Chapter 2

Combinatorial topology and
discrete Morse theory

Christian Blanchet, Etienne Gallais

Motivations

In the first draft of the program for this Summer School in Marrakech, we
planned to expose some standard material in differential topology, and some
recent developments in low dimensional topology. We had then a discussion
with the organizers, and it appeared that a unifying view on the program of
this school was to establish bridges between differential matter on one hand,
and discrete or computational geometry on the other hand. So we decided
to focus on combinatorial topology and include an introduction to Robin
Forman discrete Morse theory. In this chapter, we start with some classical
combinatorial topology, including piecewise linear manifolds. Then we define
discrete Morse functions on CW complexes and show that we get the usual
theorems of Morse theory. Everything here should sound rather familiar for
people knowing classical theory. However the relation between differentiable
objects, such that gradient vector fields, and their discrete counterpart has
still to be explored. The generic questions below could give starting points
for interesting research.

e What is a discrete counterpart of a given differentiable notion ?

e What is the interplay between the differentiable and discrete notions
for a given manifold ? In particular in which way the discrete notion
could approach the smooth one ?
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2 CHAPTER 2. COMBINATORIAL TOPOLOGY

e Is it computable ?

The subject of Computational Topologyis the interrelationship between topol-
ogy and algorithmic problems. Motivations come either from algorithmic
questions involving topological matter, or from combinatorial problems sup-
porting topological methods. Studying discrete Morse theory could be a first
step towards this new domain. We will give at the end of this exposition some
applications of classical Morse theory in low dimensional topology. Most of
them can be obtained easily via the discrete theory. Some deeper ones, for
example those using Cerf theory, are not so obvious. That would be inter-
esting to revisit them using discrete methods and hopefully to go further
towards new interesting results.

2.1 Introduction to combinatorial topology

The purpose of this section is to define basic objects in combinatorial topol-
ogy involving simplicial complexes, triangulations, piecewise linear manifolds
and CW complexes.

2.1.1 Simplicial complexes

Definition 2.1 A n-dimensional simplex is the convexr hool of n + 1 points
(the vertices) affinely independant in an real affine space.

Points in the simplex 0" = (ay, ..., ®,) are

n n
x:Z:pjaj,‘v’jijO, ijzl.
§=0 §=0

A face of 0™ is a simplex obtained with a subset of vertices. In particular,
the (n — 1)-dimensional faces (called facets) are the simplexes

ot = (ag,. .., 4. .., an) = {1 = ijozj , Vix; >0, ZZL‘j =1}.
j#4 J#
Definition 2.2 A (locally finite) simplicial complex in a real affine space is
a set F' of simplices such that

(1) all faces of simplices in F are in F,

(i1) F is locally finite i.e. each point in some simplex of F has
a neighbourhood meeting only a finite number of simplices in
F,

(iii) intersection of 2 simplices in F' is either a common face or
emptyset.
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If S is the set of vertices (0-dimensional faces), we will use the notation
K = (S, F). The polyhedron of K is the union of all its simplices; we denote
it by | K.

Definition 2.3 A triangulation of a topological space is the data given by a
simplicial complexr K, and an homeomorphism between |K| and X.

Definition 2.4 A simplicial compler K' = (S, F') is a subdivision of K =
(S, F) if and only if each simplex in F' is contained in a simplex in F, and
each simplex in I is a union of simplices in F'.

The barycentric subdivision of K = (S, F) is obtained from the set of vertices
S’ formed with all barycenters of faces in F'. Faces are obtained recursively.
For each n dimensional simplex ¢ € F', we add in F’ cones from the barycen-
ter of o to all simplices in F’ which are contained in the faces of o.

Definition 2.5 Let K = (S, F) be a simplicial compler. A map from the
polyhedron | K| to a real affine space is said to be simplicial if and only if the
restriction to each simplex is linear.

Definition 2.6 Two simplicial complezes K = (S, F) and K' = (S', F') are
isomorphic if and only if there exists a bijection between S and S’ inducing a

bijection between F' and F' (such a map induces a simplicial homeomorphism
between |K| and |K'|).

Definition 2.7 Two simplicial complexes are combinatorialy equivalent if
and only if they have isomorphic subdivisions. The triangulationst : |K| — X,
t'|K'| — X are combinatorialy equivalent if and only if there exist subdivi-
sions L and L' such that t' ' ot defines a simplicial isomorphism between L
and L'.

2.1.2 PL manifolds

Definition 2.8 A simplicial complex K = (S, F) is a piecewise linear man-
ifold if and only if each point in |K| has a neighbourhood combinatorialy
equivalent to a n dimensional simplez.

Note that the property above only depends on the combinatorial equivalence
class of K.

Definition 2.9 A PL structure on a topological space X is a combinatorial
equivalence class of triangulations by simplicial complexes which are piecewise
linear manifolds.
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A PL manifold is a topological manifold with boundary.

Definition 2.10 Let M, M’ be PL manifolds. A map f : M — M’ is PL if
and only if there exist triangulations

h:|K|— M, eth:|K'|— M

such that ' "' o f o h is a simplicial map.

Collar neighbourhood

Definition 2.11 Let i : N — M be a PL embedding between polyedra or
between PL manifolds. A collar is an embedding j : [0,1] x N — M such
that

vz € N, j(0,2) = i(x),
J([0,1[xN) is an open neigbourhood of i(N).

A local collar at = € N is a collar for the restriction of 7 to some neighbour-
hood of x. Theorem below is proved in [11, chapitre 2|. The statement can
be extended to the non compact case.

Theorem 2.12 (Collar neighbourhood) If N is compact andi: N — M
admats local collars, then there exists a collar.

Corollary 2.13 If M is a compact PL manifold, then its boundary admits
a collar.

Regular neighbourhood

Definition 2.14 Let P be a polyhedron, and () C P a sub-polyhedron.

a) We say that Q) is an elementary collapse of P if and only if the closure
o =P —Q is a simplex with exactly one facet not included in Q. b) We say
that P collapse onto () if and only is there exits a sequence of sub-polyhedra
Q=0Qy) C Q- CQ,= P such that Q;_1 is an elementary collapse of Q);,
for1 <1 <.

Definition 2.15 Let M be a PL manifold, and N C M be the image of a
PL embedding of a compact polyhedron. A reqular neighbourhood of N is a
neighbourhood V' such that,

(i) V is a compact PL submanifold,
(ii) there ezists a triangulation

t: (K", [K]) — (V,N)
and a collapse of |K'| onto |K|.
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Definition 2.16 A PL ambiant isotopy (rel. N ) is an homeomorphism H :
[0,1] x M — [0, 1] x M preserving the level and such that Vx H(0,z) = (0, x)
(Vt, Ve € N, H(t,x) = (t,z)).

The following theorem is proved in [11, Chapter 3]

Theorem 2.17 a) For any compact polyhedron N in a PL manifold M,
there exists a reqular neighbourhood.
b) Two regular neighbourhood V et V' are ambiant isotopic rel. N.

Ambiant isotopy and isotopy by moves for knots

For PL embeddings, there exists a couple of different notions of isotopy that
will not be developed here (see for example [6]). For knot theory one can
show results stating equivalence of equivalences. We give below an example
of such result.

Definition 2.18 a) A (polygonal) knot is an PL embedding of S* in R3.

b) Two knots are (PL) isotopic if and only if they correspond by an ambiant
(PL) isotopy.

c) Two knots are equivalent by moves if and only if they correspond by a
sequence of moves consisting in replacing in a knot K a segment AB by two
segments BC and C A in such a way that ABC' the triangle ABC' intersects
K along ABC'N K = AB, or the converse.

Theorem 2.19 For two PL knots, the statements below are equivalent. a)
K and K’ corresponds by a PL homeomorphism.

b) K and K' are ambiant (PL) isotopic PL.

c) K and K' are equivalent by moves.

A proof can be found in [2].

2.1.3 Triangulation of manifolds

Triangulation of C! manifolds has been established by Cairns in the years
1930. Then Whitehead has proved that a C'!' manifold has a canonical PL
structure, which is represented by a C'! triangulation.

In dimension lower than 3, any topological manifold supports a smooth
structure, and C! manifolds are diffeomorphic if and only if they are home-
omorphic (resp. PL homeomorphic).

One says that Top, PL and Diff classifications coincide.
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In dimension 4, PL and Diff classifications coincide, but there exist com-
pact topological manifolds without PL structure, and homeomorphic C* man-
ifolds which are not diffeomorphic.

A list of results and unsolved problems can be found in [1]. Moise’s
book [9] gives a detailled exposition in dimension 2 and 3. Triangulation
of smooth manifolds is exposed in [10, chapitre II|; one can find here the
following theorems.

Definition 2.20 Let M be a C" manifolds, r > 1. A triangulation f :
|K| — M is C" if and only if the restriction of f to each simplex in K is C"
and has mazimal rank.

Theorem 2.21 Let f : |K| — M, f': |K'| = M two C" triangulations C"
(r > 1) of the C" manifold M. Then K and K' have isomorphic subdivisions.

Theorem 2.22 Any C" (r > 1) manifold M support a C" triangulation C".
Moreover any C" triangulation of the boundary OM can be extended.

2.2 CW complexes

All these notions on CW complexes can be found in [7].

2.2.1 Combinatorial cell complexes

A closed Euclidean n-cell E" is a homeomorphic image of the Euclidean n-
cube I", the cartesian product of n copies of the closed unit interval I = {t e
R|0 <t < 1}. We note E™ the boundary of E™.

Definition 2.23 Let X be a set. A cell structure on X is a pair (X, ®)
where ® is a collection of maps of closed Fuclidean cells into X satisfying
the following conditions.

1. If $ € ® and ¢ has domain E™, then ¢ is injective on E" — E™.
2. The images {¢p(E™ — E™)|p € O} partition X.

3. If ¢ € ® has domain E", then ¢(E™) C | J{¢(E*~E*)|¢) € ® has domain E* k <
(n—1)}.

If ¢ € ® and ¢ has domain E", the image ¢(E") = ™ is called an closed
n-cell of (X, ®). ¢(E™) = ¢™) is called the boundary of o™, and ¢(E"—E™)
is called its interior. If n > 0, ¢(E™ — E™) is called an open n-cell and we
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note that o™,
We call ¢ a characteristic map for the n-cell o). Then ® is the set of
characteristic maps for the cells of (X, ®).
Remark. When we talk of cell, this always means open cell.

The union |J{¢)(E* — E*)|1) € ® has domain E* k < (n — 1)} = X",
which appears in condition 3. is called the (n — 1)-skeleton of the cell struc-
ture. Thus Vn < 1, 6 = ¢(E™) c X" 1.

We say that two cell structures (X, ®) and (X, ') are strictly equivalent
if there is a one-to-one correspondance between ® and &’ such that a char-
acteristic function with domain E" corresponds to a characteristic function
with domain £E", and corresponding functions differ only by a reparametriza-
tion of their domain. That is, if ¢ and ¢ are corresponding functions of ®
and &', respectively, then ¢’ = ¢ o h, where h : (E”,E") — (E",E”) is a
homeomorphism of pairs. One can check that it is an equivalence relation on
the collection of cell structures on the set X.

If (X,®) is a cell structure, let Sg consists of all pairs (¢, [¢]), where
o = ¢(E" — E™) and [¢)] is a strict equivalence class of ¢ € ®.

Definition 2.24 A cell complex on a set X or a cellular decomposition of a
set X is an equivalence class of cell structures (X, ®) under the equivalence
relation of strict equivalence. A cell complex on X will be denoted by a pair
(X, S), where S = S¢ for some representative cell structure (X, ®). The set
S is called the set of (open) cells of (X, 5).

Definition 2.25 A subcomplex (A,T) of a cell complex (X,S), which we
denote by (A, T) C (X,S), is a cell complex such that AC X etT C S.

Subsequently, we’ll need the following proposition which characterizes the
cells of a subcomplex.

Proposition 2.26 Let (A,T) C (X,S) and o be a cell of S. Then o is a
cell of T if and only if c N A # (.

Proof: If 0 € T then 0 C A and so 0 N A # ().

Conversely, suppose 0 N A # (). Choose characteristic maps ® for (X, .S) and
U for (A, T) such that ¥ C ®. If y € 0N A, then y € ¢, (E, — E,) for ¢, € P.
Since the open cells partition X and so A, in order that y € A we must have
¢ € V. Thus 0 € T. O

Definition 2.27 A cell complex (X, S) is finite or countable if S is a finite
or countable set.
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A cell is called a regular cell if it has one (and hence every equivalent)
characteristic map bijective on all E™. A cell complex is closure finite if each
n-cell meets only a finite number of open cells o?) with p < n.

A cell complex is reqular if all its cells are reqular.

A cell complex is normal if, for each closed cell &, the subset & carries the
structure of a subcomplez.

The cell complez (X, S) has dimension n if it has no cells P of dimension
p greater than n, and at least one cell of dimension n.

2.2.2 CW Complexes

A CW complex is a cell structure on a set X together with a topology given
by characteristic maps. Morse precisely we have:

Definition 2.28 A (Hausdorff) space X is a CW complex with respect to
a family of cells S provided:

(1) the pair (X,S) is a cell complex such that each cell o € S has a con-
tinuous characteristic function.

(ii) the space X has the weak topology with respect to the closed cells S.

(#i) the cell complex (X, S) is closure finite.

If (X, 9) is a cell complex such that X satisfies (i) (i) (iii) with respect
to S we say that X is a CW complex with cells S.

From the definition, we obtain a lemma which links the topology of X
with the topology of Euclidean spaces and a proposition which characterizes
continuous map from a CW complex to another topological space.

Lemma 2.29 Let X be a CW complex with cells S. Then
(i) each celld € S is a closed subset of X.

(i) for each cell o € S, the restriction of the characteristic map ¢, to
E" — E™ is a homeomorphism onto o.

Proof: The characteristic map ¢, for ¢ € S is a closed map. For if K C E,
any closed set, K is compact because F, is. Since ¢, is continuous, ¢, (K)
is compact in X (X is Hausdorff). Taking K = E, we get part (i). Since ¢,
is closed, its restriction ¢,|(E, — F,) is a closed continuous bijection onto o
hence a homeomorphism. O
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Proposition 2.30 Let (X,5) be a CW complex. If Y is a topological space
and if f: X — Y is a function, then f is continuous if and only if f|z is
continuous Vo € S.

Proof: Suppose that f : X — Y is continuous and C' C Y is closed. Then
f7HC) is closed in X and (f|s)"*(C) = f~1(C) N7 is closed in & for each
cell Vo € S. Thus f|5 is continuous Vo € S.

Conversely, suppose that f : X — Y is such that f|5 is continuous for each
cell 0 and C' C Y is a closed set. Then (f|z)~!(C) is closed in & for each o,
and therefore f~1(C) is closed in X. O

¢0.1 e0.2

Figure 2.2.1: Regular cellular decomposition of the unit ball in R3

Remark. We must be carefull with this topology. For example it is not true
in general that an open cell is open in (X, S) (consider the regular cellular
decomposition of the unit ball in R? in 7 cells (2 of dimension 0, 2 of dimension
1, 2 of dimension 2 and one of dimension 3, cf figure 0.2.1).

2.2.3 Regular and normal CW complexes

Definition 2.31 A CW complex X is regular if each closed cell is home-
omorphic to a a closed Euclidean n-cell. A CW complex is normal if each
closed cell is a subcomplex.

We point out that if (X, .5) is regular, then we can choose a cell structure
on X in which each characteristic map is a homeomorphism and for which the
cells are the same subset of X as those of the cells of S. Before proving that
a regular cell complex is normal we need a definition and some preliminary
results.
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Definition 2.32 If (X,S) is a cell complex, the carrier of A C X is the
intersection of all subcomplezes of (X,S) whose underlying set contains A.
The carrier of A will be denoted by (C(A), S|A), or just by C(A) if the cellular
decomposition is fized.

We remark that (X, .S) can be equipped with a topology where the closed
sets are the C(A),A € P(X). As the union of any subcomplex is still a
subcomplex, the union of any family of closed sets is still a closed set.

Lemma 2.33 If (X, S) is a cell complex, A C X, and C(A) the carrier of
A, then

1. C(0) = 0;

2. VAC X, ACC(A);

3. VAC X,C(C(A)) = C(A);

4. VAC X et BC X,C(AUB)=C(A)UC(B);

5. VAC X et BC X, si AC B, alors C(A) C C(B).

Proof: Since the carrier topology is a topology, we have the first four prop-
erties. The fifth follows from the first four. O

Lemma 2.34 IF (X, S) is a cell complex and A C X then
C(A) = {C@)|o € S and o1 A+ 0}.
Proof: Since the sets o partition X, we see
AcC{oloe SandonA#D}.
By lemma 0.33 we get
C(A) c | {C@)|o € S and o N A # 0}

On the other hand, if ¢ € S is such that 0 N A # 0, then o meets any
subcomplex of (X, S) which contains A. By proposition 0.26, ¢ must be
contained in such a complex, so that @ C C'(A). Thus C(7) C C(C(A)) =
C(A), and we obtain

J{C@)lo € S and o n A # 0} C C(A).
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Lemma 2.35 If (X,95) is a cell complex and o € S, then
C(@)=C(c)Uo.

Proof: We have C(6) C C(¢) by lemma 0.33, and since 0 C &, we have

ocUC(o) C C(a).

Conversely, 7 = o Ud C 0 UC(d), and 0 U C(5) is a subcomplex of (X, 5).

Thus from the definition we have C'(7) C C'(6) Uo. O
We need more results before proving that a regular CW complex is nor-

mal.

Lemma 2.36 A CW complex X is normal if and only if for each cell o of
X, C(s) Ca.

Proof: X is normal if and only if each closed cell 7 is a subcomplex, which
is equivalent to @ = C'(¢) = o U C(¢) for each cell o. O

Lemma 2.37 A CW complex X is normal if and only of for each cell o of
X, the boundary ¢ is a subcomplex of X.

Proof: IF X is normal, then ™ and X" ! are subcomplexes of X, so that
o™ =5 N X" is a subcomplex of X.

On the other hand, if for each cell o of X, ¢ is a subcomplex of X, then
gd=0cUs=0UC(6) =C(d), and 7 is a subcomplex. Thus X is normal. [J

Proposition 2.38 If A is a subcomplez of a CW regular (resp. normal) CW
complex X, then A is a reqular (resp. normal) CW complez.

The proof if immediate. U

We now cite without proving it the theorem of invariance of domain and
one of its corollary.

Theorem 2.39 (Invariance of domain) Let A be a subset of the topolog-
ical n-manifold X, let B be a subset of the topological n-manifold Y, and let
f:A— B be a homeomorphism. Then if A is open in X, then B is open in
Y.

Corollary 2.40 Ifm < n and A be a nonempty open subset of the topological
n-manifold X, then A is not homeomorphic to any open subset of a topological
m-manifold Y .

Here is the theorem:
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Theorem 2.41 If X is a reqular CW complez, then X is a normal CW
complex.

Proof: By lemma 0.37, it will suffice ti prove that for any n-cell ™ of X, & is
a subcomplex. Then we must prove that if 7(9) is a cell of X and 790Ng™ £ ()
then 7@ C ¢™. Since ¢™ c X" !, we know that 7@ N g™ £ (), then
qg <n — 1. We prove the proposition by descending induction on gq.

Let 7 be an (n — 1)-cell of X such that 7 N ¢™ # (. Then 7N ¢™ is
closed in 7. Since X is a regular CW complexe, ¢ is homeomorphic to an
(n — 1)-sphere S"!. Also 7 is homeomorphic to Euclidean space R"~!. By
invariance of domain the open subset 7N & of 5 is homeomorphic to an
open subset of 7. Thus 7 N ¢™ is both open and closed in the connected
space 7, and since 7 N 6™ # () we must have 7 C ¢™. Finally, since ¢ is
closed in X, we have 7 C .

Now let C' = [J{7|7 is an (n — 1)-cell of X and 7 C 6™} c ¢™. We
have shown that ¢ C C U X" 2. Suppose that ¢™ C C U X9, where
q¢ < (n —2), and suppose that 79 ¢ X9 — C. Since 79 is open in X¢,
7@ is open in X7 — C, which is open in X? U C, so that 79 is open in
X?UC. By hypothesis, 6 ¢ CUX?Y, so that 719 N¢™ is open in 5. But
q < (n—2), 79 is homeomorphic to R?, and ¢ is homeomorphic to S"!.
By the corollary 0.40 to invariance of domain, we must have 7(9 0 ¢ = ().
Thus ¢ c C U X9 ! and, by induction, 6™ c C U X' = C (with the
convention X! = (}) so that we have ¢™ = C. Also, if 7 is a g-cell of X
such that 7N & #£ (), then 7 C C = ¢, and ¢ is a subcomplex of X. O

2.2.4 Still some more results and definitions...

From now on, when we talk of cell we are meaning open cells. let M be a
CW complex and let Kdenote the set of open cells of M, with K, the cells of
dimension p. The notation ¢® will indicate that o is a cell of dimension p.
We define a relationship between cells as follows: we write 7 > o (or o < 7)
if 7 # 0 and 0 C 7T, where T is the closure of 7. In this case we say o is a
face of 7. We write o < 7 if either =0 or o < 7.

Suppose o?) is a face of 7?1, Let B be a closed euclidian ball of dimension
p+1et h: B — M be the characteristic map of 7. Then

Definition 2.42 Say o is a regular face of 7Pt if
1. h:h7 (o) — o is a homeomorphism,

2. h=1(0) is a closed p-ball.

otherwise we say o is an irregular face of 7.
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Remark. Let M be a regular CW complex, then all faces are regular.
Proof: Let ¢ be a face of 71 and h the characteristic map of 7. Since
h is a homeomorphism an ¢ C 7 we get h: h™'(c) — o which is a home-
omorphism for the induce topology. We also saw that ¢ C 7 and h is a
homeomorphism so

(7)) =7 — BP.

Finally o is a regular face of 7. U
We get the following property. Choose an orientation for each cell in M
and suppose o is a regular face of 7®*). Then we consider o and 7 as
elements of the cellular chain groups C,(M,Z) and C,+(M, Z) respectively.

Then
< Or,0 >= =1 (2.2.1)

where < 07,0 > is the incidence number of 7 and o (for the link between
the incidence number and cellular homology see [4, chap.2], for the formula
see Corollary V.3.6 de [7]). Thus we have the following property for CW
complex:

Theorem 2.43 Suppose 7Pt > ¢®) > P~V then one of the following
property s true.

(i) o is a regular face of T.
(i) v is a regqular face of o.
(#i) There is a p-cell & # o such that 7 > 7 > v.

Proof: Suppose neither (i) nor (ii) is true. Choose an orientation for each
cell of M. Since o is a regular face of 7, (0.2.1) holds so that

or = to + Z Ccz0
5(P) £o
o<t
where c¢; € Z. In the same way, since v is a regular face of o,
Jo = +v + Z U,
v#v, v<o
Therefore,

0=Pr=+400+ > cdo=Fv+ » 0o+ » b

T>0H#0 T>0#0 vy, v<o
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For this equation to hold, there must be some o, with 7 > ¢ # o satisfying
0o = cv + (sum de (p — 1)-cells other than v)

with ¢ # 0 (we look at the the coefficient of & corresponding to v). So o > v
et ainsi 7 > 0 > v as desired. O
We now give an essential definition.

Definition 2.44 Let M be a CW complex and 0P < 70+ two cells of M
which satisfy

(i) o is a reqular face of T
(i1) o is not a face of any other cell.

Let N =M — (c UT). We say M collapse onto N o is called a free face of
T.

More generally, we say M collapse onto N if N is obtained from M by a
finite sequence of such operations. We write M ™\, N.

Then we have the following property.

Theorem 2.45 Let M and N be two regular CW complexes. If M \, N
then N is a deformation retract of M.

Proof: We consider o and 7 as in definition 0.44. Since o is a regular face
of 7, we get h=1(c) C OBP™ and h~1(0) is homeomorphic to B?. So, h~1(o)
is a closed connected subset of 9BP™' but nonequal to 9BF™! (the cell is
regular so the characteristic map is bijective on the closure of this one).
With an appropriate homeomorphism of BP™! we can set this subset to be
I? x {0}. Then one must be convinced (we don’t explicit the homotopy) that
the frontier of I**! without an open face is a strong deformation retract of
| LA O
Ezample. Here are two illustrations of collapsings (figures 0.2.2 and 0.2.3).

Remark. The proof of theorem 0.41 show that if 7 has dimension p + 1 and

M is a regular CW complex then the p-cells are dense in 7 — 7, i.e.

Theorem 2.46 Suppose M is a reqular CW complex, and fr some p and
r > 1 we have TP+ > @1 Then there are two (p +r — 1)-cells c®7=Y
and Pt sych that 5 # o and

T>0 >, T>0 > .
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NN

Figure 2.2.2: Collapsing a 2-simplex onto a vertex

70

ST T

Figure 2.2.3: Collapsing the boundary of the cube but one face, onto a vertex

Proof: The proof is by induction on r. Suppose r = 1, that is 71 > =1,
Since M is regular, the p-cells in 7 — 7 are dense in 7 — 7 (remark 0.2.4), i.e.

U oO=T-—T.

o) <1

Thus there exists a p-cell ¢ with 7 > ¢ such that ¢ > v. Theorem 0.43
guarantees the existence of ?) # ¢ such that 7 > 7 > v.

For general r, we again have the (p + r — 1)-cells dense in 7 — 7. Thus we
can find a (p+r — 1)-cell o with 7 > ¢ > v. Continuing in this fashion, we
can find a (p + r — 2)-cell v such that 0 > v > v. Applying theorem 0.43
to the triple 7 > o > v we learn there is a (p + r — 1)-cell ¢ # o such that
T > 0 > v. Then, the cells o and ¢ satisfy the desired properties. O
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2.3 Discrete Morse theory

2.3.1 Discrete Morse function

In this section, we introduce the main definitions. Let M be a finite CW
complexe.

Definition 2.47 A discrete Morse function on M is a function f: K — R
satisfying for all o € K,

(i) If o is an irregular face of TV then f(7) > f(c). Moreover,
#{r" > ol f(r) < flo)} < 1.
(ii) Si v®~V is an irregular face of o then f(v) < f(o). Moreover,

#{P Y <olf(v) > flo)} < 1.

Definition 2.48 Let f a discrete Morse function on M. We say o € K, is
a critical point of index p if

(i) #{r"*) > 0| f(7) < f(o)} = 0.
(ii) #{v®V <o|f(v) = f(o)} =0.

Ezxample. Consider the CW complex below:

(i) (i)

Figure 2.3.1: Two discrete functions on a CW complex
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On one hand, we see that the function in figure 0.3.1 (i) is not a discrete
Morse function. More precisely the edge f~!(0) violates rule (ii) of definition
0.47, and the vertex f~'(3) violates rule (i) of definition 0.47. On the other
hand,the function of figure 0.3.1 (ii) is a discrete Morse function.

Ezample. definitions 0.47 and 0.48 imply that if M is a regular CW complexe,
then the minimum of f must occur n a vertex, which must be a critical point
of index 0.
Indeed, if p > 1, then each p-cell has at least 2 (p — 1)-faces (consequence of
theorem 0.46).

It follows from definition 0.48 that a p-cell o is not critical if and only if
either of the following conditions holds

(i) 37%*+Y > o such that f(7) < f(0).
(ii) P~V < o such that f(v) > f(o).
Lemma 2.49 Conditions (i) and (ii) cannot both be true.

Proof: Condition (ii) requires p > 1 which we now assume.

Suppose (i) is true. Then o must be a regular face of 7 (since f respect
partial order on irregular faces). From condition (i) of dATfinition 0.47, if
o # o is another p-face of 7, we must have

f(@) < f(r). (2.3.1)
Therefore f(o) < f(o0)
Now suppose condition (ii) is true. Then v must also be a regular face of o.
By theorem 0.43, there exists a p-cell 0 # o such that 7 >0 > v.
From condition (ii) of dATlfinition 0.47, f(v) cannot be > both f(o) and
f(@). Thus f(v) < f(¢). Combining this with (0.3.1) we obtain
flo) < f(v) < f(o) < f(7) < f(o)

which is a contradiction. O

2.3.2 Morse theorems for regular CW complexes

In this section, we will demonstrate Morse theorems in the case of finite
regular CW complexes. All along this section, M will be a finite regular CW
complex and f a discrete Morse function on M.

Definition 2.50 For c € R, we define

M(c) = U UT.

ceK 71<0

flo)<c
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That is M (c) is the set of all cells on which f is < ¢, as well as all of their
faces. In particular M is a subcomplex of M.
Here is a lemma which gives us a criteria to see if o such that f(o) > ¢ lies
in M(c). To see that, it suffices to find 7 with 0 < 7 and f(7) < ¢ and more
precisely the lemma tells us to consider only 7 with dim 7 = dim o + 1.

Lemma 2.51 Let o be a p-cell of M and suppose T > o. Then there exists
a(p+1)-cell T with o <7 <71 and f(7) < f(71).

Proof: We prove this by induction on the dimension of 7.
Since 7 > o, we have dim 7 > dim o. If dim 7 = p+ 1, we can consider
T=T.
Suppose
dimT=p+r, r>1

by theorem 0.46, there exists (p+ 7 — 1)-cells vy and v satisfying 7 > v, > o

and 7 > 15 > 0. Condition (ii) of definition 0.47 gives either f(v1) < f(7) or

f(ve) < f(7). By induction on one of this two cells for which the inequality

is true we obtain the result. 0
Here comes the theorems of discrete Morse theory.

Theorem 2.52 Let M be a finite reqular CW complexe and f a discrete
Morse function on M. If a < b are real numbers such that [a,b] contains no
critical values of f, then M(b) \, M(a).

Proof: First of all, we will demonstrate that we can perturb f to obtain
a 1 —1 function on K. If 7?*Y > 5®) satisfies f(7) < f(o) then we per-
turb f by replacing f(7) by f(7) —¢, or f(o) by f(o) 4 € for € > 0 small
enough, without changing which cells are critical. In the same way if o
satisfies f(7PTV) #£ f(o) # fF(v®~Y) for each 7Y > ¢ > v~ then we
may perturb f by changing f(o) by f(o) £ ¢, for ¢ < 0 small enough, with-
out changing which cells are critical. Perturbing f this way, we don’t change
neither M (a), nor M (b). Thus

f-K—=R

is1—1.

If f~([a,b]) = @ Then M(a) = M(b) and there is nothing to prove. Other-
wise, by partitioning [a, b] into smaller intervals if necessary, we may assume
there is a single noncritical cell o with

f(o) € [a,b].
By lemma 0.49, exactly one of the following holds:
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(i) 37D > o with f(7) < f(0).
(ii) P~V < o with f(v) > f(0).

In case (i), we must have f(7) < a (for 7 and o are two noncritical cells
in [a,b]). Thus 7 C M(a). Since o is a face of 7 we have ¢ C M(a) and
consequently

<
>

Again, there is nothing to prove.

Suppose (ii) is true. Lemma 0.49 tells us that Y7**) > o, f(7) > f(0).
In particular, f(7) > b (otherwise o and 7 are in [a, b] which contradicts the
hypothesis). By lemma 0.51, we have V7 > o, f(7) > b. Thus

oNM(a) = 0.

Since (ii) is true, there exists v?~!) < o with f(v) > f(¢), and in particular
f(v) > b. If 5P~V £ v is another (p — 1)-face of o, then f(¥) < f(o) (cf
definition 0.47 (ii)). Therefore

f(v) <a.

Thus v and all its faces are contained in M (a).

Let ) # o be another p-face of M with & > v. Condition (i) of definition
0.47 implies

f(@) > f(v) >b.
By lemma 0.51, if & is any cell such that ¢ > v, thus f(¢) > b. So

v M(a) = 0.
It follows that M (b) can be expressed as a disjoint union
M(b) = M(a) Uo Uv,
where v is a free face of o. Finally M (b) \, M (a). O

Theorem 2.53 Let M be a finite reqular CW complexe and f a discrete
Morse function on M. Suppose o) is a critical cell of index p with

f(o) € [a,b]
and f~'([a,b]) contains no other critical points. Then M (b) est homotopy

equivalent to
M(a)| e,
&p

where eP denotes a p-dimensional cell with boundary €P.
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Proof: As in proof of theorem 0.52 we may assume f is 1 — 1. Thus we can
find @’ and ¥ with a < a’ < b < b with

0 = f_l([alabl])'

By theorem 0.52 M (b) \, M(b') and M (a') \, M(a), so it suffices to prove
that M (V') homotopy equivalent to

M(a’)Ue”.

ep

Since o is a critical cell, if 7®*1) > & then f(7) > f(o) and so f(1) > V.
Lemma 0.51 tells us that if 7 is a cell of M such that 7 > o then f(7) > V.
Therefore

onNMa)=0.

Since o is a critical cell of M, then for any cell v?~Y < ¢ we have f(v) < f(o)
and so

flv) <d.
Consequently v C M (a’) and ¢ C M(a’). Therefore

M) = M(a') U o.

Since o is homeomorphic to e, the proof is complete. O

Let m,(f) (or simply m,, if it will not cause confusion) be the number
of critical cells of index p. The m,’s are called the Morse number of f. A
consequence of theorems 0.52 and 0.53 is

Corollary 2.54 Let M be a finite reqular CW complexe and f a discrete
Morse function on M. Then M is homotopy equivalent to a CW complex
with exactly m,(f) cells of dimension p.

2.3.3 Morse inequalities

References for this sections are [8] (p.28 to p.31) for the theorem and [3]
(chap.I) for results on homology.
We first need some definitions and preliminary results.

Definition 2.55 Let S be a function from certains pairs of spaces to the
integers. S is subadditive (respectively additive) if V X DY D Z we have
S(X,Z) < S(X,Y)+ S(Y,Z) (respectively =).
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Here are two important examples:
Ezample 1. by\(X,Y) = Ath Betti number of (X,Y) = rank over a field F of
H\(X,Y), for any pair (X,Y) such that this rank is finite.
by is subadditive by examining the following portion of the exact sequence
for the triple X DY D Z

= H\Y,Z) - H\(X,Z) - H\(X,Y) — ...

(for a proof see theorem 10.2 p.25 de [3]).
Ezample 2. If the integers (b)(X,Y")) are all zero but a finite number, then
we define the Fuler characteristic by

+o0

XX, Y) =) (1) b (X, Y).
A=0

The Euler characteristic is additive. As a matter of fact, if two at least of
following Euler characteristic are defined, then the third is, and

X(X) = x(Y) +x(X,Y).
This comes from the exactness axiom (cf Axiom 4 p.11 [3]) and the fact that

the exact sequence is finite.

Lemma 2.56 Let S be subadditive and Xo C X, C ... C X,,. Then

S(Xn, Xo) < Z S(Xi, Xio1).

i=1
If S is additive then the equality holds.

Proof: We prove this by induction on n. For n = 1, we have the equality
and if n = 2, it’s only the definition of subadditivity.

If the result is true for n — 1, then S(X,,_1, Xp) < Z:;l S(X;, X;—1). There-
fore,

S(Xn, Xo) < S(Xn-1, Xo) +5(Xp, Xno1) < ZS(XuXi—ﬂ

i=1

and the result is true for n.
We prove the result the same way for S additive. U
Let S(X,0) = S(X). Taking X, = () in lemma 0.56 we get

S(X,) < Z S(X;, Xi1) (2.3.2)

with equality if S is additive.
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Let M be a finite regular CW complex and f a discrete Morse function on
K with isolated critical points. Let a; < ... < a; be such that M% contains
exactly ¢ critical cells, and M* = M. By theorem 0.53 we have

H*<Mai’ M‘li—l) — H*<Mai—1 U e>\i’ Mai—l)
= H,.(eM,éM)
B coefficient group in dimension \; i.e. F
a { 0 otherwise

where ); is the index of the critical cell (for a proof see theorem 16.4 p.45 [3]
and excision axiom for a homology).

Applying (0.3.2) to ) = M C ... M* = M with S = by we have
k
bA(M) <3 ba (M, M%) = my;
i—1

where m,, is the Morse number of index A (as a matter of fact dimg Hy, (e, é*) =

1).

Applying this formula to the case S = x we obtain

k
X(M) = ZX(MaiaMai_l) =mo —my + Mg —...%EMgim m

i=1
Thus we have proven:
Theorem 2.57 (Weak Morse Inequalities) Let M be a finite reqular CW

complex and f a discrete Morse function on M. If m) denotes the Morse
number of index A\ of f and by the \th Betti number, then

bA(M) < my (2.3.3)
f(—l)AbA(M) = f(—l)AmA (2.3.4)

Slightly sharper inequalities can be proven by the following argument.
Lemma 2.58 The function S\ is subadditive where

S\X,Y) = ba(X,Y) — by (X, Y) 4 by_o(X, V) — ... £ by(X,Y)
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Proof: Given an exact sequence of vector space

A B o D0

Then the rank of A plus the rank of 7 is equal to the rank of A. Therefore,

rank(h) = rank(A) — rank(i)
= rank(A) — rank(B) + rank(j)
= rank(A) — rank(B) + rank(C) — rank(k)

= Tcmk:(A) —rank(B) + rank(C) — ... £ rank(D).
Hence the last expression is > 0. Now consider the homology exact sequence
of a triple X DY D Z. Then with
O (X,Y) -5 Hy(Y, 2)
we obtain
rank(0) =b\(Y,Z) —bx(X, Z) + bu(X,)Y) — by (Y, Z)+ ... > 0.

Collecting terms, Sy(Y, Z) — SA(X, Z) + S\(X,Y) > 0, which complete the
proof. O
Applying this subadditive function to the spaces

0cM™cC...Cc M%*
we obtain:

Theorem 2.59 (Strong Morse Inequalities) Let M be a finite regular
CW complex and f a discrete Morse function on M. If my denotes the
Morse number of index X of f and by the \th Betti number, then

VA Z O, b)\<M> - b)\,1<M) + :l:bo(M) S my — Mx_1+ :l:mo
(2.3.5)
Remark. These inequalities are sharper than the previous ones.

In fact, adding (0.3.5) for A and A — 1 we obtain (0.3.3).
Comparing (0.3.5) for A and A — 1 where A > dim(M) we obtain (0.3.4).

2.3.4 Examples of discrete Morse functions

Every CW complex M has a discrete Morse function. For example, define a
Morse function f by setting, for each o € K,

f(o) = dim(o).
We see that every cell is critical. Corollary 0.54 in the case of regular CW

complexes tells us that a CW complex with m,, faces of dimension p is ho-
motopy equivalent to a CW complex with m,, cells of dimension p.
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We now examine ways in which a Morse function on one CW complex may
induce a Morse function on another CW complex

Lemma 2.60 Let M be a CW complex and N C M be a subcomplex. Then
any discrete Morse function on M restricts to a discrete Morse function on
N. If o C N is a critical cell for f (the original function), then it is critical
for the restriction.

Proof: This follows directly from definitions 0.47 and 0.48. U
Here is a lemma which gives us a converse of the previous lemma.

Lemma 2.61 Let M be a (finite) CW complex and N C M be a subcomplex.
Then any discrete Morse function on N can be extended to a discrete Morse
function on M i.e. if f is a discrete Morse function on N, then there is a
discrete Morse function g on M such that

Vo C N, g(o) = f(o).
Proof: Let ¢ = maxz,cn f(0). Define g on M by setting,

f(o) sioc CN
g(g):{ c+dim(o) sic g N

One easily check that g is a discrete Morse function on M that extends f. [J

The Morse function constructed in the above proof may be very insuffi-
cient. In particular, every cell of M — N is a critical cell. There may exist
extensions to M with many fewer critical cells. In the following lemma, we
will see it is possible when M collapses onto V.

Lemma 2.62 Let M be a (finite) CW complex and N C M be a subcomplex
such that M \, N. Let f be a discrete Morse function on N and ¢ =
maz,cn f(o). Then f can be extended to a Morse function on M with

N = M(c)
and such there are no critical cells in M — N.

Proof: The proof is by induction on the number of elementary collapses and
so it suffices to prove this when M collapses onto N by a single elementary
collapse. Supposes 7 is a cell of M with a free face ¢ < 7 such that M is a
disjoint union

M=NUocUT.
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Define a Morse function g on M by

gw) = [fv), v#o,rT
g(r) = c+1
glo) = c+2

Then g satisfies the required properties. l

Corollary 2.63 Let A" be a n-simplex with its standard triangulation, and
A" its boundary. Then

(i) A™ has a Morse function with exactly 1 critical point.

(ii) A" has a Morse function with ezactly 2 critical points.

Proof: (i) follows from lemma 0.62 and the fact that A™ collapses onto one
of its vertex.

(ii) follows from lemmas 0.61 and 0.62, and also the fact that for any (n —1)-
cell o of A", A" — & collapses onto one of its vertex. O

2.3.5 The discrete gradient vector field and the associ-
ated flow

We will define in a natural way the notion of discrete gradient vector fields
thanks to the discrete Morse function. To do this, we will draw one’s inspi-
ration from the definition of gradient vector field on smooth manifold.

Let M be a general CW complex (not necessary regular) and f be a discrete
Morse function on K the open cells of M.

We try to define an object V; : K — K which is a discrete analog of
—V f the gradient vector field, and also ®; the associated flow. For now, we
assume f a discrete Morse function has been fixed, and we write V and &
(we forget the suffix f).

To give a natural definition of the discrete vector field, we first consider
the vertices of M. Let v € Kq. If v is a critical cell, we wish its value to be
zero as in smooth Morse theory. So we set

V(v) =0.

If v is not a critical cell, then there is a unique edge e > v with f(e) <
f(v). The edge e specifies the unique direction in which f is not increasing
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romasns ol

v e

Figure 2.3.2: Direction of the gradient vector field

(cf Fig. 0.3.2). SO —V f(v) should be e. We must now precise this. We
wish to think of V' (v) as a discrete tangent vector field pointing away from
v. That is V(v) is e with a chosen orientation.

Thus we introduce the chain complex of M. Fix an orientation for each
cell 0 € K. Let C;(M,Z) be the free abelian group generated over Z by these
oriented cells of dimension ¢ of M. We identify —o with o given with the
opposite orientation. Let O denote the usual boundary operator.

9 Cy(m,Z) — Cp_y(M,Z).

Then
Jo = Z (o, V),

y(P*l) <o

where the €’s are integers called the incidence numbers.
It is convenient to introduce an inner product <,> on C, by declaring the
cells of M to be an orthonormal basis. Thus we obtain

do = Z < do,v > v.

1/(17*1) <o

Thanks to this, we complete our definition of the discrete gradient vector
field on the vertices. If v € Kj is not a critical cell, and e € K; verifies
e>w, f(e) < f(v), we set V(v) = te, where the sign is determined so that

<I(V(v)),v >= —1.

now we define the (discrete time) flow ® also in a natural way. If v is a
critical cell, then V' (v) = 0 and so v is fixed under the gradient flow, i.e.

d(v) =v.
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If v is not critical, and V(v) = +e, then v should flow to the "other end" of
e. That is,

O(v) =v+9(V(v)).
Note that this formula holds for all vertices, wether critical or not. Moreover,

if the cell is not critical, then it has actually moved since < ®(v),v >= 0.

We extend V' and @ linearly to maps on chains
V. CQ(M, Z) I Cl(M, Z)

D : CQ(M, Z) E— Co(M, Z)

We now extend V' to higher dimension cells.

Definition 2.64 Let o be a p-cell de M (with a fized orientation). If there
is TP > o with f(7) < f(0), we set

V(io)=—<0r,0>T.

(note that o must be a reqular face of T (for f respects the partial order on
irreqular faces of T) and so < Ot,0 >= +1).
If there is no such T, then we set

V(o) =0.
For each p, we extend V linearly to a map
V: Cp(M,Z) — p+1<M7Z>

Remark. Note that V(o) = 0 without o fixed under the flow.

In figure 0.3.3 we have V(e;) = 0. Nevertheless e; must not be fixed under
the flow ®. The boundary of e; (i.e. its two vertices) "move downwards".
This illustrates that there are a tangent and a transversal component of
the gradient —V f(v). V(o) is the transversal component and V' (0Jo) is the
tangent one (here we catch the movement of the vertices).

Definition 2.65 For any oriented face o we define the (discrete time) gra-
dient flow ® by
Qo) =0+ V(o) + V(00)

or, more succinctly,
o =1+0V +Vo.



28 CHAPTER 2. COMBINATORIAL TOPOLOGY

Figure 2.3.3: Cell for which the gradient is null without being fixed under
the flow

Figure 2.3.4: Gradient vector field of the upper edge

DB AAAA

Figure 2.3.5: Expression of the flow ®(e)

Example Figures 0.3.4 and 0.3.5 illustrate the gradient vector field and the
flow for a cell e oriented from the left to the right.
The main properties of V' and ® are contained in the following theorems.

Theorem 2.66 (1) VoV =0.
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(2) If o is an oriented p-cell of M, then
#{vP V|V (v) =40} < 1.
(8) If o is an oriented p-cell of M, then
o is critical < [0 ¢ Im(V) and V(o) = 0].

Proof: (1) If V(v*~Y) = £5®) then v < ¢ and f(v) > f(0). By lemma
0.49, there is no 7 > ¢ with f(7) < f(¢). Thus V(o) = 0.

(2) If V(v®Y) = +£0® then v < o and f(v) > f(o). By condition (ii) of
definition 0.47, v is unique.

(3) From definition 0.48, ¢ is critical if and only if

(i) BvY <o, f(v) > f(o) and
(i) 370 > 0, £(r) < f(0).
These conditions are equivalent to
(i) A vV V(v) = £0 and
(ii) A7) V(o) = £7.
ie.
(i) o ¢ Im(V) and
(ii) V(o) =0.

Theorem 2.67 (1) 0 = 0.
Let o1, ...,0, denote the p-cells of M with a chosen orientation. Write

O(0;) = Zaijaj.
j
(2) Vi, a; =0 or 1, and a; = 1 if and only if o; is a critical cell.
(3) If i # j, then a;; € Z. Ifi # j and a;; # 0 then f(o;) < f(0y).
Proof: (1) Since & =1+ 0V + V0O, we have

PO=(1+0V+VII=0+0VI+Vd =0+0Va

00 =0(1+VA+0V)=0+0VI+d*V =09+ 9Vo.

We prove (2) and (3) simultaneously. first, since 9 and V' both map integer
chains to integer chains, each a;; € Z.
By theorem 0.66, each cell o” satisfies exactly one of the following properties:
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(i) o is a critical cell
(i) +o € Im(V)
(iii) V(o) #£ 0.

We examine each case independently to prove the theorem.
(i) If o is critical then V(o) =0, so
o) =0+V(do)=0c+ Y <dov>V(v)
v <o
Since ¢ is critical, V v~V < o, f(v) < f(o). For each such v, either
V(v) =0or V(v) =" with
f(@) < f(v) < flo).
Thus ®(0) = 0 + ) azo where az # 0= f(c) < f(0).
(ii) Suppose £o € Im(V) C Ker(V) (and so V(o) = 0). Then
o)=0c+V(@o)=c+ Y <dov>V(v)
(-1 <o

By theorem 0.66 (2), there is exactly one (p — 1)-cell v < o with V(v) = +o
(for 0 € Im(V)) and < do,v > V(v) = —o (cf definition 0.64). Moreover,
if v # v < o then either V(v) = 0 or V(v) = g with f(o) < f(v) < f(0).

Thus
O(o) = az0,

(®)

oAz az # 0= () < f(0).
(iii) Suppose V(o) = — < 91,0 > 7 # 0. Then

O(o) =0+ 0(V (o)) + V(do).

Since V(o) # 0, 0 ¢ Im(V). Thus ¥V v® 1 < o, either V(v) = 0 or
V(v) = 40 avec f(o) < f(v) < f(o). Moreover

oV(o)=—<0r,0>0r=—<0r,0 >20+Zb55:—0+2b55

oAz b; #0= f(G) < f(7) < f(o).

This complete the proof. 0J
One can say (by theorem 0.67) that ® decreases f, and o C ®(0) if and

only if o is critical. For example consider Fig. 0.3.3 then

®(e1) 2 e
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More precisely,
<I>(61) =e1 +e2+ €3

P(ey) = P(e3) = 0.
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2.4 The Morse complex and invariant chains

Let M be a finite CW complex. Let C7(M,Z) denote the ®-invariant p-
chains of M, that is

Cy(M,Z) = {c € Cy,(M,Z)|®(c) = c}.

From theorem 0.67, the boundary operator 0 maps C;,I’ to C’;,I’,l. Thus we
have a differential complex

c*:0— M, z) -5 c® (M7) -2 -5 CR(M,Z) — 0. (2.4.1)

The complex C? is called the Morse complex.

The goal of this section is to prove that the homology of C? is precisely the
cell homology of M. The first step is to investigate the stabilization map
o> . C, — C, given by

®* = lim &V
N—oo

More precisely, we will prove that there is N € N large enough such that
P> = oV,

Lemma 2.68 Let c € C(M,Z) and write ¢ = > ok, Go0- Let
o = any mazimizer of {f(o)|a, # 0}.

Then o* s a critical cell of f.

Proof: Since ¢ is ®-invariant, c = ®(c) = > g a;®(0). Therefore,

Upr =< ¢, 0" >= Z ay < ®(0),0" > .
ocK,

from theorem 0.67 (3), if 0 # o* et f(0) < f(c*) then
< P(0),0" >=0.

Thus 0 # apr = Ao+ < ®(0*),0* >. So < ®(0*),0* ># 0. Theorem 0.67 (2)
implies that ¢* is a critical cell. 0

Theorem 2.69 IN € N large enough ®V = VN1 = = >,
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Proof: The proof is by induction on r = #{c € K|f(c) < f(o)}.

Suppose r = 0, then by theorem 0.67, either ®(0) = o or (o) = 0. In either
case (o) = O>(0).

Suppose the property holds for » — 1. Then for » we have two cases:

(i) o is not critical. Then by theorem 0.67

(o) = > az0.

f(@)<f(o)
By induction, 3N5 € N such that ®"7(7) is ®-invariant whenever f(5) <

f(o). Therefore ®Ma={Ns} is d-invariant (Max{N5} exists for M is finite).
(ii) o is critical. Let ¢ = V(0o). Then

(o) =0+c+P(c)+...+ D" (e).

It follows that ®™ (o) is ®-invariant if and only if AN € N, &V(¢c) = 0. A
seen in proof of theorem 0.67, ¢ is the sum of p-cells ¢ such that (o) < f(o).

By induction, IN € N, & (c) is d-invariant.
We now observe that ¢ € Im(V) and Im(V') is ®-invariant, since

OV = (1+ 9V + VIV = V(1L +V)

(cf theorem 0.66 (1)). Thus N Im(V). By theorem 0.66 (3), the image
of V is orthogonal to the critical faces and therefore ®"(c) is a p-chain ®-

invariant which is orthogonal to the critical faces. By lemma 0.68, " (c) = 0.
O

Ezample. The figure 0.4.1 illustrates that NV is finite for large enough (here
N=2 for the cell e).

Figure 2.4.1: For the cell e, N =2

By theorem (.69, there is an N € N large enough so that every chain c,
dN(c) = oV (c) = V() = ...
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Let ®*>°(c¢) denote this ®-invariant chain. Then for each p € N, we have maps
D> : Cp(M,Z) — Cy(M,Z)

i CY(M,Z) — Cp(M,Z)

where i is the natural inclusion. Note that ®> o is the identity on C} (M, Z).
We have now the following theorem:

Theorem 2.70 Let C® denote the Morse complex (0.4.1). Then Vp € N
H,(CY) = Hy(M, Z).

Proof: Consider the following commutative diagram:

0 — Mz % ooz L L cuMz) — 0
Lo T’ Lo T’ Lo T’
0 — c*Mmz) % etz L . L cd(Mz) — 0

Let
OF : H.(M,Z) — H.(C?)

iy H (CF) — H.(M,Z)
denote the induced maps on homology. Our goal is to show that ¢, and ®°
are isomorphisms. In fact, we will that they are inverses of each other. Since
> 07 =1 we have
1=(d%0i), =D o,
To see that 7, o ®° = 1, it is sufficient to find an operator
L:C.(MZ)— C.1(M,Z)

such that
1—70®>* =0L 4+ LO.

As a matter of fact, closed forms would be mapped to exact forms by 1—io®>°,
and this map would be the zero map on homology. Since i is the identity
map on chais and &> = ®* for some N large enough,

1—i0®® = 1-0VN=(1-P)(1+d+d*+...+ V1)
= (=V-VI(1+®+d*+...+ N1
= -VA+2+®+.. . + OV ]+ [-V(A+ P+ D2 +...+ &V 1)

(we used ®0 = 0P).
L=[-V(1+®+®*+...+ V1) is as desired. O
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2.4.1 The Morse complex and critical points

Let M be a finite CW complex. The goal of this section is to prove that
the Morse complex can be expressed thanks to critical cells. We first prove
that the space of ®-invariant chains is canonically isomorphic to the span of
the critical cells. Then, we will find an explicit expression of the boundary
operator of the Morse complex thanks to the critical cells and the notion of
gradient path.

For each p € N, let M,, denote the span of the critical p-cells, i.e.

M, ={ Z a,0la, € Z and a, # 0 = o is critical}.

ocK,
By restricting the map &> defined in the previous section, we get a map
** : M, — CY (M, Z). (2.4.2)

Fix an orientation for each p-cell o and identify —o with o given the opposite
orientation.

Lemma 2.71 Let o be a critical p-cell. If ¢ # o is critical, then
< ®*(0),0 >=0.
Proof: As seen in the proof of lemma 0.68
(o) =0 +c,
where ¢ € Im(V) € M. O
Theorem 2.72 The map 0.4.2 is an isomorphism.

Proof: (onto) Suppose ¢ € C’;I’(M, 7), and let

c= Z <c,0>0€M,.

o critical

We shall see that ®>°(¢) = ¢. From lemma 0.71, for any critical cell o
< O%(¢), 0 >=<c,0 > .
So ®>°(¢) — c is a P-invariant chain such that for any critical cell o

< ®%(¢) —ec,0 >=0.
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By lemma 0.68 we have ®>°(¢) — ¢ = 0.
(1-1) Suppose ¢ € M, satisfies @>°(¢) = 0. Then, for any critical cell o,

< ®*(¢),0 >= 0.

We use again the equality ®>(¢) = ¢ + ¢y, where ¢y € Im(V) € M;.
Therefore, for any critical cell o,

<c,0>=0,

which implies ¢ = 0. O
Theorem 0.72 implies that the Morse complex is isomorphic to

M:0— My LMy L DMy 0 (2.4.3)

Consider the following commutative diagram

M, L M,
o | o |
0

1] (1]
cr 2oor,

We obtain, for ¢ € M, (9>°)~ 199> (c)) = dc. Thanks to the beginning of
the proof of theorem 0.72, we have

dc = > < 09>(c),5 > 5.

ceKy_1 and critical
So, if c € M,, o is a critical (p — 1)-face
< de,0 >=< 00®¢,0 >=< d¥0c,0 > . (2.4.4)

Since H,(M) = H,(M,Z) , we learn from the Universal Coefficient Theorem
that for any field F,

HM®F)2H(M)F =~ H,(M,Z)®F = H,(M,F).

Thus M ® F is a differential complex of vector spaces over F with the
same homology as M. Moreover, dimpM, @ F = m,(f), it follows that

Corollary 2.73 If M is a finite CW complex, [ a discrete a discrete Morse
Function on M and F is any coefficient field, then the Strong Morse Inequal-
ities and hence the Weak Morse Inequalities hold.
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Now we look for a suitable expression for 0. We will show that for 7+
and o® two critical cells, < 07,0 > can be expressed in term of gradient
paths from O7 to o.

Definition 2.74 A gradient path of dimension p is a sequence v of p-cells
of M
Y =00,01,-..,0¢

such that for every i =0,...,r —1,
(’L) Zf V(O’Z) = 0 then Oi+1 = O0j.
(ZZ) ’Lf V(O’Z> §£ 0 then Oit1 < V(O'Z> and Oit+1 7£ ;.

We say v is a gradient path from oy to o,. The length of y, denoted ||
1S equal to r.

Thus we have the two following properties

Lemma 2.75 (i) If v = 0¢,01,...,0, is a gradient path then for each
1= O, NN 1 either 0; = 011 OT f(O'Z> > f(o-iJrl).

(1) If v1 = 00,01,...,0, and Yo = 0p41,01,...,0.4s are two sequences of
p-cells, then
00,071, 70'7-+17 . 7UT+S

18 a gradient path if and only if v, and 2 are gradient paths.

We now introduce the notion of multiplicity of a gradient path to "mea-
sure" the way orientation is carried along a gradient path.

Supposeo # o are two p-cells of M and 7 is a (p + 1)-cell with 0 < 7 and
o < 7 and both are regular faces of 7. Then an orientation on ¢ induces
an orientation on ¢ in the following way. AN orientation on ¢ induces an
orientation on 7 so that < 07,0 >= —1. Given the orientation on 7, we
choose the orientation on ¢ so that < dr,0 >= 1. Equivalently, fixing an
orientation on ¢ and 7, an orientation is induced on ¢ so that

< 01,0 >< 01,0 >= —1.

One can say that we induce an orientation ono by "sliding" o across 7 to o.
Figure 0.4.2 presents this process, with a fixed orientation of o.

Moreover, if 0 = &, then the orientation induced on ¢ must be the same
orientation on o. Thus, if v = 0g, 04, ..., 0, is a gradient path, oy induces an
orientation by degrees on ¢; an in particular on o,. Since we have fixed an
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Qt

Figure 2.4.2: Induced orientation

orientation for each cell of M, we set m(vy) by m(y) = 1 if the induced orien-
tation by oy on o, is the orientation of this one, and m(y) = —1 otherwise.
Equivalently, we set

m(w) = ]j < 8‘/(0’2‘),0'“_1 > . (245)

i=0
V(04)#0

We can use this formula to define the multiplicity of any gradient path.

Definition 2.76 Let v = o0y,04,...,0, be a gradient path of dimension p.
We define the multiplicity of v, m(vy) by the formula (0.4.5).

We note that this notion is compatible with the composition of gradient
paths. More precisely, if 79 = 09,01,...,0, and 74 = 0,41,...,0,1s are two
gradient paths of same dimension, then

m(y1)m(y0) = m(y1070) (2.4.6)

where v1 0 =00, -, Ory, Opity -y Opis
For p-cells o and &, let I',(0,7) the set of all gradient paths from o to & of
length r.

We now show that if 7®*Y and ¢® are two critical cells, then

< 1,0 >= Z < 0r,0 > Z m(y)

) <1 ~vel'n (o,0)

for any N large enough.
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Definition 2.77 Define a reduced flow @ : C,(M,Z) — C,(M,Z) by

®=1+0V

Though ® differs from ®, we will prove that we can replace ¢ by ® in
equation (0.4.4). The gain is that ® is easier than ® to compute.

Lemma 2.78 For any critical cells 7®*Y and o®)
< 57,0— >=< 5130067,0 > .
Proof: It is sufficient to prove that for every » > 0
< 5137"87,0 >=<®"0r,0 > .
This follows from the observation that for every chain ¢ and every r > 0
" (¢) — D" (c) € Im(V) C M.

We prove this by induction on r.
If » = 0 then there is nothing to prove.
Suppose the property is true for » — 1. For r,

B7(c) = B(D"(c) = B(P"(c) + V()
for some chain ¢ (by the inductive hypothesis).

O(c) = (+VO)E () + V(@)

" () + D(V(©)) + Vad 1(c) + VAV (¢)

= () + V(E+ 0D (c) + V(@)

where the last equality follows from ®V =V + 9V2 = V. O
Lemma 2.79 V(0\”, o) € (K,)?,

< Boy, 09 >= Z m(7y). (2.4.7)

v€l1(0o1,02)

Proof: We distinguish elementary cases to prove this.
First, suppose V(01) = 0. Then

1, st 01 = 02

<‘£O’ 09 >=< 01,09 >= .
1,02 1,02 {0’ 5Z0'1§£0'2
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On the other hand, the only gradient path of length 1 beginning at o is the
trivial one v = o1, 07 if 09 = 07 and so m(y) = 1. If oy # 09, ['1(01,02) =0

Y. my)=0.

v€T'1(01,02)

We have the equality between the two expressions.
Now, suppose V' (o1) # 0. If 01 = 05, we calculate the left hand side of (0.4.7)
to find

< 60’1,0‘1 >=< 01,01 >+ < 8V(01),01 >=1—-1=0.

We calculate the right hand side of (0.4.7). Since V(oy) # 0, there is no
gradient path of length 1 from o, to oy so I'y(01,01) = () and

>, my)=0.

~v€l1(01,01)
Now, suppose o1 # o9 then
< 60’1,0‘2 >=< 01,09 >+ < 8‘/(0'1),0'2 >=< 8‘/(0'1),0'2 > .

If o, is not a face of V(0y), then < (1301, 0y >= 0. In this case there are no
gradient paths of length 1 from o7 to o5 so that

. m(y)=0.

v€T'1(01,02)

If o9 is a face of V' (07), then there exactly one gradient path of length from
01 to o9: v = 01,09. S0

m(’y) =< 8V(01),02 >

as desired. 0

Theorem 2.80 V(r#+Y o®)) € (K, .1 x K,) which are critical cells

< 07,0 >= Z < 0r,0 > Z m(7)

) <1 ~vel'n (o,0)

for N large enough.
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Proof: By lemma 0.78, for V large enough
< 57,0 >=< &)Nﬁr,a > .

Since O = < 0r,0 > g, We find

) <1
< 57',0 >= Z < 0r,0 >< EI;N&,U >
o) <1
for N large enough. We prove by induction on r > 1
< 05,0 >= Z m(7y).
V€L (T,0)

The case r =1 is lemma 0.79.
Suppose the property is true for r — 1.

<P7,0> = <P(P5),0>
= Z < ®"1G 0’ >< Do’ 0 > (" '5 = Z <®"1G, 0 > o)
o!(P) o' ()

= Z Z m(y) < o', > (by induction hypothesis)

o' ~y€ely_1(0,0")

— Z Z m(7y) Z m(y') (by lemma 0.78)

o' ~el'y_1(c,0") ~v' el (o’,0)
= Z m(7) (by lemma 0.75 (ii) and (0.4.6))
~el,(7,0)
So the property is true for r and the proof is complete. O

2.5 Applications and perspectives

2.5.1 h-cobordism

Triade cellulaire, rATarrangement d’anses.

Theorem 2.81 Tout h-cobordisme PL, simplement connexe, entre variAlLAls
de dimension supAlrieure ou Algales Ad 5 est Algquivalent Ad un produit.

2.5.2 Morse theory and low dimensional topology
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