ALGEBRAIC TORI AS NISNEVICH SHEAVES WITH TRANSFERS

BRUNO KAHN

Abstract. We relate R-equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.

CONTENTS

1. Main results 1
2. Review of terminology for tori 5
3. Proofs of Theorem 1 and Corollary 2 ... 6
4. Stable birationality 8
5. Some open questions 13
References 15

1. Main results

Let k be a field and let T be a k-torus. The R-equivalence classes on T have been extensively studied by several authors, notably by Colliot-Thélène and Sansuc in a series of papers including [4] and [5]: they play a central rôle in many rationality issues. In this note, we show that Voevodsky’s triangulated category of motives sheds a new light on this question: see Corollaries 1, 3 and 4 below.

More generally, let G be a semi-abelian variety over k, which is an extension of an abelian variety A by a torus T. Denote by HI the category of homotopy invariant Nisnevich sheaves with transfers over k in the sense of Voevodsky [20]. Then G has a natural structure of an object of HI ([18, proof of Lemma 3.2], [1, Lemma 1.3.2]). Let L be the group of cocharacters of T.

Proposition 1. There is a natural isomorphism $G_{-1} \sim L$ in HI.

Date: July 4, 2013.
2010 Mathematics Subject Classification. 14L10, 14E08, 14G27, 14F42.
Here \(-1\) is the contraction operation of [19, p. 96], whose definition is recalled in the proof below.

Proof. Recall that if \(\mathcal{F}\) is a presheaf [with transfers] on smooth \(k\)-schemes, the presheaf [with transfers] \(\mathcal{F}^{-1}\) is defined by

\[
U \mapsto \operatorname{Coker}(\mathcal{F}(U \times \mathbf{A}^1) \to \mathcal{F}(U \times \mathbb{G}_m)).
\]

If \(\mathcal{F}\) is homotopy invariant, we may replace \(U \times \mathbf{A}^1\) by \(U\) and the rational point \(1 \in \mathbb{G}_m\) realises \(\mathcal{F}^{-1}(U)\) as a functorial direct summand of \(\mathcal{F}(U \times \mathbb{G}_m)\).

If \(\mathcal{F}\) is a Nisnevich sheaf [with transfers], \(\mathcal{F}^{-1}\) is defined as the sheaf associated to \(\mathcal{F}^{-1}\).

Now \(\mathcal{A}(U \times \mathbf{A}^1) \xrightarrow{\sim} \mathcal{A}(U \times \mathbb{G}_m)\) since \(\mathcal{A}\) is an abelian variety, hence \(\mathcal{A}^{-1} = 0\). We therefore have an isomorphism of presheaves \(T_p^{-1} \xrightarrow{\sim} G_p^{-1}\), and *a fortiori* an isomorphism of Nisnevich sheaves \(T_{-1} \xrightarrow{\sim} G_{-1}\).

Let \(p : \mathbb{G}_m \to \text{Spec } k\) be the structural map. One easily checks that the étale sheaf \(\operatorname{Coker}(T \xrightarrow{i} p_*p^*T)\) is canonically isomorphic to \(L\). Since \(i\) is split, its cokernel is still \(L\) if we view it as a morphism of presheaves, hence of Nisnevich sheaves. \(\square\)

From now on, we assume \(k\) perfect. Let \(\text{DM}^\text{eff}\) be the triangulated category of effective motivic complexes introduced in [20]: it has a \(t\)-structure with heart \(\text{HI}\). It also has a tensor structure and a (partially defined) internal Hom. We then have an isomorphism

\[
L[0] = G_{-1}[0] \simeq \operatorname{Hom}_{\text{DM}^\text{eff}}(\mathbb{G}_m[0], G[0])
\]

[11, Rk. 4.4], hence by adjunction a morphism in \(\text{DM}^\text{eff}\)

\[
L[0] \otimes \mathbb{G}_m[0] \to G.
\]

Let \(\nu_{\leq 0} G[0]\) denote the cone of (1): by [12, Lemma 6.3] or [9, §2], \(\nu_{\leq 0} G[0]\) is the *birational motivic complex* associated to \(G\). We want to compute its homology sheaves.

For this, consider a coflasque resolution\(^1\)

\[
0 \to Q \to L_0 \to L \to 0
\]

of \(L\) in the sense of [4, p. 179]. Taking a coflasque resolution of \(Q\) and iterating, we get a resolution of \(L\) by invertible lattices:

\[
\cdots \to L_n \to \cdots \to L_0 \to L \to 0.
\]

We set

\[
Q_n = \begin{cases}
Q & \text{for } n = 1 \\
\ker(L_{n-1} \to L_{n-2}) & \text{for } n > 1.
\end{cases}
\]

\(^1\)See Section 2 for this and further terminology.
Theorem 1. a) Let T_n denote the torus with cocharacter group L_n. Then $\nu_{\leq 0}G[0]$ is isomorphic to the complex

$$\cdots \to T_n \to \cdots \to T_0 \to G \to 0.$$

b) Let S_n be the torus with cocharacter group Q_n. For any connected smooth k-scheme X with function field K, we have

$$H_n(\nu_{\leq 0}G[0])(X) = \begin{cases}
0 & \text{if } n < 0 \\
G(K)/R & \text{if } n = 0 \\
S_n(K)/R & \text{if } n > 0.
\end{cases}$$

The proof is given in Section 3.

Corollary 1. The assignment $Sm(k) \ni X \mapsto \bigoplus_{x \in X(0)} G(k(x))/R$ provides G/R with the structure of a homotopy invariant Nisnevich sheaf with transfers. In particular, any morphism $\varphi : Y \to X$ of smooth connected k-schemes induces a morphism $\varphi^* : G(k(X))/R \to G(k(Y))/R$. □

This functoriality is essential to formulate Theorem 2 below. For φ a closed immersion of codimension 1, it recovers a specialisation map on R-equivalence classes with respect to a discrete valuation of rank 1 which was obtained (for tori) by completely different methods, e.g. [5, Th. 3.1 and Cor. 4.2] or [8]. (I am indebted to Colliot-Thélène for pointing out these references.)

Corollary 2. a) If k is finitely generated, the n-th homology sheaf of $\nu_{\leq 0}G[0]$ takes values in finitely generated abelian groups, and even in finite groups if $n > 0$ or G is a torus.

b) If G is a torus, then $\nu_{\leq 0}G[0] = 0$ if G is split by a Galois extension E/k whose Galois group has cyclic Sylow subgroups. This condition is automatic if k is (quasi-)finite.

The proof is also given in Section 3.

Given two semi-abelian varieties G,G', we would now like to understand the maps

$$\text{Hom}_k(G,G') \to \text{Hom}_{\text{DM}}(\nu_{\leq 0}G[0],\nu_{\leq 0}G'[0]) \to \text{Hom}_{\text{HI}}(G/R,G'/R).$$

In Section 4, we succeed in elucidating the nature of their composition to a large extent, at least if G is a torus. Our main result, in the spirit of Yoneda’s lemma, is

Theorem 2. Let G,G' be two semi-abelian varieties, with G a torus. Suppose given, for every function field K/k, a homomorphism $f_K : G(K)/R \to G'(K)/R$ such that f_K is natural with respect to the functoriality of Corollary 1. Then
a) There exists an extension \(\tilde{G} \) of \(G \) by a permutation torus, and a homomorphism \(f : \tilde{G} \to G' \) inducing \((f_K)\).

b) \(f_K \) is surjective for all \(K \) if and only if there exist extensions \(\tilde{G}, \tilde{G}' \) of \(G \) and \(G' \) by permutation tori such that \(f_K \) is induced by a split surjective homomorphism \(\tilde{G} \to \tilde{G}' \).

The proof is given in §4.3. See Proposition 3, Corollary 5, Remark 4 and Proposition 4 for complements.

This relates to questions of stable birationality studied by Colliot-Thélène and Sansuc in [4] and [5], providing alternate proofs and strengthening of some of their results (at least over a perfect field).

More precisely, let us introduce the following terminology:

Definition 1.

a) A torus is *quasi-invertible* if it is a quotient of a invertible torus by a permutation torus.

b) An extension \(0 \to T' \to T \to T'' \to 0 \) of tori is *Nisnevich-exact* if \(T(K) \to T''(K) \) is surjective for any function field \(K/k \).

(a) was suggested by Xun Jiang; see also [2]. See §2 for “permutation torus” and “invertible torus”.

Thanks to [19, Cor. 4.18], Nisnevich-exact sequences of tori are exact in the Nisnevich topology and even in the Zariski topology. It is easy to see that an extension as in b) is Nisnevich-exact if \(T' \) is invertible, but not necessarily if \(T' \) is only quasi-invertible. Using [4, Th. 2], one sees that quasi-invertible tori are universally \(R \)-trivial. Conversely:

Corollary 3.

a) Let \(G' \) be a semi-abelian \(k \)-variety such that \(G'(K)/R = 0 \) for any function field \(K/k \). Then \(G' \) is quasi-invertible.

b) In Theorem 2 b), assume that \(f_K \) is bijective for all \(K/k \). Then there exists an extension \(\tilde{G} \) of \(G \) by a permutation torus and a Nisnevich-exact extension \(\tilde{G}' \) of \(G' \) by a quasi-invertible torus such that \(f_K \) is induced by an isomorphism \(\tilde{G} \cong \tilde{G}' \).

Proof. a) This is the special case \(G = 0 \) of Theorem 2 b).

b) By Theorem 2 b), we may replace \(G \) and \(G' \) by extensions by permutation tori such that \(f_K \) is induced by a split surjection \(f : G \to G' \). Let \(T = \text{Ker} \ f \). Then \(T/R = 0 \) universally. By a), \(T \) is quasi-invertible. Replacing \(G' \) by \(G' \times T \), we get the desired statement.

Corollary 3 a) is a version of [5, Prop. 7.4] (taking [4, p. 199, Th. 2] into account). Theorem 2 was inspired by the desire to understand this result from a different viewpoint. Another characterisation of quasi-invertible tori in loc. cit. is that they are the retract-rational tori.

Corollary 4. Let \(f : G \to G' \) be a rational map of semi-abelian varieties, with \(G \) a torus. Then the following conditions are equivalent:
(i) \(f_* : \nu_{\leq 0} G[0] \to \nu_{\leq 0} G'[0] \) is an isomorphism (see Proposition 3).

(ii) \(f_* : G(K)/R \to G'(K)/R \) is bijective for any function field \(K/k \).

(iii) \(f \) is an isomorphism, up to Nisnevich-exact extensions of \(G \) and \(G' \) by quasi-invertible tori and up to a translation. (See Lemma 6.) \(\square \)

Acknowledgements. Part of Theorem 1 was obtained in the course of discussions with Takao Yamazaki during his stay at the IMJ in October 2010: I would like to thank him for inspiring exchanges. I also thank Daniel Bertrand for a helpful discussion, Xun Jiang for pointing out some errors and the referee for suggesting some expository improvements. Finally, I wish to acknowledge inspiration from the work of Colliot-Thélène and Sansuc, which will be obvious throughout this paper.

2. Review of terminology for tori

We take this terminology from [4] and [5].

Definition 2. Let \(G \) be a profinite group.

a) A lattice is a \(G \)-module which is finitely generated and free over \(\mathbb{Z} \).

b) A lattice \(L \) is
 - permutation if it affords a \(G \)-invariant \(\mathbb{Z} \)-basis.
 - invertible if it is isomorphic to a direct summand of a permutation lattice.
 - coflasque if \(H^1(H, L) = 0 \) for any open (hence closed) subgroup \(H \subseteq G \).
 - flasque if the dual lattice \(L^* \) is coflasque.

c) A coflasque resolution of a lattice \(L \) is a short exact sequence of lattices
 \[0 \to Q \to P \to L \to 0 \]
 where \(P \) is permutation and \(Q \) is coflasque. Dually, we have flasque [co]resolutions
 \[0 \to L \to P \to F \to 0 \]
 with \(P \) permutation and \(F \) flasque.

Proposition 2 ([4, p. 181, lemme 3]). Any lattice has a flasque and a coflasque resolution. \(\square \)

In [5, Lemma 0.6], the first statement of c) is extended to \(G \)-modules which are finitely generated over \(\mathbb{Z} \) but not necessarily free.

Let \(k_s \) be a separable closure of the field \(k \) and take \(G = \text{Gal}(k_s/k) \). Let \(T \) be a \(k \)-torus: we shall say that it is permutation, invertible,
flasque, coflasque, if its character group is (Colliot-Thélène and Sansuc use quasi-trivial for “permutation”). Any permutation torus is of the form $R_{E/k}\mathbb{G}_m$ (Weil restriction of scalars) for some étale k-algebra E.

3. Proofs of Theorem 1 and Corollary 2

Lemma 1. The exact sequence

$$0 \rightarrow T(k) \rightarrow G(k) \rightarrow A(k)$$

induces an exact sequence

$$0 \rightarrow T(k)/R \rightarrow G(k)/R \rightarrow A(k).$$

Proof. Let $f : \mathbb{P}^1 \dashrightarrow G$ be a k-rational map defined at 0 and 1. Its composition with the projection $G \rightarrow A$ is constant: thus the image of f lies in a T-coset of G defined by a rational point. This implies the injectivity of i, and the rest is clear. □

Let NST denote the category of Nisnevich sheaves with transfers. Recall that $\mathrm{DM}_{\text{eff}}^-$ may be viewed as a localisation of $D^-(\text{NST})$, and that its tensor structure is a descent of the tensor structure on the latter category [20, Prop. 3.2.3].

Lemma 2. If G is an invertible torus, there is a canonical isomorphism in $D^-(\text{NST})$

$$L[0] \otimes \mathbb{G}_m \sim \rightarrow G[0].$$

In particular, $\nu_{\leq 0} G[0] = 0$.

Proof. We reduce to the case $T = R_{E/k}\mathbb{G}_m$, where E is a finite extension of k. Let us write more precisely $\text{NST}(k)$ and $\text{NST}(E)$. There is a pair of adjoint functors

$$\text{NST}(k) \xrightarrow{f^*} \text{NST}(E), \quad \text{NST}(E) \xrightarrow{f_*} H\text{I}(k)$$

where $f : \text{Spec } E \rightarrow \text{Spec } k$ is the projection. Clearly,

$$f_*\mathbb{Z} = \mathbb{Z}_{\text{tr}}(\text{Spec } E), \quad f_*\mathbb{G}_m = T$$

where $\mathbb{Z}_{\text{tr}}(\text{Spec } E)$ is the Nisnevich sheaf with transfers represented by $\text{Spec } E$. Since $\mathbb{Z}_{\text{tr}}(\text{Spec } E) = L$, this proves the claim. □

Proof of Theorem 1. a) Recall that L_0 is an invertible lattice chosen so that $L_0(E) \rightarrow L(E)$ is surjective for any extension E/k. In particular, (2) and (3) are exact as sequences of Nisnevich sheaves; hence $L[0]$ is isomorphic in $D^-(\text{NST})$ to the complex

$$L_0 \rightarrow \cdots \rightarrow L_n \rightarrow \cdots \rightarrow L_0 \rightarrow 0.$$
(We may view (3) as a version of Voevodsky’s “canonical resolutions” as in [20, §3.2 p. 206].

By Lemma 2, \(L_n[0] \otimes G_m[0] \simeq T_n[0] \) is homologically concentrated in degree 0 for all \(n \). It follows that the complex

\[
T_n = \cdots \rightarrow T_n \rightarrow \cdots \rightarrow T_0 \rightarrow 0
\]

is isomorphic to \(L[0] \otimes G_m[0] \) in \(D^- (NST) \), hence a fortiori in \(D^{\text{eff}}(\mathcal{S}) \).

b) For any nonempty open subscheme \(U \subseteq X \) we have isomorphisms

\[
H_n(\nu_{\leq 0} G[0])(X) \xrightarrow{\sim} H_n(\nu_{\leq 0} G[0])(U) \xrightarrow{\sim} H_n(\nu_{\leq 0} G[0])(K)
\]

(e.g. [9, p. 912]). By a), the right hand term is the \(n \)-th homology group of the complex

\[
\cdots \rightarrow T_n(K) \rightarrow \cdots \rightarrow T_0(K) \rightarrow G(K) \rightarrow 0
\]

with \(G(K) \) in degree 0. By [4, p. 199, Th. 2], the sequences

\[
0 \rightarrow S_1(K) \rightarrow T_0(K) \rightarrow T(K) \rightarrow T(K)/R \rightarrow 0
\]

\[
0 \rightarrow S_{n+1}(K) \rightarrow T_n(K) \rightarrow S_n(K) \rightarrow S_n(K)/R \rightarrow 0
\]

are all exact. Using Lemma 1 for \(H_0 \), the conclusion follows from an easy diagram chase.

\[\square\]

Remark 1. As a corollary to Theorem 1, \(S_n(K)/R \) only depends on \(G \). This can be seen without mentioning \(D^{\text{eff}}(\mathcal{S}) \): in view of the reasoning just above, it suffices to construct a homotopy equivalence between two resolutions of the form (3), which easily follows from the definition of coflasque modules.

Proof of Corollary 2. a) This follows via Theorem 1 and Lemma 1 from [4, p. 200, Cor. 2] and the Mordell-Weil-Néron theorem. b) We may choose the \(L_n \), hence the \(S_n \) split by \(E/k \). The conclusion now follows from Theorem 1 and [4, p. 200, Cor. 3]. The last claim is clear.

\[\square\]

Remark 2. In characteristic \(p > 0 \), all finitely generated perfect fields are finite. To give some contents to Corollary 2 a) in this characteristic, one may pass to the perfect [one should say radicial] closure \(k \) of a finitely generated field \(k_0 \). If \(G \) is a semi-abelian \(k \)-variety, it is defined over some finite extension \(k_1 \) of \(k_0 \). If \(k_2/k_1 \) is a finite (purely inseparable) subextension of \(k/k_1 \), then the composition

\[
G(k_2) \xrightarrow{N_{k_2/k_1}} G(k_1) \rightarrow G(k_2)
\]

equals multiplication by \([k_2 : k_1]\). Hence Corollary 2 a) remains true at least after inverting \(p \).
4. Stable birationality

If X is a smooth variety over a field k, we write $\text{Alb}(X)$ for its generalised Albanese variety in the sense of Serre [17]: it is a semi-abelian variety, and a rational point $x_0 \in X$ determines a morphism $X \to \text{Alb}(X)$ which is universal for morphisms from X to semi-abelian varieties sending x_0 to 0.

We also write $\text{NS}(X)$ for the group of cycles of codimension 1 on X modulo algebraic equivalence. This group is finitely generated if k is algebraically closed [10, Th. 3].

4.1. Well-known lemmas. I include proofs for lack of reference.

Lemma 3. a) Let G, G' be two semi-abelian k-varieties. Then any k-morphism $f : G \to G'$ can be written uniquely $f = f(0) + f'$, where f' is a homomorphism.

b) For any semi-abelian k-variety G, the canonical map $G \to \text{Alb}(G)$ sending 0 to 0 is an isomorphism.

Proof. a) amounts to showing that if $f(0) = 0$, then f is a homomorphism. By an adjunction game, this is equivalent to b). Let us give two proofs: one of a) and one of b).

Proof of a.) We may assume k to be a universal domain. The statement is classical for abelian varieties [16, p. 41, Cor. 1] and an easy computation for tori. In the general case, let T, T' be the toric parts of G and G' and A, A' be their abelian parts. Let $g \in G(k)$. As any morphism from T to A' is constant, the k-morphism

$$\varphi_g : T \ni t \mapsto f(g + t) - f(g) \in G'$$

(which sends 0 to 0) lands in T', hence is a homomorphism. Therefore it only depends on the image of g in $A(k)$. This defines a morphism $\varphi : A \to \text{Hom}(T, T')$, which must be constant with value $\varphi_0 = f$. It follows that

$$(g, h) \mapsto f(g + h) - f(g) - f(h)$$

induces a morphism $A \times A \to T'$. Such a morphism is constant, of value 0.

Proof of b.) This is true if G is abelian, by rigidity and the equivalence between a) and b). In general, any morphism from G to an abelian variety is trivial on T. This shows that the abelian part of $\text{Alb}(G)$ is A. Let $T' = \text{Ker}(\text{Alb}(G) \to A)$. We also have the counit morphism $\text{Alb}(G) \to G$, and the composition $G \to \text{Alb}(G) \to G$ is the identity. Thus T is a direct summand of T'. It suffices to show that $\dim T' = \dim T$. Going to the algebraic closure, we may reduce to $T = \mathbb{G}_m$.
Then consider the line bundle completion \(\tilde{G} \rightarrow A \) of the \(\mathbb{G}_m \)-bundle \(G \rightarrow A \). It is sufficient to show that the kernel of

\[
\text{Alb}(G) \rightarrow \text{Alb}(\tilde{G}) = A
\]

is 1-dimensional. This follows for example from [1, Cor. 10.5.1].

Lemma 4. Suppose \(k \) algebraically closed, and let \(G \) be a semi-abelian \(k \)-variety. Let \(A \) be the abelian quotient of \(G \). Then the map

\[
(5) \quad \text{NS}(A) \rightarrow \text{NS}(G)
\]

is an isomorphism.

Proof. Let \(T = \text{Ker}(G \rightarrow A) \) and \(X(T) \) be its character group. Choosing a basis \((e_i) \) of \(X(T) \), we may complete the \(\mathbb{G}_m \)-torsor \(G \) into a product of line bundles \(\tilde{G} \rightarrow A \). The surjection

\[
\text{Pic}(A) \rightarrow \text{Pic}(\tilde{G}) \rightarrow \text{Pic}(G)
\]

show the surjectivity of (5). Its kernel is generated by the classes of the irreducible components \(D_i \) of the divisor with normal crossings \(\tilde{G} - G \). These components correspond to the basis elements \(e_i \). Since the corresponding \(\mathbb{G}_m \)-bundle is a group extension of \(A \) by \(\mathbb{G}_m \), the class of the 0 section of its line bundle completion lies in \(\text{Pic}^0(A) \), hence goes to 0 in \(\text{NS}(\tilde{G}) \). \qed

Lemma 5. Let \(X \) be a smooth \(k \)-variety, and let \(U \subseteq X \) be a dense open subset. Then there is an exact sequence of semi-abelian varieties

\[
0 \rightarrow T \rightarrow \text{Alb}(U) \rightarrow \text{Alb}(X) \rightarrow 0
\]

with \(T \) a torus. If \(\text{NS}(\bar{U}) = 0 \) (this happens if \(U \) is small enough), there is an exact sequence of character groups

\[
0 \rightarrow X(T) \rightarrow \bigoplus_{x \in X^{(1)}-U^{(1)}} \mathbb{Z} \rightarrow \text{NS}(\bar{X}) \rightarrow 0.
\]

Proof. This follows for example from [1, Cor. 10.5.1]. \qed

Lemma 6. Let \(f : G \rightarrow G' \) be a rational map between semi-abelian \(k \)-varieties, with \(G \) a torus. Then there exists an extension \(\tilde{G} \) of \(G \) by a permutation torus and a homomorphism \(\tilde{f} : \tilde{G} \rightarrow G' \) which extends \(f \) up to translation in the following sense: there exists a rational section \(s : G \rightarrow \tilde{G} \) of the projection \(\pi : \tilde{G} \rightarrow G \) and a rational point \(g' \in G'(k) \) such that \(f = \tilde{f}s + g' \). If \(f \) is defined at 0\(_G\) and sends it to 0\(_{G'}\), then \(g' = 0 \).
Proof. Let U be an open subset of G where f is defined. We define $\tilde{G} = \text{Alb}(U)$. Applying Lemmas 5 and 3 b) and using $\text{NS} (\tilde{G}) = 0$, we get an extension

$$0 \to P \to \tilde{G} \to G \to 0$$

where P is a permutation torus, as well as a morphism $\tilde{f} = \text{Alb}(f) : \tilde{G} \to G'$. Let us first assume k infinite. Then $U(k) \neq \emptyset$ because G is unirational. A rational point $g \in U$ defines an Albanese map $s : U \to \tilde{G}$ sending g to $0_{\tilde{G}}$. Since P is a permutation torus, $g \in G(k)$ lifts to $\tilde{g} \in \tilde{G}(k)$ (Hilbert 90) and we may replace s by a morphism sending g to \tilde{g}. Then s is a rational section of π. Moreover, $f = \tilde{f}s + g'$ with $g' = f(g) - \tilde{f}(\tilde{g})$. The last assertion follows.

If k is finite, then U has at least a zero-cycle g of degree 1, which is enough to define the Albanese map s. We then proceed as above (lift every closed point involved in g to a closed point of \tilde{G} with the same residue field).

\blacksquare

Lemma 7. Let G be a finite group, and let A be a finitely generated G-module. Then

a) There exists a short exact sequence of G-modules $0 \to P \to F \to A \to 0$, with F torsion-free and flasque, and P permutation.

b) Let B be another finitely generated G-module, and let $0 \to P' \to E \to B \to 0$ be an exact sequence with P' an invertible module. Then any G-morphism $f : A \to B$ lifts to $\tilde{f} : F \to E$.

Proof. a) is the contents of [5, Lemma 0.6, (0.6.2)]. b) The obstruction to lifting f lies in $\text{Ext}^1_G(F, P') = 0$ [4, p. 182, Lemme 9].

\blacksquare

4.2. Functoriality of $\nu_{\leq 0}G$. We now assume k perfect.

Lemma 8. Let

$$0 \to P \to G \to H \to 0$$

be an exact sequence of semi-abelian varieties, with P an invertible torus. Then $\nu_{\leq 0}G[0] \stackrel{\sim}{\to} \nu_{\leq 0}H[0]$.

Proof. As P is invertible, (6) is exact in NST hence defines an exact triangle

$$P[0] \to G[0] \to H[0] \rightrightarrows$$

in DM_{eff}. The conclusion then follows from Lemma 2. \blacksquare

Proposition 3. Let G, G' be two semi-abelian k-varieties, with G a torus. Then a rational map $f : G \dasharrow G'$ induces a morphism $f_* : \nu_{\leq 0}G[0] \to \nu_{\leq 0}G'[0]$, hence a homomorphism $f_* : G(K)/R \to G'(K)/R$.

for any extension K/k. If K is infinite, f_* agrees up to translation with the morphism induced by f via the isomorphism $U(K)/R \cong G(K)/R$ from [4, p. 196 Prop. 11], where U is an open subset of definition of f.

Proof. By Lemma 6, f induces a homomorphism $\tilde{G} \to G'$ where \tilde{G} is an extension of G by a permutation torus. By Lemma 8, the induced morphism

$$\nu_{\leq 0}\tilde{G}[0] \to \nu_{\leq 0}G'[0]$$

factors through a morphism $f_* : \nu_{\leq 0}G[0] \to \nu_{\leq 0}G'[0]$.

The claims about R-equivalence classes follow from Theorem 1 b) and Lemma 6. □

Remark 3. The proof shows that $f' = f_*$ if f' differs from f by a translation by an element of $G(k)$ or $G'(k)$.

Corollary 5. If T and T' are birationally equivalent k-tori, then $\nu_{\leq 0}T[0] \simeq \nu_{\leq 0}T'[0]$. In particular, the groups $T(k)/R$ and $T'(k)/R$ are isomorphic.

Proof. The proof of Proposition 3 shows that $f \mapsto f_*$ is functorial for composable rational maps between tori. Let $f : T \dashrightarrow T'$ be a birational isomorphism, and let $g : T' \dashrightarrow T$ be the inverse birational isomorphism. Then we have $g_* f_* = 1_{\nu_{\leq 0}T[0]}$ and $f_* g_* = 1_{\nu_{\leq 0}T'[0]}$. The last claim follows from Theorem 1. □

Remark 4. It is proven in [4] that a birational isomorphism of tori $f : T \dashrightarrow T'$ induces a set-theoretic bijection $f_* : T(k)/R \cong \to T'(k)/R$ (p. 197, Cor. to Prop. 11) and that the group $T(k)/R$ is abstractly a birational invariant of T (p. 200, Cor. 4). The proof above shows that f_* is an isomorphism of groups if f respects the origins of T and T'. This solves the question raised in [4, mid. p. 397]. The proofs of Lemma 6 and Proposition 3 may be seen as dual to the proof of [4, p. 189, Prop. 5], and are directly inspired from it.

4.3. Faithfulness and fullness.

Proposition 4. Let $f : G \dashrightarrow G'$ be a rational map between semi-abelian varieties, with G a torus. Assume that the map $f_* : G(K)/R \to G'(K)/R$ from Proposition 3 is identically 0 when K runs through the finitely generated extensions of k. Then there exists a permutation torus P and a factorisation of f as

$$G \overset{\tilde{f}}{\longrightarrow} P \overset{g}{\longrightarrow} G'$$

where \tilde{f} is a rational map and g is a homomorphism. If f is a morphism, we may choose \tilde{f} as a homomorphism.
Conversely, if there is such a factorisation, then \(f_* : \nu_{\leq 0}G[0] \to \nu_{\leq 0}G'[0] \) is the 0 morphism.

Proof. By Lemma 6, we may reduce to the case where \(f \) is a homomorphism. Let \(K = k(G) \). By hypothesis, the image of the generic point \(\eta_G \in G(K) \) is \(R \)-equivalent to 0 on \(G'(K) \). By a lemma of Gille [7, Lemme II.1.1 b)], it is directly \(R \)-equivalent to 0: in other words, there exists a rational map \(h : G \times A^1 \to G' \), defined in the neighbourhood of 0 and 1, such that \(h|_{G \times \{0\}} = 0 \) and \(h|_{G \times \{1\}} = f \).

Let \(U \subseteq G \times A^1 \) be an open set of definition of \(h \). The 0 and 1-sections of \(G \times A^1 \) induce sections
\[
s_0, s_1 : G \to \text{Alb}(U)
\]
of the projection \(\pi : \text{Alb}(U) \to \text{Alb}(G \times A^1) = G \) such that \(\text{Alb}(h) \circ s_0 = 0 \) and \(\text{Alb}(h) \circ s_1 = f \). If \(P = \ker \pi \), then \(s_1 - s_0 \) induces a homomorphism \(\tilde{f} : G \to P \) such that the composition
\[
G \xrightarrow{\tilde{f}} P \to \text{Alb}(U) \xrightarrow{\text{Alb}(h)} G'
\]
equals \(f \). Finally, \(P \) is a permutation torus by Lemma 5.

The last claim follows from Lemma 2. \(\square \)

Proof of Theorem 2. a) Take \(K = k(G) \). The image of the generic point \(\eta_G \) by \(f_K \) lifts to a (non unique) rational map \(f : G \to G' \). Using Lemma 6, we may extend \(f \) to a homomorphism
\[
\tilde{f} : \tilde{G} \to G'
\]
where \(\tilde{G} \) is an extension of \(G \) by a permutation torus \(P \). Since \(\tilde{G}(K)/R \sim \to G(K)/R \), we reduce to \(\tilde{G} = G \) and \(\tilde{f} = f \).

Let \(L/k \) be a function field, and let \(g \in G(L) \). Then \(g \) arises from a morphism \(g : X \to G \) for a suitable smooth model \(X \) of \(L \). By assumption on \(K \mapsto f_K \), the diagram
\[
\begin{array}{ccc}
G(K)/R & \xrightarrow{f_K} & G'(K)/R \\
\downarrow{g^*} & & \downarrow{g^*} \\
G(L)/R & \xrightarrow{f_L} & G'(L)/R
\end{array}
\]
commutes. Applying this to \(\eta_K \in G(K) \), we find that \(f_L([g]) = [g \circ f] \), which means that \(f_L \) is the map induced by \(f \).

b) The hypothesis implies that \(G'(E)/R = 0 \) for any algebraically closed extension \(E/k \), which in turn implies that \(G' \) is also a torus. Applying a), we may, and do, convert \(f \) into a true homomorphism by replacing \(G \) by a suitable extension by a permutation torus. Applying Lemma 7 a) to the cocharacter group of \(G \), we then get a resolution.
0 → \text{P} \rightarrow Q \rightarrow G \rightarrow 0 \text{ with } Q \text{ coflasque and } \text{P} \text{ permutation. Hence we may (and do) further assume } G \text{ coflasque.}

Let \(K = k(G') \) and choose some \(g \in G(K) \) mapping modulo \(R \)-equivalence to the generic point of \(G' \). Then \(g \) defines a rational map \(g : G' \rightarrow G \) such that \(fg \) is \(R \)-equivalent to \(1_{G'} \). It follows that the induced map

\[
1 - fg : G'/R \rightarrow G'/R
\]

is identically 0.

Reapplying Lemma 6, we may find an extension \(\tilde{G}' \) of \(G' \) by a suitable permutation torus which converts \(g \) into a true homomorphism. Since \(G \) is coflasque, Lemma 7 b) shows that \(f : G \rightarrow G' \) lifts to \(\tilde{f} : G \rightarrow \tilde{G}' \). Then (7) is still identically 0 when replacing \((G', f)\) by \((\tilde{G}', \tilde{f})\).

Summarising: we have replaced the initial \(G \) and \(G' \) by suitable extensions by permutation tori, such that \(f \) lifts to these extensions and there is a homomorphism \(g : G' \rightarrow G \) such that (7) vanishes identically. Hence \(1 − fg \) factors through a permutation torus \(\text{P} \). Let \(G_1 = G \times \text{P} \) and consider the maps

\[
f_1 = (f, v) : G_1 \rightarrow G', \quad g_1 = \begin{pmatrix} g \\ u \end{pmatrix} : G' \rightarrow G_1.
\]

Then \(f_1 g_1 = 1 \) and \(G' \) is a direct summand of \(G_1 \) as requested. \(\square \)

5. SOME OPEN QUESTIONS

\textbf{Question 1.} Are lemma 6 and Proposition 3 still true when \(G \) is not a torus?

This is far from clear in general, starting with the case where \(G \) is an abelian variety and \(G' \) a torus. Let me give a positive answer in the case of an elliptic curve.

\textbf{Proposition 5.} The answer to Question 1 is yes if the abelian part \(A \) of \(G \) is an elliptic curve.

\textit{Proof.} Arguing as in the proof of Proposition 3, we get for an open subset \(U \subseteq G \) of definition for \(f \) an exact sequence

\[
0 \rightarrow \mathbb{G}_m \rightarrow P \rightarrow \text{Alb}(U) \rightarrow G \rightarrow 0
\]

where \(P \) is a permutation torus. Here we used that \(\text{NS}(\tilde{G}) \cong \mathbb{Z} \), which follows from Lemma 4.

The character group \(X(P) \) has as a basis the geometric irreducible components of codimension 1 of \(G - U \). Up to shrinking \(U \), we may assume that \(G - U \) contains the inverse image \(D \) of 0 \(\in A \). As the
divisor class of 0 generates \(\text{NS}(A) \), \(D \) provides a Galois-equivariant splitting of the map \(\mathbb{G}_m \to P \). Thus its cokernel is still a permutation torus, and we conclude as before. \(\square \)

Question 2. Can one formulate a version of Theorem 2 and Corollary 3 providing a description of the groups \(\text{Hom}_{\text{DM}_{\text{eff}}}(\nu \leq 0 G[0], \nu \leq 0 G'[0]) \) and \(\text{Hom}_{\text{Hil}}(G/R, G'/R) \) (at least when \(G \) and \(G' \) are tori)?

The proof of Theorem 2 suggests the presence of a closed model structure on the category of tori (or lattices), which might provide an answer to this question.

For the last question, let \(G \) be a semi-abelian variety. Forgetting its group structure, it has a motive \(M(G) \in \text{DM}_{\text{eff}} \). Recall the canonical morphism

\[
M(G) \to G[0]
\]

induced by the “sum” maps

\[
(c(X, G) \xrightarrow{\sigma} G(X))
\]

for smooth varieties \(X \) ([18, (6), (7)], [1, §1.3]).

The morphism (8) has a canonical section

\[
G(X) \xrightarrow{\gamma} c(X, G)
\]

given by the graph of a morphism: this section is functorial in \(X \) but is not additive.

Consider now a smooth equivariant compactification \(\bar{G} \) of \(G \). It exists in all characteristics. For tori, this is written up in [3]. The general case reduces to this one by the following elegant argument I learned from M. Brion: if \(G \) is an extension of an abelian variety \(A \) by a torus \(T \), take a smooth projective equivariant compactification \(Y \) of \(T \). Then the bundle \(G \times_T Y \) associated to the \(T \)-torsor \(G \to A \) also exists: this is the desired compactification.

Then we have a diagram of birational motives

\[
\begin{array}{ccc}
\nu \leq 0 M(G) & \xrightarrow{\sim} & \nu \leq 0 M(\bar{G}) \\
\text{ } \downarrow^{\nu \leq 0 \sigma} & & \\
\nu \leq 0 G[0]. & & \\
\end{array}
\]

By [12], we have \(H_0(\nu \leq 0 M(\bar{G}))(X) = CH_0(\bar{G}_{k(X)}) \) for any smooth connected \(X \). Hence the above diagram induces a homomorphism

\[
CH_0(\bar{G}_{k(X)}) \to G(k(X))/R
\]

which is natural in \(X \) for the action of finite correspondences (compare Corollary 1). One can probably check that this is the homomorphism
of [13, (17) p. 78], reformulating [4, Proposition 12 p. 198]. Similarly, the set-theoretic map
\[G(k(X))/R \to CH_0(\bar{G}_{k(X)}) \]
of [4, p. 197] can presumably be recovered as a birational version of (9), using perhaps the homotopy category of schemes of Morel and Voevodsky [15].

In [13], Merkurjev shows that (11) is an isomorphism for G a torus of dimension at most 3. This suggests:

Question 3. Is the map $\nu_{\leq 0}\sigma$ of Diagram (10) an isomorphism when G is a torus of dimension ≤ 3?

In [14], Merkurjev gives examples of tori G for which (12) is not a homomorphism; hence its (additive) left inverse (11) cannot be an isomorphism. Merkurjev’s examples are of the form $G = R^1_{K/k}\mathbb{G}_m \times R^1_{L/k}\mathbb{G}_m$, where K and L are distinct biquadratic extensions of k. This suggests:

Question 4. Can one study Merkurjev’s examples from the above viewpoint? More generally, what is the nature of the map $\nu_{\leq 0}\sigma$ of Diagram (10)?

We leave all these questions to the interested reader.

References

Institut de Mathématiques de Jussieu, UMR 7586, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
E-mail address: kahn@math.jussieu.fr