
Nagoya Math. J., (2020), 1–31
DOI 10.1017/nmj.2020.15

TOPOLOGIES ON SCHEMES AND MODULUS PAIRS

BRUNO KAHN and HIROYASU MIYAZAKI

Abstract. We study relationships between the Nisnevich topology on smooth

schemes and certain Grothendieck topologies on proper and not necessarily

proper modulus pairs, which were introduced in previous papers. Our results

play an important role in the theory of sheaves with transfers on proper

modulus pairs.

Introduction

In [3], a theory of sheaves on nonproper modulus pairs has been studied as the first step

to establish the theory of motives with modulus, which is to be a non-A1-invariant version

of Voevodsky’s category of motives given in [13]. This repaired the first part of the mistake

in [5] (the ancestor of the theory) mentioned in the introduction of [3].

In [4], a theory of sheaves on proper modulus pairs is developed as the second step,

thus repairing the second part of the mistake. The main point of these repairs is to prove

that the categories MNST and MNST of [5], which had been defined in an ad hoc way,

are really categories of sheaves (with transfers) for suitable Grothendieck topologies having

good formal properties.

The aim of the present paper is to provide some foundational results, which will be the

key building blocks of the theory in [4]. To explain our aim in more detail, we first recall

basic notions of modulus pairs from [3]. We fix a base field k and write Sch (resp. Sm)

for the category of separated k-schemes of finite type (resp. its full subcategory of smooth

k-schemes).

A modulus pair is a pair

M = (M,M∞),

where M ∈ Sch and M∞ is an effective Cartier divisor on M such that the complement of

the divisor

Mo :=M −M∞

belongs to Sm. These conditions imply that M is reduced and Mo is dense

[3, Remark 1.1.2(3)]. We call M (resp. Mo) the ambient space of M (resp. the interior

of M).

A morphism f :M →N of modulus pairs is a morphism fo :Mo→No in Sm, which

satisfies the following admissibility condition: let Γ be the graph of the rational map M 99K

N defined by fo, and let ΓN → Γ be the normalization, whence a diagram M
a←− ΓN

b−→N .

Then a is proper and we have a∗M∞ > b∗N∞, where a∗M∞ and b∗N∞ denote the pullbacks

of effective Cartier divisors (see [3, Definitions 1.1.1, 1.3.2, 1.3.3]). The composition of
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2 B. KAHN AND H. MIYAZAKI

morphisms of modulus pairs is given by that of morphisms in Sm. Thus, we obtain a

category MSm of modulus pairs.

A modulus pair M is proper if M is proper over k. We write MSm for the full subcategory

of MSm which consists of proper modulus pairs. It is our main object of study here.

Recall that the Nisnevich topology on Sm may be understood by means of a certain

cd-structure in the sense of Voevodsky [14], which is complete and regular (see [14]). In [3],

it is shown that MSm also admits a complete and regular cd-structure, parallel to the

previous one and denoted by PMV. In [9], a more subtle cd-structure PMV is defined on the

category MSm, and shown to be complete and regular as well. We recall in Section 1 the

definitions of all these cd-structures.

This paper studies the relationship between the cd-structures PMV and PMV. Our main

theorems are too technical to be stated in this introduction; here they are nevertheless:

(1) Theorem 1.5.6 (cofinality theorem);

(2) Theorem 2.1.4 (existence of partial compactifications).

Let us roughly explain the contents of Theorem 1.5.6. Given a complete and regular cd-

structure, distinguished squares yield long exact “Mayer–Vietoris” sequences for sheaves in

the associated topology. Take a distinguished square S in PMV. By Proposition 1.5.4, it may

be embedded into a commutative square T in MSm by a collection of “compactifications”

(see Definition 1.5.1). But T has no reason to be in PMV. Theorem 1.5.6 says that, under a

mild normality condition on S, one can always lift the embedding S ↪→ T to an embedding

S→ T ′ with T ′ ∈ PMV.

Endow MSm and MSm with the Grothendieck topologies associated to these cd-

structures, and Sm with the Nisnevich topology. Then the following result is a corollary of

Theorems 1.5.6 and 2.1.4.

Theorem 1. The natural forgetful functors

ωs : MSm→ Sm; M 7→Mo,

ωs : MSm→ Sm; M 7→Mo

and the left adjoint to ωs

λs : Sm→MSm; X 7→ (X, ∅)

are continuous and cocontinuous in the sense of [SGA4, Exposé III]. Moreover, the inclusion

functor

τs : MSm→MSm; M 7→M

is continuous.

(See Section A.1 for a review of continuity and cocontinuity.)

Remark 1. On the other hand, τs is not cocontinuous; see Remark 5.2.1. Rather, the

content of Theorem 1.5.6 is, morally, that its pro-left adjoint τ !
s is continuous for a natural

topology on pro-MSm extending that of MSm. However, developing this viewpoint would

force us to get into unpleasant categorical and set-theoretic issues, and we prefer to skip it

here.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nmj.2020.15
Downloaded from https://www.cambridge.org/core. IP address: 77.207.228.156, on 25 Oct 2020 at 06:09:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nmj.2020.15
https://www.cambridge.org/core


TOPOLOGIES ON SCHEMES AND MODULUS PAIRS 3

This paper is organized as follows. In Section 1, we recall the definitions of the cd-

structure on MSm from [3] and that on MSm from [9]. Moreover, we state Theorem 1.5.6.

In Section 2, we state and prove Theorem 2.1.4. In Section 3, we prove Theorem 1.5.6 in a

special case. In Section 4, we complete the proof of Theorem 1.5.6. In Section 5, we prove

Theorem 1. The appendices provide technical facts needed in the text.

§1. Recollection on cd-structures; the cofinality theorem

In this section, we recall definitions of the cd-structures on MSm and MSm

from [3, 9]. We assume that the reader is familiar with [14], part of whose results is

summarized in [3, A.8].

1.1 The cd-structure on Sm

First, recall the Nisnevich cd-structure on Sm. The following notation is useful.

Definition 1.1.1. Let Sq denote the product category [1]2 = {0→ 1}2. For any

category C, define CSq as the category of functors Sq→C. An object of CSq is a commutative

square in C, and a morphism of CSq is a morphism of commutative squares.

An object S ∈ CSq will often be depicted as

(1.1.1)

S(00)
vS //

qS
��

S(01)

pS
��

S(10)
uS // S(11).

Definition 1.1.2. An elementary Nisnevich square is an object of SchSq of the form

W //

��

V

��
U // X,

which satisfies the following properties:

(1) The square is Cartesian.

(2) The horizontal morphisms are open immersions.

(3) The vertical morphisms are étale.

(4) The morphism (V −W )red→ (X − U)red is an isomorphism.

Elementary Nisnevich squares whose vertices are in Sm define a complete and regular cd-

structure on Sm [15]. Moreover, the Grothendieck topology associated to the cd-structure

is the Nisnevich topology.

1.2 The cd-structure on MSm

Next, we recall the definition of MV-squares from [3]. We start from the following

definition.

Definition 1.2.1.

(1) A morphism f :M →N is ambient if fo :Mo→No extends (uniquely) to a morphism

f :M →N .
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4 B. KAHN AND H. MIYAZAKI

(2) An ambient morphism f :M →N is minimal if M∞ = f
∗
N∞.

(3) Let MSmfin (resp. MSmfin) be the (nonfull) subcategory of MSm (resp. MSm) whose

objects are the same as MSm (resp. MSm) and morphisms are ambient morphisms.

Definition 1.2.2. An MVfin-square is an object S ∈ (MSmfin)Sq of the form (1.1.1)

such that we have the following:

(1) All morphisms that appear in S are minimal.

(2) The square in Sch

S(00)
vS //

qS
��

S(01)

pS
��

S(10)
uS // S(11)

is an elementary Nisnevich square.

By [3, Proposition 3.2.2], the MVfin-squares form a complete and regular cd-structure on

MSmfin.

Definition 1.2.3. An MV-square is an object S ∈MSmSq, which belongs to the

essential image of the natural (nonfull) functor

(MSmfin)Sq→MSmSq.

By [3, Theorem 4.1.2], the MV-squares form a complete and regular cd-structure on

MSm, denoted by PMV.

1.3 The cd-structure on MSm

Finally, we recall the definition of MV-squares from [9, Section 4]. Recall that for any

diagram M1→N ←M2 in MSm (resp. in MSm) such that Mo
1 ×No Mo

2 ∈ Sm, the fiber

product M1 ×N M2 is representable in MSm (resp. in MSm) (see [3, Section 1.10] or

[9, Section 2.2]) and coproducts exist (see [9, Definition 3.1.2]).

Theorem 1.3.1. (Off-diagonals; see [9, Theorem 3.1.3]) For any morphism f :M →N

in MSm such that fo :Mo→No is étale, there exists a canonical decomposition in MSm

M ×N M ∼=M tOD(f),

where t denotes the coproduct in MSm, and the morphism M →M ×N M is the diagonal.

If M and N are proper modulus pairs, so is OD(f).

Moreover, if S is a commutative square in MSm of the form (1.1.1) such that

(1) uo
S and vo

S are open immersions and

(2) po
S and qo

S are étale,

then the morphism vS × vS : S(00)×S(10) S(00)→ S(01)×S(11) S(01) induces a morphism

OD(qT )→OD(pT )

in MSm.
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TOPOLOGIES ON SCHEMES AND MODULUS PAIRS 5

Definition 1.3.2. (See [9, Definition 4.2.1]) Let T be an object of MSmSq of the form

(1.3.1)

T (00)
vT //

qT
��

T (01)

pT
��

T (10)
uT // T (11).

Then T is called an MV-square if the following conditions hold:

(1) T is a pullback square in MSm.

(2) There exist an MV-square S such that S(11) ∈MSm and a morphism S→ T in

MSmSq such that the induced morphism So→ T o is an isomorphism in SmSq and

S(11)→ T (11) is an isomorphism in MSm. In particular, T o is an elementary Nisnevich

square.

(3) OD(qT )→OD(pT ) is an isomorphism in MSm.

The MV-squares form a complete and regular cd-structure on MSm, denoted by PMV

(see [9, Theorems 4.3.1, 4.4.1]).

1.4 A few lemmas

In this subsection, we collect some lemmas that were proven in previous works and will

be used repeatedly in the sequel.

Lemma 1.4.1. [6, Lemma 2.2] Let f :X → Y be a surjective morphism of normal

integral schemes, and let D, D′ be two Cartier divisors on Y . If f∗D′ 6 f∗D, then D′ 6D.

Lemma 1.4.2. [8, Lemma 3.14] Let X be a quasicompact scheme and let D, E be Cartier

divisors on X with E > 0. Assume that the restriction of D to the open subset X \ E ⊂X
is effective. Then, there exists a natural number n0 > 1 such that D + n · E is effective for

any n> n0.

Lemma 1.4.3. [3, Lemma 1.3.7] Let f :X → Y be a separated morphism of schemes,

and let U ⊂X be an open dense subset. Assume that the image f(U) of U is open in

Y , and the induced morphism U → f(U) is proper (e.g., an isomorphism). Then, we have

f−1(f(U)) = U .

Lemma 1.4.4. [3, Lemma 1.6.3] Let f : U →X be an étale morphism of quasicompact

and quasiseparated integral schemes. Let g : V → U be a proper birational morphism, T ⊂ U
be a closed subset such that g|U−T is an isomorphism, and S be the closure of f(T ) in X.

Then there exists a closed subscheme Z ⊂X supported in S such that U ×X BlZ(X)→ U

factors through V .

1.5 The cofinality theorem

Recall the following notion from [3, Definition 1.8.1].

Definition 1.5.1. For M ∈MSm, let Comp(M) be the category whose objects are

morphisms j :M →N in MSm such that

(1) N ∈MSm,

(2) j is ambient and minimal,

(3) the morphism j :M →N is a dense open immersion, and
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6 B. KAHN AND H. MIYAZAKI

(4) there are effective Cartier divisors M∞N and C on N such that N∞ =M∞N + C and

|C|=N − j(M),

and morphisms (j1 :M →N1)→ (j2 :M →N2) are morphisms f :N1→N2 in MSm such

that f ◦ j1 = j2. Note that for any (j :M →N) ∈Comp(M), the morphism jo :Mo→No

is an isomorphism in Sm. By [3, Lemma 1.8.2], the category Comp(M) is a cofiltered

ordered set.

Example 1.5.2. Take M = (A2, 0×A1), N1 = (P1 ×P1, 0×P1 +∞×P1 + P1 ×
∞), and N2 = (blowup of P1 ×P1 at ∞×∞, pullback of N∞1 ). Then N1 and N2 are

both in Comp(M), and N2 dominates N1.

We give a similar definition for squares.

Definition 1.5.3. Let S be an object in MSmSq. Define Comp(S) as the category

whose objects are morphisms j : S→ T in MSmSq such that for each (ij) ∈ Sq, the

morphism j(ij) : S(ij)→ T (ij) belongs to Comp(S(ij)), and whose morphisms (j1 : S→
T1)→ (j2 : S→ T2) are morphisms f : T1→ T2 in MSmSq such that f ◦ j1 = j2.

Proposition 1.5.4. For any S ∈MSmSq, the category Comp(S) is cofiltered and

ordered.

Proof. Let τs : MSm→MSm be the inclusion functor. Then τs admits a pro-left

adjoint [SGA4, I.8.11] τ !
s : MSm→ pro-MSm, which is represented by Comp, that is,

we have

τ !
s(M) = “ lim←−

(M→N)∈Comp(M)

”N

(see [3, Remark 1.8.5]). Thus, the assertion follows from Lemma C.1.1, applied to C = MSm,

C′ = MSm, u= τs, v = τ !
s, I = Comp, and ∆ = Sq.

Definition 1.5.5. For any S ∈MSmSq, define CompMV(S) as the full subcategory

Comp(S) consisting of objects S→ T such that T is an MV-square.

The main result of this paper is the following.

Theorem 1.5.6. Let S be an MVfin-square with S(11) normal. Then, for any (S→ T ) ∈
Comp(S), there exists (S→ T ′) ∈CompMV(S), which dominates (S→ T ) in Comp(S),

and such that T ′(11)→ T (11) is ambient and minimal (hence an isomorphism in MSm).

In particular, CompMV(S) is cofinal in Comp(S).

The proof of Theorem 1.5.6 will be given in Sections 3 and 4.

§2. Partial compactifications

2.1 Definition and statement

Definition 2.1.1. Let S be an MVfin-square.

(1) We say that S is normal if S(11) is normal. (Note that this implies that S(ij) is normal

for all i, j ∈ {0, 1}).
(2) An MVfin-square is called partially compact if S(11) ∈MSm.

(3) A partial compactification of S is a morphism S→ S′ in (MSmfin)Sq such that

(a) S′ is a partially compact MVfin-square,
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TOPOLOGIES ON SCHEMES AND MODULUS PAIRS 7

(b) the morphism S(11)→ S′(11) belongs to Comp(S(11)),

(c) S(ij)→ S
′
(ij) are open immersions, and

(d) S(ij)
∼−→ S

′
(ij)×

S
′
(11)

S(11).

Example 2.1.2. The simplest case is when S is given by a Nisnevich square of schemes

with empty divisors (and this is the essential case).

Take (in characteristic 6= 2)

S(11) = (A1 − {0}, ∅)

S(10) = (A1 − {0, 1}, ∅)

S(01) = (A1 − {0,−1}, ∅)

S(00) = (A1 − {0, 1,−1}, ∅)

with S(01)→ S(11) the square map t 7→ t2 (and the horizontal maps the inclusions). Then

S is an MVfin-square, as it is a distinguished Nisnevich square if we forget the empty divisor.

A partial compactification S→ S′ is given by

S′(11) = (P1, 0 +∞)

S′(10) = (P1 − {1}, 0 +∞)

S′(01) = (A1 − {0,−1}, ∅)

S′(00) = (A1 − {0, 1,−1}, ∅).

Remarks 2.1.3. (1) If S→ S′ is a partial compactification, then the isomorphism in

Condition (d) induces an isomorphism S(ij)
∼−→ S′(ij)×S′(11) S(11) in MSmfin, where the

right-hand side denotes the fiber product in MSmfin, which exists by the minimality of the

projection maps [3, Corollary 1.10.7].

(2) If S→ S′ is a partial compactification, then the induced morphism S(ij)o→
S′(ij)o is an isomorphism for all i, j ∈ {0, 1}. This is true for i= j = 1 by Condition

(2)(b). For other i, j, we need to prove S
′
(ij)− S(ij)⊂ |S′(ij)∞|. The left-hand side

equals the pullback of S
′
(11)− S(11) by the map S

′
(ij)→ S

′
(11) by Condition (2)

(d). Since S
′
(11)− S(11)⊂ |S′(11)∞| by the previous case, we obtain S

′
(ij)− S(ij)⊂

|S′(11)∞ ×
S
′
(11)

S
′
(ij)|= |S′(ij)∞|, where the last equality follows from the minimality of

S′(ij)→ S(11).

The main result of this section is the following theorem.

Theorem 2.1.4. For any MVfin-square S and for any compactification T ∈
Comp(S(11)), there exists a partial compactification S→ S′ such that S′(11) ∈
Comp(S(11)) dominates T , and the morphism S′(11)→ T is minimal.

The proof of Theorem 2.1.4 will be given in the following subsections.

2.2 The Zariski case

Before going into the proof of the general case, we will describe the proof in the case that

S is a Zariski square, that is, that pS : S(01)→ S(11) is an open immersion. This subsection

is only used in the sequel as a guide for the reader.

Take any object (S(11)→ T ) ∈Comp(S(11)), and set Z1 := S(11)− S(10) and Z2 :=

S(01)− S(00). Let Zi be the closure of Zi in T for i= 1, 2.
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8 B. KAHN AND H. MIYAZAKI

2.2.1 Special case

If Z1 ∩ Z2 is empty, we set S
′
(10) := T − Z1, S

′
(01) := T − Z2, and S

′
(00) :=

S
′
(10) ∩ S′(01). Moreover, set S′(11) := T , S′(ij)∞ := S′(11)∞ ∩ S′(ij), and S′(ij) :=

(S
′
(11), S′(11)∞) for (ij) 6= (11). Then we obtain a partial compactification S→ S′, where

the maps S(ij)→ S′(ij) are induced by natural open immersions.

2.2.2 General case

In general, let π : T 1→ T be the blowup of T along Z1 ×T Z2. Then the closure of Z1 in T 1

and the closure of Z2 in T 1 do not intersect. Therefore, by applying the above construction

by replacing T with T1 := (T 1, π
∗T∞), we obtain a partial compactification of S.

The general case of Theorem 2.1.4 follows this strategy, with rather substantial compli-

cations.

2.3 A general construction

In this subsection, we make a preliminary construction for the proof of the general

case. Set Z1 := S(11)− S(10) and Z ′1 := S(01)− S(00). Since S is an elementary Nisnevich

square, the natural morphism Z ′1→ Z1 is an isomorphism, and we have Z ′1
∼= Z1 ×S(11)

S(01).

Contrary to the Zariski case, we cannot regard S(01) and S(00) as open subsets of T . So,

we take a compactification S(01)→R such that pS : S(01)→ S(11) extends to a morphism

p :R→ T of schemes over k,1 and set R := (R, R∞) := (R, p∗T∞). Thus we obtain a minimal

morphism p :R→ T .

In the Zariski case, we considered the closures of Z1 and Z2 in T and studied their

intersection. In the general case, we will consider closures in R.

We need the following elementary observation. Consider the open subscheme U :=

p−1(S(11)) of R. Then we have the commutative diagram

Z ′1
//

o
��

�

S(01) //

pS
��

U

}}

// R

p
��

Z1
// S(11) // T ,

where we regard Z ′1 and Z1 as reduced closed subschemes.

Lemma 2.3.1.

(1) The inclusion Z ′1 ⊂ U is a closed immersion.

(2) Z ′1 = p−1(Z1) ∩ S(01).

(3) Regard

p−1(Z1) := Z1 ×T R,

as a closed subscheme of U . Then there exists an open and closed subscheme Z3 of U

such that p−1(Z1) = Z ′1 t Z3.

1For example, take a compactification S(01) →R0 and define R as the graph of the rational map
R0 99K T .
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TOPOLOGIES ON SCHEMES AND MODULUS PAIRS 9

(4) Set Z2 := U − (Z3 t S(01)). Then Z2 is a closed subset of U . We endow Z2 with the

reduced scheme structure.

(5) The closed subschemes Z ′1, Z2, Z3 of U are disjoint from each other.

Proof. We prove (1). The composite Z ′1→ Z1→ S(11) is a proper morphism since

Z ′1→ Z1 is an isomorphism. Since it factors through U and since U → T is separated,

we conclude that Z ′1→ U is proper, hence a closed immersion.

(2) follows from the isomorphism Z ′1
∼= Z1 ×S(11) S(01).

We prove (3). (1) implies that Z ′1 is a closed subscheme of p−1(Z1). On the other hand,

Z ′1 is open also in p−1(Z1) by (2). Therefore, taking Z3 := p−1(Z1)− Z ′1, we finish the proof.

(4) immediately follows from (3).

(5) By construction, we have U − S(01) = Z2 t Z3 and Z ′1 ⊂ S(01). This finishes the

proof.

Remark 2.3.2. In the Zariski case, we have Z3 = ∅.

Let Z1 be the closure of Z1 in T . Moreover, let Z
′
1, Z2, Z3 be the closures of Z ′1, Z2, Z3

in R, respectively, endowed with their reduced scheme structures.

Lemma 2.3.3. Set V :=R− (Z2 ∪ Z3). Then we have

(1) U ∩ V = S(01);

(2) q−1(S(11)) = S(01), where q is the composite V →R
p−→ T .

Proof. We have Z2 t Z3 = U − S(01)⊂R− S(01) and R− S(01) is closed in R;

hence Z2 ∪ Z3 ⊂R− S(01), so S(01)⊂ V and U ∩ V ⊇ S(01). But U − S(01) = Z2 t Z3

and V ∩ (Z2 t Z3) = ∅; hence we have equality in (1). Finally, q−1(S(11)) = U ∩ V , so

(1) ⇐⇒ (2).

2.4 Proof of Theorem 2.1.4 in a special case

In the Zariski case, this subsection reduces to Subsubsection 2.2.1 (see Remark 2.4.1).

Let S, (S(11)→ T ) ∈Comp(S(11)), and S(01)→R be as in the previous subsection.

Moreover, define Z1, Z
′
1, Z2, Z3 and Z1, Z

′
1, Z2, Z3 in the same way as before (see

Lemma 2.3.1).

In this subsection, we assume the following condition on T and R.

(∗)T,R Let V, q be as in Lemma 2.3.3. Let V[ ⊂ V be the flat locus of the composite

q : V ⊂R p−→ T . Then V[ contains Z
′
1.

Remark 2.4.1. Assume that S is a Zariski square, that is, that pS is an open

immersion, and take R to be T . Then the condition (∗)T,T is equivalent to Z1 ∩ Z2 = ∅.
Indeed, by Remark 2.3.2, we have V[ = V = T − Z2. Moreover, we have Z1 = Z

′
1. Therefore

Z
′
1 ⊂ V[⇐⇒ Z1 ∩ Z2 = ∅.

The general case will be treated in the next subsection.

Let j : Vét ⊂ V be the étale locus of q. Define

S′(11) := T,

S′(10) := (S
′
(10), S′(10)∞) := (T − Z1, T

∞ ∩ (T − Z1)),

S′(01) := (S
′
(01), S′(01)∞) = (Vét, j

∗q∗T∞).
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10 B. KAHN AND H. MIYAZAKI

Then the open immersion T − Z1→ T and the morphism q ◦ j : Vét→ T induce minimal

morphisms S′(10)→ S′(11) and S′(01)→ S′(11).

Set S′(00) := S′(10)×S′(11) S
′(01) as the fiber product in MSmfin, which exists by the

minimality of (one of) the projections [3, Corollary 1.10.7]. In our situation, we have

S′(00) = (S
′
(10)×

S
′
(11)

S
′
(01), the pullback of S′(11)∞).

Thus, we obtain a pullback diagram

S′ :

S′(00) //

��

S′(01)

��
S′(10) // S′(11)

in MSmfin. By construction, for each (ij) ∈ Sq, we have S(ij)⊂ S′(ij). Moreover, the open

immersions induce minimal morphisms S(ij)→ S′(ij). Therefore, we obtain a morphism

S→ S′ in (MSmfin)Sq.

Proposition 2.4.2. The morphism S→ S′ is a partial compactification of S.

We need the following two lemmas for the proof.

Lemma 2.4.3. In the factorization

(2.4.1) Z ′1→ q−1
[ (Z1)→ Z1,

both morphisms are isomorphisms.

Proof. We have the following commutative diagram:

Z ′1
//

o
��

�

S(01) //

��
�

V

q

��

Z1
// S(11) // T ,

where the left square is Cartesian since S is an MVfin-square, and the right square is also

Cartesian thanks to Lemma 2.3.3. Since S(01)⊂ V[, this implies that the commutative

square

Z ′1
//

o
��

V[

q[
��

Z1
// T

is also Cartesian. So the first morphism of (2.4.1) is an isomorphism, and hence so is the

second one. This concludes the proof.

For the next lemma, recall that we have Z
′
1 ⊂ V[ by assumption. From now on, we regard

Z
′
1 and Z1 as reduced closed subschemes.

Lemma 2.4.4. The morphism Z
′
1→ Z1 is an isomorphism. Moreover, the induced

morphism Z
′
1→ q−1

[ (Z1) := Z1 ×T V[ is an isomorphism.
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Proof. Let q[,Z : q−1
[ (Z1)→ Z1 be the base change of q : V[→ T by the closed immersion

Z1 ⊂ T . Then we obtain the following commutative diagram:

Z ′1
//

��

Z
′
1

//

��

q−1
[ (Z1) //

q[,Z||

V[ //

q[ ��

V

q

��

Z1
// Z1

// T .

Claim 2.4.5. The morphism q[,Z is an isomorphism.

Proof. Since q[ : V[→ T is flat, so is q[,Z by base change. Moreover, q[,Z is an isomorphism

over the dense open subset Z1 ⊂ Z
′
1 by Lemma 2.4.3. Therefore, q[,Z is an open immersion

by Theorem B.1.1.

On the other hand, note that the morphism Z
′
1→ Z1 decomposes as Z

′
1 ⊂ q−1

[,Z(Z1)
q[,Z−−→

Z1. Since Z
′
1→ Z1 is dominant and proper, it is surjective. Therefore, the open immersion

q[,Z is indeed an isomorphism. This finishes the proof of Claim 2.4.5.

Note that Z
′
1→ Z1 is surjective. By Claim 2.4.5, this implies that the closed immersion

Z
′
1→ q−1

[ (Z1) is also surjective. Since Z
′
1 is reduced by construction, and since q−1

[ (Z1)∼= Z1

is also reduced as Z1 is reduced by construction, the surjection Z
′
1→ q−1

[ (Z1) must be an

isomorphism of schemes. This finishes the proof of Lemma 2.4.4.

Proof of Proposition 2.4.2. We will check Conditions (a)–(d) in Definition 2.1.1. Condi-

tions (b) and (c) are satisfied by construction.

We check (d). The case (ij) = (11) is obvious. The case (ij) = (10) can be checked by

S
′
(10) ∩ S(11) = (S

′
(11)− Z1) ∩ S(11) = S(11)− Z1 = S(10).

The case (ij) = (01) follows from Lemma 2.3.3. The case (ij) = (00) follows from S(00)∼=
S(10)×S(11) S(01).

Finally, we check Condition (a), that is, that S′ is an MVfin-square. Since all edges of S′

are minimal, it suffices to show that the square S
′

of schemes is an elementary Nisnevich

square. The horizontal maps of S
′

are open immersions, and the vertical maps of S
′

are

étale by construction. In view of Lemma 2.4.4, noting that S
′
(11)− S(10) = Z1, it suffices

to prove the following claim.

Claim 2.4.6. Z
′
1 ⊂ S

′
(01) = Vét.

Proof. Since Z
′
1→ Z1 is an isomorphism by Lemma 2.4.4, the flat morphism q[ : V[→ T

is unramified at each point of Z
′
1. This shows that q[ is étale at each point of Z

′
1

by [EGA4-4, Theorem 17.6.1]. This finishes the proof of the claim.

Thus, we have finished the proof of Proposition 2.4.2.

2.5 A refinement of the general construction

Proposition 2.5.1. In Section 2.3, we may choose S(01)→R satisfying the following

conditions.

(1) pS : S(01)→ S(11) extends to a morphism p :R→ T .
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12 B. KAHN AND H. MIYAZAKI

(2) Z
′
1 ∩ Z2 = ∅ and Z

′
1 ∩ Z3 = ∅, where Z

′
1 and Z2 are the closures of Z ′1 and Z2 in R.

Before going into the proof, we prepare a definition and a lemma, which will be used

several times.

Definition 2.5.2. Let M ∈MSm, and let F be a closed subscheme of M such that

F ∩Mo = ∅. Let

π : BlF (M)→M

be the blowup of M along F , and let

ν : BlF (M)N →BlF (M)

be the normalization of BlF (M). Set

BlF (M) := (BlF (M), π∗M∞),

BlF (M)N := (BlF (M)N , ν∗π∗M∞).

By construction, BlF (M)o = (BlF (M)N )o =Mo. Moreover, the maps π and ν induce

minimal morphisms π : BlF (M)→M and ν : BlF (M)N →BlF (M).

We call π : BlF (M)→M (resp. πν : BlF (M)N →M) the blowup of M along F (resp.

the normalized blowup of M along F ).

Lemma 2.5.3. Let M0 ∈MSm and (M0→M) ∈Comp(M0). Let F be a closed sub-

scheme of M with F ∩Mo = ∅. Assume that F ∩M0 is an effective Cartier divisor on M0.

Then the following assertions hold.

(1) The open immersion M0→M lifts uniquely to an open immersion M0→BlF (M).

This defines an object (M0→BlF (M)) ∈Comp(M0), which dominates M0→M .

(2) If M0 is normal, the open immersion M0→M lifts uniquely to an open immersion

M0→BlF (M)N . This defines an object (M0→BlF (M)N ) ∈Comp(M0), which dom-

inates M0→M .

Proof. Since (M0→M) ∈Comp(M0), there exist effective Cartier divisors M∞0,M , CM

on M such that M∞ =M∞0,M + CM , |CM |=M −M0, and M∞0,M ∩M0 =M∞0 .

(1): The assumption shows that π : BlF (M)→M is an isomorphism over M0. Therefore,

the open immersion j :M0→M lifts uniquely to an open immersion j1 :M0→BlF (M):

BlF (M)

π
��

M0

j
//

j1
;;

M.

By construction, we have

BlF (M)∞ = π∗M∞ = π∗M∞0,M + π∗CM .

Moreover, we have

j∗1π
∗M∞0,M = j∗M∞0,M =M∞0 ,
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and

|π∗CM | = π−1(|CM |) = π−1(M − j(M0)) = BlF (M)− π−1(j(M0))

= BlF (M)− π−1(πj1(M0))

= BlF (M)− j1(M0),

where the last equality follows from Lemma 1.4.3. This proves that j1 defines an object

(M0→BlF (M)) ∈Comp(M0), which dominates M0→M .

(2): The assumption shows that πν : BlF (M)N →M is an isomorphism over M0.

Therefore, the open immersion j :M0→M lifts uniquely to an open immersion j2 :M0→
BlF (M)N . The rest of the argument is the same as above. This finishes the proof.

Proof of Proposition 2.5.1. We start from a construction as in Subsection 2.3; for clarity,

we write R0 instead of R but keep the other notation (Z ′1, Z
′
1, . . . ). Let

π1 :R1 := Bl
Z

′
1×R0

Z2
(R0)→R0

be the blowup of R0 along Z
′
1 ×R Z2. Then π1 is an isomorphism over the open subscheme

S(01)⊂R0 since Z
′
1 ×R Z2 ∩ S(01)⊂ Z ′1 ∩ Z2 = ∅ by Lemma 2.3.1(5). Therefore, the open

immersion S(01)→R0 lifts uniquely to an open immersion S(01)→R1. Moreover, the strict

transforms π#
1 Z
′
1 and π#

1 Z2, that is, the closures of Z ′1 and Z2 in R1, do not intersect.

Similarly, let

π2 :R2 := Bl
π#
1 Z

′
1×R1

π#
1 Z3

(R1)→R1

be the blowup of R1 along π#
1 Z
′
1 ×R1

π#
1 Z3. Then π2 is an isomorphism over the open

subscheme S(01)→R1 since π#
1 Z
′
1 ×R1

π#
1 Z3 ∩ S(01)∼= Z

′
1 ×R Z3 ∩ S(01)⊂ Z ′1 ∩ Z3 = ∅

by Lemma 2.3.1. Therefore, the open immersion S(01)→R1 lifts uniquely to an open

immersion S(01)→R2. Moreover, the strict transforms π#
2 π

#
1 Z
′
1 and π#

2 π
#
1 Z
′
3, that is, the

closures of Z ′1 and Z3 in R2, do not intersect. Recalling that π#
1 Z
′
1 ∩ π

#
1 Z
′
2 = ∅, we also see

that the strict transforms π#
2 π

#
1 Z
′
1 and π#

2 π
#
1 Z
′
2, that is, the closures of Z

′
1 and Z2 in R2,

do not intersect. Thus, setting R :=R3, we get the desired compactification S(01)→R.

2.6 End of proof of Theorem 2.1.4

It suffices to show the following.

Proposition 2.6.1. There exist (S(11)→ T ′) ∈Comp(S(11)) and a compactification

S(01)→R1, which satisfy Condition (∗)T ′,R1
from Subsection 2.4, such that S(11)→ T ′

dominates S(11)→ T and the morphism T ′→ T is minimal.

Proof. Take a compactification S(01)→R as in Proposition 2.5.1.

Recall that V =R− (Z2 ∪ Z3). By assumption, we have Z
′
1 ⊂ V . Moreover, we have

q−1(S(11)) = S(01) by Lemma 2.3.3. In particular, q : V → T is étale over S(11)⊂ T .

Therefore, by the theorem of “platification” [11, Theorem 5.2.2] of Raynaud–Gruson,

there exists a closed subscheme C ⊂ T − S(11), which satisfies the following condition:

define T1 := BlC(T ) (see Definition 2.5.2). Let

π′1 :R1 := π#
1 R→R
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be the strict transform, that is, the blowup of R along the closed subscheme p−1(C)⊂R.

Let p1 := π#
1 p :R1→ T 1 be the lift of p. Then the strict transform

V1 := π#
1 (V ) = V ×T T 1 ⊂R1

of V is flat over T 1.

Note that π1 is an isomorphism over S(11) since C ∩ S(11) = ∅. Therefore, Lemma 2.5.3

shows that the open immersion S(11)→ T lifts uniquely to an open immersion S(11)→ T 1,

and it defines an object (S(11)→ T1) ∈Comp(S(11)).

Moreover, π′1 :R1 := π#
1 R→R is an isomorphism over S(01)⊂R since S(01) lies over

S(11). Therefore, the open immersion S(01)→R lifts uniquely to an open immersion

S(01)→R1.

Since Z
′
1 ∩ Z2 = Z

′
1 ∩ Z3 = ∅, we have the corresponding equality for their strict trans-

forms: π#
1 Z
′
1 ∩ π

#
1 Z2 = π#

1 Z
′
1 ∩ π

#
1 Z3 = ∅. Since π#

1 Z
′
1, π

#
1 Z2, π

#
1 Z3 are the closures of

Z ′1, Z2, Z3 in R1, respectively, the pair (S(11)→ T1) ∈Comp(S(11)) and S(01)→R1

satisfies (∗)T1,R1
. Moreover, the blowup π1 : T 1→ T induces a minimal morphism T1→ T

by construction. This finishes the proof.

Corollary 2.6.2. If S is a normal MVfin-square and if S
j−→ S′ is a partial compacti-

fication, then there exists a partial compactification S
j1−→ S′1 such that S′1 is normal and a

minimal morphism S′1
p−→ S such that pj1 = j.

Proof. Let S′1(ij) = Bl∅(S
′(ij))N be the normalized blowup along the empty subscheme

for (ij) ∈ Sq. More explicitly, we have

S′1(ij) = (S
′
(ij)N , S′(ij)∞ ×

S
′
(ij)

S
′
(ij)N ).

By Lemma 2.5.3, the morphisms S→ S′(ij) uniquely lift to (S(ij)→ S′1(ij)) ∈
Comp(S(ij)) for all (ij) ∈ Sq.

Since S
′
(ij)→ S

′
(11) is étale for each (ij) ∈ Sq, we have

S
′
(ij)N ∼= S

′
(ij)×

S
′
(11)

S
′
(11)N ,

and hence

S′1(ij)∼= S′(ij)×S′(11) S
′(11)N ,

where the right-hand side denotes the fiber product in MSmfin, which exists by the

minimality of (one of) the projection maps [3, Corollary 1.10.7]. Therefore, S′1(ij)’s form

an MVfin-square S′1. This finishes the proof.

§3. Cofinality of MV-squares: the partially compact case

3.1 Main result

In this section, we prove the following special case of Theorem 1.5.6.

Theorem 3.1.1. Theorem 1.5.6 is true if S is partially compact in the sense of

Definition 2.1.1(2).

This is the technical heart of the paper. The strategy is simple: we achieve successively

conditions (1) and (3) of Definition 1.3.2, Condition (2) being automatic.

In the sequel, we fix a normal MVfin-square S; it will be assumed partially compact only

in Subsection 3.6.
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3.2 Another general construction

Here, we prepare a general setting, which will be used in the proof of Theorem 3.1.1.

Let (S→ T ) ∈Comp(S). Since (S(ij)→ T (ij)) ∈Comp(S(ij)) for each (ij) ∈ Sq, we

can find an effective Cartier divisor Dij on T (ij) such that |Dij |= T (ij)− S(ij).

Write

T (00)
vT //

qT
��

dT

$$

T (01)

pT
��

T (10)
uT // T (11),

where dT := pT vT = uT qT . All morphisms in the diagram are ambient by assumption.

We shall need the following Condition 3.2.3. We recall a definition and a lemma.

Definition 3.2.1. Two effective Cartier divisors D, E on a scheme X have a universal

supremum if D ×X E is an effective Cartier divisor on X. If D, E have a universal

supremum, we define an effective Cartier divisor sup(D, E) on X by sup(D, E) :=D +

E −D ×X E.

Lemma 3.2.2. Let D, E be effective Cartier divisors on a scheme X, which have a

universal supremum. Then, for any morphism f : Y →X in Sch such that Y is normal

and such that f(T ) 6⊂ |D| ∪ |E| for any irreducible component T of Y , the effective Cartier

divisors f∗D and f∗E have a universal supremum, and f∗ sup(D, E) = sup(f∗D, f∗E).

Moreover, if we regard sup(f∗D, f∗E) as a Weil divisor on the normal scheme Y , it

coincides with the smallest Weil divisor which is larger than f∗D and f∗E.

Proof. See [3, Definition 1.10.2, Remark 1.10.3] or [9, Lemma 2.2.1].

Conditions 3.2.3.

(1) T is ambient, that is, T ∈ (MSmfin)Sq.

(2) T (ij) is normal for each (ij) ∈ Sq.

(3) q∗TD10 and v∗TD01 have a universal supremum on T (00).

Lemma 3.2.4. For any (S→ T0) ∈Comp(S), there exists (S→ T ) ∈Comp(S) which

dominates (S→ T0) and such that T satisfies Conditions 3.2.3.

Proof. By the graph trick, there exists (S→ T1) ∈Comp(S), which dominates (S→
T0) ∈Comp(S), such that T1 ∈ (MSmfin)Sq.

Set F := q∗T1D10 ×T (00) v
∗
T1
D01, and let

T (00) := BlF (T1(00))N → T1(00)

be the normalized blowup of T1(00) along F (see Definition 2.5.2). Since F ∩ S(00) = ∅ by

construction, and since S(00) is normal by assumption, Lemma 2.5.3(2) shows that the

open immersion S(00)→ T 1(00) lifts uniquely to an open immersion S(00)→ T (00), which

defines an object (S(00)→ T (00)) ∈Comp(S(11)).

For (ij) ∈ Sq− {(00)}, define

T (ij) := (T 1(ij)N , T (ij)∞ ×T (ij) T (ij)N ).

Then, for each (ij) ∈ Sq− {(00)}, the morphism S(ij)→ T1(ij) lifts uniquely to an object

S(ij)→ T (ij) by Lemma 2.5.3(2), noting that the normalization is the normalized blowup
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along the closed subset ∅. Moreover, for each (ij)→ (kl) in Sq, the morphism T 1(ij)→
T 1(kl) lifts to a morphism T (ij)→ T (kl) by the universal property of normalization.

Therefore, T is ambient.

The other conditions in Conditions 3.2.3 hold by construction.

In the rest of this subsection, we fix (S→ T ) ∈Comp(S) verifying Conditions 3.2.3. Set

D := sup(q∗TD10, v
∗
TD01),

where the notation on the right-hand side is from Definition 3.2.1. Then D is an effective

Cartier divisor on T (00) by assumption.

Lemma 3.2.5. |D|= |D00|= T (00)− S(00).

Proof. The second equality is by definition. To show the first one, taking the com-

plements of both sides, we are reduced to proving S(00) = q−1
T (S(10)) ∩ v−1

T (S(01)). The

inclusion S(00)⊂ q−1
T (S(10)) ∩ v−1

T (S(01)) is obvious. By the universal property of fiber

product, there exists a unique morphism q−1
T (S(10)) ∩ v−1

T (S(01))→ S(10)×S(11) S(01) =

S(00), which is compatible with qS and vS . We can check that this map is inverse to the

inclusion map, by restricting them to the dense open subset So(00) = T o(00). This finishes

the proof.

Lemma 3.2.6. There exists a positive integer nT such that for any n> nT , we have

T (00)∞ 6 d
∗
T (11)∞ + nD.

Proof. We have T (00)∞|S(00) = d
∗
T (11)∞|S(00) = S(00)∞ by the minimality of S(00)→

T (00) and S(00)→ S(11)∼= T (11). Therefore, in view of Lemmas 3.2.5 and 1.4.2, we finish

the proof.

For any nonnegative integers m and n, define Tm,n ∈ (MSmfin)Sq by

Tm,n(11) := T (11)

Tm,n(10) := (T (10), T (10)∞ +mD10)

Tm,n(01) := (T (01), T (01)∞ + nD01)

Tm,n(00) := Tm,n(10)×c
Tm,n(11) Tm,n(01),

where ×c denotes the canonical model of fiber product introduced in [9, Definition 2.2.2].

Note that for each (ij) ∈ Sq− {(00)}, the open immersion S(ij)→ T (ij) induces an object

(S(ij)→ Tm,n(ij)) ∈Comp(S(ij)). Moreover, it is easy to see by the construction of the

canonical model of fiber product that the morphism S(00)→ Tm,n(00) in MSm, which is

induced by the universal property of fiber product, is ambient and minimal, and defines an

object (S(00)→ Tm,n(00)) ∈Comp(S(00)).

Therefore, we obtain (S→ Tm,n) ∈Comp(S) for any m, n. Write

Tm,n(00)
vTm,n

//

qTm,n

��

dTm,n

&&

Tm,n(01)

pTm,n

��
Tm,n(10)

uTm,n
// Tm,n(11).

Note that Tm,n is Cartesian in MSm for any m, n by construction.
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3.3 Cofinality of Cartesian squares

Proposition 3.3.1. Let (S→ T ) ∈Comp(S) verifying Conditions 3.2.3. Let nT be as

in Lemma 3.2.6, and Tm,n be as constructed above. Then for any integers m, n> nT , there

exists a morphism (S→ Tm,n)→ (S→ T ) in Comp(S).

Proof. For (ij) ∈ Sq− {(00)} and for any m, n, there exists a natural morphism

Tm,n(ij)→ T (ij) in MSmfin by construction.

Our task is to show that the isomorphism Tm,n(00)o→ T (00)o in Sm defines a morphism

Tm,n(00)→ T (00) in MSm for m, n> nT .

Let Γ be the graph of the rational map Tm,n(00) 99K T (00), and let ΓN → Γ be the

normalization of Γ. Then we obtain the following commutative diagrams of schemes:

Tm,n(00)

qTm,n

��

ΓN
aoo b // T (00)

qT
��

Tm,n(10)
= // T (10),

Tm,n(00)

vTm,n

��

ΓN
aoo b // T (00)

vT
��

Tm,n(01)
= // T (01).

Claim 3.3.2. sup(a∗q∗Tm,n
D10, a

∗v∗Tm,n
D01) = b∗D.

Proof. We have qT b= qTm,n
a and vT b= vTm,na by the commutativity of the above

diagrams. Therefore,

sup(a∗q∗Tm,n
D10, a

∗v∗Tm,n
D01) = sup(b∗q∗TD10, b

∗v∗TD01)

= b∗ sup(q∗TD10, v
∗
TD01)

= b∗D.

This finishes the proof.

By the construction of Tm,n(00), we have

Tm,n(00)∞ = sup(q∗Tm,n
Tm,n(10)∞, v∗Tm,n

Tm,n(01)∞),

and hence

(3.3.1) a∗Tm,n(00)∞ = sup(a∗q∗Tm,n
Tm,n(10)∞, a∗v∗Tm,n

Tm,n(01)∞).

By the construction of Tm,n and by the choice of m, n, we have

u∗Tm,n
T (11)∞ + nTD10 6 u

∗
Tm,n

T (11)∞ +mD10 6 Tm,n(10)∞,

p∗Tm,n
T (11)∞ + nTD01 6 p

∗
Tm,n

T (11)∞ + nD01 6 Tm,n(01)∞.

Combining these with (3.3.1), we have

a∗Tm,n(00)∞ > a∗d
∗
Tm,n

T (11)∞ + nT sup(a∗q∗Tm,n
D10, a

∗v∗Tm,n
D01)

= b∗(d
∗
TT (11)∞ + nTD),

where the last equality follows from Claim 3.3.2 and dTm,na= dT b. Therefore, in view of

Lemma 3.2.6, we have

a∗Tm,n(00)∞ > b∗T (00)∞,

which shows that the isomorphism Tm,n(00)o→ T (00)o in Sm defines a morphism

Tm,n(00)→ T (00) in MSm. This finishes the proof of Proposition 3.3.1.
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18 B. KAHN AND H. MIYAZAKI

Corollary 3.3.3. The subset

{(S→ T ) ∈Comp(S) | T ∈ (MSmfin)Sq, T is Cartesian in MSm}

is cofinal in Comp(S).

3.4 Topological study of a certain diagram

By Corollary 3.3.3, we may and do assume in Theorem 3.1.1 that T ∈ (MSmfin)Sq and

that T is Cartesian in MSm. Since T o is an elementary Nisnevich square, the morphism

OD(qT )o→OD(pT )o is an isomorphism in Sm, and it induces an admissible morphism

OD(qT )→OD(pT ). Our task is to modify T in order to make this morphism invertible in

MSm. In this subsection, we prepare the ground to show that we only need to increase

multiplicities of divisors, which will be done in the next subsection.

We take the notation of Section 3.2. Let Γ be the graph of the birational map

OD(qT ) 99KOD(pT ). Let ν : Γ→OD(pT ) be the natural map, and let si : OD(pT )→ T (01)

be the natural ith projection for i= 1, 2.

Set H := ν∗s∗1D01 ×Γ ν
∗s∗2D01, let

(3.4.1) π : Γ1 := BlH(Γ)N → Γ

be the normalized blowup of Γ along H, and set b := νπ. Then b∗s∗1D01 and b∗s∗2D01 have

a universal supremum (see Definition 3.2.1) by construction. Set

(3.4.2) D′ := sup(b∗s∗1D01, b
∗s∗2D01).

By [9, Proposition 2.2.7(3), Lemma 4.1.4], there are natural open immersions jq :

OD(qS)→OD(qT ) and jp : OD(pS)→OD(pT ). They lift uniquely to open immersions j′q :

OD(qS)→ Γ1 and j′p : OD(pS)→ Γ1 since OD(qS) and OD(pS) are normal by construction

and since H ∩ jp(OD(pS)) =H ∩ jq(OD(qS)) = ∅.
Thus we obtain commutative diagrams of schemes (i= 1, 2)

(3.4.3)

OD(qS)
∼ //

jq
��

j′q

''

OD(pS)
j′p

ww

jp
��

OD(qT )

ti
��

Γ1
aoo b // OD(pT )

si
��

T (00)
vT // T (01),

where ti is the natural ith projection and a is the composite Γ1→ Γ→OD(qT ).

Set

(3.4.4) U := j′q(OD(qS)) = j′p(OD(pS)).

Consider the composite

c : OD(pT )→ T (01)×c
T (11) T (01)→ T (11),

where the first morphism is the natural inclusion and the second is the structural morphism.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nmj.2020.15
Downloaded from https://www.cambridge.org/core. IP address: 77.207.228.156, on 25 Oct 2020 at 06:09:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nmj.2020.15
https://www.cambridge.org/core


TOPOLOGIES ON SCHEMES AND MODULUS PAIRS 19

Lemma 3.4.1. a∗OD(qT )∞|U = b∗OD(pT )∞|U = b∗c∗T (11)∞|U .

Proof. The natural morphism OD(qS)→OD(pS) is an isomorphism in MSmfin by

[9, Proposition 4.1.5]. Moreover, the morphisms OD(qS)→OD(qT ) and OD(pS)→OD(pT )

are minimal. Therefore, the first equality follows from the commutativity of (3.4.3).

The second assertion follows from the minimality of the natural morphism OD(pS)→
S(10)×c

S(11) S(01)→ S(11)→ T (11). This finishes the proof.

Lemma 3.4.2. OD(qT )− jq(OD(qS)) = t−1
1 v−1

T (|D01|) ∪ t−1
2 v−1

T (|D01|).

Proof. Set

A := t−1
1 v−1

T (S(01)) ∩ t−1
2 v−1

T (S(01)).

Then the assertion is equivalent to the equality

jq(OD(qS)) =A.

The inclusion ⊂ follows from the commutativity of (3.4.3). By the universal property of

the fiber product, we have a natural morphism

γ :A→ S(01)×S(11) S(01).

Claim 3.4.3. γ(A) ∩∆(S(01)) = ∅.

Proof. First, note that OD(qT ) is the closure of

OD(qo
T ) = OD(qo

S) = S(00)o ×S(10)o S(00)o −∆(S(00)o)

by construction (see the proof of [9, Theorem 3.1.3]). Therefore, since A⊂OD(qT ) by

construction, the open immersion

OD(qo
T )→A

is also dense. In particular, OD(qo
T ) is dense in γ(A).

Since OD(qo
T ) ∩∆(S(01)o) = ∅ and since ∆(S(01)o) is dense in ∆(S(01)), we have

OD(qo
T ) ∩∆(S(01)) = ∅. Therefore, since ∆(S(01)) is closed in S(01)×S(11) S(01), we have

γ(A) ∩∆(S(01))⊂OD(qo
T ) ∩∆(S(01)) = ∅.

This finishes the proof of Claim 3.4.3.

By Claim 3.4.3, the morphism γ induces

A→ jq(OD(qS)).

This map is inverse to the inclusion morphism since their restrictions to the dense interior

So(01)×So(11) S
o(01) are the identity. Therefore, jq(OD(qS)) =A. This finishes the proof

of Lemma 3.4.2.

Lemma 3.4.4. We have Γ1 − U = |D′| (see (3.4.2) and (3.4.4) for the definitions of D′

and U).

Proof. By applying a−1 to both sides of the equality in Lemma 3.4.2, by using the

commutativity of the above diagram and by Lemma 1.4.3, we have

Γ1 − U = b−1s−1
1 (|D01|) ∪ b−1s−1

2 (|D01|) = |D′|,

where the last equality follows from the construction of D′. This finishes the proof.
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3.5 Increasing multiplicities

By Lemmas 1.4.2, 3.4.1, and 3.4.4, there exists a positive integer n such that

(3.5.1) a∗OD(qT )∞ 6 b∗c∗T (11)∞ + nD′.

Set

T ′ := T0,n,

where the right-hand side is defined as in Subsection 3.2.

Then there exists a natural morphism T ′→ T in (MSmfin)Sq, and we obtain the

commutative diagram

(3.5.2)

OD(qT ′) //

��

OD(qT )

��
OD(pT ′) // OD(pT )

in MSm by the functorial property of OD (see [9, Theorem 3.1.3]).

Lemma 3.5.1. Diagram (3.5.2) is Cartesian in MSm.

Proof. Consider the following commutative diagram:

OD(qT ′) //

��

OD(qT )

��

πq
// T (10)

uT
��

OD(pT ′) // OD(pT )
πp
// T (11),

in MSm, where πp and πq are the natural projections to the bases of fiber products. Since T

is Cartesian, the right square is Cartesian by [9, Proposition 3.1.4]. Since T ′ is also Cartesian

and since T ′(11) = T (11) and T ′(10) = T (10) by construction, the large square is Cartesian

by [9]. Therefore, a general argument shows that the left square is Cartesian. This finishes

the proof.

The main point of this subsection is the following.

Proposition 3.5.2. The natural morphism OD(qT ′)→OD(pT ′) is an isomorphism in

MSm.

Proof. We will construct an inverse morphism. By Lemma 3.5.1, it suffices to show that

OD(pT ′)→OD(pT ) lifts to a morphism OD(pT ′)→OD(qT ).

Let Γ2 be the graph of the rational map OD(pT ′) 99K Γ1. Then we obtain the following

commutative diagrams (i= 1, 2),

OD(pT ′)

s′i
��

c′

��

ΓN2
a′oo b′ // Γ1

b // OD(pT )

si
��

c

��

T
′
(01)

= //

pT ′
��

T (01)

pT
��

T
′
(11)

= // T (11),
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where s′i are natural projections and c′ := pT ′s′1 = pT ′s′2.

By (3.5.1),

(b′)∗a∗OD(qT )∞ 6 (b′)∗(b∗c∗T (11)∞ + nD′).

The commutativity of the above diagram shows

(b′)∗b∗c∗T (11)∞ = (a′)∗(c′)∗T (11)∞.

By (3.4.2),

(b′)∗D′ = sup((b′)∗b∗s∗1D01, (b
′)∗b∗s∗2D01)

= sup((a′)∗(s′1)∗D01, (a
′)∗(s′2)∗D01).

Combining these, we get

(b′)∗a∗OD(qT )∞ 6 sup
i=1,2

((a′)∗((c′)∗T (11)∞ + n(s′i)
∗D01)).

By the admissibility of pT : T (01)→ T (11), and noting that pT = pT ′ by construction, we

have

(c′)∗T (11)∞ = (s′i)
∗p∗T ′T (11)∞ 6 (s′i)

∗T (01)∞

for each i= 1, 2.

Therefore, we have

(3.5.3) (b′)∗a∗OD(qT )∞ 6 sup
i=1,2

((a′)∗(s′i)
∗(T (01)∞ + nD01)).

Recall that T ′(01)∞ = T (01)∞ + nD01 by the definition of T ′ = T0,n. Moreover, by

the construction of OD, we have OD(pT ′)∞ = supi=1,2((s′i)
∗T ′(01)∞) (see the proof of

[9, Theorem 3.1.3]). Therefore, we have

sup
i=1,2

((a′)∗(s′i)
∗(T (01)∞ + nD01)) = sup

i=1,2
((a′)∗(s′i)

∗T ′(01)∞)

= (a′)∗ sup
i=1,2

((s′i)
∗T ′(01)∞)

= (a′)∗OD(pT ′)∞.

Combined with (3.5.3), this implies

(3.5.4) (b′)∗a∗OD(qT )∞ 6 (a′)∗OD(pT ′)∞.

Let Γ3 be the graph of the rational map OD(pT ′) 99KOD(qT ), and let ΓN3 → Γ3 be the

normalization of Γ3. Recalling that Γ2 is the graph of the rational map OD(pT ′) 99K Γ1,

we have a natural birational morphism Γ2→ Γ3. Thus, we have the following commutative

diagram:

OD(pT ′)

Id
��

ΓN2
a′oo b′ //

ξ
��

Γ1

a
��

OD(pT ′) ΓN3
loo r // OD(qT ),
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22 B. KAHN AND H. MIYAZAKI

where ξ is induced from the morphism Γ2→ Γ3 by the universal property of normalization.

By (3.5.4), and by the commutativity of the above diagram, we have

ξ∗r∗OD(qT )∞ 6 ξ∗l∗OD(pT ′)∞.

Since ξ is proper birational by construction, Lemma 1.4.1 and (3.5.4) imply

r∗OD(qT )∞ 6 l∗OD(pT ′)∞,

which shows that OD(pT ′)→OD(qT ) is defined in MSm. This concludes the proof of

Proposition 3.5.2.

3.6 End of proof of Theorem 3.1.1

We now assume that S is partially compact. Then T ′ satisfies Condition (2) in

Definition 1.3.2. Since T ′ is Cartesian in MSm, it also satisfies Condition (1). Moreover,

it satisfies Condition (3) by Proposition 3.5.2. Therefore, T ′ is an MV-square, and hence

T ′ ∈CompMV(S). This finishes the proof.

§4. Cofinality of MV-squares: the general case

In this section, we complete the proof of Theorem 1.5.6.

4.1 Preparatory lemmas

Lemma 4.1.1. Let S be a MVfin-square, and let S→ S′ be a partial compactification.

Let F be a closed subscheme of S
′
(11) such that F ∩ S′(11)o = ∅, and set Fij := F ×

S
′
(11)

S
′
(ij)⊂ S′(ij) for (ij) ∈ Sq. Note that F11 = F by definition.

Let

S′F (ij) := BlFijS
′(ij)

be the blowup of S′(ij) along Fij (see Definition 2.5.2). Note that for any morphism (ij)→
(kl) in Sq, the structure morphism S′(ij)→ S′(kl) lifts to a morphism S′F (ij)→ S′F (kl) in

MSmfin by the universal property of blowing up.

Then the resulting square S′F is an MVfin-square. Moreover, the morphism S→ S′ lifts

uniquely to a morphism S→ S′F in (MSmfin)Sq, and it is a partial compactification of S.

Proof. Since S(ij)→ S(11) are étale (hence flat), we have

(4.1.1) S
′
F (ij)∼= S

′
(ij)×

S
′
(11)

S
′
F (11).

Therefore, the resulting square S
′
F is an elementary Nisnevich square as base change.

Since S′F (ij)∞ are the pullback of S′F (11)∞ by construction, we obtain an MVfin-square

S′F .

By Lemma 2.5.3, the object (S(11)→ S′(11)) ∈Comp(S(11)) lifts uniquely to (S(11)→
S′F (11)) ∈Comp(S(11)). Similarly, for (ij) ∈ Sq− {(11)}, the open immersion S(ij)→
S
′
(ij) lifts uniquely to an open immersion S(ij)→ S

′
F (ij) since Fij ∩ S(ij) is an effective

Cartier divisor by assumption. Therefore, we obtain a morphism S→ S′F in MSmfin.

The last thing to check is Condition (c) of Definition 2.1.1. Since S→ S′ is a partial

compactification, the natural morphism

S(ij)
∼−→ S

′
(ij)×

S
′
(11)

S(11)
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is an isomorphism. Combining this with (4.1.1) as above, for each (ij) ∈ Sq, we have

S
′
F (ij)×

S
′
F (11)

S(11) ∼= S
′
(ij)×

S
′
(11)

S
′
F (11)×

S
′
F (11)

S(11)

∼= S
′
(ij)×

S
′
(11)

S(11)

∼= S(ij).

This finishes the proof of Lemma 4.1.1.

Lemma 4.1.2. Let f :M →N be a morphism in MSm with N ∈MSm. Assume that

f is ambient and minimal, and that fo :Mo→No is an isomorphism. Then there exists

an isomorphism N
∼−→N ′ in MSm such that the composite M →N

∼−→N ′ belongs to

Comp(M).

Proof. Take any compactification j :M →X, and let Γ1 be the graph of the birational

map g :X 99KN . Since the composite gj = f is a morphism of schemes, the open immersion

j lifts uniquely to an open immersion j1 :M → Γ1. Let

π : Γ2 := Bl(Γ1−j1(M))red
(Γ1)→ Γ1

be the blowup of Γ1 along the closed subscheme (Γ1 − j1(M))red. Then j1 lifts to an open

immersion j2 :M → Γ2 since π is an isomorphism over j1(M). Thus we obtain the following

commutative diagram:

Γ2
π // Γ1

��

p

  
M

j
//

j1
>>

j2

OO

X
g
// N.

Note that f = pπj2 by construction. Set

N ′ := (N
′
, (N ′)∞) := (Γ2, π

∗p∗N∞).

Then we have j∗2(N ′)∞ = j∗2π
∗p∗N∞ = f

∗
N∞ =M∞, where the last equality follows from

the minimality of f . Therefore, j2 induces a minimal morphism J :M →N ′. Moreover,

denoting by E the exceptional divisor of the blowup π, we have E 6 (N ′)∞ by construction.

Thus, we obtain a decomposition (N ′)∞ = ((N ′)∞ − E) + E as a sum of two effective

Cartier divisors. Therefore, we have (J :M →N ′) ∈Comp(M).

By construction, pπ induces a minimal morphism h :N ′→N . Moreover, it induces an

isomorphism ho : (N ′)o ∼−→No. Therefore, h is an isomorphism in MSm. The commutativity

of the above diagram shows hJ = f ; hence h−1f = J ∈Comp(M). This finishes the

proof.

4.2 A key proposition

Proposition 4.2.1. Let S be an MVfin-square, and let (S→ T ) ∈Comp(S) be

any object. Then there exists a partial compactification S→ S′, an object (S′→ T ′) ∈
Comp(S′), and a morphism T ′→ T in MSmfin such that the diagram

S′ // T ′

��
S //

OO

T
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commutes. If S is normal, we can choose S′ to be normal.

Proof. The first step of the proof is to find a partial compactification S→ S′ such that

the morphism S→ T extends to a morphism S′→ T in (MSmfin)Sq.

By Theorem 2.1.4, take a partial compactification S→ S′1 such that (S(11)→ S′1(11))

dominates (S(11)→ T (11)) in Comp(S(11)) and S′1(11)→ T (11) is minimal. For all

(ij) ∈ Sq, let Γij denote the graph of the rational map S
′
1(ij) 99K T (ij). Note that the

projection Γij → S
′
1(ij) is a proper birational morphism, which is an isomorphism over

S(ij) = S
′
1(ij)×

S
′
1(11)

S(11). Consider the étale morphism

f :
⊔

(ij)∈Sq

S
′
1(ij)→ S

′
1(11).

By Lemma 1.4.4, we can find a closed subscheme F of S
′
1(11), which is supported on

|S′1(11)∞| and such that the base change of f along the blowup BlF1S
′
1(11)→ S

′
1(11) factors

through ti,jΓij .
Set S′2 := (S′1)F , where the right-hand side is defined as in Lemma 4.1.1. Then S′2 is an

MVfin-square, and the morphism S→ S′1 lifts uniquely to a partial compactification S→ S′2.

Moreover, we have a morphism S
′
2→ T in SchSq by construction.

Since (S(11)→ S′2(11)) ∈Comp(S(11)), there exists an effective Cartier divisor D11

on S
′
2(11) such that |D11|= S

′
2(11)− S(11). Since S(ij) = S

′
2(ij)×

S
′
2(11)

S(11) by the

definition of a partial compactification, if we set Dij :=D11 ×S′
2(11)

S
′
2(ij), we have |Dij |=

S
′
2(ij)− S(ij). By Lemma 1.4.2, there exists a positive integer n such that the morphism

S
′
2(ij)→ T (ij) induces an admissible morphism

S′3(ij) := (S
′
2(ij), S′2(ij)∞ + nDij)→ T (ij)

for each (ij) ∈ Sq, and they induce minimal morphisms S(ij)→ S′3(ij). Since S
′
3(ij) =

S
′
2(ij) and since S′3(ij)∞ ∩ S(ij) = S(ij)∞ for each (ij) ∈ Sq by construction, the morphism

S→ S′2 lifts uniquely to a partial compactification S→ S′3.

We set S′ := S′3. Then (S→ S′) ∈Comp(S) and the morphism S→ T lifts to a morphism

S′→ T in MSmfin by construction, as required. If S is normal, we replace S′ by its

normalization as in Corollary 2.6.2.

Take now any (S′→ T ′1) ∈Comp(S′). Then the graph trick shows that there exists (S→
T ′2) ∈Comp(S′), which dominates S→ T ′1, and the composite maps

hij : T
′
2(ij)→ T

′
1(ij) 99K T (ij)

are morphisms of schemes.

For each (ij) ∈ Sq, let Fij be an effective Cartier divisor on T
′
(ij) such that |Fij |=

T
′
(ij)− S′(ij), which exists by the definition of Comp. By Lemma 1.4.2, noting that

h
∗
ijT
∞(ij) ∩ S′(ij)6 S′∞(ij) = T ′∞(ij) ∩ S′(ij), there exist positive integers mij such that

we have

h
∗
ijT
∞(ij)6 T ′∞(ij) +mijFij

for all i, j ∈ {0, 1}. Define

T ′mij
:= (T

′
(ij), T ′∞(ij) +mijFij).
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Clearly, by choosing m = (mij)i,j∈{0,1} appropriately, we obtain admissible morphisms

T ′mij
→ T ′mi′j′

for any morphism (i, j)→ (i′, j′) in the diagram category Sq. Therefore, we

obtain a diagram

T ′ := T ′m :

T ′m00
//

��

T ′m01

��
T ′m10

// T ′m11
,

which belongs to Comp(S′), and its image in Comp(S) dominates T . This finishes the

proof.

4.3 End of proof of Theorem 1.5.6

Let S be a normal MVfin-square, and let (j : S→ T ) ∈Comp(S) be a compactification.

Apply Proposition 4.2.1. By Theorem 3.1.1, there exists (j′1 : S′→ T ′1) ∈CompMV(S′),

which dominates S′→ T ′. Thus we have the following commutative diagram in MSm:

T ′1

��
S′

j′
//

j′1
??

T ′

��
S

j
//

f

OO

T.

Note that j′1f is ambient and minimal, and it induces an isomorphism So ∼−→ (T ′1)o by

assumption. Therefore, by Lemma 4.1.2, there exists an isomorphism g : T ′1
∼−→ T ′2 in MSm

such that (gj′1f : S→ T ′2) ∈Comp(S). Since T ′1 is an MV-square by construction, so is T ′2.

Moreover, S→ T ′2 dominates S→ T in Comp(S) by construction. This finishes the proof.

§5. Continuity and cocontinuity

In this section, we prove Theorem 1.

5.1 Continuity

Note that τs, ωs, and ωs all preserve fiber products, as required in Proposition A.1.2(1).

The continuity of ωs and λs is obvious by Lemma A.2.1(a) since they send distin-

guished squares to distinguished squares. This implies the cocontinuity of λs, by Proposi-

tion A.1.3(2). In the case of τs, by the same lemma, we must show that {τsT (01), τsT (10)}
is an MV-cover of τsT (11) for any MV-square T = (T (ij)). By [SGA4, Exposé II,

Theorem 4.4], this is the case if and only if, for any sheaf of sets F on MSm, the map

F (τs(T (11)))→ F (τs(T (01)))× F (τs(T (10)))

is injective. By Condition (2) of Definition 1.3.2, there is an MV-square S mapping to

τsT and such that S(11)
∼−→ τsT (11), and hence the conclusion. But Condition (2) of

Definition 1.3.2 says that this morphism is dominated by a morphism S(01) t S(10)→
τs(T (11)) for some MV-square S such that S(11)

∼−→ τs(T (11)), hence the conclusion.

Finally, ωs is continuous as a composition of continuous functors.
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5.2 Cocontinuity

It suffices to check the conditions of Lemma A.2.1 for ωs and ωs. The Nisnevich cd-

structure on Sm is complete [15, Theorem 2.2]. Therefore, Condition (1) holds for ωs and

ωs. We now check that they both satisfy Condition (2).

Take any M ∈MSm and take any elementary Nisnevich square S in Sm such that

ωs(M)∼= S(11). Take any Mc ∈Comp(M). Then, regarding S as a square in MSm,

Corollary 2.6.2 implies that there exists a partial compactification S→ S′ such that S′ is

normal, S′(11) ∈Comp(S(11)) = Comp(Mo) dominates Mc ∈Comp(M)⊂Comp(Mo),

and the morphism S′(11)→Mc is minimal. In particular, S′(11)→Mc is an isomorphism

in MSm.

5.2.1 Case of ωs

Define a square S1 in MSm as follows: for any (ij) ∈ Sq, set

S1(ij) = S
′
(ij)×Mc

M,

S∞1 (ij) = S′∞(ij)×Mc
M,

S1(ij) = (S1(ij), S∞1 (ij)).

Then S1 is an MVfin-square (hence an MV-square). Moreover, the natural morphism

S1(11)→M is an isomorphism in MSm since it is minimal, S1(11)→M is proper

surjective, and So
1(11) = So(11) =Mo. Therefore, the square S′1 obtained by replacing

S1(11) in S1 with M is also an MV-square, and we have ωs(S
′
1) = S. Thus, Condition

(2) of Lemma A.2.1 holds for ωs, and therefore ωs is cocontinuous.

5.2.2 Case of ωs

Here we take M ∈MSm; hence M =Mc. By Theorem 1.5.6, the category CompMV(S′)

is cofinal in Comp(S′). In particular, it is nonempty. Take any object T ∈CompMV(S′).

Then T is by definition an MV-square such that T (11) = S′(11)∼=M . Therefore, the square

T ′ obtained by replacing T (11) in T with M is also an MV-square, and we have ωs(T
′) = S.

Thus, ωs satisfies Condition (2) in Lemma A.2.1.

This finishes the proof of Theorem 1.

Remark 5.2.1. The functor τs is not cocontinuous: take M ∈MSm of dimension 1.

Cover τsM by two affine opens S(01), S(10) (with the minimal modulus structure). Let

f :N →M be a morphism in MSm. If τsf factors through S(01) or S(10), then its image

is finite since N is proper. But any term of a cover of N is surjective on the ambient spaces,

which is a contradiction.

Appendix A. Continuous and cocontinuous functors

A.1 Review of the notions

We write Ĉ for the category of presheaves of sets on a category C. If C is a site, we write

C̃ ⊂ Ĉ for the full subcategory of sheaves of sets, iC for this inclusion, and aC for its left

adjoint (sheafification).

In this subsection, we recall some facts from [SGA4, Exposé III], where all sites are

assumed to be “U -sites” in the sense of [SGA4, II.3.0.2]. We implicitly make this assumption

below; it is automatic for sites defined by a cd-structure.
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Definition A.1.1. [SGA4, III.1.1 and III.2.2] Let C and D be sites, and let u : C →D
be a functor. We say that u is continuous (resp. cocontinuous) if the functor u∗ : D̂ → Ĉ
(resp. u∗ : Ĉ → D̂) carries sheaves to sheaves.

Proposition A.1.2.

(1) [SGA4, III.1.6]. Suppose that u preserves the fiber products involved in base changes

under morphisms coming from covering families of C. Then u is continuous if and only

if, for any cover {Ui→X} in C, {u(Ui)→ u(X)} is a cover in D.

(2) The functor u is cocontinuous if and only if, for any X ∈ C and any cover {Vi→ u(X)}
in D, there is a cover {Uj →X} in C such that {u(Uj)→ u(X)} refines {Vi→ u(X)}
(i.e., for each j, u(Uj)→ u(X) factors through Vi for some i).

Proof of (2). By [SGA4, III, 2.1 and 2.2], u is cocontinuous if and only if, for any Y ∈ C
and any covering sieve R of u(Y ), the sieve of Y generated by the arrows Z→ Y such that

u(Z)→ u(Y ) factors through R is a covering sieve. This condition is clearly equivalent to

that stated in (2).

Proposition A.1.3.

(1) [SGA4, III.1.3] If u is continuous, the functor ut : D̃ → C̃ given by Definition A.1.1 has

a left adjoint ut, given by the formula ut = aCu!iD.

(2) [SGA4, III.2.5] Let v be left adjoint to u. Then u is continuous if and only if v is

cocontinuous.

A.2 The case of cd-structures

Lemma A.2.1. Let C and D be sites, and let u : C →D be a functor. Assume that the

topologies on C and D are generated by cd-structures PC and PD, respectively.

(a) Assume that PC is complete and that u verifies the condition of Proposition A.1.2.

Then u is continuous if and only if it sends elementary covers to covers.

(b) Assume the following:

(1) PD is complete.

(2) For any X ′ ∈ C and for any distinguished square Q ∈ PD such that Q(11) = u(X ′),

there exists Q′ ∈ PC such that u(Q′) =Q and Q′(11) =X ′.

Then u is cocontinuous.

Proof. (a) Necessity is obvious. Sufficiency: since PC is complete, any cover can be

refined by a simple cover as in [14, Definition 2.2] (this is the definition of complete; see [14,

Definition 2.3]). Therefore, it suffices to show that u sends simple covers to covers. For any

simple cover V = {Vl→X}l∈L of an object X ∈ C, define nV := |L| (note that nV is finite).

We prove the assertion by induction on nV > 1.

If nV = 1, then V consists of an isomorphism since if a simple cover is obtained by

composing an elementary cover at least once, then the cardinality of the indexing set must

be > 1. Therefore the statement is trivial.
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Assume that nV > 1 and take a distinguished square Q ∈ PC of the form

B //

��

Y

p

��
A

e // X

and simple covers Y = {ps : Ys→ Y }s∈S and A= {qt :At→A}t∈T such that V = {p ◦ ps, e ◦
qt}s∈S,t∈T . Then obviously, we have nY < nV and nA < nV , and we are done by induction.

(b) Take any X ′ ∈ C. By the same argument as in (a), it suffices to show the following

assertion: for any simple cover V = {Vj →X}j∈J , there exists a cover U = {Ui→X ′}i∈I
such that u(U) refines V. We proceed by induction on nV > 1, the case nV = 1 being trivial

as above.

Assume that nV > 1. With the same notation as in (a), but with Q ∈ PD, by (2), there

exists Q′ ∈ PC of the form

B′ //

��

Y ′

p′

��
A′

e′ // X ′

such that u(Q′) =Q. In particular, we have u(Y ′) = Y and u(A′) =A. By the induction

hypothesis, there exist covers Y ′ = {p′s′ : Y ′s′ → Y ′}s′∈S′ and A′ = {q′t′ :A′t′ →A′}t′∈T ′ such

that u(Y ′) and u(A′) refine Y and A, respectively. Then we obtain a cover U = {p′ ◦
p′s′ , e

′ ◦ q′t′}s′∈S′,t′∈T ′ of X ′ such that u(U) = {p ◦ u(p′s′), e ◦ u(q′t′)}s′∈S′,t′∈T ′ refines V by

construction. This finishes the proof.

Appendix B. A criterion for an open immersion

In this appendix, we state an important result that we found in [12, Tag:081M]2 (see

also [7, Corollary 2.2] and [10, Theorem 2.7] in the affine case). We include its proof for

completeness.

Theorem B.1.1. Let f :X → S be a morphism of schemes with X Noetherian, and let

U ⊂ S be an open subset. Assume the following conditions hold:

(i) f is separated, locally of finite presentation, and flat.

(ii) f−1(U) := U ×S X → U is an isomorphism.

(iii) The inclusion U → S is quasicompact and scheme-theoretically dense.

Then, f is an open immersion.

Proof. First, consider the case that f is finite. Then, the proof is easy. Indeed, since f

is finite flat of finite presentation, it is finite locally free. Since f is an isomorphism over a

dense open subset, its degree is equal to 1. Hence it is an isomorphism everywhere.

Next, we treat the general case. Since f is flat of finite type, the image f(X)⊂ S is open.

Therefore, we may assume that f is surjective. We want to prove that f is an isomorphism.

By the above argument, it suffices to prove that f is finite.

2https://stacks.math.columbia.edu/tag/081M.
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Claim B.1.2. f is quasifinite.

Proof. Since the problem is local on S, we may assume that S is affine. Then, since

X is quasicompact by assumption, the morphism f is quasicompact. Moreover, f is of

relative dimension 0 since f is flat and birational. Therefore, f is quasicompact and locally

quasifinite and hence quasifinite.

We need the following propositions from [1, Section 2.3 Proposition 8(a), Section 2.5

Proposition 2].

Proposition B.1.3. (Étale localization of quasifinite morphisms) Let f :X → Y be

locally of finite type. Let x be a point of X, and set y := f(x).

If f is quasifinite at x, then there exists an étale neighborhood Y ′→ Y of y such that

the morphism f ′ :X ′→ Y ′, obtained from f by the base change Y ′→ Y , induces a finite

morphism f ′|U ′ : U ′→ Y ′, where U ′ is an open neighborhood of the fiber of X ′→X above

x. In addition, if f is separated, U ′ is a connected component of X ′.

Proposition B.1.4. (Compatibility between schematic images and flat base changes)

Let f :X → Y be an S-morphism, which is quasicompact and quasiseparated. Let g : S′→ S

be a flat morphism, and denote by f ′ :X ′→ Y ′ the S′-morphism obtained from f by

base change. Let Z (resp. Z ′) be the schematic image of f (resp. f ′). Then, Z ×S S′ is

canonically isomorphic to Z ′.

Since the finiteness of f is Zariski local on S, it suffices to check it over an open

neighborhood of a fixed point s ∈ S. Take a point x ∈X above s. Take an étale neighborhood

g : S′→ S of s as in Proposition B.1.3, and set X ′ :=X ×S S′. Denote by f ′ the induced

morphism X ′→ S′. Since f is separated, quasifinite, and locally of finite type, there exists

a connected component V ′ ⊂X ′ such that

f ′|V ′ : V ′→X ′→ S′

is finite, and V ′ is an open neighborhood of the fiber of x. Since f is flat, so is f ′; hence

the image f ′(V ′)⊂ S′ is an open subset. By shrinking S′, we may assume that V ′→ S′ is

surjective. Since f is an isomorphism over U ⊂ S, f ′ is an isomorphism over g−1(U)⊂ S′.
Therefore, combining with the surjectivity of f ′|V ′ , we have

(B.1.1) (f ′)−1(g−1(U))⊂ V ′.

On the other hand, since the map g ◦ f ′ is a flat morphism, Proposition B.1.4 implies that

the open subset

(B.1.2) (f ′)−1(g−1(U))⊂X ′ = V ′ tX ′1

is schematically dense, where X ′1 is an open and closed subset of X ′. Therefore, (1.1) shows

that X ′1 = ∅ and X ′ = V ′. Therefore, we have f ′ = f ′|V ′ ; hence f ′ is finite.

By replacing S with the image of S′→ S, we may assume that S′→ S is an fpqc-cover.

Since finiteness is an fpqc-local property, we conclude that f is finite. This finishes the proof

of Theorem B.1.1.
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Appendix C. Cofilteredness for diagrams

Let u : C →D have a pro-left adjoint v :D→ pro-C. We give ourselves a system of

subcategories (I(d)⊂ d ↓ u)d∈D representing v. Thus each I(d) is ordered and cofiltered,

and v(d) = ‘‘ lim←− ”c∈I(d)c for any d.

Lemma C.1.1. Let ∆ be a finite category without loops: the collections of objects and

morphisms of ∆ are finite and the only endomorphisms of objects are the identities. For

d ∈ D, define a subcategory I(d) of d ↓ u∆ as follows: an object X (resp. morphism f) of

d ↓ u∆ is in I(d) if and only if X(δ) (resp. f(δ)) is in I(d(δ)) for all δ ∈∆. Then the

category I(d) is ordered and cofiltered for all d ∈ D∆.

Proof. The assertion ‘ordered’ is obvious. For ‘cofiltered’, we proceed by induction on

#Ob(∆). We may assume ∆ nonempty. The finiteness and “no loop” hypotheses imply that

∆ has an object δ0 such that no arrow leads to δ0. Let ∆′ be the subcategory of ∆ obtained

by removing δ0 and all the arrows leaving from δ0. Let X1 : d→ u∆(c1), X2 : d→ u∆(c2)

be two objects of I(d). By induction, we may find Y3 : d |∆′→ u∆′
(c3
′) ∈ I(d |∆′) sitting

above X1 |∆′ and X2 |∆′. Let f : δ0→ δ be an arrow, with δ ∈∆′: by the functoriality of

v, there exists a commutative diagram in D

d(δ0)
ϕ(f)

//

d(f)

��

u(c(f))

u(ψ(f))
��

d(δ)
Y3(δ)

// u(c′3(δ))

with ϕ(f) ∈ I(d(δ0)). Since I(d(δ)) is cofiltered, we may find an object d(δ0)
g−→ u(c) ∈

I(d(δ)) sitting above all ϕ(f)’s as well as X1(δ0) and X2(δ0). Then, together with Y3,

X3(δ0) =: g completes the construction of X3 dominating X1 and X2.
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