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ABSTRACT. We associate an L-function Lnear(M, s) to any geometric
motive over a global field K in the sense of Voevodsky. This is a Dirich-
let series which converges in some half-plane and has an Euler product
factorisation. When M is the dual of M(X) for X a smooth projec-
tive variety, Lnear(M, s) differs from the alternating product of the zeta
functions defined by Serre in 1969 only at places of bad reduction; in
exchange, it is multiplicative with respect to exact triangles. If K is a
function field over Fq , Lnear(M, s) is a rational function in q−s and en-
joys a functional equation. The techniques use the full force of Ayoub’s
six (and even seven) operations.
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INTRODUCTION

Let K be a global field, and let X be a smooth projective K-variety. In
[44], after a long search (see [10, letter avril 1963, p. 143]), Serre suc-
ceeded to define local factors of zeta functions associated to the cohomol-
ogy groups of X , generalising both Artin’s L-functions and the Hasse-Weil
zeta function associated to an elliptic curve. When K is a number field, this
definition has been generalised by Scholl [42] to ‘mixed motives’, i.e. ob-
jects of the abelian category defined by Jannsen and Deligne with systems
of realisations in [22] and [13], thus allowing for a more conceptual refor-
mulation of Beilinson’s conjectures on special values of L-functions (see
also Fontaine-Perrin Riou [16] and Deninger [14]).1

These definitions use l-adic cohomology and, unfortunately, depend on a
still unproven conjecture: without even mentioning mixed motives, this is
already the case in [44]. Namely, the local factor from [44, §2] at a finite
place v of K is of the form

(1) LSerre
v (H i(X), s) = det(1− φvN(v)−s | H i(X̄,Ql)

Iv)−1

where φv is a geometric Frobenius at v, l is a prime number not dividing
N(v) and Iv is the inertia at v. Here N(v) is the cardinality of the residue
field at v. But for this expression to make sense as a complex function of
the variable s, one needs at the very least that the coefficients of this inverse
polynomial be complex numbers, while they are defined as l-adic numbers.
If v is a place of good reduction, (1) boils down by smooth and proper base
change to det(1− φvN(v)−s | H i(X̄(v),Ql))

−1 where X(v) is the special
fibre of a smooth model of X at v, which does not depend on the choice of
the prime l and has rational coefficients by Deligne’s proof of the “Riemann
hypothesis” for X(v) [11]. That this persists when X has bad reduction at
v was proven by Terasoma in positive characteristic [48] but remains open
over number fields in general [44, C5]. See [29, 5.6.3, 5.6.4] for a detailed
discussion.

Another issue is that the L-functions of (1) seem difficult to manipulate:
if 0 → M ′ → M → M ′′ → 0 is a short exact sequence of mixed motives,
the equality LSerre(M, s) = LSerre(M ′, s)LSerre(M ′′, s) fails in general.

Let us now pass from mixed motives to triangulated motives. Let
DMgm(K,Q) denote Voevodsky’s triangulated category of geometric mo-
tives over K, with rational coefficients [49, 36]. In this article, we associate
to any object M ∈ DMgm(K,Q) a Dirichlet series Lnear(M, s), called the
nearby L-function of M , which has the following properties:

Convergence: Lnear(M, s) has a finite abscissa of convergence.

1There is no candidate for an abelian category of mixed motives in positive characteris-
tic at present.
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Multiplicativity: If M ′ →M →M ′′ +1−→ is an exact triangle, then

Lnear(M, s) = Lnear(M ′, s)Lnear(M ′′, s).

In particular, Lnear(M [1]) = Lnear(M, s)−1.
Tate twists: Lnear(M(1), s) = Lnear(M, s+ 1).
Euler decomposition: There is a factorisation

Lnear(M, s) =
∏
v

Lnear
v (M, s)

where v runs through the finite places of K and Lnear
v (M, s) is an

N(v)-Euler factor, i.e. a rational function in N(v)−s with Q coeffi-
cients whose zeroes and poles are N(v)-Weil numbers.

Inductivity: Let L/K be a finite extension and f : SpecL→ SpecK
be the corresponding morphism. Then

Lnear(M, s) = Lnear(f!M, s)

for anyM ∈ DMgm(L,Q), where f! : DMgm(L,Q)→ DMgm(K,Q)
is the push-forward functor.

“Normalisation”: Let X be a smooth projective K-variety. If v is a
place of good reduction forX , then Lnear

v (M(X)∗, s) = ζ(X(v), s),
whereX(v) is the special fibre of a smooth projective model ofX at
v (this zeta function does not depend on the choice of such a model,
[29, Prop. 5.6]). Here M(X)∗ is the dual of the motive M(X) of
X . This extends to Lnear(Φ(N)∗, s), whereN is a Chow motive and
v is a place of good reduction for N , where Φ : Chow(K,Q) →
DMgm(K,Q) is Voevodsky’s functor [49, Prop. 2.1.4].

Rationality and functional equation: If K has positive characteris-
tic with field of constants k ≃ Fq, then Lnear(M, s) is a q-Euler
factor and enjoys a functional equation

Lnear(M∗, 1− s) = A(−q)−BsLnear(M, s)

where A ∈ Q∗ and B ∈ Z are some explicit numbers (Theorem
10.1).

Archimedean primes: If K is a number field, to any archimedean
place v of K is associated a “local gamma factor” Γv(M, s) which
is multiplicative in M and agrees with that of a smooth projective
variety X as in Serre [44, §3] for M =M(X)∗.

The definition of Lnear(M, s) purely rests on formal properties of the
rigid ⊗-triangulated category DMgm(K,Q) and its generalisations over a
base, hence, in fine, on algebraic cycles. In particular, it is independent of
l a priori. The superscript ‘near’ is there to point out that this definition
is not very different from the classical one for smooth projective varieties,
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but also that it can be computed in terms of Ayoub’s specialisation systems
(nearby cycles): Theorem 9.7. The quotation marks at normalisation are
there because this property is sufficient, together with multiplicaitivity, only
to characterise Lnear up to finite products of Euler factors. It would be nice
to find extra properties which make this uniqueness true on the nose.

If X is smooth projective, Lnear
v (M(X)∗, s) is in general different from

LSerre
v (X, s) when v is a place of bad reduction, where LSerre

v (X, s) is the
alternating product of the functions of (1): see §9.D.2 for the example
of an elliptic curve with multiplicative reduction. To explain the idea be-
hind its definition, note that there is a competing local factor, replacing
H i(X̄,Ql)

Iv = H0(Iv, H
i(X̄,Ql)) with H1(Iv, H

i(X̄,Ql)) =
H i(X̄,Ql)Iv(−1) (compare [10, note 164.23]): Lnear(M(X)∗, s) is a “mul-
tiplicative average” of these two alternating products, see Theorem 9.5 b)
and Definition 9.6.

After getting the idea to define triangulated L-functions and finding how,
I wondered if Grothendieck would himself have had a similar concern. And
indeed he raises the issue twice, in [10, letter 30.9.1964, top p. 196] re-
sponding to the letter quoted above where Serre formulates the question,
and in loc. cit., letter of 3 and 5 Oct. 1964, c) p. 202. In the first letter, he
claims (unless mistaken) that the formula of [44] is indeed multiplicative2.
This looks strange, since taking invariants under inertia is not a (right) ex-
act functor. In the second, he backtracks and prefers a “définition bébête”
where L(M, s) (for a mixed motive M ) is defined as the product of L-
functions of the factors of its semi-simplification. It will turn out, after the
fact, that the latter idea is the right one for triangulated motives, see (9.6).
For mixed motives, however, Grothendieck’s first proposal as implemented
in the references given at the beginning seems to be the most interesting and
the most profound. But it depends on conjectures. . .

Thus I hope that the present construction, its unconditionality and its mul-
tiplicative property will be helpful for making progress towards the Beilin-
son conjectures.

This version is preliminary because I stopped at a ‘honest’ functional
equation in the sense of Grothendieck’s first letter quoted above (see [10,
p. 197]). To get a nicer one as in [44] would involve giving a formula
à la Grothendieck-Ogg-Šafarevič [SGA5, Exp. X] for the Euler Poincaré
characteristic of a motive of the form f!M , where f = S → SpecFq is
a smooth projective curve. While this can obviously be done via an l-adic
realisation, it is not clear (to me) that the local terms are independent of l,
see Question 10.2. The same issue arises in higher dimension when using

2Lorsqu’on veut à tout prix une fonction L qui dépende multiplicativement de M , il me
semble hors de doute que la définition que tu préconises est la meilleure.
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Takeshi Saito’s theory of the characteristic cycles [41]. Joseph Ayoub has
suggested to use the Galois action on his “full” specialisation systems Ψx

[3, Déf. 10.14]; I hope to come back to this in a further version.

Strategy. We first associate a zeta function to any motive in DMgm(k,Q)
when k is a finite field, by using categorical traces of powers of Frobenius
in this rigid ⊗-category. One key result is that the zeta function of the
“Borel-Moore” motive of X is the zeta function of X , when X is an Fq-
scheme of finite type (Corollary 2.25). We then extend this to motives over
a Z-scheme of finite type S by the usual product formula over the closed
points of S. Here a second key result is a trace formula, which allows
us to compute these zeta functions as zeta functions of motives over Fq

when S is an Fq-scheme (Theorem 3.9): the proof, relying on the previous
result, is almost purely motive-theoretic but we cannot avoid using the l-
adic realisation functor (hence the trace formula of [SGA5]), because of
a problem of idempotents. We also get a functional equation when S is
proper over Fq (ibid.). The six functors formalism established by Ayoub in
his thesis [2] is central in these definitions and properties.

All these zeta functions are rational functions of p−s in characteristic p.
In Corollary 6.4, we show that they converge (in some half-plane) also in
characteristic 0, i.e. when S is dominant over SpecZ.

In Section 9 we arrive at the heart of the matter: the case of motives over
a global field K. Since SpecK is not of finite type over SpecZ, the issue
is to get a reasonable definition out of the previous work. We do it in two
steps: first define a “total” L-function (Definition 9.3), and then deduce the
“nearby” L-function from it (Definition 9.6), by applying Lemma 5.2. In
characteristic p > 0, we get a functional equation in Theorem 10.1. All this
latter work uses heavily the six operations again, and even the seventh (the
unipotent specialisation system).

Acknowledgements. This work has been in gestation since 1998. Since
then, Science has made progress and much of this progress has been incor-
porated here. It has been announced at conferences a number of times, the
most recent being at Regensburg in 2012 [26]. The reasons of my procras-
tination are not entirely clear. I thank Joseph Ayoub, Mikhail Bondarko,
Frédéric Déglise, Luc Illusie and Amílcar Pacheco for helpful exchanges,
with a special mention to Ayoub: he kindly wrote up his paper [3] on the
l-adic realisations upon my request and helped me at a large number of
places in this manuscript. As an exercise, the reader may count the number
of times when I credit him for a proof or an idea.

Conventions and notation. As usual, a ⊗-category means a symmetric
monoidal unital additive category, and a ⊗-functor is an additive strong
symmetric monoidal functor. We refer to [36, App. 8.A] for tensor triangu-
lated categories.
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1. THE RIGID ⊗-CATEGORY DMgm(k,Q)

Let k be a field. We consider the category DMgm(k,Q) defined by Vo-
evodsky in [49] (here, with rational coefficients). It is provided with a co-
variant functor “motive” M : Sm(k) → DMgm(k,Q), where Sm(k) is
the category of smooth separated k-schemes. In [49], two properties of
DMgm(k,Q) are established when k is of characteristic 0:

• It is a rigid tensor pseudo-abelian triangulated category, generated
by the motives of smooth projective varieties as such. We write M∗

for the dual of a motive M ∈ DMgm(k,Q).
• For any separated k-scheme of finite type X , there is an associ-

ated motive with compact supports Mc(X) ∈ DMgm(k,Q) such
that Mc(X) = M(X)∗(d)[2d] if X is smooth of pure dimension d,
Mc(X) = M(X) if X is proper and, if Z i−→ X is a closed subset
with complementary open U

j−→ X , one has an exact triangle of
the form

(1.1) Mc(Z)
i∗−→Mc(X)

j∗−→Mc(U)
+1−→ .

1.1. Theorem. These properties hold for any k.

Proof. When k is perfect, see [19, App. B] for the first property and [33,
§5.3] for the second. In general, let kp be the perfect closure of k. Then
[28, Prop. 4.5] or [47] show that the base change functor

DMgm(k,Q)→ DMgm(k
p,Q)

is an equivalence of categories. □

(Theorem 1.1 is even true with coefficients Z[1/p], where p is the expo-
nential characteristic of k, but we won’t use this refinement.)

We shall need:

1.2. Lemma. Let f : X → Y be a finite, surjective morphism of smooth
k-schemes of generic degree d, where k is assumed to be perfect. Then f
induces morphisms f ∗ : Mc(Y ) → Mc(X) and f∗ : Mc(X) → Mc(Y )
such that f∗f ∗ = d. Moreover,

• If f is radicial, we also have f ∗f∗ = d. In particular f ∗ is an
isomorphism.
• If f is a Galois covering of group G, then f ∗ induces an isomor-

phismMc(Y )
∼−→ εGMc(X) where εG is the idempotent 1

G

∑
g∈G g.

Proof. By duality, we reduce to the same statement for M(X) and M(Y ).
Then they are already true on the level of finite correspondences. □
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1.3. Definition. We write DMeff
gm(k,Q) ⊂ DMgm(k,Q) for the full subcat-

egory of effective geometric motives and, if n ≥ 0, d≤nDMeff
gm(k,Q) for

the thick triangulated subcategory of DMeff
gm(k,Q) generated by motives of

smooth varieties of dimension ≤ n.

1.4. Proposition. If dimX ≤ n, then Mc(X) ∈ d≤nDMeff
gm(k,Q).

Proof. We may assume k perfect. Induction on n. The case n = 0 is clear
because Mc(X) = Mc(Xred) and Xred is a (proper) étale k-scheme. Sup-
pose n > 0. By closed Mayer-Vietoris, we reduce toX irreducible and then
to X a variety. By de Jong’s theorem, there exists an alteration f : X̃ → X
with X̃ smooth. Choose a smooth open subset U of X over which f is fi-
nite, and let V = f−1(U). By induction, Mc(V ) is in d≤nDMeff

gm(k,Q) and
so is Mc(U) as a direct summand of Mc(V ) (Lemma 1.2). By induction
again, Mc(X) ∈ d≤nDMeff

gm(k,Q). □

1.5. Remark. By a similar reasoning, one can see that d≤nDMeff
gm(k,Q) is

generated by motives of smooth projective varieties of dimension ≤ n.

2. THE CASE OF A FINITE FIELD

2.A. The ubiquity of Frobenius. Let k = Fq be a finite field with q ele-
ments. Consider the category Sch(k) of separated k-schemes of finite type,
viewed as a symmetric monoidal category for the fibre product over k. The
identity functor of Sch(k) has a canonical ⊗-endomorphism: the Frobenius
endomorphism, namely:

• Every object X ∈ Sch(k) has its “absolute" Frobenius endomor-
phism FX : FX is the identity on the underlying space of X and is
given by f 7→ f q on the structural sheaf.
• If f : X → Y is a morphism in Sch(k), the diagram

X
FX−−−→ X

f

y f

y
Y

FY−−−→ Y

commutes.
• One has FX×kY = FX ×k FY for any X, Y ∈ Sch.

Starting from this situation, we can extend it to other categories associ-
ated with k. For example, if A is a commutative ring then DMeff

gm(k,A)
is obtained from the full subcategory Sm(k) of smooth k-schemes via the
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string of functors

(2.1) Sm(k)→ SmCor(k,A)→ Cb(SmCor(k,A))

→ Kb(SmCor(k,A))→ Kb(SmCor(k,A))/(MV+HI)→ DM eff
gm(k,A).

Here, SmCor(k,A) is the category of finite correspondences on smooth
schemes with coefficients in A, MV and HI are the “Mayer-Vietoris" and
“homotopy invariance" relations and the last step is idempotent completion.
At each step, the Frobenius endomorphism extends: for SmCor(k,A) be-
cause it commutes with finite correspondences; on the third and fourth for
formal reasons; on the fifth because it acts on the MV and HI relations,
and on the last once again for formal reasons.

To pass from DMeff
gm(k,A) to DMgm(k,A) amounts to ⊗-inverting the

Tate object Z(1), and once again Frobenius passes through this formal op-
eration. Similarly, we may take coefficients in any ring A rather than Z.

We also get Frobenius endomorphisms on categories obtained from cate-
gories of (pre)sheaves via the following simple trick: let F be a contravari-
ant functor from, say, Sm(k) to some category. We define the Frobenius
endomorphism FF of F by the formula

FF(X) = F(FX) = F(X)→ F(X).

Suppose that F takes values in the category of sets: in the special case
where it is representable, say F = y(Y ), one finds

Fy(Y ) = y(FY )

for tautological reasons, where y is the Yoneda embedding.

2.1. Remark. This is the inverse of the convention of [SGA5, XV.2.1]! Cf.
loc. cit. bottom p. 453.

In this way, categories like DMeff(k,A) or DMeff
ét (k,A) carry their own

Frobenius automorphism, compatible with the one of DMeff
gm(k,A) via the

comparison functors if need be.

2.2. Example. We may describe Z(1) as Gm[−1]. The Frobenius of the
group scheme Gm, hence of the abelian sheaf Gm, coincides with multipli-
cation by q. Hence FZ(1) is also multiplication by q.

Let E/k be a finite extension of degree m, and let f : SpecE → Spec k.
We have a pair of adjoint functors

DMgm(k,Q)
f∗

⇄
f∗

DMgm(E,Q).

2.3. Lemma. a) For M ∈ DMgm(k,Q), Ff∗M = f ∗Fm
M .

b) For M ∈ DMgm(E,Q), Fm
f∗M

= f∗FM .
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Proof. a) Construction (2.1) shows that any object N of DMeff
gm(k,Q) is

isomorphic to a direct summand of an object represented by a bounded
complex of finite correspondences. In turn, M is represented by an object
of the form (N, i) for N as above and i ∈ Z. The functor f ∗ respects these
constructions. Thus the statement reduces to the case M = M(X) where
X is a smooth variety, when it is clear. Same reasoning for b). □

2.B. A theorem of May. Let T be a tensor triangulated category, i.e. a
triangulated category provided with a symmetric monoidal structure which
verifies axioms (TC1) – (TC5) of May [35, §4]. Let 1 be the unit object
of T . As in any symmetric monoidal category, an endomorphism f of a
strongly dualisable object M has a trace tr(f) ∈ EndT (1), defined as the
composition

(2.2) 1
η−→M ⊗M∗ f⊗1−→M ⊗M∗ σ−→M∗ ⊗M ε−→ 1.

Let e be an endomorphism of the identity functor of T . Then

2.4. Theorem. Let M ′ → M → M ′′ +1−→ be an exact triangle in T . We
have the equality

tr(eM) = tr(eM ′) + tr(eM ′′).

Proof. Although this is only stated in [35] for e the identity, May’s proof
for this special case directly generalises. More precisely, one can insert e’s
in the diagram in the middle of [35, p. 55], just below the occurence of the
γ’s, without affecting its commutativity. □

2.C. Zeta functions of endomorphisms. Let A be a rigid additive ⊗-
category, and let N be an object of A. Let 1 be the unit object of A and let
K = End(1), assumed to be a field of characteristic 0. In [25, Def. 3.1],
we gave the following definition:

2.5. Definition. For f ∈ End(M), its Z function is

Z(f, t) = exp(
∑
n≥1

tr(fn)
tn

n
) ∈ K[[t]]

where tr is the categorical trace described in the previous subsection.

Following [25, Def. 5.1], we say that A is of homological origin if it
is abelian semi-simple and if it is ⊗-equivalent to A′/N , where A′ is a
rigid ⊗-category admitting a strong ⊗-functor with values in the category
of Z/2-graded L-vector spaces for some extension L of K, and N is the
ideal of morphisms universally of trace 0. By [25, Th. 3.2, Rem. 3.3 and
Th. 5.6], we have
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2.6. Theorem. Assume that A is of homological origin. Then, for any
(N, f) as in Definition 2.5, Z(f, t) ∈ K(t). If f is invertible, we have
the functional equation

Z(f−1, t−1) = (−t)χ(M) det(f)Z(f, t)

where χ(M) = tr(1M) and det(f) is a certain element of K∗ which may
be obtained by specialisation from the identity

det(1− ft) = Z(f, t)−1.

In [29, Th. A.41], a slightly simpler proof of Theorem 2.6 is given, as
well as a more explicit formula for det(f): if Z(f, t) =

∏m
i=1(1−αit)∏n
j=1(1−βjt)

over the
algebraic closure of K, then

det(f) =

∏m
i=1 αi∏n
j=1 βj

.

2.D. Number of points and zeta functions of pure motives. In [34, pp.
80/81], Kleiman defines the number of points and the Z function of effective
homological motives, hence a fortiori of an effective Chow motive N =
(X, p) where X is a smooth projective k-variety and p is a projector on X ,
by

Ns(N) = ⟨F s
X ,

tp⟩, Z(N, t) = exp(
∞∑
s=1

Ns(N)
ts

s
)

where ⟨, ⟩ is the intersection product.
For f = FN , the Frobenius endomorphism of N , this expression coin-

cides with that of Definition 2.5 in view of the following lemma, which
should have been in [29].

2.7. Lemma. a) Let X, Y be two smooth projective varieties, and let f ∈
Corr(X, Y ), g ∈ Corr(Y,X) be two correspondences. Then

tr(g ◦ f) = ⟨tf, g⟩.
b) For N = (X, p), Ns(N) = tr(F s

N) and Z(FN , t) = Z(N, t).

Proof. a) In any rigid ⊗-category A, we have the formula

(2.3) tr(g ◦ f) = t(ι−1
ABf) ◦ ι

−1
BAg

[1, 7.3], where f : A → B, g : B → A and ιAB is the adjunction isomor-
phism Hom(1, A∗ ⊗ B)

∼−→ Hom(A,B) (loc. cit., (6.2)) and similarly for
ιBA. Applying this with A = h(X), B = h(Y ) in Chow(k,Q) and using
the fact that h(X)∗ ≃ h(X) ⊗ L−dimX , h(Y )∗ ≃ h(Y ) ⊗ L−dimY with L
the Lefschetz motive, we get the usual formulas

Hom(h(X), h(Y ))
∼←− Hom(LdimX , h(X×Y )) = CHdimX(X×Y )⊗Q
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and similarly for Hom(h(Y ), h(X)). Thus, in the right hand side of (2.3),
ι−1
BAg is simply g viewed as a cycle class in CHdimY (Y × X) ⊗ Q and
t(ι−1

ABf) is f viewed as a cycle class in CHdimX(X × Y )⊗Q. By the for-
mula for the composition of correspondences, this right hand side is ⟨tf, g⟩.

b) We apply a) with X = Y , f = p, g = F s
X , noting that F s

N = p ◦
F s
X . □

By Theorem 2.6 and the existence of a Weil cohomology, we get that
Z(N, t) is a rational function of t and satisfies a functional equation of the
form of this theorem. Adding the main result of [11], we get a more precise
result:

2.8. Theorem. Assume that N is effective and is a direct summand of h(X)
where X is a smooth projective variety of dimension n. Then the roots of
the numerator and denominator of Z(N, t) are effective Weil q-numbers of
weights ≤ 2n.

Here, a Weil q-number of weight i is an element α ∈ Q̄ such that
|σ(α)| = qi for any embedding σ : Q̄ ↪→ C; α is effective if it is an al-
gebraic integer.

2.E. Covariance and contravariance. In [49, Prop. 2.1.4], Voevodsky
defined a functor

Φeff : Choweff(k,Q)→ DMeff
gm(k,Q)

which induces similar functors Φ : Chow(k,Q) → DMgm(k,Q) and φo :
Chowo(k,Q) → DMo

gm(k,Q) where the last ones are the categories of
birational motives defined in [30] and [31]. These functors are covariant if
one takes the covariant convention on Chow motives: the “graph” functor is
covariant. On the other hand, the computation of zeta functions using traces
of powers of Frobenius in Chow(k,Q) is done in the previous section with
the contravariant convention, which might conceivably be an issue.

More generally, if A is a rigid ⊗-category, then the opposite3 category
Aop (same objects, change the sense of morphisms) is also a rigid⊗-category,
but changing the sense of morphisms does not preserve the shape of (2.2),
which seems to create an issue. This is not the case:

2.9. Lemma. Let f : A → A be an endomorphism of A ∈ A. Then
trA(f) = trAop(f).

Proof. Consider the covariant strong ⊗-functor A → Aop given by A 7→
A∗: it sends f : A→ B to its transpose tf : B∗ → A∗. Thus, for B = A,

trA(f) = trAop(tf).

3We prefer the term ‘opposite’ to the older term ‘dual’, which may cause confusion in
this and other contexts.



12 BRUNO KAHN

But trAop(tf) = trAop(f) [1, p. 151]. □

This lemma shows that the categorical trace commutes with strong ⊗-
functors, be they covariant or contravariant.

2.F. Number of points of geometric motives. As seen in §2.A, the iden-
tity functor of DMgm(k,Q) has a canonical ⊗-endomorphism: the Frobe-
nius endomorphism, that we denote by F . For any M ∈ DMgm(k,Q), we
write FM for the corresponding endomorphism of M .

2.10. Definition. For n ∈ Z, ♯n(M) = tr(F n
M); for n = 1 we set ♯1 = ♯.

2.11. Theorem. a) For each n ∈ Z, ♯n is an Euler-Poincaré characteristic
and defines a ring homomorphism

♯n : K0(DMgm(k,Q))→ Q.

b) ♯n takes values in Z[1/q]; for n ≥ 1 its restriction to DMeff
gm(k,Q) takes

values in Z, and induces a ring homomorphism

♯n : K0(DM
o
gm(k,Q))→ Z/qn

where DMo
gm(k,Q) is the category of triangulated birational motives [30].

c) We have the identities:

♯n(M [1]) = −♯n(M); ♯n(M(1)) = qn♯n(M).

d) If X is smooth projective, then ♯n(M(X)) = |X(Fqn)| for all n ≥ 1, and
♯0(M(X)) is the Euler characteristic of X ..

Here the groups K0 considered are those of triangulated categories as in
[SGA5, VIII.2].

Proof. a) Multiplicativity is a general fact for rigid tensor categories (use
that FM⊗N = FM ⊗ FN ). Additivity follows from Theorem 2.4.

b) Bondarko has proven that the maps

K0(Chow
eff(k,Q))

K0(Φeff)−→ K0(DM
eff
gm(k,Q))

(2.4) K0(Chow(k,Q))
K0(Φ)−→ K0(DMgm(k,Q))

induced by the corresponding functors are bijective [5, Th. 6.4.2 and Cor.
6.4.3]. Here, the left groups are K0 of additive categories. The same holds
for the homomorphism

K0(Chow
o(k,Q))

K0(Φo)−→ K0(DM
o
gm(k,Q))

by [6, Prop. 8.1.1]. The result then follows from [25, Th. 8.1 and 9.1].
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c) The first identity is a special case of a) (consider the exact triangle
M → 0 → M [1]). The second one follows from multiplicativity and the
formula ♯n(Z(1)) = qn (Example 2.2).

d) We use the strong ⊗-functor Φ : Chow(k,Q) → DMgm(k,Q) as in
b): it sends the Chow motive h(X) to M(X). The conclusion follows by
Lemma 2.9. □

2.12. Lemma. LetE, f,m be as before Lemma 2.3. ForM ∈ DMgm(E,Q)
and n > 0, one has

tr(f∗F
n
M) =

{
0 if m ∤ n
tr(F

n/m
M ) if m | n.

For n = 0, we have χ(f∗M) = [E : k]χ(M).

Proof. Following a hint of J. Ayoub, we do as for induced representations:
as f ∗ is monoidal, we have tr(f∗F

n
M) = tr(f ∗f∗F

n
M). Write f ∗f∗M =⊕m−1

r=0 (φ
r
E)

∗M , where φE is the Frobenius generator of Γ = Gal(E/k).
Then the matrix of f ∗f∗FM relatively to this decomposition is

0 0 . . . 0 (φm−1
E )∗φ

φ 0 . . . 0 0
0 φ∗

Eφ . . . 0 0
. . .

0 . . . (φm−2
E )∗φ 0


where φ : M

∼−→ φ∗
EM is a relative Frobenius morphism; moreover we

have the relation

(φm−1
E )∗φ ◦ · · · ◦ φ∗

Eφ ◦ φ = FM .

This can be checked on M = M(Y ), Y a smooth E-scheme. The con-
clusion follows. □

2.G. Two twisting lemmas. In the next subsection, we shall need the fol-
lowing generalisation of a well-known lemma (cf. A. Pacheco [37, p. 283]:
the idea seems to go very far back). We recall the notion of twisting by a
1-cocycle from [43, I.5.3 and III.1.3].

Let U be a quasi-projective k-variety, and let G be a finite group of order
m acting on U on the right. Then the geometric quotient V = U/G exists.
For each σ ∈ G, we define a k-variety U (σ) mapping to V as follows:

Let E/k be “the” extension of k of order m, and Γ = Gal(E/k). Then
Γ×G acts on UE . Let φ be the arithmetic Frobenius of k, φE its image in Γ
and Hσ = ⟨(φ−1

E , σ)⟩; we set U (σ) = UE/Hσ. The projection UE → U →
V is Hσ-invariant, which defines f (σ) : U (σ) → V . Write also πσ for the
projection UE → U (σ).
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2.13. Lemma. We have U (1) = U , we write f := f (1). For a general σ, the
square

UE
πσ−−−→ U (σ)y y

SpecE −−−→ Spec k

is Cartesian; in particular, πσ is a Galois (étale) covering of group Γ.

Proof. By faithfully flat descent [SGA1, Cor. VIII.5.4], it suffices to see
this after base-changing to SpecE. Then the left column becomes Γ ×
UE → Γ × SpecE. But, by construction, there exists a k-isomorphism
(U (σ))E ≃ UE which converts (πσ)E into the projection Γ × UE → UE
given by the canonical map Γ→ ∗. Hence the conclusion. □

2.14. Lemma. Suppose that f is a G-torsor (i.e. an étale Galois covering).
Then we have

1

m

∑
σ∈G

|U (σ)(k)| = |V (k)|.

Proof. We have
V (k) = V (k̄)φ.

The map f : U(k̄) → V (k̄) is surjective and G acts simply transitively
on its fibres. Let x ∈ V (k). Pick y ∈ U(k̄) mapping to x. Then φ−1y is
in the fibre of x, which implies that y = φyσ for a unique σ ∈ G. Thus
y defines a k-rational point of U (σ). If y′ ∈ f−1(x) is another point, then
y′ = yτ for a unique τ ∈ G, and

y′ = φyστ = φy′τ−1στ

so y′ ∈ U (τ−1στ)(k), and y′ ∈ U (σ)(k) if and only if τ ∈ ZG(σ).
Summarising: there exists a well-defined conjugacy class σ̄(x) ⊂ G such

that f−1(x) is a disjoint union of subsets f−1(x)σ consisting of r elements
of U (σ)(k) for σ running through σ̄(x), where r = |ZG(σ)| = |G|/|σ̄(x)|.
If σ̄ is now a given conjugacy class, let

V (k)σ̄ = {x ∈ V (k) | σ̄(x) = σ̄} (possibly empty!).

Then, for every σ ∈ σ̄, the map U (σ)(k) → V (k)σ̄ is a torsor under
ZG(σ). In particular, |U (σ)(k)| = r|V (k)σ̄| and∑

σ∈σ̄

|U (σ)(k)| = |σ̄|r|V (k)σ̄| = m|V (k)σ̄|.

Collecting over the conjugacy classes of G, we get (iii). □

We now need a pendant of Lemma 2.14 for traces of Frobenius.
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2.15. Lemma. With notation and hypotheses as in Lemma 2.14, we have
1

m

∑
σ∈G

♯(Mc(U
(σ))) = ♯(Mc(V )).

Proof. Keep the notation in the proof of Lemma 2.14. For σ ∈ G, let
εσ = 1

m

∑
h∈Hσ

h ∈ Q[Γ×G]: then, by Lemma 1.2,

Mc(U
(σ)) ≃ εσMc(UE).

We have Mc(UE) = Mc(SpecE) ⊗ Mc(U) = M(SpecE) ⊗ Mc(U),
hence FMc(UE) = FM(SpecE) ⊗ FMc(U). The endomorphism FM(SpecE)

coincides with the Frobenius automorphism φE ∈ Gal(E/k) acting on
M(SpecE). Hence

∑
σ∈G

tr(FMc(U(σ))) = tr

(∑
σ∈G

φE ⊗ εσFMc(U)

)

= tr

(∑
σ∈G

m−1∑
r=0

1

m
φE ⊗ (φ−r

E , σr)FMc(U)

)

=
1

m
tr

(∑
σ∈G

m−1∑
r=0

φ1−r
E ⊗ σrFMc(U)

)
=

1

m

(∑
σ∈G

m−1∑
r=0

)tr(φ1−r
E )tr(σrFMc(U))

)
.

But tr(φ1−r
E ) = 0 for 1 − r ̸= m and tr(φmE ) = m (see Lemma 2.12).

Hence the last sum collapses to

1

m

(∑
σ∈G

mtr(σ1−mFMc(U))

)
= mtr

(
1

m

∑
σ∈G

σFMc(U)

)
= mtr(FMc(V ))

as requested. □

2.16. Question. Does the equality
∑

σ∈G[U
(σ)] = m[V ] hold in the Grothendieck

group of varieties? It would yield lemmas 2.14 and 2.15 in one gulp.

2.H. More general schemes. Theorem 2.11 d) extends to

2.17. Theorem. If X is a separated k-scheme of finite type, then

♯n(Mc(X)) = |X(Fqn)| for all n ≥ 1.

We first give a lemma:

2.18. Lemma. Consider an open-closed situation

(2.5) Z
i−→ X

j←− U

where Z is a closed subset ofX with open complement U . Then, if Theorem
2.17 is true for two among X,Z, U , it is true for the third.
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Proof. This follows from Theorem 1.1 and Theorem 2.11 a). □

Before starting the proof, let us explain why it is going to be complicated.
Suppose that we know resolution of singularities over k. Then we can easily
use Lemma 2.18 to reduce to X smooth projective. In its absence, we want
of course to use de Jong’s theorem on alterations. But if we try to do a
proof as for Proposition 1.4, we run into the following problem: if U →
V is an étale covering of smooth varieties and Theorem 2.17 is true for
U , why should it be true for V ? The fact that Mc(V ) is isomorphic to
a direct summand of Mc(U) does not help here because, unlike abelian
groups, rational integers do not have direct summands. . . (In summary: for
numbers, the devil is in the idempotents.) Fortunately, the twisting lemmas
proven in the previous subsection will help us get around this issue.

Proof of Theorem 2.17. We argue by induction on dimX . The 0-dimensio-
nal case follows from Theorem 2.11 d) (or is trivial). Suppose dimX > 0.
By using Lemma 2.18, we first reduce to X a variety and then (by Nagata’s
theorem) to X proper. By de Jong’s equivariant alteration theorem [23, Th.
7.3], there exists then a quasi-Galois alteration f : X̃ → X , with X̃ smooth
projective. Let V ⊆ X be a smooth open subset over which f is finite, and
let U = f−1(V0).

For simplicity, write kn for Fqn . We have ♯n(Mc(U)) = |U(kn)| by
Theorem 2.11 d), Lemma 2.18 and induction.

Let G be the Galois group of f and XG be the geometric quotient of
X̃ by G. Write f ′ : X̃ → XG for the corresponding factorisation of f .
If we twist with respect to f ′ in the style of §2.G, then X̃(σ) is smooth
projective for all σ ∈ G as a consequence of Lemma 2.13, and we also have
♯n(Mc(U

(σ))) = |U (σ)(kn)|.
Putting Lemmas 2.14 and 2.15 together then yields ♯(Mc(UG)) = |UG(k)|.

Since UG → V is finite and radicial, Lemma 1.2 shows that the same holds
for V . Finally we get ♯(Mc(X)) = |X(k)| by induction and Lemma 2.18
again. □

2.19. Remark. It would be more reasonable to give a direct proof of The-
orem 2.17, in the style of Lemma 2.7. Unfortunately I haven’t been able to
find such a proof.

2.I. The zeta function. Recall the important formula [40, I, (3.2.3.6)]

FM∗ = tF−1
M .

In view of the above computations, it would be most natural to define
the zeta function of M as Z(FM , t), so that Z(X, t) = Z(Mc(X), t) by
Proposition 2.17 b). However this would create awkward functoriality prob-
lems in the next section, when we deal with motives over a base: see
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Theorem 3.1 below. One may think of these problems as arising because
S 7→ DMgm(S,Q) is a homology theory, whereas the functorial behaviour
of zeta and L-functions expresses itself naturally in cohomological terms.
Our solution to this issue is to give a slightly artificial definition of the zeta
function:

2.20. Definition. Z(M, t) = Z(F−1
M , t) = Z(FM∗ , t).

2.21. Theorem. M 7→ Z(M, t) is multiplicative on exact triangles, hence
defines a homomorphism K0(DMgm(k,Q)) → 1 + tQ[[t]]. For any M ∈
DMgm(k,Q),
a) Z(M, t) ∈ Q(t). The degree of this rational function is −χ(M), where
χ(M) = tr(1M).
b) We have the functional equation

Z(M∗, t−1) = (−t)χ(M) det(FM)−1Z(M, t)

where det(FM) is the value at t =∞ of (−t)χ(M)Z(M, t)−1.
c) We have the identities

Z(M [1], t) = Z(M, t)−1, Z(M(1), t) = Z(M, q−1t).

d) For any f : X → Spec k of finite type, we have

Z(MBM(X), t) = Z(X, t).

Proof. The first fact follows from Theorem 2.11. Using now the surjectivity
of (2.4), we reduce to the case where M ∈ Chow(k,Q). Then we can
compute in Mnum(k,Q) and everything follows from Theorem 2.6 (see
remarks before Theorem 2.8). d) follows from Theorem 2.17. □

2.22. Remark. It is likely that Theorem 2.21 extends to all zeta functions of
endomorphisms as in Definition 2.20 a), but this seems to require extending
Bondarko’s theorem to K0 of the categories of endomorphisms as in [25,
§15]. (He has done that!)

2.23. Proposition. Let f : SpecE → Spec k be a finite extension, and let
f∗ : DMgm(E) → DMgm(k) be the corresponding direct image functor.
Then, for any M ∈ DMgm(E), we have

Z(f∗M, t) = Z(M, tm)

where m = [E : k].

Proof. This is clear from Lemma 2.3 b) and the definition of Z. □

2.24. Definition. We denote by Dir the group of formal Dirichlet series
beginning with 1.
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2.25. Corollary. For M ∈ DMgm(k,Q), let

ζ(M, s) = Z(M, q−s).

Then M 7→ ζ(M, s) is multiplicative on exact triangles, hence defines a
homomorphism K0(DMgm(k,Q))→ Dir. Moreover,
a) ζ(M, s) is a rational function in q−s, of degree −χ(M).
b) We have the functional equation

ζ(M∗,−s) = (−q−s)χ(M) det(FM)ζ(M, s).

c) We have the identities

ζ(M [1], s) = ζ(M, s)−1, ζ(M(1), s) = ζ(M, s+ 1).

d) For any f : X → Spec k of finite type, we have

ζ(MBM(X), s) = ζ(X, s).

e) For a finite extension f : SpecE → Spec k, we have ζ(M, s) = ζ(f∗M, s).
□

We shall need the following

2.26. Proposition. Let M∗ ∈ d≤nDMeff
gm(k,Q) (see Definition 1.3). Then

the zeroes and poles of Z(M, t) are effective Weil q-numbers of weights
∈ [0, 2n]. In particular, the Dirichlet series ζ(M, s) converges absolutely
for Re(s) > n.

Proof. Consider the diagram

K0(Chow
eff(k,Q))

φ−−−→
∼

K0(DM
eff
gm(k,Q))

ψ

y
K0(Meff

num(k,Q)).

The dimension filtration induces a filtration on the three K0’s, and φ and
ψ respect these filtrations. So does the inverse of φ, because it is induced
by Bondarko’s functor

DMeff
gm(k,Q)→ Kb(Choweff(k,Q))

which obviously respects the dimension filtrations.
Since M 7→ Z(M, t) factors through K0(Meff

num(k,Q)), we are therefore
reduced to Theorem 2.8. □

2.27. Corollary. if dimX ≤ n, the zeroes and poles of Z(X, t) are effective
Weil q-numbers of weights ∈ [0, 2n]. □

Of course, this corollary may also be deduced from [12].
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3. MOTIVES OVER A SCHEME OF FINITE TYPE

3.A. Motives over a base. In the sequel, we shall need a theory of trian-
gulated motives over general base schemes, with a formalism of six (even
seven) operations as in [2]. Unfortunately, it is unknown whether the natu-
ral generalisation of Voevodsky’s construction enjoys such a formalism [27,
6.2]. This can be corrected by using the subcategory of constructible ob-
jects in Ayoub’s étale motives without transfers DAét(−,Q) [3] or Cisinski-
Déglise Beilinson motives DMB(−) [9], which coincide anyway [27, 6.3
and 6.4]: the important point here is that these subcategories are preserved
under the six operations ([2, Scholie 2.2.34 and Th. 2.2.37] for f ∗, f∗, f!, f

!,
[2, Prop. 2.3.62] for Hom). We adopt here the viewpoint of loc. cit., 6.5, us-
ing only the existence of a formalism of six operations for some categories
D(S) which agree with DMgm(k,Q) when S = Spec k, and are provided
with an l-adic realisation functor which commutes with the six operations.
Very occasionally, we shall use non-formal properties of such a theory.

We write ZS = Z for the unit object of D(S). If f : X → S is a smooth
S-scheme (separated and of finite type), we writeMS(X) = f#ZX ∈ D(S)
for its motive, where f# is the left adjoint of f ∗ : D(S) → D(X) [2, 1.4.1,
axiom 3].

3.B. The Borel-Moore motive revisited. This subsection partly answers
[27, Rem. 6.7.3 3)].

3.1. Theorem. Let k = Fq and let f : X → Spec k be a separated k-
scheme of finite type. Then we have an isomorphism

MBM(X) ≃ f!ZX

at least ifX is embeddable in a smooth scheme (e.g. ifX is quasi-projective).
If f is smooth, this isomorphism is canonical and natural for open immer-
sions.

Proof. Suppose first that f is smooth of (pure) dimension d. Applying [2,
Vol. I, Scholie 1.4.2 3], we find

(3.1) f!ZX ≃ f#Th
−1(Ωf )ZX

= f#ZX(−d)[−2d] =M(X)(−d)[−2d] ≃MBM(X).

Here Th(Ωf ) is the Thom equivalence associated to the module of dif-
ferentials Ωf , which is computed to be the said Tate twist in [9, 2.4.38 and
2.4.40], plus the description of Mc(X) for X smooth given at the beginning
of Section 1. This isomorphism clearly commutes with open immersions.

Suppose now thatX can be embedded as a closed subscheme of a smooth
scheme Y . For simplicity, write M̃BM(X) = f!ZX . We then get an iso-
morphism M̃BM(X)

∼−→ MBM(X) by completing the isomorphisms in
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the diagram of exact triangles

M̃BM(U) −−−→ M̃BM(Y ) −−−→ M̃BM(X)
+1−−−→

≀
y ≀

y
MBM(U) −−−→ MBM(Y ) −−−→ MBM(X)

+1−−−→

where U = Y − X , the top row is the dual of (1.1) and the bottom row is
obtained by applying g! to the localisation exact triangle [2, Vol. 1, p. 77]

(3.2) j!j
!ZY → ZY → i∗i

∗ZY
+1−→

where g : Y → Spec k is the structural morphism and j : U → Y , i : X →
Y are the open and closed immersion. (Note that j! = j∗ and i∗ = i!.) □

3.2. Remark. It would be more reasonable and more efficient to define a
priori a natural morphism

Mc(X) = C∗(Z
c
tr(X))→ (f!ZX)

∗

in DMgm(k), where Zctr(X)(U) = z(U,X) is the group of quasi-finite cor-
respondences, and to show that it is an isomorphism by reduction to the
smooth (or smooth projective) case. By duality [2, Th. 2.3.75], the right
hand side can be written

(f!ZX)
∗ = Dk(f!ZX) ≃ f∗DX(ZX) = f∗f

!Z.

This amounts to defining a map

f ∗C∗(Z
c
tr(X))→ f !Z

and I don’t know how to construct it. . .

3.C. Zeta functions. Let f : S → SpecZ be a scheme of finite type over
Z. For each x ∈ S(0), we have a pull-back functor

i∗x : D(S)→ D(κ(x)) ≃ DMgm(κ(x),Q).

3.3. Proposition. For M ∈ D(S), the product

ζ(M, s) =
∏
x∈S(0)

ζ(i∗xM, s)

is convergent in the group Dir (Definition 2.24) for the topology given by
the order of the first nonzero term. It is multiplicative on exact triangles and
we have the identities

ζ(M [1], s) = ζ(M, s)−1, ζ(M(1), s) = ζ(M, s+ 1).
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Proof. Since the exponential is continuous on Dir for the said topology, it
suffices to show that the sum∑

x∈S(0)

∑
n≥1

♯n(i
∗
xM)

N(x)−ns

n

is convergent. Here, N(x) is the cardinal of the residue field κ(x). Rear-
ranging, we must show that, for any prime p and any r ≥ 1, the set

{x ∈ S(0) | n[κ(x) : Fp] = r}

is finite. This is clear, since S has only a finite number of closed points of
a given degree over Fp. The identities follow from the case of finite fields
(Corollary 2.25). □

3.D. The case of characteristic p. In this subsection, we assume that S is
an Fq-scheme. For simplicity we still write f for the structural morphism
X → SpecFq.

3.4. Proposition. For n ≥ 0, let d!≤nD(S) be the thick triangulated subcat-
egory of D(S) generated by the g!ZX , where g : X → S runs through the
morphisms of relative dimension ≤ n. Then (f!M)∗ ∈ d≤n+dDMeff(S,Q)
for any M ∈ d!≤nD(S), where d = dimS. Moreover, for any M ∈ D(S)
there exists n ≥ 0 and r ∈ Z such that M(r) ∈ d!≤nD(S).

Proof. It suffices to show that (f!g!ZX)∗ ∈ d≤n+dDMeff(S,Q) when dim g ≤
n. By Theorem 3.1, this is Mc(X); the claim then follows from Proposition
1.4. It suffices to prove the last statement for generators MS(X)(s), with
g : X → S smooth. But g!ZX ≃ MS(X)(−n)[−2n] if n = dim g as in
(3.1), so MS(X)(s)(−n− s) ∈ d!≤nD(S). □

For any x ∈ S(0), we have a specialisation functor

spx = (fx)∗i
∗
x : D(S)→ DMgm(Fq,Q)

where fx : Specκ(x)→ SpecFq is the structural morphism. We have

(3.3) ζ(i∗xM, s) = ζ(spxM, s)

by Corollary 2.25.
From Lemma 2.12, we get:

3.5. Lemma. For any M ∈ D(S) and any n ≥ 1, the function

S(0) ∋ x 7→ ♯n(spxM)

is 0 outside the finite set
⋃
m|n S(Fqm).
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This gives a meaning to the following proposition. For simplicity, we
write

(3.4) ♯∗n(M) = ♯n(M
∗) = ♯−n(M)

for M ∈ DMgm(Fq).

3.6. Proposition (trace formula). We have

♯∗n(f!M) =
∑
x∈S(0)

♯∗n(spxM)

for any M ∈ D(S) and any n ≥ 1.

Proof. We give two proofs, one in a special case and one in general:
1) The case where M = g!ZX for g : X → S a morphism of finite type,

where X is embeddable in a smooth k-scheme. Then

♯∗n(f!M) = ♯∗n((fg)!ZX) = ♯∗n(M
BM(X)) = ♯n(Mc(X)) = |X(Fpn)|

by Theorems 3.1 and 2.17. On the other hand, let Xx = g−1(x). The base
change theorem [2, scholie 1.4.2 1)] applied to the Cartesian square

(3.5)

Xx
Ix−−−→ X

gx

y g

y
x

ix−−−→ S

yields4

i∗xg!ZX ≃ (gx)!I
∗
xZX = (gx)!ZXx

and we get∑
x∈S(0)

♯∗n(spxM) =
∑
x∈S(0)

♯∗n((fx)∗i
∗
xg!ZX)

=
∑
x∈S(0)

♯∗n((fx)!i
∗
xg!ZX) =

∑
x∈S(0)

♯∗n((fxgx)!ZXx)

where, as above
♯∗n((fxgx)!ZXx) = |Xx(Fpn)|.

Now it is clear that |X(Fpn)| =
∑

x∈S(0)
|Xx(Fpn)|.

From 1), one can derive Proposition 3.6 for those M ’s which belong to
the smallest triangulated subcategory containing the said g!ZX and stable
under Tate twists. By Proposition 3.4, its pseudo-abelian envelope equals
D(S); but then we run into the problem of idempotents mentioned before
the proof of Theorem 2.17. This leads us to the second proof:

4This is part of the definition of a crossed functor, for which the reader should consult
[2, Déf. 1.21.12].
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2) Apply the l-adic realisation functor Rl.∑
x∈S(0)

♯∗n(spxM) =
∑
x∈S(0)

♯∗n(Rl(spxM)) =
∑
x∈S(0)

♯∗n(spxRl(M))

= ♯∗n(Rf!Rl(M)) = ♯∗n(Rl(f!M)) = ♯∗n(f!M)

where we used the commutation of Rl with f!, i∗x and duality, plus [SGA5,
equation (2) p. 470]. □

3.7. Corollary. If S(Fqn) = ∅, then ♯∗n(f!M) = 0 for any M ∈ D(S).

Proof. This follows from Lemma 3.5 and Proposition 3.6. □

3.8. Questions. 1) Conversely, Corollary 3.7 implies Proposition 3.6 by
the localisation exact triangle (3.2), even for S = P1 − P1(Fqn) by the
dévissages of [SGA5, XV.3.2]. Can one find a proof which avoids the l-
adic realisation and the trace formula of [SGA5]?
2) The statement breaks down for n = 0, because the right hand side is
generally infinite (e.g. for M = ZS). I don’t know a formula for χ(f!M),
which appears in the functional equation just below. Can one use some
renormalisation trick?

3.9. Theorem. a) One has ζ(M, s) = ζ(f!M, s). In particular, there exists
Z(M, t) ∈ Q(t) such that ζ(M, s) = Z(M, q−s); the zeroes and poles of
Z(M,T ) are Weil q-numbers.
b) If M ∈ d!≤nD(S) (see Proposition 3.4), these Weil q-numbers are effec-
tive of weights ≤ 2(n+ d), where d = dimS.
c) If S is projective, one has the functional equation

ζ(DS(M),−s) = (−q−s)χ(f!M) det(Ff!M)−1ζ(M, s)

where DS(M) = Hom(M, f !Z). If S is moreover smooth of dimension d,
one has the functional equation

ζ(M∗, d− s) = (−q−s)χ(f!M) det(Ff!M)−1ζ(M, s)

with M∗ := Hom(M,Z).

Proof. a) follows from Proposition 3.6 and (3.3). b) follows from Proposi-
tions 3.4 and 2.26. For c), we have the isomorphism f!DS(M) ≃ (f∗M)∗ ≃
(f!M)∗ by [2, Th. 2.3.75 and Scholie 1.4.2 4], hence

ζ(DS(M),−s) = ζ((f!M)∗,−s) = (−q−s)χ(f!M) det(Ff!M)ζ(f!M, s)

= (−q−s)χ(f!M) det(Ff!M)ζ(M, s)

The smooth case follows, since f ! ≃ f ∗(d)[2d] then (the adjoint identity
to the one of (3.1)). □
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3.10. Remarks. 1) Let Deff(S) be as in the proof of Proposition 3.3. If
M ∈ d≤nDeff(S), Theorem 3.9 a) may be refined: the zeroes and poles of
ζ(M, s) are effective Weil numbers of weights ≤ 2n.
2) Theorem 3.9 b) extends to S proper by [9].
3) I don’t know a formula for ζ(DS(M),−s) when S is not proper.

3.E. The general case. We come back to the situation where f : S →
SpecZ is an arbitrary Z-scheme of finite type. We write d for its relative
dimension, i.e the maximal dimension of its closed fibres.

3.11. Theorem. Let f : S → T be a morphism of Z-schemes of finite type.
Then ζ(M, s) = ζ(f!M, s) for any M ∈ D(S) (as formal Dirichlet series).

In Corollary 6.4 below, this Dirichlet series will be shown to be conver-
gent.

Proof. We immediately reduce to the case S = SpecZ. For a prime number
p, let Sp be the fibre of f at p; we have a Cartesian square similar to (3.5):

(3.6)

Sp
Ip−−−→ S

fp

y f

y
SpecFp

ip−−−→ SpecZ.

The equality

ζ(M, s) =
∏
p

ζ(I∗pM, s)

follows from the definition.
By Theorem 3.9 a) and proper base change, we have

ζ(I∗pM, s) = ζ((fp)!I
∗
pM, s) = ζ(i∗pf!M, s)

hence
ζ(M, s) =

∏
p

ζ(i∗pf!M, s) = ζ(f!M, s)

again by definition. □

4. MOTIVES OVER R AND C

4.A. Hodge structures. Set

ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s)

where Γ(s) is Euler’s Gamma function. (For convenience, we take for
ΓC(s) twice the function in Serre [44, §3].)
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If V is a (pure) complex Hodge structure (i.e., a finite-dimensional C-
vector space provided with a decomposition V =

⊕
(p,q)∈Z×Z V

p,q), one
defines

Γ(V, s) =
∏
(p,q)

ΓC(s− inf(p, q))h(p,q)

with h(p, q) = dimV p,q.
If V is a (pure) real Hodge structure (i.e. a complex Hodge structure plus

an involution σ such that σV p,q = V q,p), one defines

Γ(V, s) =
∏
n

ΓR(s− n)h(n,+)ΓR(s− n+ 1)h(n,−)
∏
p<q

ΓC(s− p)h(p,q)

where h(p, q) is as above and h(n, ε) = dim(V n,n | σ = (−1)nε).

4.B. Pure motives. If k = R or C, we have a realisation functor H :
Mhom(k,Q) → Hodgek, where Hodgek is the category of pure k-Hodge
structures. For M ∈Mhom(k), we define

Γ(M, s) = Γ(H(M)∗, s).

4.C. Triangulated motives. Using Bondarko’s isomorphism

K0(Chow(k,Q))
∼−→ K0(DMgm(k,Q))

we may extend the above definition to all objects of DMgm(k,Q) (alter-
nately, we could go through the Hodge realisation on DMgm(k,Q)).

The identities of Corollary 2.25 c) hold for Γ(M, s).

4.1. Remark. One should compare this definition with the much more so-
phisticated one for mixed motives in [16, III.1], using mixed Hodge struc-
tures.

5. TWO ELEMENTARY LEMMAS ON DIRICHLET SERIES

5.1. Lemma. Let (Rp) be a sequence of rational functions with complex
coefficients, indexed by the prime numbers. We assume that Rp(0) = 1 for
all p and:

(i) There is an integer w such that, for almost all p, the inverse zeroes
and poles of Rp have absolute value ≤ pw/2.

(ii) The heights of the Rp are bounded independently of p (N.B.: here,
the height of a rational function R = P/Q is deg(P )+deg(Q) if P
and Q are coprime polynomials).

Let L(s) =
∏

pRp(p
−s). Then L(s) is a Dirichlet series with absolute

convergence abscissa ≤ w/2 + 1.
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Proof. Let λ be an inverse pole of Rp. Then, for s = σ + it ∈ C:∣∣(1− λp−s)−1
∣∣ = ∣∣∣∣∣

∞∑
n=0

λnp−ns

∣∣∣∣∣ ≤
∞∑
n=0

p−n(σ−w/2)

converging as soon as σ > w/2. If now λ is an inverse zero of Rp, we have∣∣1− λp−s∣∣ ≤ 1 + |pw/2−s| ≤
∞∑
n=0

p−n(σ−w/2).

Thus, if the height of Rp is ≤ H , we have

∣∣Rp(p
−s)
∣∣ ≤ ( ∞∑

n=0

p−n(σ−w/2)

)H

=
(
1− p−(σ−w/2))−H .

Collecting, we find

|L(s)| ≤

(∏
p

(
1− p−(σ−w/2))−1

)H

= ζ(σ − w/2)H

which converges for σ − w/2 > 1, as is well-known. □

5.2. Lemma. a) Let f =
∑∞

n=1 ann
−s be a convergent Dirichlet series with

complex coefficients, with a1 = 1. Then the equation f(s) = g(s)/g(s+ 1)
has a unique solution as a convergent Dirichlet series, namely

g(s) =
∞∏
m=0

f(s+m).

Moreover, g has the same absolute convergence abscissa as f .
b) If the coefficients of f belong to a subring R of C, so do those of g.

Proof. a) Uniqueness: if g1, g2 are two solutions, then h = g1/g2 verifies

h(s) = h(s+ 1).

If h(s) =
∑
cnn

−s, this gives the identity

u(s) =
∑

(cn − cn/n)n−s = 0.

Since g1, g2 are convergent, so are h and u, and it is well-known that this
implies cn − cn/n = 0 for all n, hence cn = 0 for all n > 1.

Existence: Let us check first that g(s) converges as a formal Dirichlet
series. Indeed:

g(s) =
∞∏
m=0

(
∞∑
n=1

an
nm

n−s

)
.
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In this product, the coefficient bn of n−s is

bn =
∑

r1...rk=n

∑
m1≥0,...,mk≥0

ar1
rm1
1

. . .
ark
rmk
k

=
∑

r1...rk=n
r1,...,rk>1

ar1
1− r−1

1

. . .
ark

1− r−1
k

.

Suppose that f(s) converges absolutely for Re(s) > c. Then |an| =
o(nc+ε) for all ε > 0. Therefore

|bn] ≤

∣∣∣∣∣∣∣
∑

r1...rk=n
r1,...,rk>1

ar1
1− r−1

1

. . .
ark

1− r−1
k

∣∣∣∣∣∣∣
= o(nc+ε)

∑
r1...rk=n
r1,...,rk>1

1

1− r−1
1

. . .
1

1− r−1
k

= o(nc+ε)g0n

where g0n is the n-th coefficient of

g0(s) = ζ(s)ζ(s+ 1) . . .

To study the absolute convergence of this product, we look at the log of
the corresponding Eulerian product, for s ∈ R:

log g0(s) =
∑
p

∞∑
m=0

− log(1− p−s−m) =
∑
p

∞∑
m=0

∞∑
k=1

p−k(s+m)

k

=
∑
p

∞∑
k=1

p−ks

k

1

1− p−k
≤ 2

∑
p

∞∑
k=1

p−ks

k

= 2
∑
p

− log(1− p−s) = log(ζ(s)2).

The n-th coefficient of ζ(s)2 is the number of divisors of n, which is
o(nε) for all ε > 0. Hence |bn| = o(nc+ε) for all ε > 0. It follows that
g(s) converges absolutely for Re(s) > c. But conversely, if g(s) converges
absolutely for Re(s) > c, so does f(s) = g(s)/g(s+ 1).

b) is obvious from the formula giving g(s).
□

6. MOTIVES OVER A RING OF INTEGERS

Let K be a number field, with ring of integers OK . Consider the category
D(OK). For each place v ofK, we have a homomorphism φv : OK → κ(v),
where κ(v) is

• The residue field at v if v is finite;
• The completion of K at v if v is archimediean.
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In each case, we have a pull-back functor

φ∗
v : D(OK)→ D(κ(v)).

We shall also use the fact that ZSpecOK
is a dualising object, of D(OK)

which follows from [2, Th. 2.3.73] and [24, Cor. 5.15]. We writeM 7→M∗

for the corresponding duality functor.

6.1. Theorem. Let M ∈ D(OK). Then there exists a nonempty open sub-
set U ⊆ SpecOK such that the cohomology sheaves H i

l (M) are locally
constant constructible for any prime number l invertible on U .

Proof. We are in a case where D(OK) ≃ DMgm(OK ,Q), so we can reason
as in the proof of Lemma 2.3; this reduces us to the case whereM =M(X)
with f : X → SpecOK smooth. Then the result is a special case of results
of Illusie [20, Th. 2.1]. (Recall the proof: by Hironaka’s resolution of
singularities and some spread-out, there exists U and an open immersion
j : XU ↪→ X̄ , where f̄ : X̄ → U is smooth projective and the closed com-
plement X̄ −XU is the support of a divisor D with strict normal crossings,
relative to U . By [SGA4 1/2, Arcata V.3.1], the sheaves Rif̄∗Ql are locally
constant, and so are the corresponding sheaves for all intersections of the
components of D. The Leray spectral sequence for j and cohomological
purity then show that the same holds for the Ri(f|U)∗Ql, cf. [20, Lemme
3.1].) □

6.2. Corollary. For any M ∈ D(OK [1/l]), the function

p 7→ bp(M) =
∑
i∈Z

dimH i
l (Mp)

from primes of OK [1/l] to N is bounded. □

6.3. Theorem. The Dirichlet series ζ(M, s) has a finite convergence ab-
scissa. More precisely, if M∗ ∈ d≤nD(OK), then ζ(M, s) converges abso-
lutely for Re(s) > n+ 1.

Proof. Let M∗ ∈ d≤nD(OK). By Proposition 2.26 and Corollary 6.2, the
hypotheses of Lemma 5.1 are satisfied for ζ(M, s), with w = 2n. This
proves the statement for effective motives, hence in general. □

6.4. Corollary. For any Z-scheme of finite type S and any M ∈ D(S), the
formal Dirichlet series ζ(M, s) has a finite convergence abscissa.

Proof. This follows from Theorems 3.11 and 6.3 a). □

6.5. Remark. Denis-Charles Cisinski pointed out that there are more mo-
tivic and uniform methods to obtain bounds as in Corollary 6.2 ([8, Th.
6.3.26], [18], [7, Th. 2.4.2]). But all these theorems rest in fine on the
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smooth and proper base change theorem for étale cohomology [SGA4 1/2,
Arcata, V, Th. 3.1], so they do not seem to bring something essentially
new here as the existence of a bound is sufficient for Theorem 6.3 and its
corollary.

6.6. Proposition. For M ∈ D(OK), let

ξ(M, s) = |dK |sχ(M)/2
∏
v|∞

Γ(φ∗
vM, s) · ζ(M, s)

where dK is the absolute discriminant of K. Then ξ(π∗M, s) = ξ(M, s),
where π∗ is the push-forward functor D(OK)→ D(Z).

Proof. It suffices to check this for the Gamma-discriminant part, and it fol-
lows from an elementary computation. □

To be complete, we define the completed ζ function of a motive over a
Z-scheme of finite type.

6.7. Definition. If M ∈ D(S) where f : S → SpecZ is a Z-scheme of
finite type, we set ξ(M, s) = ξ(f!M, s).

Note that ξ(M, s) = ζ(M, s) if f is not dominant, and Theorem 3.11 still
holds when replacing ζ by ξ. By Proposition 6.6, this definition does extend
the case S = SpecOK .

7. A THEOREM OF SERRE

For M ∈ D(OK) and p ⊂ OK , define

NM(p) = ♯(Mp)

the number of points of M modulo p.

7.1. Theorem. Let M ∈ D(OK). Suppose that ζ(M, s) is not a finite prod-
uct of Euler factors. Then the set

{p | NM(p) = 0}
has a density 1− ε, with

ε ≥ 1

b∞(M)2

where b∞(M) =
∑

i dimH i
l (MK).

Proof. It is the same as Serre’s [45, Th. 6.17], which is the special case
M = MBM(X) ⊕MBM(X ′)[1] for X,X ′ OK-schemes of finite type. For
U as in Theorem 6.1, one may compute the traces of the geometric Frobe-
nius FMp acting on H∗

l (Mp), for p ∈ U , as the traces of the inverse of the
[conjugacy class of the] arithmetic Frobenius φp ∈ Gal(K̄/K) acting on
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H∗
l (MK). The statement then reduces to the following theorem of Serre

[45, Th. 5.15]:

7.2. Theorem. Let G be a compact group, K be a locally compact field of
characteristic 0 and let ρ : G → GLn(K), ρ′ : G → GLn′(K) be two
continous K-linear representations of G. Then

(i) either trρ = trρ′;
(ii) or the set {g ∈ G | tr(ρ)(g) ̸= tr(ρ′)(g)} has a Haar density

≥ 1
(n+n′) sup(n,n′)

.

To apply Serre’s theorem, we representG = GK onHeven
l (MK), yielding

ρ, and on Hodd
l (MK), yielding ρ′. Here, K = Ql. If both those vector

spaces are 0, then Hl(M) is supported on SpecOK [1/l] − U , where U is
the open set as above; then all Euler factors of ζ(M, s) at p ∈ U are equal
to 1. Otherwise, we may apply the theorem. In case (i), we get the same
conclusion on the Euler factors as above. Case (ii) yields the conclusion of
Theorem 7.1. □

More generally, a large part of Serre’s results in [45] seem to extend to
objects of D(OK) without difficulty.

8. SOME SIX FUNCTORS ALGEBRA

8.A. K0 of triangulated categories. Let

0→ T ′ i−→ T p−→ T ′′ → 0

be a short exact sequence of triangulated categories: i is a thick embedding
and T /T ′ ∼−→ T ′′. We assume that we are in the Verdier situation: i has a
right adjoint π, hence p has a right adjoint j and any object M ∈ T fits in a
functorial exact triangle

iπM →M → pjM
+1−→ .

From this, it follows:

8.1. Lemma. In the above situation, the map

K0(T )
(πp )−→ K0(T ′)⊕K0(T ′′)

is an isomorphism. Alternately, we have an exact sequence

0→ K0(T ′)
i−→ K0(T )

p−→ K0(T ′′)→ 0

split by π and j.

Proof. Since i and j are fully faithful, the first map has the right inverse
(i, j). It is also a left inverse thanks to the exact triangle above. □
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Let (Tα)α∈A be an filtered inductive system of triangulated categories,
and let T = lim−→α

Tα. We have an induced homomorphism

(8.1) lim−→
α

K0(Tα)→ K0(T ).

8.2. Lemma. (8.1) is an isomorphism.

Proof. Write iα : Tα → T for the canonical functor. Let X ∈ T . Then
X ≃ iαXα for some (α,Xα). This shows that (8.1) is surjective.

Let α ∈ A and x ∈ K0(Tα) be such that iαx = 0. Writing x =∑
i∈I ni[Xi] for I finite, ni ∈ Z and Xi ∈ Tα, the hypothesis means that we

have an equality∑
i∈I

ni[iαXi] =
∑
j∈J

mj([Yj]− [Y ′
j ]− [Y ′′

j ])

in the free group with generators the isomorphism classes of objects of T ,
where J is finite, mj ∈ Z and Y ′

j → Yj → Y ′′
j

+1−→ are exact triangles. All
these exact triangles come from exact triangles in Tβ for some β dominating
α. This shows that (8.1) is injective. □

For simplicity, we set

KM
0 (S) = K0(D(S))

for any scheme S.
Let K be a global field. We write C for SpecOK if K is number field or

for the smooth projective model of K in positive characteristic.
Let j : U ⊆ V be two nonempty open subsets of C, and let i : Z → V

be to complementary closed immersion. We have an exact sequence of
triangulated categories

(8.2) 0→ D(Z) i∗−→ D(V )
j∗−→ D(U)→ 0

which is split as in the previous section by i! and j∗. Note also that

D(Z) =
∐
v∈Z

D(κ(v)).

Hence we get a short exact sequence

0→
⊕
v∈Z

KM
0 (κ(v))

((iv)∗)−→ KM
0 (V )

j∗−→ KM
0 (U)→ 0

which is split, although we shall not use this.
By Ivorra [21, Prop. 4.16], we have an equivalence

2− lim−→
U

D(U) ∼−→ D(K)
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hence, by Lemma 8.2, a (non split) short exact sequence

(8.3) 0→
⊕
v

KM
0 (κ(v))

((iv)∗)−→ KM
0 (C)

j∗−→ KM
0 (K)→ 0

where v runs through all the closed points of C.

8.B. A purity theorem. For the sequel, we note that the theory D verifies
the axioms of [2, Def. 2.3.1] by loc. cit., Prop. 4.5.31.

Let S be a scheme, i : Z → S a closed immersion and j : U → S
the complementary open immersion. For M,N ∈ D(S), we have a natural
transformation [2, §2.3.2]

(8.4) rM,N : i∗M ⊗ i!N → i!(M ⊗N)

which is not an isomorphism in general (loc. cit., Remark 2.3.13). However,

8.3. Theorem. If M is strongly dualisable, (8.4) is an isomorphism.

Proof (J. Ayoub). Let j : U → S be the complementary open immersion.
By the localisation exact triangle

(8.5) i∗i
!N → N → j∗j

∗N
+1−→

of [2, §1.4.4], we reduce to the cases where N is of the form j∗N
′ or i∗N ′′.

In the first case, the left hand side is 0, and so is the right hand side by
the projection formula

M ⊗ j∗N ′ ≃ j∗(j
∗M ⊗N ′)

which holds because M is dualisable (another lemma of Ayoub, cf. [27,
Lemma 9.3.1]).

In the second case, (8.4) is the composition

i∗M ⊗ i!i∗N ′′ ≃ i!i∗(i
∗M ⊗ i!i∗N ′′) ≃ i!(M ⊗ i∗i!i∗N ′′)→ i!(M ⊗ i∗N ′′)

by the strong monoidality of i∗ [2, Lemma 2.3.6], and the last map is in-
vertible: the counit i∗i! → Id is invertible when applied to an object of the
form i∗N

′′. □

Let M ∈ D(S). Applying i∗ to (8.5), we get another exact triangle

i!M
τM−→ i∗M → i∗j∗j

∗M
+1−→ .

8.4. Corollary. Suppose that τZS
= 0. Then τM = 0 for any strongly

dualisable M .



ZETA AND L FUNCTIONS OF VOEVODSKY MOTIVES 33

Proof (J. Ayoub). We have a commutative diagram

i∗M ⊗ i!N
rM,N−−−→ i!(M ⊗N)

1⊗τN

y τM⊗N

y
i∗M ⊗ i∗N ∼−−−→ i∗(M ⊗N)

where the top map is an isomorphism by Theorem 8.3. The conclusion
follows by taking N = ZS . □

8.5. Remark. The hypothesis of Corollary 8.4 is verified in particular when
Z = Specκ is a closed point of S: then τZS

∈ D(κ)(ZZ(−d)[−2d],ZZ) =
H2d(κ,Q(d)) = 0.

8.6. Corollary. Suppose that S and Z are regular and that i is of pure
codimension c. Then the morphism (8.4) taken with N = ZS induces an
isomorphism

i∗M(−c)[−2c] ∼−→ i!M

for any dualisable M .

Proof. This follows from Theorem 8.3 and [9, Th. 14.4.1] in the language
of Beilinson motives, or from [3, Cor. 7.5] in the language of DAét. □

8.7. Proposition. Let Dproj(S) be the thick subcategory of D(S) generated
by the M(X)(n) with X smooth projective over S and n ∈ Z. Suppose that
ZS is a dualising object of D(S). Then all objects of Dproj(S) are strongly
dualisable. In particular, Theorem 8.3, Corollary 8.4 and Corollary 8.6
apply to them.

Proof. The argument is the same as for [39, Th. 2.2]. □

8.8. Remark. As Ayoub pointed out, if one wants to prove Corollary 8.6
forM = f#ZX with f smooth projective, one can avoid using Theorem 8.3
by the following direct computation: M ≃ f!f

!ZS and i!f!f ! ≃ (fZ)!f
!
Zi

!

by the base change isomorphisms, where fZ is the pull-back of f along i.

9. ZETA AND L-FUNCTIONS OF MOTIVES OVER A GLOBAL FIELD

Let K be a global field. We keep the notation of §8.A: C denotes either
SpecOK when K is a number field and OK is its ring of integers, or the
smooth projective model of K over its field of constants Fq when K is of
positive characteristic.
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9.A. Zeta functions up to finite Euler products. Let as above Dir de-
note the group of convergent Dirichlet series, and let Eul be the subgroup
generated by Euler factors, i.e. Dirichlet series of the form R(p−s), where
R ∈ Q(t) and p is a prime number. From this exact sequence we deduce a
map

ζ̄ : KM
0 (K)→ Dir /Eul

induced by DMgm(OK ,Q) ∋M 7→ ζ(M, s).
Let X be a smooth projective K-variety, and let ΣK(X) be the set of

finite places of K where X has good reduction. Recall that, in [29, Prop.
5.6 and Th. 5.7], we defined an “approximate zeta function” by the formula

ζappr(X, s) =
∏

v∈ΣK(X)

ζ(X(v), s)

where X(v) is the special fibre of a smooth model of X over SpecOv. (The
point is that ζ(X(v), s) does not depend on the choice of X(v).) Then the
following is obvious by construction:

9.1. Proposition. We have ζappr(X, s) = ζ̄(X, s) in Dir /Eul. □

9.B. A “total" L-function for motives over SpecK. We go back to the
short exact sequence of triangulated categories

0→
∐
v

D(κ(v)) (iv)∗−→ D(C) j∗−→ D(K)→ 0

which is the 2-colimit of the exact sequences (8.2). It sits fully faithfully
into a short exact sequence of larger categories

0→
∐
v

DAét(κ(v),Q)
(iv)∗−→ DAét(C,Q)

j∗−→ DAét(K,Q)→ 0.

In this sequence, j∗ has the right adjoint j∗ for Brown representability
reasons. If M ∈ D(K), j∗M is of course not constructible in general; nev-
ertheless we would like to define a “total L-function" of M by the formula

Ltot(M, s) = ζ(j∗M, s).

Sense can be made of this formula as follows:
We may write M = j∗UMU , where MU ∈ D(U), for some open subset U

of C. Write j = j′UjU . Then j∗M = (j′U)∗(jU)∗j
∗
UMU . Let jU,V : V → U

be an open subset of U . From the exact triangles

(9.1)
⊕

v∈U−V

(iv)∗i
!
vMU →MU → (jU,V )∗j

∗
U,VMU

+1−→
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we deduce in the (co)limit an exact triangle⊕
v∈U

(iv)∗i
!
vMU →MU → (jU)∗j

∗
UMU

+1−→ 5

hence, after applying (j′U)∗, an exact triangle

(9.2)
⊕
v∈U

(iv)∗i
!
vMU → (j′U)∗MU → j∗M

+1−→ .

Note that the latter may also be written⊕
v∈C

(iv)∗i
!
v(j

′
U)∗MU → (j′U)∗MU → j∗M

+1−→

as one sees for example by applying the localisation exact triangles to (j′U)∗MU .
(Here we abuse notation by identifying the closed immersions v ↪→ U and
v ↪→ C, with the common name iv.) The motive (iv)∗i

!
v(j

′
U)∗MU is 0 if

v /∈ U , because then i!v(j
′
U)∗ = 0.

9.2. Proposition. For any closed point v of C, let Ov be the local ring of
v and jv : SpecK ↪→ SpecOv the corresponding open immersion. Then,
with the above notation, we have the relation

[i∗v(j
′
U)∗MU ]− [i!v(j

′
U)∗MU ] = [i∗v(jv)∗M ] ∈ KM

0 (κ(v)).

In particular, the left hand side does not depend on the choice of U andMU ,
and is triangulated in M .

Proof. Let (V,MV ) be another model ofM . ThenMU andMV become iso-
morphic after restricting to some open subset of U ∩ V , so we may assume
V ⊆ U and MV = j∗U,VMU . Hence, by (9.1), it suffices to show that

i∗w(iv)∗ = i!w(iv)∗ =

{
0 if w ̸= v

IdD(κ(v)) if w ̸= v.

Both formulas are obvious, the second because (iv)∗ is fully faithful. This
shows that the left hand side of the formula only depends on M .

Since j∗(j′U)∗M = M , we may now suppose that U = C in (9.2). Let
j′v : SpecOv ↪→ C be the other inclusion. Applying (j′v)

∗ to (9.2), we get
an exact triangle

(iv)∗i
!
vMC → (j′v)

∗MC → (jv)∗M
+1−→

hence the formula. □

5For lightness of notation, we write v ∈ U rather than v ∈ U(0), and similarly in the
sequel.
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9.3. Definition. For any M ∈ D(K) and any v ∈ C(0), we set

Ltot
v (M, s) = ζ(i∗v(jv)∗M, s).

9.4. Definition. Let M ∈ D(K) and let v ∈ C(0). We say that M has good
reduction at v if M = j∗vM, with M ∈ Dproj(Ov) (see Proposition 8.7).
We say that such anM is a good model of M at v.

Let M ∈ D(K), and letM ∈ D(Ov) be such that j∗vM = M . The exact
triangle

(iv)∗i
!
vM→M→ (jv)∗M

+1−→
gives, after applying i∗v, an exact triangle

i!vM→ i∗vM→ i∗v(jv)∗M
+1−→ .

If M has good reduction at v andM is a good model, this triangle reads
as

i∗vM(−1)[−2]→ i∗vM→ i∗v(jv)∗M
+1−→

thanks to Theorem 8.3 and Proposition 8.7. (The first map is trivial by
Corollary 8.4 and Remark 8.5, although we shall not need this.) Thus

(9.3) Ltot
v (M, s) =

ζ(i∗vM, s)

ζ(i∗vM, s+ 1)

in this case, thanks to Corollary 2.25 c).

9.5. Theorem. With the above notation,
a) The Euler product

Ltot(M, s) =
∏
v∈C

Ltot
v (M, s)

is a Dirichlet series which converges absolutely for Re(s)≫ 0.
b) If M =M(X)∗, where X is smooth projective, we have for v ∤ l

Ltot
v (M, s) =

∏
i∈Z

Ltot
v (H i

l (X), s)(−1)i

where v runs through the maximal ideals of OK and

Ltot
v (H i

l (X), s) =
det(1−N(v)−sφ−1

v | H0(Iv, H
i(X̄,Ql))

det(1−N(v)−sφ−1
v | H1(Iv, H i(X̄,Ql))

where φv and Iv are respectively a Frobenius at v and the inertia group at
v.
c) If X has good reduction at v in b), with special fibre Xv, then

Ltot
v (M, s) =

ζ(Xv, s)

ζ(Xv, s+ 1)
.
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Proof. a) In view of Theorem 6.3 and Proposition 9.2, it suffices to see that
i!vMU ≃ i∗vMU(−1)[−2] for almost all v. But for V ⊆ U small enough,
j∗U,VMU ∈ Dproj(V ); hence this follows from Theorem 8.3.

b) We have the isomorphism

Rl(i∗v(jv)∗M) ≃ i∗vR(jv)∗R
l(M)

for M ∈ D(K).
For M =M(X)∗, f : X → SpecK smooth projective, we have

Rl(M) = Rf∗Ql

hence
H i(Rl(M)) = H i(X̄,Ql).

Let Iv be the absolute inertia group at v. For an l-adic sheafF on SpecK,
we have

i∗vR
q(jv)∗F =


H0(Iv,F(K̄)) if q = 0

H1(Iv,F(K̄)) if q = 1

0 if q > 1

with Frobenius action induced by the action of GK . If F = H i(X̄,Ql) for
X smooth projective, we have

L(κ(v), H i(Iv,F(K̄)), s) = det(1−N(v)−sφ−1
v | H i(Iv, H

i(X̄,Ql))).

and
L(κ(v), H0(Iv,F(K̄)), s)

L(κ(v), H1(Iv,F(K̄)), s)
=

det(1−N(v)−s−1φv | H1(Iv, H
i(X̄,Ql)))

det(1−N(v)−s−1φv | H0(Iv, H i(X̄,Ql)))
.

□

9.C. The nearby L-function of a motive over SpecK. We now apply
Lemma 5.2 to Ltot(M, s). This gives

9.6. Definition. For M ∈ D(K) and a prime v, we define Lnear
v (M, s) as

the unique Dirichlet series (with initial coefficient 1) such that
Lnear
v (M, s)

Lnear
v (M, s+ 1)

= Ltot
v (M, s).

We set
Lnear(M, s) =

∏
v

Lnear
v (M, s).

Clearly,
Lnear(M, s)

Lnear(M, s+ 1)
= Ltot(M, s)

which shows by Lemma 5.2 that Lnear(M, s) is a convergent Dirichlet series
with the same absolute convergence abscissa as Ltot(M, s).
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If M has good reduction at v, then for any good modelM at v, one has

(9.4) Lnear
v (M, s) = ζ(i∗vM, s)

thanks to (9.3). We shall now handle the general case and relate Lnear(M, s)
with Ayoub’s nearby cycle functor Υ [3].

9.7. Theorem. We have Lnear
v (M, s) = ζ(ΥvM, s), where Υv : D(K) →

D(κ(v)) is the “unipotent" specialisation functor associated to Ov as in [3,
Th. 11.13].

Proof. By loc. cit., Th. 11.16, there is an exact triangle

(9.5) i∗v(jv)∗M → ΥvM → ΥvM(−1) +1−→
hence the result follows from the uniqueness statement in Lemma 5.2. □

9.8. Corollary. Lnear
v (M, s) is a rational function in N(v)−s, whose zeroes

and poles are N(v)-Weil numbers. □

This is remarkable because, in Lemma 5.2, g(s) is in general by no means
a rational function of p−s when f(s) is. (Take f(s) = (1− p−s)−1.)

9.9. Remark. Another argument, which was our initial argument, is to go
via the l-adic realisation: one has

Ltot
v (M, s) = Lv(i

∗
vR(jv)∗R

l(M), s).

If V is an l-adic representation of GK , we need to show that

L(i∗vR(jx)∗V, s) = f(N(v)−s)/f(N(x)−s−1)

for some f ∈ Q(t).
We have

L(i∗vR(jv)∗V, s) =
det(1− φvN(v)−s | H1(Iv, V ))

det(1− φvN(v)−s | H0(Iv, V ))
.

Since cdl(Iv) = 1 this is an Euler-Poincaré characteristic, so we may
assume V semi-simple. Then Iv acts through a finite quotient by the l-adic
monodromy theorem [46, Appendix], thus

H1(Iv, V ) = VIv(−1) ≃ V Iv(−1)
and

L(i∗xR(jv)∗V, s) =
LSerre(V ss, s)

LSerre(V ss, s+ 1)
where V ss is the semi-simplification of V . We thus get another formula for
Lnear(M, s):

(9.6) Lnear(M, s) = LSerre(Rl(M)ss, s).

Because of the finiteness of the action of the inertia, one might think of
the right hand side of (9.6) as an Artin L-function.
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9.10. Questions. Composing with the functor Φ of §2.E, we may associate
a nearby L-function to any Chow motive, and this determines Lnear by Bon-
darko’s theorem.
1) By the l-adic realisation, this definition factors through homological
equivalence. Does it even factor through numerical equivalence, as in posi-
tive characteristic? (The two K0’s agree under the sign conjecture.)
2) Similarly, the operator Υv induces a homomorphism

Υv : K0(Chow(K))→ K0(Chow(κ(v)).

To what extent can one describe it explicitly?

9.D. Examples. We finish with explicit computations.

9.D.1. Artin motives. In what comes before, we worked with motives with
Q-coefficients, but everything works just as well for motives with coeffi-
cients in a Q-algebra, for example in a number field. This allows us to
consider the nearby L-function Lnear(ρ, s) attached to a complex Galois
representation ρ. Then the action of inertia is semi-simple, thus, by (9.6)
we have Lnear(ρ, s) = L(ρ, s), the Artin L-function of ρ. So nothing new
happens here.

9.D.2. Elliptic curves. Let E be an elliptic curve over K with multiplica-
tive reduction at v, V = H1

l (E). By hypothesis, the action of Iv on V is
unipotent and nontrivial, hence dimV Iv = 1 and Iv acts trivially on V/V Iv ;
thus V ss = V Iv ⊕ V/V Iv and

LSerre
v (h1(E), s) = det(1−N(v)−sφx | V Iv)−1

Lnear
v (h1(E), s) = LSerre

v (H1(E), s)× det(1−N(v)−sφv | V/V Iv)−1.

Extra poles thus are explicitly computable: if the multiplicative reduction
is split, then LSerre

v (h1(E), s) = (1−N(v)−s)−1 and thus the other factor is
(1 − N(v)1−s)−1, since the determinant is H2

l (E) ≃ Ql(−1). Similarly, if
the multiplicative reduction is not split, the other factor is (1+N(v)1−s)−1.

Note that these factors have a functional equation between s and 2 − s;
so, such functional equations for LSerre(h1(E), s) and Lnear(h1(E), s) are
equivalent. Similarly, the Beilinson conjectures for the first function easily
imply Beilinson-like conjectures for the second, and conversely.

10. THE FUNCTIONAL EQUATION IN CHARACTERISTIC p

Let K = Fq(C) for C a smooth, projective, geometrically connected
curve. As usual we abbreviate Fq =: k, η = SpecK and write j : η → C
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for the canonical immersion. If U ⊆ C is a nonempty open subset, we
factor j as a composition

η
jU−→ U

j′U−→ C.

Let M ∈ DMgm(K,Q): we want to compare the L-functions

Lnear(M∗, 1− s) and Lnear(M, s).

We know that M ≃ j∗M for some M ∈ D(C); from the functional
equation for ζ(M, s) (Theorem 3.9) we can get an approximate functional
equation for Lnear(M, s), but we would like a precise formula.

The following first approach was suggested by Joseph Ayoub. There ex-
ists U andMU ∈ Dproj(U) such that M = j∗UMU . LetM = (j′U)∗MU

with j′U : U ↪→ C, so that M = j∗M. For x ∈ C, we have by (9.4) and
Theorem 9.7:

Lnear
x (M, s) =

{
ζ(i∗xMU , s) for x ∈ U
ζ(Υx(M), s) for all x ∈ C

hence

Lnear(M, s) =
∏
x∈U

ζ(i∗xMU , s)×
∏
x/∈U

ζ(Υx(M), s)

= ζ(MU , s)×
∏
x/∈U

ζ(Υx(M), s)

= ζ(M, s)×
∏
x/∈U

ζ(i∗x(j
′
U)∗MU , s)

−1 ×
∏
x/∈U

ζ(Υx(M), s)

= ζ(M, s)×
∏
x/∈U

ζ(Υx(M), s− 1)

by (9.5).
On the other hand,M∗ := Hom(M,Z) = (j′U)!M∗

U , hence

Lnear(M∗, 1− s) =
∏
x∈U

ζ(i∗xM∗
U , 1− s)×

∏
x/∈U

ζ(Υx(M
∗), 1− s)

= ζ(M∗, 1− s)×
∏
x/∈U

ζ(Υx(M
∗), 1− s).

By [3, Th. 11.16], we have

Υx(M
∗) ≃ Υx(M)∗
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where the duality on the right hand side is still relative to Z, but in D(κ(x)).
Hence

Lnear(M∗, 1− s) = ζ(M∗, 1− s)×
∏
x/∈U

ζ(Υx(M)∗, 1− s)

= (−q−s)χ(f!M) det(Ff!M)−1ζ(M, s)

×
∏
x/∈U

(−q1−sx )χ(Υx(M)) det(FΥx(M))
−1ζ(Υx(M), s− 1)

where qx = |κ(x)| = qdeg(x). We finally get

10.1. Theorem. One has
Lnear(M∗, 1− s)
Lnear(M, s)

= A(−q)−Bs

with

A = (−q)
∑
x/∈U

deg(x)χ(Υx(M))
(
det(Ff!M)×

∏
x/∈U

det(FΥx(M))

)−1

B = χ(f!M)) +
∑
x/∈U

deg(x)χ(Υx(M)). □

10.2. Question. Comparing with [44, Formulas (6) and (7)], one would like
to relate at least the constant B to a conductor of M . This can be defined
via the l-adic realisation; can one prove that the conductor thus obtained
does not depend on l?
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