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1. Review of the generalised conjectures

1.1. The Hodge and Tate conjectures. k field, X/k smooth pro-
jective variety, H∗ Weil cohomology theory with coefficients in F : cycle
class map

CHn(X)⊗ F cln−→ H2n(X)(n)(n ≥ 0).

Hodge conjecture (HC): k = C, H = HB (F = Q):

Im cln = {(n, n)-classes}.

Tate conjecture (TC): k = Fq, H = l-adic cohomology (F = Ql):

Im cln = {Galois invariant classes}.

(We write Hn
l (X) := Hn

ét(X,Ql) for l-adic cohomology, l - q.)



For the generalised conjectures, need coniveau filtration:

NrHn(X) =
⋃

codimX(Z)≥r
Im
(
Hn
Z(X)→ Hn(X)

)
=

⋃
codimX(Z)≥r

Ker (Hn(X)→ Hn(X − Z)) .

Remark 1. n = r/2: NrH2r(X) = Im clr by semi-purity.



Theorem 2 (Deligne).

NrHi
B(X) =

⋃
f :Y→X

Im

(
Hi−2r
B (Y )(−r) f∗−→ Hi

B(X)

)
NrHi

l (X) =
⋃

f :Y→X
Im

(
Hi−2r
l (Y )(−r) f∗−→ Hi

l (X)

)
where f : Y → X runs through morphisms of smooth projective vari-
eties such that dimX − dimY = r.

Non-trivial theorem! Uses mixed Hodge theory over C, and Weil II over Fq
(plus de Jong).



Variant with correspondences:

NrHi(X) =
⋃

γ∈Corrr(X,Y )

Im

(
Hi−2r(Y )(−r) γ∗−→ Hi(X)

)
Corrr(X, Y ) = CHdimY−r(X × Y )⊗ F .



1.2. The generalised conjectures of Grothendieck.
Generalised Hodge conjecture (GHC): If k = C, NrHi

B(X) is

the largest Hodge substructure of Hi
B(X) which is effective of coniveau

≥ r.
Generalised Tate conjecture (GTC): If k = Fq, N

r
F̄q
Hi
l (X) is the

largest Galois submodule of Hi
l (X) in which all eigenvalues of [the geo-

metric] Frobenius are algebraic integers divisible by qr.
(Need to take coniveau filtration over F̄q, not over Fq!)

In GHC, a pure Hodge structure V is effective of coniveau ≥ r if all its
Hodge numbers (p, q) verify p ≥ r, q ≥ r. This is Grothendieck’s corrected
form of Hodge’s general conjecture. The generalised Tate conjecture appears
in [Brauer III, 10.3].



By Remark 1, GHC⇒ HC and GTC⇒ TC. “Essential surjectivity results”
imply converse implications:

•Over Fq, Honda’s theorem implies (TC ⇒ GTC).
•Over C, theorem of Hazama-Abdulali implies (HC ⇒ GHC) for X ’s

such that H∗B(X) is purely of CM type.



Honda’s theorem: : for any Weil number α, there exists an abelian
Fq-variety A such that α is an eigenvalue of Frobenius acting on H1

l (A).

Hazama-Abdulali theorem: for any effective (polarisable) Hodge
structure H of weight n of CM type, there exists an abelian variety
A of CM type such that H is a direct summand of Hn

B(A).

(Serre proved this previously, but only up to a twist.)



Precise statements:

Theorem 3. k = Fq: assume Frobenius action on Hn
l (X) is semi-

simple (e.g., X = abelian variety). If TC holds in codimension n−r for
all products A×X, A abelian variety, then GTC holds for NrHn

l (X).

Theorem 4. k = C: assume that the Hodge structure Hn
B(X) is of

CM type (e.g., X = CM abelian variety of CM type). If HC holds in
codimension n−r for all products A×X, A abelian variety of CM type,
then GHC holds for NrHn

B(X).



Theme of the talk: can we make Theorems 3 and 4 effective?

Idea: test on products of elliptic curves X =
∏
Ei because

• k = C: HC is true for X by Tate-Imai-K. Murty.
• k = Fq: TC is true for X by Spieß.



Principle: given X =
∏
Ei, find out exactly what abelian varieties A

show up in Theorems 3 and 4. If we get only products of elliptic curves, we
win. If not, get new (and interesting) problem.

The point: this is very computable!



2. Elliptic curves in general position

Definition 5. S = (E1, . . . , Em) family of elliptic curves over a field F ; S̄
set of isogeny classes of S, and S̄0 ⊆ S̄ subset consisting of

• CM isogeny classes if charF = 0;
• ordinary isogeny classes if charF > 0.

K1, . . . , Kn the endomorphism fields of elements of S̄0 (quadratic imagi-
nary). We say that S is in general position if the Ki are linearly disjoint
over Q.



Lemma 6. If n ≤ 3 in Definition 5, then S is in general position.

Proof. Clear for n ≤ 2. For n = 3,K3 cannot lie in the biquadratic extension
L = K1K2, as the third quadratic subfield of L is real. �



Theorem 7. a) E1, . . . , Em elliptic curves in general position over Fq.
Then GTC holds for X =

∏
Ei.

b) E1, . . . , Em elliptic curves in general position over C. Then GHC
holds for X =

∏
Ei.

b) proven by Abdulali in case all Ei are CM.

Corollary 8. GTC (resp. GHC) holds for N1H3(X) for any product
X of elliptic curves. �



3. Four elliptic curves in special position

K1, K2, K3 distinct imaginary quadratic fields, K = K1K2K3: [K : Q] = 8
and K contains exactly one other imaginary quadratic field K0.

Ki↔ unique isogeny class Ei of CM elliptic curves. Reducing mod p yields
4 isogeny classes of ordinary elliptic curves over F̄p for any prime p. We say
that (E0, . . . , E3) are in special position, with associated CM field K.



Let B =
∏3
i=0Ei. By Corollary 8 and TC (resp. HC) for B, first open

case of GTC or GHC is for N1H4(B).

Theorem 9. In the above situation, there exists an absolutely simple
4-dimensional abelian variety A, with complex multiplication by K, and
a free K ⊗ F -module H ⊂ H6(A2 × B) of rank 1 consisting of Hodge
(resp. Tate) cycles, such that GHC (resp. GTC) holds for N1H4(B) if
and only if H consists of algebraic cycles.

Moreover, HC (resp. TC) holds for A and all its powers.



4. Tannakian review

4.1. The Hodge realisation. k = C: homological equivalence = nu-
merical equivalence for abelian varieties (Lieberman). Hence thick subcat-
egory Mab

num of pure numerical motives Mnum generated by motives of
abelian varieties is Tannakian.
String of Tannakian categories and ⊗-functors:

〈L〉 ⊂ Lef ⊂Mab
num→ PHS∗→ Vec∗Q

L = Lefschetz motive, Lef = subcategory of correspondences defined by
intersection products of divisor classes (Milne), PHS∗ = graded polarisable
Hodge structures, Vec∗Q = graded Q-vector spaces.



Dually, string of Tannakian groups over Q:

Gm
w−→ MT→ GMot→ L

t−→ Gm
w weight cocharacter, MT = Mumford-Tate group, GMot = motivic Galois
group, L = Lefschetz group, t Tate character (composition = −2).

A abelian variety:

Gm w//MT(A) � � //GMot(A) � � //L(A)

t ))

� � //GL(H1
B(A))×Gm

p2
��

Gm



So: (MT(A) = L(A)) ⇐⇒
⊕

n≥0H
2n
B (Ai)(n,n) generated in degree 1 for

any i > 0 ⇒ HC for all powers of A.

Milne: A 'Q
∏
A
ni
i semi-simple decomposition of A ⇒ (L(A), t) '∏

i(L(Ai), t) (fibre product over characters t).

Case of products of elliptic curves:

(1)E elliptic curve: MT(E) = L(E) (direct computation).
(2)E1, . . . , En non-isogenous elliptic curves: (MT(

∏
Ei), t) =∏

i(MT(Ei), t).
(3)X product of elliptic curves: MT(X) = L(X).



4.2. The Tate realisation. k = Fq, H = Hl (l - q). Here, “homo-
logical equivalence = numerical equivalence” is open for abelian varieties
(except Clozel’s theorem for certain l’s). So, Milne replaces the “motivic
Galois group” by an ad hoc defined group:

Gm w //P (A) � � //M(A) � � //L(A)

t ))

� � //End0(A)∗ ×Gm
p2
��

Gm
• L(A)(Q) = {α ∈ C(A)∗ | αα† ∈ Q∗}: C(A) centre of End0(A), †

restriction of any Rosati involution to C(A);
•M(A) = {α ∈ L(A) | α acts trivially on cycles modulo numerical

equivalence}.
• P (A) = Zariski closure of πA, the Frobenius endomorphism of A.



Case of a product X of elliptic curves: same as above (P (X) =
L(X)) thanks to Spieß’s theorem:

Theorem 10. Let n ≥ 1 and β1, . . . , β2n Weil numbers of X such that
β1 . . . β2n = qn. Then, up to a permutation of {1, . . . , 2n}, we have
β2i−1β2i = ζiq for i = 1, . . . , n, ζi roots of unity.

(Exercise: prove this along the same lines as over C.)



5. Proof of Theorem 7 (sketch)

K1, . . . , Kn the imaginary quadratic fields corresponding to the ordi-
nary/CM isogeny classes of the Ei; K = K1 . . . Kn compositum of the
Ki: G = Gal(K/Q) ' (Z/2)n, with basis of characters (χ1, . . . , χn)
(χi ↔ Ki). (σ1, . . . , σn) dual basis of G; c = σ1 . . . σn (complex con-
jugation). Set Hi = Kerχi.

The main lemma:

Lemma 11. For any (ε1, . . . , εn) ∈ (Z/2)n,

n⋃
i=1

cεiHi 6= G.

Proof. Clear if all εi are 0 as c does not belong to the LHS. General case: up
to permutation, may assume ε1 = · · · = εr = 0 and εr+1 = · · · = εn = 1.
As we just saw, g = σ1 . . . σr /∈ H1∪· · ·∪Hr. But g /∈ cHr+1∪· · ·∪ cHn,
since gc−1 = σr+1 . . . σn. �



M simple direct summand of H∗(X) (H = Hl or HB). May view M as a
simple representation of P (X) or MT(X).

Over Fq:

Lemma 12. β1, . . . , βm (some) Weil numbers attached to X.
a) If all βi are ordinary and no two of them are conjugate up to a root
of unity, then the ideal (β1 . . . βm) ⊂ OK is not divisible by (p).
b) In general, suppose

(β1 . . . βm) = (qβ)

β some algebraic integer. Then ∃ i 6= j such that

(βiβj) = (q).



Sketch of proof :
p | q is totally decomposed in K. Pick a prime divisor p of p in OK , and
let pi = p ∩Ki. ∀i ∃!αi ∈ Ki (Weil number) such that αiOKi

= pri ; then

(αi) := αiOK = prNi

with
Ni =

∑
g∈Hi

g ∈ Z[G].



For a), by assumption, may write

β1 . . . βm = α
m1c

ε1

1 . . . αmnc
εn

n

for some εi ∈ Z/2 and some integers mi ≥ 0. Thus

(β1 . . . βm) = pr(m1c
ε1N1+···+mnc

εnNn).

By Lemma 11, the inequality

N ≤ r(m1c
ε1N1 + · · · + mnc

εnNn), N :=
∑
g∈G

g

is false in N[G] (for the partial ordering given componentwise). Since (p) =
pN , this concludes.
For b), need to handle supersingular Weil numbers, which is not hard.



Lemma 12 implies: M is (up to a twist) a direct summand of H∗l (Y ) with
Y =

∏
i∈J Ei, J ⊆ {1, . . . ,m}, hence can apply TC to Y ×X . This proves

Theorem 7.



Over C: MT(X) =
∏
s∈S̄(MT(Es), t) =

∏
s∈S̄0

(MT(Es), t) ×Gm∏
s∈S̄−S̄0

(MT(Es), t).

• s ∈ S̄0↔ Ki: MT(Es) = RKi/Q
Gm.

• s /∈ S̄0: MT(Es) ' GL2.



Have M ⊗ Q̄ =
⊕

αW
α, Wα absolutely simple, permuted by Gal(Q̄/Q)

and
Wα = ⊗

s∈S̄
Wα
s

Wα
s absolutely simple representation of MT(Es),

If s /∈ S̄0: Wα
s of the form Syma(Ms)⊗ det(Ms)

b, Ms = H1(Es): defined
over Q. Therefore Wα

s = Ws independent of α and

M = M1 ⊗M2

with

•M1 simple representation of
∏
s∈S̄0

(MT(Es), t),
•M2 = ⊗s/∈S̄0

Ws.



Moreover det(Ms) = Q(−1) and coniveau of Ws = b (because (0, a) is a
Hodge number of Syma(Ms)). And Syma(Ms) direct summand of Ha

B(Eas ).

Hence reduced to handle M1:

•E = End(M1) = CM subfield of K and dimEM1 = 1;
•M1 ↔ ϕ : ΣE → Z such that ϕ(x) + ϕ(cx) = n (ΣE = HomQ(E, Q̄),
n = weight of M1).

Lift ϕ to ΣK and conclude by similar use of Lemma 11 as over Fq.

(Question: give uniform group-theoretic proof over C and Fq.)



6. Proof of Theorem 9 (sketch)

Will only describe algebraic situation in G = Gal(K/Q). Same notation as
before:

• (χ1, χ2, χ3) basis of X(G) corresponding to K1, K2, K3.
• (σ1, σ2, σ3) dual basis of G; c = σ1σ2σ3 (complex conjugation).
•K0 4-th quadratic imaginary field ↔ χ0 = χ1χ2χ3.
•Hi = Kerχi.
•Ni =

∑
g∈Hi g, N =

∑
g∈G g.

Definition 13. A CM type of (G, c) is a section of the projection G →
G/〈c〉.

CM-types ↔ elements x ∈ N[G] such that (1 + c)x = N .



Lemma 14. Up to multiplication by an element of G, the distinct CM
types of (G, c) are given by Ni (i = 0, . . . , 3) and ρ = 1 + σ1 + σ2 + σ3.

(Proof: combinatorial computations.)

Then ρ defines the abelian variety A of Theorem 9.



Relation
N1 + N2 + N3 + cN0 = 2ρ + N

⇒ relation between Weil numbers:

(1) α1α2α3α
c
0 = ζqβ2

αi↔ Ei, β ↔ A, ζ root of unity.

(So Lemma 11 is false in this case!) But also:

cρ + σ1ρ + σ2ρ + σ3ρ = 2N0 + N

hence

(2) βc+σ1+σ2+σ3 = ζ ′qα2
0.

Similar “mirror relations” found by Mestre for two 4-dimensional simple
abelian varieties over F2 (with different and non-Galois fields of endomor-
phisms!)



To get a “new” Hodge (or Tate) class: (1) and Hodge analogue shows
that Ψ2H1(A) ⊂ H2(A2) is direct summand of H4(B)(1) (recall: B =∏3
i=0Ei).

(Since A is CM/ordinary, think of H1(A) as representation of a torus: then
Ψ2H1(A) makes sense as a representation. Over C, even makes sense as
numerical motive!)

Symmetrically, Ψ2H1(B) direct summand of H4(A)(1) by (2) (and Hodge
analogue).



Mumford-Tate groups:

MT(A×B)
p2−→ MT(B)

p1

y
MT(A)

p1, p2 isogenies of degree 2! (computation within Z[G]).

⇒ rk MT(A) = rk MT(B) = 5. Easy: rkL(A) = 5; hence MT(A) = L(A)
and HC holds for A and its powers. Similarly, P (A) = L(A) over Fq.

On the other hand, L(A×B) = L(A)×GmL(B), much bigger than MT(A×
B). . .
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