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1 Introduction

The idea to derive topological invariants of smooth manifolds from partitions

functions of certain action functionals was suggested by A. Schwarz (1978) and

highlighted by E. Witten (1988). Witten interpreted the Jones polynomial of

links in the 3-sphere S3 as a partition function of the Chern-Simons field the-

ory. Witten conjectured the existence of mathematically defined topological

invariants of 3-manifolds generalizing the Jones polynomial (or rather its values

in complex roots of unity) to links in arbitrary closed oriented 3-manifolds. A
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rigorous construction of such invariants was given by N. Reshetikhin and V.

Turaev (1989) using the theory of quantum groups. The Witten-Reshetikhin-

Turaev invariants of 3-manifolds, called also the quantum invariants, extend to

a Topological Quantum Field Theory (TQFT) in dimension 3.

2 Ribbon and modular categories

The Reshetikhin-Turaev approach begins with fixing suitable algebraic data

which are best described in terms of monoidal categories. Let C be a monoidal

category (i.e., a category with associative tensor product and unit object 1I). A

braiding in C assigns to any objects V,W ∈ C an invertible morphism cV,W :

V ⊗W → W ⊗ V such that for any U, V,W ∈ C,

cU,V⊗W = (idV ⊗ cU,W )(cU,V ⊗ idW ),

cU⊗V,W = (cU,W ⊗ idV )(idU ⊗ cV,W ).

A twist in C assigns to any object V ∈ C an invertible morphism θV : V → V

such that for any V,W ∈ C,

θV⊗W = cW,V cV,W (θV ⊗ θW ).

A duality in C assigns to any object V ∈ C a “dual” object V ∗ ∈ C and evaluation

and co-evaluation morphisms dV : V ∗ ⊗ V → 1I, bV : 1I → V ⊗ V ∗ such that

(idV ⊗ dV )(bV ⊗ idV ) = idV ,

(dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ .
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The category C with duality, braiding and twist is ribbon if for any V ∈ C,

(θV ⊗ idV ∗) bV = (idV ⊗ θV ∗) bV .

For an endomorphism f : V → V of an object V ∈ C, we define its trace

tr(f) ∈ EndC(1I) to be the following composition:

tr(f) = dV cV,V ∗((θV f)⊗ idV ∗) bV : 1I → 1I.

This trace shares a number of properties of the standard trace of matrices, in

particular, tr(fg) = tr(gf) and tr(f ⊗ g) = tr(f) tr(g). For an object V ∈ C, set

dim(V ) = tr(idV ) = dV cV,V ∗(θV ⊗ idV ∗) bV .

Ribbon categories nicely fit the theory of knots and links in S3. A link

L ⊂ S3 is a closed 1-dimensional submanifold of S3. (A manifold is closed

if it is compact and has no boundary). A link is oriented (resp. framed) if

all its components are oriented (resp. provided with a homotopy class of non-

singular normal vector fields). Given a framed oriented link L ⊂ S3 whose

components are labeled with objects of a ribbon category C, one defines a tensor

〈L〉 ∈ EndC(1I). To compute 〈L〉, present L by a plane diagram with only double

transversal crossings such that the framing of L is orthogonal to the plane. Each

double point of the diagram is an intersection of two branches of L, going over

and under, respectively. Associate with such a crossing the tensor (cV,W )±1

where V,W ∈ C are the labels of these two branches and ±1 is the sign of the

crossing determined by the orientation of L. We also associate certain tensors

with the points of the diagram where the tangent line is parallel to a fixed axis

on the plane. These tensors are derived from the evaluation and co-evaluation
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morphisms and the twists. Finally, all these tensors are contracted into a single

element 〈L〉 ∈ EndC(1I). It does not depend on the intermediate choices and is

preserved under isotopy of L in S3. For the trivial knot O(V ) with framing 0

and label V ∈ C, we have 〈O(V )〉 = dim(V ).

Further constructions need the notion of a tangle. An (oriented) tangle is a

compact (oriented) 1-dimensional submanifolds of R2× [0, 1] with endpoints on

R × 0 × {0, 1}. Near each its endpoint, an oriented tangle T is directed either

down or up and acquires thus a sign +1 or −1. One can view T as a morphism

from the sequence of ±1′s associated with its bottom ends to the sequence of

±1′s associated with its top ends. Tangles can be composed by putting one

on the top of the other. This defines a category of tangles T whose objects

are finite sequences of ±1′s and whose morphisms are isotopy classes of framed

oriented tangles. Given a ribbon category C, we can consider C-labeled tangles,

i.e., (framed oriented) tangles whose components are labeled with objects of C.

They form a category TC . Links appear here as tangles without endpoints, i.e.,

as morphisms ∅ → ∅. The link invariant 〈L〉 generalizes to a functor 〈·〉 : TC → C.

To define 3-manifold invariants, we need modular categories ([Tu]). Let k be

a field. A monoidal category C is k-additive if its Hom sets are k-vector spaces,

composition and tensor product of morphisms are bilinear, and EndC(1I) = k.

An object V ∈ C is simple if EndC(V ) = k. A modular category is a k-additive

ribbon category C with a finite family of simple objects {Vλ}λ such that (i)

for any object V ∈ C there is a finite expansion idV =
∑

i figi for certain

morphisms gi : V → Vλi
, fi : Vλi

→ V and (ii) the S-matrix (Sλ,µ) is invertible

over k where Sλ,µ = tr(cVλ,VµcVµ,Vλ
). Note that Sλ,µ = 〈H(λ, µ)〉 where H(λ, µ)

is the oriented Hopf link with framing 0, linking number +1 and labels Vλ, Vµ.

Axiom (i) implies that every simple object in C is isomorphic to exactly one

of Vλ. In most interesting cases (when there is a well defined direct summation
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in C) this axiom may be rephrased by saying that C is finite semisimple, i.e.,

C has a finite set of isomorphism classes of simple objects and all objects of

C are direct sums of simple objects. A weaker version of the axiom (ii) yields

premodular categories (A. Bruguières, M. Müger).

The invariant 〈·〉 of links and tangles extends by linearity to the case where

labels are finite linear combinations of objects of C with coefficients in k. Such

a linear combination Ω =
∑

λ dim(Vλ)Vλ is called the Kirby color. It has the

following sliding property: For any object V ∈ C, the two tangles in Figure 1

yield the same morphism V → V . Here the dashed line represents an arc on the

closed component labeled by Ω. This arc can be knotted or linked with other

components of the tangle (not shown on the picture).

3 Invariants of closed 3-manifolds

Given an embedded solid torus g : S1 × D2 ↪→ S3 where D2 is a 2-disk and

S1 = ∂D2, we can build a 3-manifold as follows. Remove from S3 the interior

of g(S1×D2) and glue back the solid torus D2×S1 along g|S1×S1 . This process

is known as surgery. The resulting 3-manifold depends only on the isotopy class

of the framed knot represented by g. More generally, a surgery on a framed link

L = ∪m
i=1Li in S3 with m components yields a closed oriented 3-manifold ML.

A theorem of W. Lickorish and A. Wallace asserts that any closed connected

oriented 3-manifold is homeomorphic to ML for some L. R. Kirby proved that

two framed links give rise to homeomorphic 3-manifolds if and only if these links

are related by isotopy and a finite sequence of geometric transformations called

Kirby moves. There are two Kirby moves: adjoining a distant unknot Oε with

framing ε = ±1 and sliding a link component over another one as in Figure 1.

Let L = ∪m
i=1Li ⊂ S3 be a framed link and let (bi,j)i,j=1,...,m be its linking

matrix: for i 6= j, bi,j is the linking number of Li, Lj and bi,i is the framing
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number of Li. Denote by e+ (resp. e−) the number of positive (resp. negative)

eigenvalues of this matrix. The sliding property of modular categories implies

the following theorem. In its statement a knot K with label Ω is denoted K(Ω).

Theorem 3.1 Let C be a modular category with Kirby color Ω. Then 〈O1(Ω)〉 6=

0, 〈O−1(Ω)〉 6= 0 and the expression

τC(ML) = 〈O1(Ω)〉−e+〈O−1(Ω)〉−e−〈L1(Ω), . . . , Lm(Ω)〉

is invariant under the Kirby moves on L. This expression yields therefore a

well-defined topological invariant τC of closed connected oriented 3-manifolds.

In the literature there are several competing normalizations of τC . Here we

normalize so that τC(S3) = 1 and τC(S1 × S2) =
∑

λ(dim(Vλ))2. The invariant

τC extends to 3-manifolds with a framed oriented C-labeled link K inside by

τC(ML,K) = 〈O1(Ω)〉−e+〈O−1(Ω)〉−e−〈L1(Ω), . . . , Lm(Ω),K〉.

4 3-dimensional TQFT’s

A 3-dimensional TQFT V assigns to every closed oriented surface X a finite

dimensional vector space V(X) over a field k and assigns to every cobordism

(M,X, Y ) a linear map V(M) = V(M,X, Y ) : V(X) → V(Y ). Here a cobor-

dism (M,X, Y ) between surfaces X and Y is a compact oriented 3-manifold

M with ∂M = (−X) q Y (the minus sign indicates the orientation rever-

sal). A TQFT has to satisfy axioms which can be expressed by saying that

V is a monoidal functor from the category of surfaces and cobordisms to the

category of vector spaces over k. Homeomorphisms of surfaces should induce

isomorphisms of the corresponding vector spaces compatible with the action

of cobordisms. From the definition, V(∅) = k. Every compact oriented 3-
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manifold M is a cobordism between ∅ and ∂M so that V yields a “vacuum”

vector V(M) ∈ Hom(V(∅),V(∂M)) = V(∂M). If ∂M = ∅, then this gives a

numerical invariant V(M) ∈ V(∅) = k.

Interesting TQFT’s are often defined for surfaces and 3-cobordisms with

additional structure. The surfaces X are usually endowed with Lagrangians,

i.e., with maximal isotropic subspaces in H1(X;R). For 3-cobordisms, several

additional structures are considered in the literature: 2-framings (M. Atiyah),

p1-structures ([BHMV]), numerical weights (K. Walker, V. Turaev). All these

choices are equivalent. The TQFT’s requiring such additional structures are

said to be projective since they provide projective linear representations of the

mapping class groups of surfaces.

Every modular category C with ground field k and simple objects {Vλ}λ

gives rise to a projective 3-dimensional TQFT VC . It depends on the choice of

a square root D of
∑

λ(dim(Vλ))2 ∈ k. For a connected surface X of genus g,

VC(X) = HomC(1I,
⊕

λ1,...,λg

g⊗
r=1

(Vλr
⊗ V ∗

λr
)).

The dimension of this vector space enters the Verlinde formula

dimk(VC(X)) · 1k = D2g−2
∑

λ

(dim(Vλ))2−2g

where 1k ∈ k is the unit of the field k. If char(k) = 0, then this formula

computes dimk(VC(X)). For a closed connected oriented 3-manifold M with

numerical weight zero, VC(M) = D−b1(M)−1τC(M) where b1(M) is the first

Betti number of M .

The TQFT VC extends to a vaster class of surfaces and cobordisms. Surfaces

may be enriched with a finite set of marked points, each labeled with an object

of C and endowed with a tangent direction. Cobordisms may be enriched with
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ribbon (or fat) graphs whose edges are labeled with objects of C and whose

vertices are labeled with appropriate intertwiners. The resulting TQFT, also

denoted VC , is non-degenerate in the sense that for any surface X, the vacuum

vectors in V(X) determined by all M with ∂M = X span V(X). A detailed

construction of VC is given in [Tu].

The 2-dimensional part of VC determines a modular functor in the sense of

G. Segal, G. Moore and N. Seiberg.

5 Constructions of modular categories

The universal enveloping algebra Ug of a (finite dimensional complex) simple Lie

algebra g admits a deformation Uqg which is a quasitriangular Hopf algebra. The

representation category Rep(Uqg) is C-linear and ribbon. For generic q ∈ C, this

category is semisimple. (The irreducible representations of g can be deformed to

irreducible representations of Uqg.) For q an appropriate root of unity, a certain

subquotient of Rep(Uqg) is a modular category with ground field k = C. For

g = sl2(C), this was pointed out by Reshetikhin and Turaev; the general case

(H. Andersen and J. Paradowski, A. Kirillov, Jr.) involves the theory of tilting

modules. The corresponding 3-manifold invariant τ is denoted τg
q . For example,

if g = sl2(C) and M is the Poincaré homology sphere (obtained by surgery on

a left-hand trefoil with framing -1), then [Le]

τg
q (M) = (1− q)−1

∑
n≥0

qn(1− qn+1)(1− qn+2) · · · (1− q2n+1).

The sum here is finite since q is a root of unity.

There is another construction [Le] of a modular category associated with a

simple Lie algebra g and certain roots of unity q. The corresponding quantum

invariant of 3-manifolds is denoted τPg
q . (Here it is normalized so that τPg

q (S3) =
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1). Under mild assumptions on the order of q, we have τg
q (M) = τg

q (M) τ ′(M)

for all M where τ ′(M) is a certain Gauss sum determined by g, the homology

group H = H1(M) and the linking form TorsH × TorsH → Q/Z.

A different construction derives modular categories from the category of

framed oriented tangles T . Given a ring K, we can consider a bigger category

K[T ] whose morphisms are linear combinations of tangles with coefficients in

K. Both T and K[T ] have a natural structure of a ribbon monoidal category.

The skein method builds ribbon categories by quotienting K[T ] by local

“skein” relations which appear in the theory of knot polynomials (the Alexander-

Conway polynomial, the Homfly polynomial, the Kauffman polynomial). In

order to obtain a semisimple category, one completes the quotient category

with idempotents as objects (the Karoubi completion). Choosing appropriate

skein relations, one can recover the modular categories derived from quantum

groups of series A,B,C, D. In particular, the categories determined by the

series A arise (C. Blanchet) from the Homfly skein relation shown in Figure 2

where a, s ∈ K. The categories determined by the series B,C,D arise from

the Kauffman skein relation (V. Turaev and H. Wenzl, A. Beliakova and C.

Blanchet).

The quantum invariants of 3-manifolds and the TQFT’s associated with

slN can be directly described in terms of the Homfly skein theory avoiding

the language of ribbon categories (W. Lickorish, C. Blanchet, N. Habegger, G.

Masbaum, P. Vogel for sl2 and Y. Yokota for all slN ).

6 Unitarity

From both physical and topological viewpoints, one is mainly interested in

Hermitian and unitary TQFT’s (over k = C). A TQFT V is Hermitian

if the vector space V(X) is endowed with a non-degenerate Hermitian form
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〈., .〉X : V(X)⊗C V(X) → C such that:

- The form 〈., .〉X is natural with respect to homeomorphisms and multi-

plicative with respect to disjoint union;

- For any cobordism (M,X, Y ) and any x ∈ V(X), y ∈ V(Y ),

〈V(M,X, Y )(x), y〉Y = 〈x,V(−M,Y, X)(y)〉X .

If 〈., .〉X is positive definite for every X, then the Hermitian TQFT is unitary.

Note two features of Hermitian TQFT’s. If ∂M = ∅ then V(−M) = V(M).

The group of self-homeomorphisms of any X acts in V(X) preserving the form

〈., .〉X . For a unitary TQFT, this gives an action by unitary matrices.

The 3-dimensional TQFT derived from a modular category V is Hermitian

(resp. unitary) under additional assumptions on V which we briefly discuss.

A conjugation in V assigns to each morphism f : V → W in V a morphism

f : W → V so that:

f = f , f + g = f + g for any f, g : V → W ;

f ⊗ g = f ⊗ g for any morphisms f, g in C;

f ◦ g = g ◦ f for any morphisms f : V → W, g : W → V .

One calls V Hermitian if it is endowed with conjugation such that

θV = (θV )−1, cV,W = (cV,W )−1,

bV = dV cV,V ∗(θV ⊗ 1V ∗),

dV = (1V ∗ ⊗ θ−1
V ) c−1

V ∗,V bV ,

for any objects V,W of V. A Hermitian modular category V is unitary if

tr(ff) ≥ 0 for any morphism f in V. The 3-dimensional TQFT derived from

a Hermitian (resp. unitary) modular category has a natural structure of a Her-
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mitian (resp. unitary) TQFT.

The modular category derived from a simple Lie algebra g and a root of

unity q is always Hermitian. It may be unitary for some q. For simply-laced

g, there are always such roots of unity q of any given sufficiently big order (H.

Wenzl). For non-simply-laced g, this holds under certain divisibility conditions

on the order of q.

7 Integral structures in TQFT’s

The quantum invariants of 3-manifolds have one fundamental property: up to

an appropriate rescaling they are algebraic integers. This was first observed

by H. Murakami, who proved that τ sl2
q (M) is an algebraic integer provided the

order of q is an odd prime and M is a homology sphere. This extends to an

arbitrary closed connected oriented 3-manifold M and an arbitrary simple Lie

algebra g as follows ([Le]): For any sufficiently big prime integer r and any

primitive r-th root of unity q,

τPg
q (M) ∈ Z[q] = Z[exp(2πi/r)]. (1)

This inclusion allows to expand τPg
q (M) as a polynomial in q. A study of its

coefficients leads to the Ohtsuki invariants of rational homology spheres and

further to perturbative invariants of 3-manifolds due to T. Le, J. Murakami and

T. Ohtsuki, see [Oh]. Conjecturally, the inclusion (1) holds for non-prime (suf-

ficiently big) r as well. Connections with algebraic number theory (specifically

modular forms) were studied by D. Zagier and R. Lawrence.

It is important to obtain similar integrality results for TQFT’s. Following

P. Gilmer, fix a Dedekind domain D ⊂ C and call a TQFT V almost D-integral

if it is non-degenerate and there is d ∈ C such that dV(M) ∈ D for all M with
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∂M = ∅. Given an almost integral TQFT V and a surface X, we define S(X)

to be the D-submodule of V(X) generated by all vacuum vectors for X. This

module is preserved under the action of self-homeomorphisms of X. It turns out

that S(X) is a finitely generated projective D-module and V(X) = S(X)⊗D C.

A cobordism (M,X, Y ) is targetet if all its connected components meet Y along a

non-empty set. In this case V(M)(S(X)) ⊂ S(Y ). Thus applying S to surfaces

and restricting τ to targetet cobordisms we obtain an “integral version” of V. In

many interesting cases the D-module S(X) is free and its basis may be described

explicitly (P. Gilmer, G. Masbaum). A simple Lie algebra g and a primitive r-th

(in some cases 4r-th) root of unity q with sufficiently big prime r give rise to an

almost D-integral TQFT for D = Z[q] (Q. Chen and T. Le).

8 State-sums invariants

Another approach to 3-dimensional TQFT’s is based on the theory of 6j-symbols

and state sums on triangulations of 3-manifolds. This approach introduced by

V. Turaev and O. Viro is a quantum deformation of the Ponzano-Regge model

for the three-dimensional lattice gravity. The quantum 6j-symbols derived from

representations of Uq(sl2C) are C-valued rational functions of the variable q0 =

q1/2 ∣∣∣∣∣∣∣
i j k

l m n

∣∣∣∣∣∣∣ (2)

numerated by 6-tuples of non-negative integers i, j, k, l, m, n. One can think of

these integers as of labels sitting on the edges of a tetrahedron, see Figure 3. The

6j-symbol admits various equivalent normalisations and we choose the one which

has full tetrahedral symmetry. Let now q0 ∈ C be a primitive 2r-th root of unity

with r ≥ 2. Set I = {0, 1, ..., r− 2}. Given a labeled tetrahedron T as in Figure

3 with i, j, k, l, m, n ∈ I, we can evaluate the 6j-symbol (2) at q0 and obtain a
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complex number denoted |T |. Consider a closed 3-dimensional manifold M with

triangulation t. (Note that all 3-manifolds can be triangulated.) A coloring of

M is a mapping ϕ from the set Edg(t) of the edges of t to I. Set

|M | = (
√

2r/(q0 − q−1
0 ))−2a

∑
ϕ

∏
e∈Edg(t)

〈ϕ(e)〉
∏
T

|Tϕ|

where a is the number of vertices of t, 〈n〉 = (−1)n(qn
0 − q−n

0 )/(q0 − q−1
0 ) for

any integer n, T runs over all tetrahedra of t and Tϕ is T with the labeling

induced by ϕ. Theorem: |M | does not depend on the choice of t and yields thus

a topological invariant of M .

The invariant |M | is closely related to the quantum invariant τg
q (M) for

g = sl2(C). Namely, |M | is the square of the absolute value of τg
q (M), i.e.,

|M | = |τg
q (M)|2 (V. Turaev, K. Walker). This computes |τg

q (M)| inside M

without appeal to surgery. No such computation of the phase of τg
q (M) is

known.

These constructions generalize in two directions. Firstly, they extend to

manifolds with boundary. Secondly, instead of the representation category

of Uq(sl2C), one can use an arbitrary modular category C. This yields a 3-

dimensional TQFT which associates to a surface X a vector space |X|C and to

a 3-cobordism (M,X, Y ) a homomorphism |M |C : |X|C → |Y |C , see [Tu]. When

X = Y = ∅ this homomorphism is multiplication C → C by a topological in-

variant |M |C ∈ C. The latter is computed as a state sum on a triangulation

of M involving the 6j-symbols associated with C. In general, these 6j-symbols

are not numbers but tensors so that instead of their product one should use an

appropriate contraction of tensors. The vectors in V (X) are geometrically rep-

resented by trivalent graphs on X such that every edge is labeled with a simple

object of C and every vertex is labeled with an intertwiner between the three

objects labeling the incident edges. The TQFT | · |C is related to the TQFT



14

V = VC by |M |C = |V(M)|2 (V. Turaev, K. Walker). Moreover, for any closed

oriented surface X,

|X|C = End(V(X)) = V(X)⊗ (V(X))∗ = V(X)⊗V(−X)

and for any 3-dimensional cobordism (M,X, Y ),

|M |C = V(M)⊗V(−M) : V(X)⊗V(−X) → V(Y )⊗V(−Y ).

J. Barrett and B. Westbury introduced a generalization of |M |C derived from

so-called spherical monoidal categories (which we suppose to be semisimple with

a finite set of isomorphism classes of simple objects). This class includes modular

categories and a most interesting family of (unitary monoidal) categories arising

in the theory of subfactors, see [EK], [KS]. Every spherical category C gives rise

to a topological invariant |M |C of a closed oriented 3-manifold M . (It seems

that this approach has not yet been extended to cobordisms.)

Every monoidal category C gives rise to a double (or a center Z(C)) which is

a braided monoidal category, see [Ma]. If C is spherical, then Z(C) is modular

(M. Müger). Conjecturally, |M |C = τZ(C)(M). In the case where C arises from

a subfactor, this has been recently proven by Y. Kawahigashi, N. Sato, and M.

Wakui.

The state sum invariants above are closely related to spin networks, spin

foam models and other models of quantum gravity in dimension 2 + 1, see [Ba],

[Ca].
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