# On the generalised Hodge and Tate conjectures for products of elliptic curves 

Bruno Kahn
Cohomological realizations of motives
BIRS, 7-12 December 2014.

## 1. Review of the generalised conjectures

1.1. The Hodge and Tate conjectures. $k$ field, $X / k$ smooth projective variety, $H^{*}$ Weil cohomology theory with coefficients in $F$ : cycle class map

$$
C H^{n}(X) \otimes F \xrightarrow{\mathrm{cl}^{n}} H^{2 n}(X)(n)(n \geq 0) .
$$

Hodge conjecture (HC): $k=\mathbf{C}, H=H_{B}(F=\mathbf{Q})$ :

$$
\operatorname{Im~cl}^{n}=\{(n, n) \text {-classes }\} .
$$

Tate conjecture (TC): $k=\mathbf{F}_{q}, H=l$-adic cohomology $\left(F=\mathbf{Q}_{l}\right)$ :

$$
\operatorname{Im~cl}^{n}=\{\text { Galois invariant classes }\}
$$

(We write $H_{l}^{n}(X):=H_{\text {ét }}^{n}\left(X, \mathbf{Q}_{l}\right)$ for $l$-adic cohomology, $l \nmid q$.)

For the generalised conjectures, need coniveau filtration:

$$
\begin{aligned}
N^{r} H^{n}(X) & =\bigcup_{\operatorname{codim}_{X}(Z) \geq r} \operatorname{Im}\left(H_{Z}^{n}(X) \rightarrow H^{n}(X)\right) \\
& =\bigcup_{\operatorname{codim}_{X}(Z) \geq r} \operatorname{Ker}\left(H^{n}(X) \rightarrow H^{n}(X-Z)\right)
\end{aligned}
$$

Remark 1. $n=r / 2: N^{r} H^{2 r}(X)=\operatorname{Imcl}{ }^{r}$ by semi-purity.

## Theorem 2 (Deligne).

$$
\begin{aligned}
N^{r} H_{B}^{i}(X) & =\bigcup_{f: Y \rightarrow X} \operatorname{Im}\left(H_{B}^{i-2 r}(Y)(-r) \xrightarrow{f_{*}} H_{B}^{i}(X)\right) \\
N^{r} H_{l}^{i}(X) & =\bigcup_{f: Y \rightarrow X} \operatorname{Im}\left(H_{l}^{i-2 r}(Y)(-r) \xrightarrow{f_{*}} H_{l}^{i}(X)\right)
\end{aligned}
$$

where $f: Y \rightarrow X$ runs through morphisms of smooth projective varieties such that $\operatorname{dim} X-\operatorname{dim} Y=r$.

Non-trivial theorem! Uses mixed Hodge theory over $\mathbf{C}$, and Weil II over $\mathbf{F}_{q}$ (plus de Jong).

Variant with correspondences:

$$
N^{r} H^{i}(X)=\bigcup_{\gamma \in \operatorname{Corr}^{r}(X, Y)} \operatorname{Im}\left(H^{i-2 r}(Y)(-r) \xrightarrow{\gamma^{*}} H^{i}(X)\right)
$$

$\operatorname{Corr}^{r}(X, Y)=C H^{\operatorname{dim} Y-r}(X \times Y) \otimes F$.
1.2. The generalised conjectures of Grothendieck.

Generalised Hodge conjecture (GHC): If $k=\mathbf{C}, N^{r} H_{B}^{i}(X)$ is the largest Hodge substructure of $H_{B}^{i}(X)$ which is effective of coniveau $\geq r$.
Generalised Tate conjecture (GTC): If $k=\mathbf{F}_{q}, N_{\overline{\mathbf{F}}_{q}}^{r} H_{l}^{i}(X)$ is the largest Galois submodule of $H_{l}^{i}(X)$ in which all eigenvalues of [the geometric] Frobenius are algebraic integers divisible by $q^{r}$.
(Need to take coniveau filtration over $\overline{\mathbf{F}}_{q}$, not over $\mathbf{F}_{q}$ !)
In GHC, a pure Hodge structure $V$ is effective of coniveau $\geq r$ if all its Hodge numbers $(p, q)$ verify $p \geq r, q \geq r$. This is Grothendieck's corrected form of Hodge's general conjecture. The generalised Tate conjecture appears in [Brauer III, 10.3].

By Remark 1, GHC $\Rightarrow \mathrm{HC}$ and GTC $\Rightarrow$ TC. "Essential surjectivity results" imply converse implications:

- Over $\mathbf{F}_{q}$, Honda's theorem implies (TC $\Rightarrow$ GTC).
- Over $\mathbf{C}$, theorem of Hazama-Abdulali implies ( $\mathrm{HC} \Rightarrow \mathrm{GHC}$ ) for $X$ 's such that $H_{B}^{*}(X)$ is purely of CM type.

Honda's theorem: : for any Weil number $\alpha$, there exists an abelian $\mathbf{F}_{q}$-variety $A$ such that $\alpha$ is an eigenvalue of Frobenius acting on $H_{l}^{1}(A)$.

Hazama-Abdulali theorem: for any effective (polarisable) Hodge structure $H$ of weight $n$ of CM type, there exists an abelian variety $A$ of CM type such that $H$ is a direct summand of $H_{B}^{n}(A)$.
(Serre proved this previously, but only up to a twist.)

Precise statements:
Theorem 3. $k=\mathbf{F}_{q}$ : assume Frobenius action on $H_{l}^{n}(X)$ is semisimple (e.g., $X=$ abelian variety). If $T C$ holds in codimension $n-r$ for all products $A \times X, A$ abelian variety, then $G T C$ holds for $N^{r} H_{l}^{n}(X)$.

Theorem 4. $k=\mathbf{C}$ : assume that the Hodge structure $H_{B}^{n}(X)$ is of CM type (e.g., $X=C M$ abelian variety of CM type). If HC holds in codimension $n-r$ for all products $A \times X, A$ abelian variety of $C M$ type, then $G H C$ holds for $N^{r} H_{B}^{n}(X)$.

Theme of the talk: can we make Theorems 3 and 4 effective?

Idea: test on products of elliptic curves $X=\prod E_{i}$ because
$\bullet k=\mathbf{C}: \mathrm{HC}$ is true for $X$ by Tate-Imai-K. Murty.

- $k=\mathbf{F}_{q}$ : TC is true for $X$ by Spieß.

Principle: given $X=\prod E_{i}$, find out exactly what abelian varieties $A$ show up in Theorems 3 and 4. If we get only products of elliptic curves, we win. If not, get new (and interesting) problem.
The point: this is very computable!

## 2. Elliptic curves in general position

Definition 5. $S=\left(E_{1}, \ldots, E_{m}\right)$ family of elliptic curves over a field $F ; \bar{S}$ set of isogeny classes of $S$, and $\bar{S}_{0} \subseteq \bar{S}$ subset consisting of

- CM isogeny classes if char $F=0$;
- ordinary isogeny classes if char $F>0$.
$K_{1}, \ldots, K_{n}$ the endomorphism fields of elements of $\bar{S}_{0}$ (quadratic imaginary). We say that $S$ is in general position if the $K_{i}$ are linearly disjoint over $\mathbf{Q}$.

Lemma 6. If $n \leq 3$ in Definition 5, then $S$ is in general position.
Proof. Clear for $n \leq 2$. For $n=3, K_{3}$ cannot lie in the biquadratic extension $L=K_{1} K_{2}$, as the third quadratic subfield of $L$ is real.

Theorem 7. a) $E_{1}, \ldots, E_{m}$ elliptic curves in general position over $\mathbf{F}_{q}$. Then $G T C$ holds for $X=\prod E_{i}$.
b) $E_{1}, \ldots, E_{m}$ elliptic curves in general position over $\mathbf{C}$. Then $G H C$ holds for $X=\prod E_{i}$.
b) proven by Abdulali in case all $E_{i}$ are CM.

Corollary 8. GTC (resp. GHC) holds for $N^{1} H^{3}(X)$ for any product $X$ of elliptic curves.

## 3. Four elliptic curves in special position

$K_{1}, K_{2}, K_{3}$ distinct imaginary quadratic fields, $K=K_{1} K_{2} K_{3}:[K: \mathbf{Q}]=8$ and $K$ contains exactly one other imaginary quadratic field $K_{0}$.
$K_{i} \leftrightarrow$ unique isogeny class $E_{i}$ of CM elliptic curves. Reducing mod $p$ yields 4 isogeny classes of ordinary elliptic curves over $\overline{\mathbf{F}}_{p}$ for any prime $p$. We say that $\left(E_{0}, \ldots, E_{3}\right)$ are in special position, with associated CM field $K$.

Let $B=\prod_{i=0}^{3} E_{i}$. By Corollary 8 and TC (resp. HC) for $B$, first open case of GTC or GHC is for $N^{1} H^{4}(B)$.

Theorem 9. In the above situation, there exists an absolutely simple 4-dimensional abelian variety $A$, with complex multiplication by $K$, and a free $K \otimes F$-module $H \subset H^{6}\left(A^{2} \times B\right)$ of rank 1 consisting of Hodge (resp. Tate) cycles, such that GHC (resp. GTC) holds for $N^{1} H^{4}(B)$ if and only if $H$ consists of algebraic cycles.

Moreover, HC (resp. TC) holds for $A$ and all its powers.

## 4. Tannakian review

4.1. $\quad$ The Hodge realisation. $k=\mathbf{C}$ : homological equivalence $=n u-$ merical equivalence for abelian varieties (Lieberman). Hence thick subcategory $\mathcal{M}_{\text {num }}^{\text {ab }}$ of pure numerical motives $\mathcal{M}_{\text {num }}$ generated by motives of abelian varieties is Tannakian.
String of Tannakian categories and $\otimes$-functors:

$$
\langle\mathbb{L}\rangle \subset \operatorname{Lef} \subset \mathcal{M}_{\mathrm{num}}^{\mathrm{ab}} \rightarrow \mathrm{PHS}^{*} \rightarrow \operatorname{Vec}_{\mathbf{Q}}^{*}
$$

$\mathbb{L}=$ Lefschetz motive, Lef $=$ subcategory of correspondences defined by intersection products of divisor classes (Milne), $\mathbf{P H S}^{*}=$ graded polarisable Hodge structures, $\mathbf{V e c}_{\mathbf{Q}}^{*}=$ graded $\mathbf{Q}$-vector spaces.

Dually, string of Tannakian groups over $\mathbf{Q}$ :

$$
\mathbb{G}_{m} \xrightarrow{w} \mathrm{MT} \rightarrow G_{\mathrm{Mot}} \rightarrow L \xrightarrow{t} \mathbb{G}_{m}
$$

$w$ weight cocharacter, MT $=$ Mumford-Tate group, $G_{\text {Mot }}=$ motivic Galois group, $L=$ Lefschetz group, $t$ Tate character (composition $=-2$ ).
$A$ abelian variety:

$$
\mathbb{G}_{m} \stackrel{w^{-}}{\mathrm{MT}}(A) \hookrightarrow G_{\mathrm{Mot}}(A) \hookrightarrow L(A) \underbrace{\substack{\mathbb{G}_{m}^{\prime}}}_{t}
$$

So: $(\operatorname{MT}(A)=L(A)) \Longleftrightarrow \bigoplus_{n \geq 0} H_{B}^{2 n}\left(A^{i}\right)^{(n, n)}$ generated in degree 1 for any $i>0 \Rightarrow \mathrm{HC}$ for all powers of $A$.

Milne: $A \simeq{ }_{\mathbf{Q}} \prod A_{i}^{n_{i}}$ semi-simple decomposition of $A \Rightarrow(L(A), t) \simeq$ $\prod_{i}\left(L\left(A_{i}\right), t\right)$ (fibre product over characters $t$ ).

Case of products of elliptic curves:
(1) $E$ elliptic curve: $\mathrm{MT}(E)=L(E)$ (direct computation).
(2) $E_{1}, \ldots, E_{n} \quad n$
$\prod_{i}\left(\operatorname{MT}\left(E_{i}\right), t\right)$.
(3) $X$ product of elliptic curves: $\mathrm{MT}(X)=L(X)$.
4.2. The Tate realisation. $k=\mathbf{F}_{q}, H=H_{l}(l \nmid q)$. Here, "homological equivalence $=$ numerical equivalence" is open for abelian varieties (except Clozel's theorem for certain l's). So, Milne replaces the "motivic Galois group" by an ad hoc defined group:

$$
\mathbb{G}_{m} \stackrel{w}{\longrightarrow} P(A) \hookrightarrow M(A) \hookrightarrow L(A) \hookrightarrow \underbrace{\operatorname{End}^{0}(A)^{*} \times \mathbb{G}_{m}}_{t}
$$

- $L(A)(\mathbf{Q})=\left\{\alpha \in C(A)^{*} \mid \alpha \alpha^{\dagger} \in \mathbf{Q}^{*}\right\}: C(A)$ centre of $\operatorname{End}^{0}(A), \dagger$ restriction of any Rosati involution to $C(A)$;
- $M(A)=\{\alpha \in L(A) \mid \alpha$ acts trivially on cycles modulo numerical equivalence $\}$.
- $P(A)=$ Zariski closure of $\pi_{A}$, the Frobenius endomorphism of $A$.

Case of a product $X$ of elliptic curves: same as above $(P(X)=$ $L(X)$ ) thanks to Spieß's theorem:

Theorem 10. Let $n \geq 1$ and $\beta_{1}, \ldots, \beta_{2 n}$ Weil numbers of $X$ such that $\beta_{1} \ldots \beta_{2 n}=q^{n}$. Then, up to a permutation of $\{1, \ldots, 2 n\}$, we have $\beta_{2 i-1} \beta_{2 i}=\zeta_{i} q$ for $i=1, \ldots, n, \zeta_{i}$ roots of unity.
(Exercise: prove this along the same lines as over $\mathbf{C}$.)

## 5. Proof of Theorem 7 (Sketch)

$K_{1}, \ldots, K_{n}$ the imaginary quadratic fields corresponding to the ordinary $/ \mathrm{CM}$ isogeny classes of the $E_{i} ; K=K_{1} \ldots K_{n}$ compositum of the $K_{i}: G=G a l(K / \mathbf{Q}) \simeq(\mathbf{Z} / 2)^{n}$, with basis of characters $\left(\chi_{1}, \ldots, \chi_{n}\right)$ $\left(\chi_{i} \leftrightarrow K_{i}\right) .\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ dual basis of $G ; c=\sigma_{1} \ldots \sigma_{n}$ (complex conjugation). Set $H_{i}=\operatorname{Ker} \chi_{i}$.

The main lemma:
Lemma 11. For any $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in(\mathbf{Z} / 2)^{n}$,

$$
\bigcup_{i=1}^{n} c^{\varepsilon_{i}} H_{i} \neq G
$$

Proof. Clear if all $\varepsilon_{i}$ are 0 as $c$ does not belong to the LHS. General case: up to permutation, may assume $\varepsilon_{1}=\cdots=\varepsilon_{r}=0$ and $\varepsilon_{r+1}=\cdots=\varepsilon_{n}=1$. As we just saw, $g=\sigma_{1} \ldots \sigma_{r} \notin H_{1} \cup \cdots \cup H_{r}$. But $g \notin c H_{r+1} \cup \cdots \cup c H_{n}$, since $g c^{-1}=\sigma_{r+1} \ldots \sigma_{n}$.
$M$ simple direct summand of $H^{*}(X)\left(H=H_{l}\right.$ or $\left.H_{B}\right)$. May view $M$ as a simple representation of $P(X)$ or $\mathrm{MT}(X)$.

## Over $\mathbf{F}_{q}$ :

Lemma 12. $\beta_{1}, \ldots, \beta_{m}$ (some) Weil numbers attached to $X$.
a) If all $\beta_{i}$ are ordinary and no two of them are conjugate up to a root of unity, then the ideal $\left(\beta_{1} \ldots \beta_{m}\right) \subset O_{K}$ is not divisible by $(p)$.
b) In general, suppose

$$
\left(\beta_{1} \ldots \beta_{m}\right)=(q \beta)
$$

$\beta$ some algebraic integer. Then $\exists i \neq j$ such that

$$
\left(\beta_{i} \beta_{j}\right)=(q) .
$$

Sketch of proof:
$p \mid q$ is totally decomposed in $K$. Pick a prime divisor $\mathfrak{p}$ of $p$ in $O_{K}$, and let $\mathfrak{p}_{i}=\mathfrak{p} \cap K_{i} . \forall i \exists!\alpha_{i} \in K_{i}$ (Weil number) such that $\alpha_{i} O_{K_{i}}=\mathfrak{p}_{i}^{r}$; then

$$
\left(\alpha_{i}\right):=\alpha_{i} O_{K}=\mathfrak{p}^{r N_{i}}
$$

with

$$
N_{i}=\sum_{g \in H_{i}} g \in \mathbf{Z}[G]
$$

For a), by assumption, may write

$$
\beta_{1} \ldots \beta_{m}=\alpha_{1}^{m_{1} c^{\varepsilon_{1}}} \ldots \alpha_{n}^{m_{n} c^{\varepsilon_{n}}}
$$

for some $\varepsilon_{i} \in \mathbf{Z} / 2$ and some integers $m_{i} \geq 0$. Thus

$$
\left(\beta_{1} \ldots \beta_{m}\right)=\mathfrak{p}^{r\left(m_{1} c^{\varepsilon_{1}} N_{1}+\cdots+m_{n} c^{\varepsilon_{n}} N_{n}\right) .}
$$

By Lemma 11, the inequality

$$
N \leq r\left(m_{1} c^{\varepsilon_{1}} N_{1}+\cdots+m_{n} c^{\varepsilon_{n}} N_{n}\right), \quad N:=\sum_{g \in G} g
$$

is false in $\mathbf{N}[G]$ (for the partial ordering given componentwise). Since $(p)=$ $\mathfrak{p}^{N}$, this concludes.
For b), need to handle supersingular Weil numbers, which is not hard.

Lemma 12 implies: $M$ is (up to a twist) a direct summand of $H_{l}^{*}(Y)$ with $Y=\prod_{i \in J} E_{i}, J \subseteq\{1, \ldots, m\}$, hence can apply TC to $Y \times X$. This proves Theorem 7.

## Over C: $\operatorname{MT}(X)=\prod_{s \in \bar{S}}\left(\operatorname{MT}\left(E_{S}\right), t\right)=\prod_{s \in \bar{S}_{0}}\left(\mathrm{MT}\left(E_{S}\right), t\right) \times_{\mathbb{G}_{m}}$ $\prod_{s \in \bar{S}-\bar{S}_{0}}\left(\mathrm{MT}\left(E_{S}\right), t\right)$.

- $s \in \bar{S}_{0} \leftrightarrow K_{i}: \operatorname{MT}\left(E_{s}\right)=R_{K_{i} / \mathbf{Q}^{\mathbb{G}_{m}}}$.
- $s \notin \bar{S}_{0}: \operatorname{MT}\left(E_{s}\right) \simeq G L_{2}$.

Have $M \otimes \overline{\mathbf{Q}}=\bigoplus_{\alpha} W^{\alpha}, W^{\alpha}$ absolutely simple, permuted by $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ and

$$
W^{\alpha}=\underset{s \in \bar{S}}{\otimes} W_{s}^{\alpha}
$$

$W_{s}^{\alpha}$ absolutely simple representation of $\mathrm{MT}\left(E_{s}\right)$,
If $s \notin \bar{S}_{0}$ : $W_{s}^{\alpha}$ of the form $\operatorname{Sym}^{a}\left(M_{s}\right) \otimes \operatorname{det}\left(M_{s}\right)^{b}, M_{s}=H^{1}\left(E_{s}\right)$ : defined over $\mathbf{Q}$. Therefore $W_{s}^{\alpha}=W_{s}$ independent of $\alpha$ and

$$
M=M_{1} \otimes M_{2}
$$

with

- $M_{1}$ simple representation of $\prod_{s \in \bar{S}_{0}}\left(\mathrm{MT}\left(E_{s}\right), t\right)$,
- $M_{2}=\otimes_{s \notin \bar{S}_{0}} W_{s}$.

Moreover $\operatorname{det}\left(M_{s}\right)=\mathbf{Q}(-1)$ and coniveau of $W_{s}=b$ (because $(0, a)$ is a Hodge number of $\left.\operatorname{Sym}^{a}\left(M_{s}\right)\right)$. And $\operatorname{Sym}^{a}\left(M_{s}\right)$ direct summand of $H_{B}^{a}\left(E_{s}^{a}\right)$.

Hence reduced to handle $M_{1}$ :

- $E=\operatorname{End}\left(M_{1}\right)=$ CM subfield of $K$ and $\operatorname{dim}_{E} M_{1}=1$;
- $M_{1} \leftrightarrow \varphi: \Sigma_{E} \rightarrow \mathbf{Z}$ such that $\varphi(x)+\varphi(c x)=n\left(\Sigma_{E}=\operatorname{Hom}_{\mathbf{Q}}(E, \overline{\mathbf{Q}})\right.$, $n=$ weight of $M_{1}$ ).

Lift $\varphi$ to $\Sigma_{K}$ and conclude by similar use of Lemma 11 as over $\mathbf{F}_{q}$.
(Question: give uniform group-theoretic proof over $\mathbf{C}$ and $\mathbf{F}_{q}$.)

## 6. Proof of Theorem 9 (Sketch)

Will only describe algebraic situation in $G=G a l(K / \mathbf{Q})$. Same notation as before:

- $\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$ basis of $X(G)$ corresponding to $K_{1}, K_{2}, K_{3}$.
- $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ dual basis of $G ; c=\sigma_{1} \sigma_{2} \sigma_{3}$ (complex conjugation).
- $K_{0}$ 4-th quadratic imaginary field $\leftrightarrow \chi_{0}=\chi_{1} \chi_{2} \chi_{3}$.
- $H_{i}=\operatorname{Ker} \chi_{i}$.
- $N_{i}=\sum_{g \in H_{i}} g, N=\sum_{g \in G} g$.

Definition 13. A $C M$ type of $(G, c)$ is a section of the projection $G \rightarrow$ $G /\langle c\rangle$.

CM-types $\leftrightarrow$ elements $x \in \mathbf{N}[G]$ such that $(1+c) x=N$.

Lemma 14. Up to multiplication by an element of $G$, the distinct $C M$ types of $(G, c)$ are given by $N_{i}(i=0, \ldots, 3)$ and $\rho=1+\sigma_{1}+\sigma_{2}+\sigma_{3}$. (Proof: combinatorial computations.)

Then $\rho$ defines the abelian variety $A$ of Theorem 9 .

Relation

$$
N_{1}+N_{2}+N_{3}+c N_{0}=2 \rho+N
$$

$\Rightarrow$ relation between Weil numbers:

$$
\begin{equation*}
\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{0}^{c}=\zeta q \beta^{2} \tag{1}
\end{equation*}
$$

$\alpha_{i} \leftrightarrow E_{i}, \beta \leftrightarrow A, \zeta$ root of unity.
(So Lemma 11 is false in this case!) But also:

$$
c \rho+\sigma_{1} \rho+\sigma_{2} \rho+\sigma_{3} \rho=2 N_{0}+N
$$

hence

$$
\begin{equation*}
\beta^{c+\sigma_{1}+\sigma_{2}+\sigma_{3}}=\zeta^{\prime} q \alpha_{0}^{2} \tag{2}
\end{equation*}
$$

Similar "mirror relations" found by Mestre for two 4-dimensional simple abelian varieties over $\mathbf{F}_{2}$ (with different and non-Galois fields of endomorphisms!)

To get a "new" Hodge (or Tate) class: (1) and Hodge analogue shows that $\Psi^{2} H^{1}(A) \subset H^{2}\left(A^{2}\right)$ is direct summand of $H^{4}(B)(1)$ (recall: $B=$ $\left.\prod_{i=0}^{3} E_{i}\right)$.
(Since $A$ is CM/ordinary, think of $H^{1}(A)$ as representation of a torus: then $\Psi^{2} H^{1}(A)$ makes sense as a representation. Over $\mathbf{C}$, even makes sense as numerical motive!)

Symmetrically, $\Psi^{2} H^{1}(B)$ direct summand of $H^{4}(A)(1)$ by (2) (and Hodge analogue).

## Mumford-Tate groups:

## $\mathrm{MT}(A \times B) \xrightarrow{p_{2}} \operatorname{MT}(B)$ <br> $p_{1}$ <br> $\operatorname{MT}(A)$

$p_{1}, p_{2}$ isogenies of degree 2 ! (computation within $\mathbf{Z}[G]$ ).
$\Rightarrow \operatorname{rkMT}(A)=\operatorname{rkMT}(B)=5$. Easy: $\operatorname{rk} L(A)=5$; hence $\operatorname{MT}(A)=L(A)$ and HC holds for $A$ and its powers. Similarly, $P(A)=L(A)$ over $\mathbf{F}_{q}$.

On the other hand, $L(A \times B)=L(A) \times_{\mathbb{G}_{m}} L(B)$, much bigger than MT $(A \times$ B)...

