On the generalised Hodge and Tate conjectures for products of elliptic curves Bruno Kahn Cohomological realizations of motives BIRS, 7-12 December 2014.

1. REVIEW OF THE GENERALISED CONJECTURES

1.1. The Hodge and Tate conjectures. k field, X/k smooth projective variety, H^* Weil cohomology theory with coefficients in F: cycle class map

$$CH^n(X) \otimes F \xrightarrow{\operatorname{cl}^n} H^{2n}(X)(n) (n \ge 0).$$

Hodge conjecture (HC): k = C, $H = H_B$ (F = Q):

 $\operatorname{Im} \operatorname{cl}^{n} = \{(n, n) \text{-classes}\}.$

Tate conjecture (TC): $k = \mathbf{F}_q$, H = l-adic cohomology ($F = \mathbf{Q}_l$): Im $cl^n = \{Galois invariant classes\}.$

(We write $H_l^n(X) := H_{\text{\'et}}^n(X, \mathbf{Q}_l)$ for *l*-adic cohomology, $l \nmid q$.)

For the generalised conjectures, need *coniveau filtration*:

$$N^{r}H^{n}(X) = \bigcup_{\substack{\operatorname{codim}_{X}(Z) \geq r \\ \operatorname{codim}_{X}(Z) \geq r}} \operatorname{Im} \left(H^{n}_{Z}(X) \to H^{n}(X) \right)$$
$$= \bigcup_{\substack{\operatorname{codim}_{X}(Z) \geq r}} \operatorname{Ker} \left(H^{n}(X) \to H^{n}(X-Z) \right).$$

Remark 1. n = r/2: $N^r H^{2r}(X) = \text{Im cl}^r$ by semi-purity.

Theorem 2 (Deligne).

$$N^{r}H^{i}_{B}(X) = \bigcup_{\substack{f:Y \to X}} \operatorname{Im} \left(H^{i-2r}_{B}(Y)(-r) \xrightarrow{f_{*}} H^{i}_{B}(X) \right)$$
$$N^{r}H^{i}_{l}(X) = \bigcup_{\substack{f:Y \to X}} \operatorname{Im} \left(H^{i-2r}_{l}(Y)(-r) \xrightarrow{f_{*}} H^{i}_{l}(X) \right)$$

where $f: Y \to X$ runs through morphisms of smooth projective varieties such that $\dim X - \dim Y = r$.

Non-trivial theorem! Uses mixed Hodge theory over \mathbf{C} , and Weil II over \mathbf{F}_q (plus de Jong).

Variant with correspondences:

$$N^{r}H^{i}(X) = \bigcup_{\gamma \in \operatorname{Corr}^{r}(X,Y)} \operatorname{Im} \left(H^{i-2r}(Y)(-r) \xrightarrow{\gamma^{*}} H^{i}(X) \right)$$

 $\operatorname{Corr}^{r}(X,Y) = CH^{\dim Y - r}(X \times Y) \otimes F.$

1.2. The generalised conjectures of Grothendieck. Generalised Hodge conjecture (GHC): If $k = \mathbb{C}$, $N^r H^i_B(X)$ is the largest Hodge substructure of $H^i_B(X)$ which is effective of coniveau $\geq r$. Generalised Tate conjecture (GTC): If $k = \mathbb{F}_q$, $N^r_{\mathbb{F}_q} H^i_l(X)$ is the largest Galois submodule of $H^i_l(X)$ in which all eigenvalues of [the geometric] Frobenius are algebraic integers divisible by q^r . (Need to take coniveau filtration over $\overline{\mathbb{F}}_q$, not over \mathbb{F}_q !)

In GHC, a pure Hodge structure V is *effective of coniveau* $\geq r$ if all its Hodge numbers (p,q) verify $p \geq r, q \geq r$. This is Grothendieck's corrected form of Hodge's general conjecture. The generalised Tate conjecture appears in [Brauer III, 10.3].

By Remark 1, GHC \Rightarrow HC and GTC \Rightarrow TC. "Essential surjectivity results" imply converse implications:

- Over \mathbf{F}_q , Honda's theorem implies (TC \Rightarrow GTC).
- Over **C**, theorem of Hazama-Abdulali implies (HC \Rightarrow GHC) for X's such that $H_B^*(X)$ is purely of CM type.

- **Honda's theorem:** for any Weil number α , there exists an abelian \mathbf{F}_q -variety A such that α is an eigenvalue of Frobenius acting on $H^1_l(A)$.
- **Hazama-Abdulali theorem:** for any effective (polarisable) Hodge structure H of weight n of CM type, there exists an abelian variety A of CM type such that H is a direct summand of $H^n_B(A)$. (Serre proved this previously, but only up to a twist.)

Precise statements:

Theorem 3. $k = \mathbf{F}_q$: assume Frobenius action on $H_l^n(X)$ is semisimple (e.g., X = abelian variety). If TC holds in codimension n-r for all products $A \times X$, A abelian variety, then GTC holds for $N^r H_l^n(X)$.

Theorem 4. $k = \mathbb{C}$: assume that the Hodge structure $H_B^n(X)$ is of CM type (e.g., X = CM abelian variety of CM type). If HC holds in codimension n-r for all products $A \times X$, A abelian variety of CM type, then GHC holds for $N^r H_B^n(X)$.

Theme of the talk: can we make Theorems 3 and 4 effective?

Idea: test on products of elliptic curves $X = \prod E_i$ because

- $k = \mathbf{C}$: HC is true for X by Tate-Imai-K. Murty.
- $k = \mathbf{F}_q$: TC is true for X by Spieß.

Principle: given $X = \prod E_i$, find out exactly what abelian varieties A show up in Theorems 3 and 4. If we get only products of elliptic curves, we win. If not, get new (and interesting) problem.

The point: this is very computable!

2. Elliptic curves in general position

Definition 5. $S = (E_1, \ldots, E_m)$ family of elliptic curves over a field F; \bar{S} set of isogeny classes of S, and $\bar{S}_0 \subseteq \bar{S}$ subset consisting of

- CM isogeny classes if char F = 0;
- ordinary isogeny classes if char F > 0.

 K_1, \ldots, K_n the endomorphism fields of elements of \overline{S}_0 (quadratic imaginary). We say that S is *in general position* if the K_i are linearly disjoint over \mathbf{Q} .

Lemma 6. If $n \leq 3$ in Definition 5, then S is in general position. *Proof.* Clear for $n \leq 2$. For n = 3, K_3 cannot lie in the biquadratic extension $L = K_1 K_2$, as the third quadratic subfield of L is real. **Theorem 7.** a) E_1, \ldots, E_m elliptic curves in general position over \mathbf{F}_q . Then GTC holds for $X = \prod E_i$. b) E_1, \ldots, E_m elliptic curves in general position over \mathbf{C} . Then GHC holds for $X = \prod E_i$.

b) proven by Abdulali in case all E_i are CM.

Corollary 8. GTC (resp. GHC) holds for $N^1H^3(X)$ for any product X of elliptic curves.

3. Four elliptic curves in special position

 K_1, K_2, K_3 distinct imaginary quadratic fields, $K = K_1 K_2 K_3$: $[K : \mathbf{Q}] = 8$ and K contains exactly one other imaginary quadratic field K_0 .

 $K_i \leftrightarrow$ unique isogeny class E_i of CM elliptic curves. Reducing mod p yields 4 isogeny classes of ordinary elliptic curves over $\overline{\mathbf{F}}_p$ for any prime p. We say that (E_0, \ldots, E_3) are *in special position*, with associated CM field K.

Let $B = \prod_{i=0}^{3} E_i$. By Corollary 8 and TC (*resp.* HC) for B, first open case of GTC or GHC is for $N^1 H^4(B)$.

Theorem 9. In the above situation, there exists an absolutely simple 4-dimensional abelian variety A, with complex multiplication by K, and a free $K \otimes F$ -module $H \subset H^6(A^2 \times B)$ of rank 1 consisting of Hodge (resp. Tate) cycles, such that GHC (resp. GTC) holds for $N^1H^4(B)$ if and only if H consists of algebraic cycles.

Moreover, HC (resp. TC) holds for A and all its powers.

4. TANNAKIAN REVIEW

4.1. The Hodge realisation. $k = \mathbb{C}$: homological equivalence = numerical equivalence for abelian varieties (Lieberman). Hence thick subcategory \mathcal{M}_{num}^{ab} of pure numerical motives \mathcal{M}_{num} generated by motives of abelian varieties is Tannakian.

String of Tannakian categories and \otimes -functors:

$$\langle \mathbb{L} \rangle \subset \mathbf{Lef} \subset \mathcal{M}_{num}^{ab} \to \mathbf{PHS}^* \to \mathbf{Vec}^*_{\mathbf{Q}}$$

 \mathbb{L} = Lefschetz motive, **Lef** = subcategory of correspondences defined by intersection products of divisor classes (Milne), **PHS**^{*} = graded polarisable Hodge structures, **Vec**^{*}_Q = graded **Q**-vector spaces.

Dually, string of Tannakian groups over \mathbf{Q} :

$$\mathbb{G}_m \xrightarrow{w} \mathrm{MT} \to G_{\mathrm{Mot}} \to L \xrightarrow{t} \mathbb{G}_m$$

w weight cocharacter, MT = Mumford-Tate group, G_{Mot} = motivic Galois group, L = Lefschetz group, t Tate character (composition = -2).

A abelian variety:

$$\mathbb{G}_m \xrightarrow{w} \mathrm{MT}(A) \hookrightarrow G_{\mathrm{Mot}}(A) \hookrightarrow L(A) \hookrightarrow GL(H^1_B(A)) \times \mathbb{G}_m$$

So: $(MT(A) = L(A)) \iff \bigoplus_{n \ge 0} H_B^{2n}(A^i)^{(n,n)}$ generated in degree 1 for any $i > 0 \Rightarrow$ HC for all powers of A.

Milne: $A \simeq_{\mathbf{Q}} \prod A_i^{n_i}$ semi-simple decomposition of $A \Rightarrow (L(A), t) \simeq \prod_i (L(A_i), t)$ (fibre product over characters t).

Case of products of elliptic curves:

- (1) E elliptic curve: MT(E) = L(E) (direct computation).
- (2) E_1, \ldots, E_n non-isogenous elliptic curves: $(MT(\prod E_i), t) = \prod_i (MT(E_i), t).$
- (3) X product of elliptic curves: MT(X) = L(X).

4.2. The Tate realisation. $k = \mathbf{F}_q$, $H = H_l$ $(l \nmid q)$. Here, "homological equivalence = numerical equivalence" is open for abelian varieties (except Clozel's theorem for certain *l*'s). So, Milne replaces the "motivic Galois group" by an *ad hoc* defined group:

$$\mathbb{G}_m \xrightarrow{w} P(A) \hookrightarrow M(A) \hookrightarrow L(A) \hookrightarrow \operatorname{End}^0(A)^* \times \mathbb{G}_m$$

$$\downarrow p_2$$

$$\downarrow p_2$$

$$\square p_2$$

- $L(A)(\mathbf{Q}) = \{ \alpha \in C(A)^* \mid \alpha \alpha^{\dagger} \in \mathbf{Q}^* \}$: C(A) centre of End⁰(A), \dagger restriction of any Rosati involution to C(A);
- $M(A) = \{ \alpha \in L(A) \mid \alpha \text{ acts trivially on cycles modulo numerical equivalence} \}.$
- P(A) = Zariski closure of π_A , the Frobenius endomorphism of A.

Case of a product X of elliptic curves: same as above (P(X) = L(X)) thanks to Spieß's theorem:

Theorem 10. Let $n \ge 1$ and $\beta_1, \ldots, \beta_{2n}$ Weil numbers of X such that $\beta_1 \ldots \beta_{2n} = q^n$. Then, up to a permutation of $\{1, \ldots, 2n\}$, we have $\beta_{2i-1}\beta_{2i} = \zeta_i q$ for $i = 1, \ldots, n$, ζ_i roots of unity.

(Exercise: prove this along the same lines as over \mathbf{C} .)

5. PROOF OF THEOREM 7 (SKETCH)

 K_1, \ldots, K_n the imaginary quadratic fields corresponding to the ordinary/CM isogeny classes of the E_i ; $K = K_1 \ldots K_n$ compositum of the K_i : $G = Gal(K/\mathbf{Q}) \simeq (\mathbf{Z}/2)^n$, with basis of characters (χ_1, \ldots, χ_n) $(\chi_i \leftrightarrow K_i)$. $(\sigma_1, \ldots, \sigma_n)$ dual basis of G; $c = \sigma_1 \ldots \sigma_n$ (complex conjugation). Set $H_i = \text{Ker } \chi_i$.

The main lemma:

Lemma 11. For any $(\varepsilon_1, \ldots, \varepsilon_n) \in (\mathbf{Z}/2)^n$, $\bigcup_{i=1}^n c^{\varepsilon_i} H_i \neq G.$

Proof. Clear if all ε_i are 0 as c does not belong to the LHS. General case: up to permutation, may assume $\varepsilon_1 = \cdots = \varepsilon_r = 0$ and $\varepsilon_{r+1} = \cdots = \varepsilon_n = 1$. As we just saw, $g = \sigma_1 \dots \sigma_r \notin H_1 \cup \dots \cup H_r$. But $g \notin cH_{r+1} \cup \dots \cup cH_n$, since $gc^{-1} = \sigma_{r+1} \dots \sigma_n$. M simple direct summand of $H^*(X)$ $(H = H_l \text{ or } H_B)$. May view M as a simple representation of P(X) or MT(X).

Over \mathbf{F}_q :

Lemma 12. β_1, \ldots, β_m (some) Weil numbers attached to X. a) If all β_i are ordinary and no two of them are conjugate up to a root of unity, then the ideal $(\beta_1 \ldots \beta_m) \subset O_K$ is not divisible by (p). b) In general, suppose

$$(\beta_1 \dots \beta_m) = (q\beta)$$

 β some algebraic integer. Then $\exists i \neq j$ such that

 $(\beta_i\beta_j)=(q).$

Sketch of proof: $p \mid q$ is totally decomposed in K. Pick a prime divisor \mathfrak{p} of p in O_K , and let $\mathfrak{p}_i = \mathfrak{p} \cap K_i$. $\forall i \exists ! \alpha_i \in K_i$ (Weil number) such that $\alpha_i O_{K_i} = \mathfrak{p}_i^r$; then

$$(\alpha_i) := \alpha_i O_K = \mathfrak{p}^{rN_i}$$

with

$$N_i = \sum_{g \in H_i} g \in \mathbf{Z}[G].$$

For a), by assumption, may write

$$\beta_1 \dots \beta_m = \alpha_1^{m_1 c^{\varepsilon_1}} \dots \alpha_n^{m_n c^{\varepsilon_n}}$$

for some $\varepsilon_i \in \mathbb{Z}/2$ and some integers $m_i \ge 0$. Thus

$$(\beta_1 \dots \beta_m) = \mathfrak{p}^{r(m_1 c^{\varepsilon_1} N_1 + \dots + m_n c^{\varepsilon_n} N_n)}$$

By Lemma 11, the inequality

$$N \le r(m_1 c^{\varepsilon_1} N_1 + \dots + m_n c^{\varepsilon_n} N_n), \quad N := \sum_{g \in G} g$$

is false in $\mathbf{N}[G]$ (for the partial ordering given componentwise). Since $(p) = \mathfrak{p}^N$, this concludes.

For b), need to handle supersingular Weil numbers, which is not hard.

Lemma 12 implies: M is (up to a twist) a direct summand of $H_l^*(Y)$ with $Y = \prod_{i \in J} E_i, J \subseteq \{1, \ldots, m\}$, hence can apply TC to $Y \times X$. This proves Theorem 7.

Over C: MT(X) = $\prod_{s \in \bar{S}} (MT(E_s), t) = \prod_{s \in \bar{S}_0} (MT(E_s), t) \times_{\mathbb{G}_m} \prod_{s \in \bar{S} - \bar{S}_0} (MT(E_s), t).$

• $s \in \overline{S}_0 \leftrightarrow K_i$: MT $(E_s) = R_{K_i/\mathbf{Q}} \mathbb{G}_m$. • $s \notin \overline{S}_0$: MT $(E_s) \simeq GL_2$. Have $M \otimes \overline{\mathbf{Q}} = \bigoplus_{\alpha} W^{\alpha}$, W^{α} absolutely simple, permuted by $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ and

$$W^{\alpha} = \bigotimes_{s \in \bar{S}} W^{\alpha}_s$$

 W_s^{α} absolutely simple representation of $MT(E_s)$,

If $s \notin \overline{S}_0$: W_s^{α} of the form $\operatorname{Sym}^a(M_s) \otimes \det(M_s)^b$, $M_s = H^1(E_s)$: defined over **Q**. Therefore $W_s^{\alpha} = W_s$ independent of α and

$$M = M_1 \otimes M_2$$

with

- M_1 simple representation of $\prod_{s \in \bar{S}_0} (MT(E_s), t)$,
- $M_2 = \bigotimes_{s \notin \bar{S}_0} W_s.$

Moreover det $(M_s) = \mathbf{Q}(-1)$ and coniveau of $W_s = b$ (because (0, a) is a Hodge number of Sym^a (M_s)). And Sym^a (M_s) direct summand of $H^a_B(E^a_s)$.

Hence reduced to handle M_1 :

- $E = \operatorname{End}(M_1) = \operatorname{CM}$ subfield of K and $\dim_E M_1 = 1$;
- $M_1 \leftrightarrow \varphi : \Sigma_E \to \mathbf{Z}$ such that $\varphi(x) + \varphi(cx) = n \ (\Sigma_E = \operatorname{Hom}_{\mathbf{Q}}(E, \overline{\mathbf{Q}}), n = \text{weight of } M_1).$

Lift φ to Σ_K and conclude by similar use of Lemma 11 as over \mathbf{F}_q .

(*Question*: give uniform group-theoretic proof over \mathbf{C} and \mathbf{F}_{q} .)

6. PROOF OF THEOREM 9 (SKETCH)

Will only describe algebraic situation in $G = Gal(K/\mathbf{Q})$. Same notation as before:

- (χ_1, χ_2, χ_3) basis of X(G) corresponding to K_1, K_2, K_3 .
- $(\sigma_1, \sigma_2, \sigma_3)$ dual basis of G; $c = \sigma_1 \sigma_2 \sigma_3$ (complex conjugation).
- K_0 4-th quadratic imaginary field $\leftrightarrow \chi_0 = \chi_1 \chi_2 \chi_3$.
- $H_i = \operatorname{Ker} \chi_i$.

•
$$N_i = \sum_{g \in H_i} g, \ N = \sum_{g \in G} g.$$

Definition 13. A *CM type* of (G, c) is a section of the projection $G \to G/\langle c \rangle$.

CM-types \leftrightarrow elements $x \in \mathbf{N}[G]$ such that (1+c)x = N.

Lemma 14. Up to multiplication by an element of G, the distinct CM types of (G, c) are given by N_i (i = 0, ..., 3) and $\rho = 1 + \sigma_1 + \sigma_2 + \sigma_3$. (Proof: combinatorial computations.)

Then ρ defines the abelian variety A of Theorem 9.

Relation

$$N_1 + N_2 + N_3 + cN_0 = 2\rho + N$$

 \Rightarrow relation between Weil numbers:

(1)
$$\alpha_1 \alpha_2 \alpha_3 \alpha_0^c = \zeta q \beta^2$$

 $\alpha_i \leftrightarrow E_i, \beta \leftrightarrow A, \zeta$ root of unity.

(So Lemma 11 is false in this case!) But also:

$$c\rho + \sigma_1\rho + \sigma_2\rho + \sigma_3\rho = 2N_0 + N$$

hence

(2)
$$\beta^{c+\sigma_1+\sigma_2+\sigma_3} = \zeta' q \alpha_0^2.$$

Similar "mirror relations" found by Mestre for two 4-dimensional simple abelian varieties over \mathbf{F}_2 (with different and non-Galois fields of endomorphisms!)

To get a "new" Hodge (or Tate) class: (1) and Hodge analogue shows that $\Psi^2 H^1(A) \subset H^2(A^2)$ is direct summand of $H^4(B)(1)$ (recall: $B = \prod_{i=0}^{3} E_i$).

(Since A is CM/ordinary, think of $H^1(A)$ as representation of a torus: then $\Psi^2 H^1(A)$ makes sense as a representation. Over **C**, even makes sense as numerical motive!)

Symmetrically, $\Psi^2 H^1(B)$ direct summand of $H^4(A)(1)$ by (2) (and Hodge analogue).

Mumford-Tate groups:

$$\begin{array}{ccc} \operatorname{MT}(A \times B) & \xrightarrow{p_2} & \operatorname{MT}(B) \\ & & & \\ p_1 \\ & & \\ &$$

 p_1, p_2 isogenies of degree 2! (computation within $\mathbf{Z}[G]$).

 \Rightarrow rk MT(A) = rk MT(B) = 5. Easy: rk L(A) = 5; hence MT(A) = L(A)and HC holds for A and its powers. Similarly, P(A) = L(A) over \mathbf{F}_q .

On the other hand, $L(A \times B) = L(A) \times_{\mathbb{G}_m} L(B)$, much bigger than $MT(A \times B)$...