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1 Introduction

The idea of topological invariants defined via path integrals was introduced by

A.S. Schwartz (1977) in a special case and by E. Witten (1988) in its full power.

To formalize this idea, Witten [Wi] introduced a notion of a Topological Quan-

tum Field Theory (TQFT). Such theories, independent of Riemannian metrics,

are rather rare in quantum physics. On the other hand, they admit a simple

axiomatic description first suggested by M. Atiyah [At]. This description was
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inspired by G. Segal’s [Se] axioms for a 2-dimensional conformal field theory.

The axiomatic formulation of TQFTs makes them suitable for a purely math-

ematical research combining methods of topology, algebra and mathematical

physics. Several authors explored axiomatic foundations of TQFTs (see Quinn

[Qu], Turaev [Tu]).

2 Axioms of a TQFT

A (n+1)-dimensional TQFT (V, τ) over a scalar field k assigns to every closed

oriented n-dimensional manifold X a finite dimensional vector space V(X) over

k and assigns to every cobordism (M,X, Y ) a k-linear map

τ(M) = τ(M,X, Y ) : V(X) → V(Y ).

Here a cobordism (M,X, Y ) between X and Y is a compact oriented (n + 1)-

dimensional manifold M endowed with a diffeomorphism ∂M ≈ X q Y (the

overline indicates the orientation reversal). All manifolds and cobordisms are

supposed to be smooth. A TQFT must satisfy the following axioms.

1. (Naturality) Any orientation-preserving diffeomorphism of closed oriented

n-dimensional manifolds f : X → X ′ induces an isomorphism f] : V(X) →

V(X ′). For a diffeomorphism g between the cobordisms (M,X, Y ) and

(M ′, X ′, Y ′), the following diagram is commutative.

V(X)
(g|X)

]−−−−→ V(X ′)

τ(M)

y yτ(M ′)

V(Y )
(g|Y )

]−−−−→ V(Y ′) .

2. (Functoriality) If a cobordism (W,X, Z) is obtained by gluing two cobor-
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disms (M,X, Y ) and (M ′, Y ′, Z) along a diffeomorphism f : Y → Y ′, then

the following diagram is commutative.

V(X)
τ(W )−−−−→ V(Z)

τ(M)

y xτ(M ′)

V(Y )
f]−−−−→ V(Y ′) .

3. (Normalization) For any n-dimensional manifold X, the linear map

τ([0, 1]×X) : V(X) → V(X)

is identity.

4. (Multiplicativity) There are functorial isomorphisms

V(X q Y ) ≈ V(X)⊗V(Y ) ,

V(∅) ≈ k ,

such that the following diagrams are commutative.

V((X q Y )q Z) ≈ (V(X)⊗V(Y ))⊗V(Z)

↓ ↓

V(X q (Y q Z)) ≈ V(X)⊗ (V(Y )⊗V(Z)) ,

V(X q ∅) ≈ V(X)⊗ k

↓ ↓

V(X) = V(X) .

Here ⊗ = ⊗k is the tensor product over k. The vertical maps are respec-

tively the ones induced by the obvious diffeomorphisms, and the standard
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isomorphisms of vector spaces.

5. (Symmetry) The isomorphism

V(X q Y ) ≈ V(Y qX)

induced by the obvious diffeomorphism corresponds to the standard iso-

morphism of vector spaces

V(X)⊗V(Y ) ≈ V(Y )⊗V(X) .

Given a TQFT (V, τ), we obtain an action of the group of diffeomorphisms

of a closed oriented n-dimensional manifold X on the vector space V(X). This

action can be used to study this group.

An important feature of a TQFT (V, τ) is that it provides numerical in-

variants of compact oriented (n + 1)-dimensional manifolds without boundary.

Indeed, such a manifold M can be considered as a cobordism between two copies

of ∅ so that τ(M) ∈ Homk(k,k) = k. Any compact oriented (n+1)-dimensional

manifold M can be considered as a cobordism between ∅ and ∂M ; the TQFT

assigns to this cobordism a vector τ(M) in Homk(k,V(∂M)) = V(∂M) called

the vacuum vector.

The manifold [0, 1]×X, considered as a cobordism from X qX to ∅ induces

a non singular pairing

V(X)⊗V(X) → k .

We obtain a functorial isomorphism V(X) = V(X)∗ = Homk(V(X),k).

We now outline definitions of several important classes of TQFTs.

If the scalar field k has a conjugation and all the vector spaces V(X) are

equipped with natural non degenerate hermitian forms, then the TQFT (V, τ)
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is hermitian. If k = C is the field of complex numbers and the hermitian forms

are positive definite, then the TQFT is unitary.

A TQFT (V, τ) is non-degenerate or cobordism generated if for any closed

oriented n-dimensional manifold X, the vector space V(X) is generated by the

vacuum vectors derived as above from the manifolds bounded by X.

Fix a Dedekind domain D ⊂ C. A TQFT (V, τ) over C is almost D-integral

if it is non-degenerate and there is d ∈ C such that d τ(M) ∈ D for all M

with ∂M = ∅. Given an almost integral TQFT (V, τ) and a closed oriented

n-dimensional manifold X, we define S(X) to be the D-submodule of V(X)

generated by all the vacuum vectors. This module is preserved under the action

of self-diffeomorphisms of X and yields a finer “arithmetic” version of V(X).

The notion of an (n + 1)-dimensional TQFT over k can be reformulated in

the categorical language as a symmetric monoidal functor from the category of

n-manifolds and (n+1)-cobordisms to the category of finite dimensional vector

spaces over k. The source category is called the (n + 1)-dimensional cobordism

category. Its objects are closed oriented n-dimensional manifolds. Its mor-

phisms are cobordisms considered up to the following equivalence: cobordisms

(M,X, Y ) and (M ′, X, Y ) are equivalent if there is a diffeomorphism M → M ′

compatible with the diffeomorphisms ∂M ≈ X q Y ≈ ∂M ′.

3 TQFTs in low dimensions

TQFTs in dimension 0 + 1 = 1 are in one-to-one correspondence with finite

dimensional vector spaces. The correspondence goes by associating with a 1-

dimensional TQFT (V, τ) the vector space V(pt) where pt is a point with pos-

itive orientation.

Let (V, τ) be a 2-dimensional TQFT. The linear map τ associated with a

pair of pants (a 2-disc with two holes considered as a cobordism between two
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circles S1 q S1 and one circle S1) defines a commutative multiplication on the

vector space A = V(S1). The 2-disc, considered as a cobordism between S1

and ∅, induces a non-degenerate trace on the algebra A. This makes A into a

commutative Frobenius algebra (also called a symmetric algebra). This algebra

completely determines the TQFT (V, τ). Moreover, this construction defines a

one-to-one correspondence between equivalence classes of 2-dimensional TQFTs

and isomorphism classes of finite dimensional commutative Frobenius algebras,

see [Ko].

The formalism of TQFTs was to a great extent motivated by the 3-dimensional

case, specifically, Witten’s Chern-Simons TQFTs. A mathematical definition

of these TQFTs was first given by Reshetikhin and Turaev using the theory

of quantum groups. The Witten-Reshetikhin-Turaev 3-dimensional TQFTs do

not satisfy exactly the definition above: the naturality and the functoriality

axioms only hold up to invertible scalar factors called framing anomalies. Such

TQFTs are said to be projective. In order to get rid of the framing anoma-

lies, one has to add extra structures on the 3-dimensional cobordism category.

Usually one endows surfaces X with Lagrangians (maximal isotropic subspaces

in H1(X;R)). For 3-cobordisms, several competing - but essentially equiva-

lent - additional structures are considered in the literature: 2-framings ([At]),

p1-structures ([BHMV]), numerical weights (K. Walker, V. Turaev).

Large families of 3-dimensional TQFTs are obtained from so-called modular

categories. The latter are constructed from quantum groups at roots of unity or

from the skein theory of links. See the article Quantum Invariants of 3-manifolds

in this Encyclopedia.
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4 Additionnal structures

The axiomatic definition of a TQFT extends in various directions. In dimension

2 it is interesting to consider so-called open-closed theories involving 1-manifolds

formed by circles and intervals and 2-dimensional cobordisms with boundary

(G. Moore, G. Segal). In dimension 3 one often considers cobordisms including

framed links and graphs whose components (resp. edges) are labeled with objects

of a certain fixed category C. In such a theory, surfaces are endowed with finite

sets of points labeled with objects of C and enriched with tangent directions. In

all dimensions one can study manifolds and cobordisms endowed with homotopy

classes of mappings to a fixed space (Homotopy Quantum Field Theory in the

sense of Turaev). Additional structures on the tangent bundles - spin structures,

framings, etc - may be also considered provided the gluing is well defined.
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