variety X of dimension d over K and $i \in [0, d]$, the first author defined a subgroup $\mathrm{CH}^i(X)^{(0)}$ of the i -th Chow group of X and a pairing

$$\mathrm{CH}^i(X)^{(0)} \times \mathrm{CH}^{d+1-i}(X)^{(0)} \rightarrow \mathrm{CH}^1(B) \otimes \mathbb{Q}.$$

For $i = 1$, this pairing induces a quadratic form on the Lang-Néron group of the Picard variety of X . In [Kah24, Theorem 6.6], it is proven that this quadratic form is negative definite if B is a curve, and that one can reduce to this case when $\dim B > 1$ if ψ has finite kernel in (1) for a suitable h [Kah24, Conjecture 6.3]. Thus Theorem 1.1 proves this conjecture¹ (in a stronger form, and without the hypothesis of semi-stable reduction appearing in loc. cit.).

The second application is to Néron's specialisation theorem: if $B = \mathbb{P}_k^n$ and U is an open subset of B over which A extends to an abelian scheme \mathcal{A} , then the set of rational points $t \in U(k)$ such that the specialisation map $A(K) \rightarrow \mathcal{A}_t(k)$ is not injective is thin ([Ser97, 11.1, theorem], see [CT20] for generalisations). The injectivity of φ in Theorem 1.1 gives a version of this specialisation result which does not involve Hilbert's irreducibility theorem, but of course requires $\dim B > 1$; see Remark 3.1 for the case $\dim B = 1$.

2. AUXILIARY RESULTS

We start with the following standard lemmas.

Lemma 2.1. *Let B be a integral noetherian scheme and let A be an abelian variety over the function field K of B . Then there exist a dense open subset U of B and an abelian scheme \mathcal{A} over U such that $A \simeq \mathcal{A}_K$.*

Proof. See [Mil86, Remark 20.9]. □

The following is a consequence of the valuative criterion of properness and Weil's extension theorem ([Art86, Proposition 1.3] or [BLR90, §4.4, Theorem 1]).

¹At least for k infinite, but this is sufficient for the application: see [Kah24, part (d) of the proof of Theorem 6.6].

Lemma 2.2. *Let U be an integral normal noetherian scheme with function field K . Let \mathcal{A} be an abelian scheme over U with generic fibre A . Then the pull-back map*

$$\mathcal{A}(U) \rightarrow A(K)$$

is an isomorphism. □

Lemma 2.3. *Let U be a scheme and let \mathcal{A} be an abelian scheme over U . If n is invertible on U , i.e., n is prime to $\text{char}(k(x))$ for all $x \in U$, then we have an injection*

$$\mathcal{A}(U)/n \hookrightarrow H_{\text{ét}}^1(U, {}_n\mathcal{A}),$$

where ${}_n\mathcal{A}$ is the kernel of the multiplication by n on \mathcal{A} .

Proof. Use the short exact sequence of étale sheaves

$$0 \rightarrow {}_n\mathcal{A} \rightarrow \mathcal{A} \xrightarrow{n} \mathcal{A} \rightarrow 0.$$
□

By the above lemmas, we can use cohomology to study the specialisation of $A(K)$. We shall rely on the following version of the weak Lefschetz theorem.

Theorem 2.4 (Deligne; see [Kat93, Corollary A.5]). *Let k be a separably closed field and let $\ell \neq \text{char}(k)$ be a prime. Let $f: U \rightarrow \mathbb{P}_k^n$ be a separated quasi-finite morphism and let \mathcal{F} be a lisse $\overline{\mathbb{Q}}_\ell$ -sheaf. Assume that U is smooth over k and is of pure dimension d . Then there exists a dense open subset \mathcal{U} of the dual projective space \mathcal{P} of \mathbb{P}_k^n such that if H lies in \mathcal{U} , then the restriction map*

$$H^i(U, \mathcal{F}) \longrightarrow H^i(f^{-1}(H), \mathcal{F}|_{f^{-1}(H)})$$

is an isomorphism for $i < d - 1$ and injective for $i = d - 1$.

Proof. In fact, in loc. cit., this theorem is proven when k is algebraically closed for general perverse sheaves without assuming that U is smooth and is of pure dimension d . In our case $\mathcal{F}[d]$ is a perverse sheaf, see [KW01, p. 139]. Moreover, the algebraically closed case immediately implies the separably closed case. □

Finally, we shall use the following easy result:

Lemma 2.5. *Let $\bar{A} = \text{Coker}(T_K \rightarrow A)$ (an abelian variety). Then $\bar{A}(K)$ is finitely generated.*

Proof. Let $\bar{T} = \text{Tr}_{K/k} \bar{A}$ and $\pi': T \rightarrow \bar{T}$ be the homomorphism induced by $\pi: A \rightarrow \bar{A}$. By complete reducibility, there exists $\sigma: \bar{A} \rightarrow A$ such that $\pi\sigma$ is multiplication by some integer $N > 0$; the corresponding homomorphism $\sigma': \bar{T} \rightarrow T$ then also verifies $\pi'\sigma' = N1_{\bar{T}}$. Since the composition $T_K \rightarrow A \rightarrow \bar{A}$ is 0, we get by the universal property of \bar{T} that $\pi' = 0$. It implies that $N\bar{T} = 0$; hence $\bar{T} = 0$ and we conclude by the Lang-Néron theorem. □

3. PROOF OF THEOREM 1.1

Choose U as in Lemma 2.1. Applying Bertini's theorem [Jou83, Corollary 6.11(2)] to B and U , we get a dense open subset \mathcal{U}_1 of the dual projective space \mathcal{P} of \mathbb{P}_k^n such that if H lies in $\mathcal{U}_1(k)$ then $B \cap H$ (hence $U \cap H$) is smooth and geometrically connected of dimension $d - 1$, and $U \cap H \neq \emptyset$. In particular, A has good reduction at $B \cap H$ if $H \in \mathcal{U}_1(k)$.

Let us insert Diagram (1) in the larger commutative diagram with exact rows:

$$(2) \quad \begin{array}{ccccccc} 0 & \longrightarrow & T(k) & \longrightarrow & A(K) & \longrightarrow & \text{LN}(A, K/k) \longrightarrow 0 \\ & & \downarrow \varphi_0 & & \downarrow \varphi & & \downarrow \psi \\ 0 & \longrightarrow & T_h(k) & \longrightarrow & A_h(E) & \longrightarrow & \text{LN}(A_h, E/k) \longrightarrow 0 \end{array}$$

where T_h is the E/k -trace of A_h . We now proceed in three steps:

3.1. Ker ψ is finite. The immersion $f: U \hookrightarrow \mathbb{P}_k^n$ induced by the projective embedding $B \hookrightarrow \mathbb{P}_k^n$ is separated quasi-finite. Let ℓ be a prime not divisible by the characteristic of k . Then by [BLR90, §7.3, Lemma 2], the kernel ${}_{\ell^m}\mathcal{A}$ of multiplication by ℓ^m on \mathcal{A} is finite and étale. Thus it represents a locally constant constructible étale sheaf on U . Denote by $T_\ell \mathcal{A}$ the lisse ℓ -adic sheaf $({}_{\ell^m}\mathcal{A})$.

Let k_s be a separable closure of k . We denote base change from k to k_s by an index s . By Theorem 2.4, there exists a dense open subset \mathcal{U}_2 of the dual projective space \mathcal{P}_s such that if H lies in \mathcal{U}_2 , then the restriction map

$$H^i(U_s, T_\ell \mathcal{A}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell} \longrightarrow H^i(U_s \cap H, T_\ell \mathcal{A}) \otimes_{\mathbb{Z}_\ell} \overline{\mathbb{Q}_\ell}$$

is an isomorphism for $i < d - 1$ and injective for $i = d - 1$. Therefore the restriction map

$$H^i(U_s, T_\ell \mathcal{A}) \longrightarrow H^i(U_s \cap H, T_\ell \mathcal{A})$$

has finite kernel and cokernel for $i < d - 1$ and finite kernel for $i = d - 1$. (Recall that $H_{\text{ét}}^i(U_s, {}_{\ell^m}\mathcal{A})$ is finite for all m by [SGA 4 1/2, Th. finitude], hence $H^i(U_s, T_\ell \mathcal{A})$ is a finitely generated \mathbb{Z}_ℓ -module.)

The open subset \mathcal{U}_2 is defined over a finite Galois extension of k ; taking the intersection of its conjugates, we may assume that it is defined over k . Take $\mathcal{U} = \mathcal{U}_1 \cap \mathcal{U}_2$. For $H \in \mathcal{U}(k)$, we write $h = B \cap H$. Since the groups $T(k_s)$ and $T_h(k_s)$ are ℓ -divisible, we have the isomorphisms

$$\mathcal{A}(U_s)/\ell^m \simeq (\mathcal{A}(U_s)/T(k_s)) \otimes_{\mathbb{Z}} \mathbb{Z}/\ell^m \mathbb{Z} \simeq \text{LN}(A, Kk_s/k_s)/\ell^m,$$

where the second one holds by Lemma 2.2. Similarly, we have such isomorphisms for $\text{LN}(A_h, E k_s/k_s)$. Taking the inverse limit of the following commutative diagrams

$$\begin{array}{ccccc} H_{\text{ét}}^1(U_s, {}_{\ell^m}\mathcal{A}) & \xleftarrow{\quad} & \mathcal{A}(U_s)/\ell^m & \xrightarrow{\sim} & \text{LN}(A, Kk_s/k_s)/\ell^m \\ \downarrow & & \downarrow & & \downarrow \\ H_{\text{ét}}^1((U \cap h)_s, {}_{\ell^m}\mathcal{A}) & \xleftarrow{\quad} & \mathcal{A}((U \cap h)_s)/\ell^m & \xrightarrow{\sim} & \text{LN}(A_h, E k_s/k_s)/\ell^m \end{array}$$

we get the commutative diagram

$$\begin{array}{ccccc} H^1(U_s, T_\ell \mathcal{A}) & \xleftarrow{\quad} & \mathcal{A}(U_s)^\wedge & \xrightarrow{\sim} & \text{LN}(A, Kk_s/k_s)^\wedge \\ \downarrow & & \downarrow & & \downarrow \text{sp}_h^\wedge \\ H^1((U \cap h)_s, T_\ell \mathcal{A}) & \xleftarrow{\quad} & \mathcal{A}((U \cap h)_s)^\wedge & \xrightarrow{\sim} & \text{LN}(A_h, E k_s/k_s)^\wedge \end{array}$$

where $(-)^{\wedge}$ denotes ℓ -adic completion. Since the left vertical arrow has finite kernel, so do the others. By the Lang-Néron theorem, the abelian group $\text{LN}(A, K/k)$ is finitely generated. Thus $\text{sp}_h(-)^\wedge = \text{sp}_h \otimes \mathbb{Z}_\ell$, which implies that sp_h has a finite kernel. But $\text{LN}(A, K/k)$ injects into $\text{LN}(A, Kk_s/k_s)$, so we are done.

3.2. **Ker φ is a finite p -group, where p is the exponential characteristic of k .** Since $A(K)$ injects into $A(Kk_s)$, we may assume k separably closed. First, φ is injective on n -torsion in (2) for any n invertible in k , cf. [Ser97, p. 153]. This implies that φ_0 is also injective on n -torsion, hence has finite kernel of p -primary order. Now the conclusion follows from the snake lemma and §3.1.

3.3. **End of proof.** The morphism $T_K \rightarrow A$ extends uniquely to a morphism of abelian schemes $T \times U \rightarrow \mathcal{A}$. For $m \geq 1$, let $\mathcal{B}_m = \text{Coker}(\ell^m T_U \rightarrow \ell^m \mathcal{A})$: this is a locally constant constructible sheaf over U , and we have an isomorphism

$$H^0(U_s, \mathcal{B}_m) \xrightarrow{\sim} \ell^m \bar{A}(Kk_s)$$

where \bar{A} is as in Lemma 2.5. This lemma then implies that $H^0(U_s, \mathcal{B}(\ell)) = 0$, where $\mathcal{B}(\ell)$ is the ℓ -adic sheaf $(\mathcal{B}_m)_{m \geq 1}$. For clarity, let $i : U \cap h \hookrightarrow U$ be the closed immersion. Applying Theorem 2.4 again, we get that $H^0((U \cap h)_s, i^* \mathcal{B}(\ell))$ is torsion, hence 0 since it is a priori torsion-free. But $i^* \mathcal{B}(\ell)$ contains the constant subsheaf $\text{Coker}(T_\ell(T) \rightarrow T_\ell(T_h))$. Therefore this subsheaf is 0, which implies that $T \rightarrow T_h$ is an *isogeny* (an isomorphism in characteristic 0). A new diagram chase in (2) concludes the proof.

Remark 3.1. Let x be a closed point of B , let A_x be the special fiber of \mathcal{A} at x , and let R_x be the Weil restriction of A_x through the finite extension $k(x)/k$. The map $T_U \rightarrow \mathcal{A}$ induces a map $T_{k(x)} \rightarrow A_x$ and then induces a map $T \rightarrow R_x$ by functoriality. Consider the following commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & T(k) & \longrightarrow & A(K) & \longrightarrow & \text{LN}(A, K/k) \longrightarrow 0 \\ & & \downarrow \varphi_0 & & \downarrow \varphi & & \downarrow \psi \\ 0 & \longrightarrow & R_x(k) & \xrightarrow{\sim} & A_x(k(x)) & \longrightarrow & 0 \longrightarrow 0 \end{array}$$

The snake lemma gives us an exact sequence

$$(3) \quad 0 \rightarrow \text{Ker } \varphi_0 \rightarrow \text{Ker } \varphi \rightarrow \text{LN}(A, K/k) \rightarrow A_x(k(x))/T(k).$$

The argument in §3.2 shows that $\text{Ker } \varphi_0$ is a finite p -group. Thus $\text{Ker } \varphi$ is finitely generated and its rank is uniformly bounded when x varies.

REFERENCES

- [Art86] Michael Artin. Néron models. In Gary Cornell and Joseph H. Silverman, editors, *Arithmetic geometry*, pages 213–230. Springer, New York, 1986.
- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. *Néron models*, volume 21 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge*. Berlin etc.: Springer-Verlag, 1990.
- [Con06] Brian Conrad. Chow’s K/k -image and K/k -trace, and the Lang-Néron theorem. *Enseign. Math. (2)*, 52(1-2):37–108, 2006.
- [CT20] Jean-Louis Colliot-Thélène. Point générique et saut du rang du groupe de Mordell-Weil. *Acta Arithmetica*, 196(1):93–108, 2020.
- [Gab01] Ofer Gabber. On space filling curves and Albanese varieties. *Geometric and Functional Analysis*, 11(6):1192–1200, 2001.
- [Jou83] Jean-Pierre Jouanolou. *Théorèmes de Bertini et applications*, volume 42 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, 1983.

- [Kah09] Bruno Kahn. Démonstration géométrique du théorème de Lang-Néron et formules de Shioda-Tate. In *Motives and algebraic cycles. A celebration in honour of Spencer J. Bloch*, pages 149–155. Providence, RI: American Mathematical Society (AMS); Toronto: The Fields Institute for Research in Mathematical Sciences, 2009.
- [Kah24] Bruno Kahn. Refined height pairing. (Appendix by Qing Liu). *Algebra & Number Theory*, 18(6):1039–1079, 2024.
- [Kat93] Nicholas M. Katz. Affine cohomological transforms, perversity, and monodromy. *Journal of the American Mathematical Society*, 6(1):149–222, 1993.
- [KW01] Reinhardt Kiehl and Rainer Weissauer. *Weil conjectures, perverse sheaves and ℓ -adic Fourier transform*, volume 42 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge*. Springer-Verlag, Berlin, 2001.
- [LN59] Serge Lang and André Néron. Rational points of abelian varieties over function fields. *American Journal of Mathematics*, 81:95–118, 1959.
- [Mil86] James S. Milne. Abelian varieties. In Gary Cornell and Joseph H. Silverman, editors, *Arithmetic geometry*, pages 103–150. Springer, New York, 1986.
- [Poo04] Bjorn Poonen. Bertini theorems over finite fields. *Annals of Mathematics. Second Series*, 160(3):1099–1127, 2004.
- [Ser97] Jean-Pierre Serre. *Lectures on the Mordell-Weil Theorem*. Springer Fachmedien Wiesbaden GmbH, Wiesbaden, third edition, 1997.
- [SGA 4½] Pierre Deligne. *Cohomologie étale*, volume 569 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1977. Séminaire de géométrie algébrique du Bois-Marie SGA 4½.

SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITÉ, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE.
Email address: bruno.kahn@imj-prg.fr

SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITÉ, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE.
Email address: long.liu@imj-prg.fr