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Introduction

In [BIIMV1] we defined for each integer p > 1 an invariant 6, of
closed oriented three-manifolds, If M? is presented by surgery on a
banded link 1 in 83, then 8,(M ) is given by evaluating at a primitive
2p-th root of unity the one variable Kauffman bracket of a certain
cabling of /. 'T'his method of constructing invariants had previously
been used by Lickorish [Li2, Li3, Li4] who had considered the case
of evaluations at 4r-th roots of unity ( » > 3). Our invariant 6,
is indeed equal to Lickorish’s invariant except for a slightly different
normalisation. In this note we will discuss the invariant 8, for odd
r. The main result is a formula relating it to 6,, #,, and 8,,.

In section 1, we generalise 8, to an invariant of pairs (M, K)
where K is a banded link in M (This generalisation was noticed
already by Lickorish for his invariant.) The invariant 8,(M, K) lies
in Z[%, A)/#2p(A) where ¢;,(A) is the 2p-th cyclotomic polynomial.
In section 2, we show:

Theorem 2.1. If r is odd, then —
£2.2r(02(Ma K)) jr,2r(0r(Ma K)) = ol(Ma K) 821'(Ma K)

Here i3 5, and j, 2, are ring homomorphisms defined by #; 5,.(A4) =
A™ and j,,.(A) = AT”+1. (Notice that 6;(M,K) € Z. In fact,
6;(M, K) = (-2)"X where § K denotes the number of components of
K.)
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We will give a self-contained proof of theorem 2.1, using only thie
rexulta of [BIIMV1] and a simple parity argument. However, this
result and ita proof were inspired by (KM2]. Indeed, 8;,(M) when
evaluated at A = —e3"/4" i, up to normalisation, the same as the
invariant 7,.(M) constructed by Reshetikhin-Turaev [RT] and Kirby-
Melvin [KM1,KM2] from the representation theory of the quantum
group U, 50U(2) at ¢ = e?*i/r, (This corresponds to the fact that
the Jones polynomial Vi (t) of a link L in S3 and the one variable
Kauffman bracket < D >€ Z[A,A"!] of a diagram D of L are re-
lated through t = A=* (and multiplication by a constant depending
on the writhe of D.)) We will see that in the same way 6,(M), for r
odd, is related to the refined invariant /(M) of [KM2], and theorem
2.1, when evaluated at the chosen root of unity, becomes a formula
of [KM2] involving their invariants r3(M), 7.(M), and (M) (pre-
cise formulas will be given in prop. 2.2.) Notice however that the
systematic approach in [BUMV1] gave all invariants 8, (p > 1) at
once, and on an equal footing.

Of course, all these invariants are special cases of the so-called
Jones-Witten invariants, whose existence was postulated by Witten
[Wi] using Quantum Field Theory, and first proven by Reshetikhin
and Turaev [RT], and Kirby and Melvin for the U,SU(2)-case. The
invariant @, for odd r seems to be related to the group SO(3) in the
same way as the invariant 6,, is to SU(2) (see remark 2.11.)

In his talk at this conference, the third author gave a survey of
the construction of the invariants 6, [BHMV1] and showed how the
invariants lead to an elementary construction of a " Topological Quan-
‘tum Field Theory” [BHMV?2]. He also gave a short proof that the
“invariant 6, can be obtained as a "thermodynamic limit” in the sense
of Wenzl [ We2]. This proof is the content of section 3.

1. The invariant 6,(M, K)

In this section, we extend the invariant 8, of [BHMV1] to the case

- of banded links in oriented closed 3-manifolds. We first recall some

‘results of [BHMV1].

Let M kae a compact, oriented 3-manifold, possibly with bound-
ary. A banded link in M is an oriented submanifold homeomorphic
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to a disjoint union of annuli $? x I in M. Let Z[A, A~!] denote
the ring of Laurent polynomials in the indeterminate A. The Jones-
Kauffman module K(M) is the Z[A, A~!}-module generated by the
set of isotopy classes of banded links in M, quotiented by the follow-

ing Kauffman relations:

X o ) =

LUO = 6L

Here § = —A%2 — A2,

Given a banded link L C $3, its "value” in K(S3) is called the
Kauffman bracket of L, and denoted < L >. It is a well known
fact [Ka] that K(S®) = Z[A,A~?]. We fix an isomorphism by the
convention that the bracket of the empty link is equal to 1.

Notice that changing the writhe of a component of L by +1 mul-
tiplies < L > by —A3. (Recall that for a banded knot K C §3,
its writhe w(K) is defined as the linking number of its two bound-
ary components. Here one of the two components can be oriented
arbitrarily, but the other must be oriented in the same way.)

Let B denote the Jones-Kauffman module of the standard solid
torus S1 x I x I. Gluing two solid tori together so as to get a third
endowes 3 with a multiplication. Let z € B be represented by a stan-
dard band, e. g. by S! x J X pt, where J C 1 is a proper subinterval.
Then 2™ means n parallel standard bands, and it is well known [T1]
that B is isomorphic to the polynomial algebra Z[A, A~1][z]. It has a
basis of monic polynomials e; of degree 7 which satisfy g = 1,e; = 2
and ze; = €j4+1 + €1 (they are related to the Jones idempotents [J]
in the Temperley-Lieb algebra , see also [Wel] [Li4].) Let t be the
self-map of B induced by one positive twist. Then

t(ei) = pie;

where p; = (—1)‘Ai2+2i. Forp > 1, define Q,by 2, =1,Q; =1+ 3%,
and Q, = 3770 < e; > e; for p > 3, where n = [(p-1)/2].



42

mbedding §1 x I x I — 52 yields a linear form
Z[A, A-1]. Notice that the Jones-Kauffman
module of a disjoint union of n solid tori is the n-fold tensor product
B, Given a n-component banded link in $°, the meta-bracket
< y.vvy >, isdefined to be the n-linear form on B given by replacing
the components of L by elements of B, and taking the bracket of the
resulting linear combination of banded links in $2. (This corresponds
to the map ®p in [Li4).) The metabracket of a 1-component unknot
with writhe zero yields a linear form on B which will be denoted

< >

If L ¢ $3is a banded link, we obtain a 4-manifold Wy, by attaching
to the four-ball DY a 2-handle along each component of L. Let
My = 8W_; one says it is the 3-manifold obtained from S2 by surgery
on L. It is well known [Lil] that up to oriented diffeomorphism, any
oriented compact closed 3-manifold is obtained in this way.

The standard e
< > B = K(5°) =

Theorem 1.1. [BHMV1] ([Li3],[Li4] in the case p = 0 mod 2)
The expression

(L) = - < Qs>
P < (Q,) >b+ (L)< t-1(Qy) >b-(L)

defines an element of Z[-};, A]/#2p(A) which is an invariant , denoted
by 8,(ML), of the oriented 3-manifold My obtained by surgery on L.

' (Here by (L) and b_(L) are the number of positive and negative
eigenvalues of the linking matrix of L, and ¢4 denotes the d-th cylo-
tomic polynomial in the indeterminate A.)

‘We now give a generalisation of this theorem to include the case of
banded links. (This generalisation was noticed already by Lickorish
[Li3, Li4] for his invariant.) Notice that if K C My is a banded link,
- then by gene:a,l position we may isotope it to lie in §3 — L.

Theorem 1.2. The expression

< Qp, ceey Qp, ZyeneyZ >LUK
< 1(Q,) b+ L)< t-1(Q,) >b-(D)

6,(L,K)=
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defines an element of Z| *};, A)/dap(A) which s an invariant | denoted
by 6,(M, K'), of the pair (M, K).

Notice that < Q,,...,0p, 2,...,2 >, ux Mimply means the bracket
of the linear combination of banded links obtained from L U K by
cabling the components of L by (1, leaving the components of A
unchanged .

This theorem is a straightforward generalisation of theorem 1.1
and we will only sketch the proof. It uses the following lemma which
was shown in [BHM V1],

Lemma 1.3. Let <, > denote the symmetric bilinear form on
B given by the meta-bracket of the banded Hopf link where each
component has writhe zero. Let p > 1. Then for ¢ = +1, and all
b € B, one has

< (), 15(0) >=< t(Q,) >< b >

in Z[A]/$2,(A).

: "Pr'oof of theorem 1.2. We first quickly review the proof of
theorem 1.1. Kirby’s calculus [K] as refined by Fenn-Rourke [FR]
implies that an invariant of (isotopy classes of ) banded links L in

g depends only on the 3-manifold M, if and only if it is invariant

under the following move K, (e = +1) (and its inverse):
A K.-move consists of adding to L an unknotted component with
writhe ¢, and giving a full e-twist to the part of L passing through

1o the new component,

 Suppose L has components Ly,..., Lk, and let L’ be the result of
~ an K,-move on L, the new component being L}, ,. Then Lemma 1.3
. impﬁes that for all b;,.‘,.,bk € B, one has

| < biyeresbifp > =< 1(0,) > < byy bi >,
in Z[A]/¢2,(A). Setting all b; equal to §,, we see that

‘ <Q,,,...,Q,,>L -

0,(L) = —— i3 -
p(L) < 1(§2p) >h+(L) ¢ t=1(Q,) >b-(L)
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is invariant (modulo ¢;,(A)) under K-moves, and theorem 1.1. fol-
lows.

We now generalise this as follows. Consider banded links of the

form
LUK=L,U...L,UKU...K,

and let a K.-move consist of adding to L an unknotted component
with writhe ¢, and giving a full e-twist to the part of L U K passing
through the new component. Then the above reasoning shows that

< Qp,...,Qp,z,...,z >LUK

()p(L, I\) = < t(Qp) >b+(L)< t-](ﬂp) >b_(L)

is invariant (modulo ¢;,(A)) under K.-moves. Notice that this al-
most proves theorem 1.2. Indeed, the only remaining point is to show
that 6,(L, K) is independent of the isotopy class of K in M. This
point is settled as follows. We define a #-move on LU K to consist of
replacing a component of K by a band-connected sum with a pushoff
of a component of L. (This is one of the moves appearing in Kirby’s
original theorem [K]. Notice however that in [K] all components are
surgery instructions, whereas here only the components of L are.)
Now it is not hard to see that banded links in §% — L are isotopic
in M if and only if they are related by a sequence of isotopies in
§3 — L and B-moves (and their inverses.) But as shown by Fenn and
Rourke, a 3-move may be replaced by a sequence of K,.-moves (and
their inverses). This completes the proof.

1.4. Remarks.

1) The invariant 6, has the following properties.

(i) 05(5°) = 1,  6,(5% K) =< K >€ Z[A]/¢2p(A)

(i) O,(MIM', KU K') = 0,(M, K)6,(M', K')

(iii) 6,(~-M,K) = 6,(M, K) (Here, the conjugation on Z[A,%]/
¢2p(A) is defined by A = A-!, and —M denotes M with reversed
orientation.)

(iv) 6,(5' x §%) =< 2, >=< 19, >< t71Q, >.

2) If p € {1,3,4}, then Q, = 1, hence 6,(M,K) =< K >€
Z[A]/$2p(A). Moreover, one has < K >= §!X in these three cases,
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where §A° denotes the number of components of K. (This follows
easily from the Kauffman relations.) In particular

61(M,K) = (-2)'F

3) Notice that instead of Q, we could have used AQ,, where A
is some invertible scalar, since this would not affect the validity of
Lemma 1.3. The effect on 6,(M, K') would merely be multiplication
by Ab(M) where b;(M) denotes the first Betti number of M. This
follows since the first Betti number b;(ML) is equal to the number
bo(L) of zero eigenvalues of the linking matrix of L, and b, (L) +
b_(L) + bo(L) is equal to the number of components of L.

The uniqueness result of [BHMV1] can be sharpened as follows:
Set Ap = Z[1, A]/¢,(A) for p ¢ {1,3,4,6}, AL, = Z[A]/¢zp(A) for
p € {1,3,4}, and A = Z[1, A]/$12(A).

Proposition 1.5. Let A be an integral domain containing a ho-
momorphic image of Z[A,A™'], and let @ € B® A = A[z] such that
< t4(?) > is invertible in A for ¢ = +1. Suppose that for each pair
(L, K') of banded links in S3, the expression

< Q,...,Q,z,..f,z >k
< () >4+(D < t-1(Q) >b-(L)

defines an invariant 6q(Mp,K) € A. Then there is an integer p > 1
and a unit A € A such that the map Z[A, A1) — A factors through
a homomorphism f : A, — A, and such that

ba(M,K) = A%M) f(9 (M, K))

Proof. The hypothesis implies that for all b € B and ¢ = +1, one
has < t4(Q),1%(b) >=< t*(2) >< b > as elements of A. Hence, the
result follows from prop. 6.10 of [BHMV1].

2. A relation between 6, 6,, 0,, and 6,, (rodd)

In this section, we will give a formula relating 64,, 6,, 6., and 6,,
» assuming that r is odd. As in [BHMV1], we will use the notation
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Ap = Z[A, A~1)/$2p(A),
nomial in the indeterminate

A

where ¢4 denotes the d-th cylotomic poly-
A. Thus the invariant #,(M, K') lies in

1, o
pI[\fc])tation. Let » > 1 be odd. Notice that in Az,, we have
$a(A™) = 0 and dor(AT'*1) = 0 (because ged(r?,4r) = r and
ged(r? + 1,4r) = 2 as is easily verified.) Hence we may define ring
homomorphisms
2
igar: A2 = Azry A A"
Iror i Ar — Az, A Ar2+1

Theorem 2.1. If r is odd, then
i2.20(82(M, K)) jr2r(0-(M, K)) = 61(M, K) 02-(M, K)

Remark. Notice in particular that if K =0, then 12 6(62(M)) =
86(M) (because 83(M) = 1.)

Here is the relationship with the invariants 7.(M) and 7.(M) of
[KM2]. Let by(M) denote the first Betti number of M.

Proposition 2.2. Forr 2> 3

e w
2 sin -

b1 (M)
TT'(M) = ( \/ﬁ? ) 02T(M)|A-_._ezri/4r

If moreover r is odd, then

: m
2 sin -

, by (M)

This‘ will be shown at the end of this section. (Strictly speaking,
we verified the formula for 7/ only in the case where 62(M) # 0.)

Remark. Notice that in particular

(M)
V2™ (M) = O6(M)| - _gaeisna = 02(M)| o,
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Setting K = @ and A = —¢?™/4", theorem 2.1 becomes Kirby and
Melvin’s formula

ra(M) (M) if r=3 mod 4

(M= { e,
(M) {Ta(M) ri(M) if r=1modA4

Remark. It was shown in [KM2] that r3(M) (hence 8,(M)) is
zero if and only if there exist o € H}(M;Z/2) with a® # 0. One can
show that §;(M, K) = 0 if and only if there exist a € HY(M;Z/[2)
with < a3, [M] >#< a,[K] > (where [M] is the fundamental class
of M, and [K]is the value of K in H;(M;Z/2).)

We will now give a proof of theorem 2.1, We recall the definition of
the quotient algebras V,, (see [BHMV1]). Let p > 1 be an integer. Let
B, denote the Jones-Kauffman module of the solid torus §' x I'x I
with coefficients in A,, i.e. B, = B® A, = Ap[z]. As in lemma
1.3, let < , > denote the symmetric bilinear form on B given by
the meta-bracket of the banded Hopf link where each component
has writhe zero. Set V, = B,/N, where N, denotes the kernel of
the induced bilinear form on B, with values in A,. It was shown
in [BHMV1] that N, is a principal ideal generated by a polynomial
Qa(p) of degree n(p) = [(p—1)/2]if p 2 3, and n(p)=pifpis 1l or 2.
Hence V, is a finite-dimensional algebra with basis (the images of)
€0 =1, €1,...€n(p)-1. Moreover, the twist map t induces a self-map
of V,, and for any k-component banded link L C §°, the induced
meta-bracket, when viewed with values in A, factors through V. ®*.
- Hence we view

o) n(p)-1
Q= ) <e>e

: W i=1
~ as an element of V), (except for p = 2 where {13 = 1+ € 12 ® (3]

The idea of the proof is to observe that if r = 2m + 1 > 3 is odd,
then em4i = €m-3-; in V, (see [BHHMV1].) Hence in that case we
may write

m-1
Q = z < ez > €

=0
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which looks like the even part of §2y,. Indesd, this makes sense,
because if p = 2r in even, then we have a natural decomponition

“"Jv' | ‘,.(0) (l’ V“)

into even and odd parts which Is Induced by the Z/2-grading on
B = K(S"xIxI) = Z|A A ")2] given by the parity in 2z of a
polynomial. This follows from the fact that If p = 27 ix even, then
Qn(p) i5 homogencous with respect to the Z/2-grading ( in fact, if
r 2 2, it is equal to e,.y, which is even or odd according, to whether
r—1is even or odd, and if r = 1, it is equal to 2% ~ 4, which is even,)
Let
ap = 05 + 05

correspond to this decomposition. By the multilinearity of the meta-
bracket, we can write

< Q'Irw' sn'h‘vz""z >LUK=

z < Q(e;(L ))’ : ’Q(‘l(L ))’z,.”’z >LUK
L'CL

where L' runs through the sublinks of L = L U...UL;, and ¢;(L')is 1

or 0 according to whether L; C L' or not. The following proposition

,shows‘ how to replace the Q( )’s by Q(O)’ 8.

Propoéition 2.3. Let r > 1 be odd. Then

Q(GI(L ))’ “,Q(e,(L )),2,...,2 >LUK=

2rt.1? ' 0 0
}‘Ar (L'-L'+2L'K) <Qg,),..-,ﬂg,,),z,..-,z>Lux

,‘ ; Here the dot - denotes the total linking number. Actually, this is
- only defined for banded links whose cores are oriented, but in the

'.‘»’.':-formula. above the orientations do not enter. This is because A
~ i8 a fourth root of unity in Ag,, and the values modulo 4 of L' - L'

‘and 2L’ - K are independent of the orientation of the cores of the

' components.

(The total linking number is defined as follows. If K and K’ are

G dxsjoxnt oriented knots in §%, K - K’ denotes their linking number,
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and if K is a banded knot, K - K denotes its writhe. If K’ = |J K’; and
K' = J K are banded links whose cores are oriented, then K - K is

defined as )~ K; - K]. )

The proof of prop. 2.3 will be given later in this section. Notice
the following corollary.

Corollary 2.4.

< er’o.-,92r’z,-ouz >LUK=

< .0 22> > AT (L -L'42L"-K)

L'CL

LUK

Next, we need two facts about the Kauffman bracket.

Lemma 2.5. Let K be a banded link in S3, with § K components.
Then

(i) < K > is homogeneous of degree d(K) = 24K — K - K with
respect to the natural Z /4-grading of Z[A, A~1].(This simply means
that < K >= A4X) f(A*) for some Laurent polynomial f .)

(i) the image of < K > in Ay = Z[A]/¢4(A) is given by

< K >= W pKK

Proof. This follows easily from the Kauffman relations.

Corollary 2.6.
(2) 2.2,21'(< Qz,...,Qg,Z,...Z >LUK)=
UK 4r’K-K Z ATA(L'-L'+2L"-K)

L'CL
(ti) jr'2r(< Qr,o.-,nr,z,--cz >

(-4 KK O g s

Proof. i) Since ng) = 1, cor. 2.4 implies

» '. [ '.
<oy Myy2,.2>, L =< K > Z AL L'+2L' K
L'cL
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The result now follows from lemma 2.5 (ii).

(i) If » = 1, the result follows from remark 1.4.2) and lemma 2.5
(ii). Now consider r = 2m + 1 > 3 and let

0O = Z < ey > ey € Z[A,A7][2]

1=0

Using lemma 2.5 (i), it is not hard to see that

< ﬂé?.’,-.-,ﬂ‘z‘l’,z, > K= — AUK-K- Kf(A4)

for some Laurent polynomial f. (The components of L don’t con-
tribute, because they are replaced by something even.) The image

of Qgr) in Va, is Q(z,.), and since €,,4; = €;,—1—; in V. , the image of
Q( ) in Vi is Q.. Also observe that j,2,(A%) = A%. Thus

j,-'2,-(< Qr, p— Qr, Zyonek >LUI() — j.,.,2,.(A2ﬁK—K~Kf(A4))
— A(1+r2)(2uK-1(-K)f(A4)

— AT (HK-K K)

0 0
Qg,.), Qgr),z,...z > UK

Since A" = —1, the result follows.
Proof of theorem 2.1. By cor. 2.4 and 2.6, we have

iz'2r(< 92,- ..,Qz,z,.. 4 >LUI() jr’2r(< Qr,...,Qr,Z,...Z >LUK)
— K
—'(-_2)“ <Q2r,...,92r,2,...2 >LUK

;f ;ve apply this to the case of a banded unknot with writhe €, we
n

i2,2r(< t¢ﬂ2 >) jr,2r(< tEQr >) =< t€Q2r >

Hence

i2.2r(02(MLa 1\’)) jr,2r(0r(MLy I\")) r (“2)“{ 021‘(ML’ I\’)
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Since 6,(Mr, K') = (-2)'¥ by remark 1.4, this implies theorem 2.1.

It remains to prove proposition 2.3. We will need the following

two lemmas.

Lemma 2.7. Let L be a banded link in S x I x 1. Then its value
in B = K(5' x I x I) is a homogeneous polynomial with respect to
the Z/2-grading, whose parity is equal to the image of L in Hq(S" x
IxI;Z/2)=12Z/2.

Proof. Define the parity of a banded link in S? x I x I to be
its image in mod 2 homology. Since the Kauffman relations respect
parity, this induces a Z/2-grading on the Jones-Kauffman-module
B = Z[A, A~!][z], which is precisely given by parity in the variable
z.

Lemma 2.8. Let r > 1 be odd. Then in A;, we have

< 1Q) 2 >= AT (wH2) qu0) iy

2r 9

(Recall that < , > denotes the metabracket of the banded Hopf link
where both components have writhe zero.)

Proof. It was shown in [BHMV1, section 3] that the e; are an
eigenbasis of B = Z[A, A~!][z] for both the twist map ¢ and the map ¢

which satisfies < c(u),v >=

< u,zv > for all u,v € B, with eigenvalues p; = (=1)iA¥+2% un
der t, and \; = —(A%*%2 + A=2'~2?) under ¢. For r # 1, we may

write
(0) }: < ep> e, Q = Z < €p_g_k D> €r—2—k
the sum being over all even k such that 0 < & < r — 2. Since
< tVej, 2 >= ,u“’A' <ej>

the result now follows upon observing that in Az, we have u,_2_ k=
(1) A™ g, Adrgek = Ak, < €,_p—k >= — < € >, and A =
-1.

For r = 1 the proof is similar but easier.
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Proof of proposition 2.3.
To shorten the notation, let us set

< Qgerl(L,))v“ "Q(Z?(L’))’z"”’z >LUK:<< L’L"K >>

If L' is empty, there is nothing to show. If not, let L; be a component
of L. By induction, we may assume the formula is proved for L' — L;,
so that we have

<< L,L'-L;,K >>=
AT =L)(L'-Li)+2AL'-Li)K) . [ K >>

Assume first that L; is unknotted. Then we can view (L —L;)UK
as lying in the complementary solid torus, so that after cabling with
the Qf,’s it gives rise to an element z € B. Applying lemma 2.7, it
is clear that z is homogeneous with respect to the Z/2-grading of B,
and its parity is precisely

Li- K+ (L)Li-L'=Li-(I' - L)+ Li - K
J#i

modulo 2. Hence

<< L,I'K >> =< tliliql) o>
- Arz(L.--L.-+2(L,—-(L'—L,-)+L,--K)) < tLi.Lnge.),KC >

=Arz(L.'-L,'+2(L.'~(L'-—L.')+L."K))
<< L,L'- LK >>
— Ar?(Ll,Ll+2LI.K) << L,@,I( >>

where we have applied lemma 2.8 and the induction hypothesis. Thus
we have proved the proposition in the case where L; is unknotted.
Finally, if L; is knotted, we may unknot it in the standard way at
the expense of introducing new components cabled by ;. (compare
the proof of prop. 5.4 of [BHMV1].) But L; - L; mod 4 remains
unchanged, and the new components have even linking number with
L;. Since A" is a fourth root of unity, this reduces the case where
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L; is knotted to the special case treated above. This completes the
proof of prop. 2.3.

Remark 2.9. If r is even, then the decomposition
Q= Q) + 95

yields a "splitting” of the invariant 6;,(M, K) as a sum of ”struc-
tured” invariants. This result was found by Kirby -Melvin [KM2]
and Turaev [T2] (in terms of their invariant 7,), and also indepen-
dently by Blanchet in his thesis. Here, we will just state the result.
A proof using our approach can be found in [B].

Define an s-structure on M to be a spin structure if r/2 is even,
and an element of H}(M,Z/2)if r/2is odd. If K is a banded link in
M, an s-structure on (M, K) is an s-structure on M — K which does
not extend over any component of K. { M = M, and K C S3-L
as above, then there is a natural 1 — 1-correspondence between s-
structures on (M, K) and sublinks L' C L such that

L;-L; mod2 if r/2is even
(L'+K)-L; =
(L'+ k) { 0 mod 2 if r/2is odd

where L; are the components of L. (If K = 0, then a sublink L’
of L satisfying the above condition for /2 even is usually called a
characteristic sublink.)

Theorem 2.10 [B] [KM2] [T2] If r is even, then the expression

(¢ r )) (6 (L' ))
<, L8, 220K
< (5 ST l(ng S50

is zero unless L' satisfies the condition above, and in that case it is
an invariant, denoted by 6,,(M, K, 8), of the s-structure s on (M, K)
determined by L'. In particular, we have a "splitting”

b3-(M,K) = 0:,(M, K,s)
8
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Remark 2.11. The Jones-Kauffman module B = K(§! x I x I
is related to the representation ring RSU(2) as follows. Its basis

{ei : ¢ > 0} satisfies

iA2i+2 - A—2i—-2
<€ >= (_1) A? — A2

Hence if we set ¢ = A%, then < e; > is the character of an ¢ + 1-
dimensional irreducible representation of SU(2) (with respect to the
maximal torus diag(q'/?, q~1/?)
C SU(2).) 1t follows that V5, is isomorphic to a quotient of RSU(2).
(Strictly speaking, the representation ring here has to be taken with
coefficients in A2,.) If r is odd, then we have seen that V, can be
obtained as a quotient of the subring of B generated by the e,;,
which geometrically means it is generated by banded links that meet
a meridinal disk of S* x I x I an even number of times. This subring
corresponds to the inclusion RSO(3) C RSU(2). Hence, for odd
r, V; is isomorphic to a quotient of the representation ring RSO(3)
(with coefficients in A,.)

Proof of prop. 2.2. Since (for p > 3) Q, = DAL
one may write

k
ZOSi,,Sn(p)—l (HU=1 < G,V >) < 6,‘1,. . .,eik >L
<) >h+ L)< t-1(Q) >4-(L)

op(ML) =

This resembles Kirby-Melvin’s definition of their invariant, the meta-
bracket

< €i,...,€, > playing the role of what Kirby and Melvin call the
"colored Jones polynomial” of the banded link L = L U...U Ly
colored by 4y +1,...,1,+ 1. We will not make this explicit here, but
rather quote [Li4]. Let us call L, (M ) the invariant of [Li4] (Lickorish
didn’t give it a name.) Lickorish (prop. 8 of [Li4]) has shown that

Lr(M)|A=__e,,,.," = e M(O=3Nb (M) /4r L (pr)
On the other hand [BHMV1], it is clear from the definition that

020(M) =< 1Q,, >S5 (M) [ _(31)
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Using lemmas 6.6 and 6.7 of [RHMV'1], it is not hard to see that

N - __}E___ e 3r-8) Jir
< 8, > lAs‘c‘sn;u = :Sin'-:?
This implies the formula we gave for r,(M). Presumably, the for-
mula for r;( M) can be obtained similarly (we haven't checked this.)
However, if #;(Af) is non-zero, the formula for r (A1) follows from
theorem 2.1 evaluated at 4 = —e?"/4" together with Kirby-Melvin's
formula relating ny(M), (M), and rl(AM), as given in the remark
following prop. 2.2,
3. Wenazl's theorem

Using special trace functionals on the infinite ribbon braid group,
Wenzl [We2] has defined invariants of a 3-manifold M = M, as a
“thermodynamic limit” of polynomial invariants of cablings of L. In
this section, we will give a simple proof that the invariant #, can be
obtained in a similar way. Here is the result.

Theorem 3.1. (compare [We2]) Let p > 5. Embed A, into C by
setting

—

p e™ /3 if pis even
= N 2 - .
eI AP §f 1 is odd

Define uny € V), % C by
»

% (1 + %) -})QN if p is even
( )N if pis odd

Then

. Q
lim unN = 2
N—oo <Y >

Corollary 3.2. Under the hypotheses of theorem 3.1

< Q, >t
<) >l t-1(Q,) >b-(L)

Nh_l;ﬂ(».]( UNy oo UN D>,

ep(A{L) =
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This follows immediately from theorem 1.1.

Remark. For p < 4 there is no need to take a limit, since 2, = 1
for pe {1,3,4},and Q3 =1+ 3.

We now give a proof of theorem 3.1.

Lemma 3.3. The self-map of V, induced by multiplication by z
has eigenvalues Ao, ..., An(p)-1.

(Recall n(p) = [(p—1)/2]if p> 3, and n(p) =pif pis 1 or 2.)

Proof. Recall that A\, = —A%F+2 _ 4—2k-2 are the eigenvalues of
the self-map ¢ on B which is adjoint to multiplication by z, i.e.

< c(u),v>=< u,2v >

for all u,v € B. Hence the lemma follows from the fact that the sym-

metric bilinear form <, > on B induces a nondegenerate symmetric
bilinear form on V, [BHMV1].

Recall that < 2 >=8 = \g = —A%2 — A2,
Lemma 3.4. 2 Q, =6 Q,
Proof. If p > 3, then

2p
1
=ZZ<ei>ze;=—Z<e.>(€;_ +et+1)

i=1
—Z(<€,+1>+<e, 1>)e,=->:<ze,->e.-
= 4 -
i=1 =1
=<z > Qp, = 69,

The case p = 1 is trivial, and if p = 2, the result follows from
22 -4=0in V;.

Lemma 3.5. Let p > 3 be odd. Embed A, into C by setting
A = e?™i(1+P°) /4P Then for all z € V, ® C such that < z ># 0, one

has
N
lim (i) ‘ = Qp
N-swo\§/ <z> <Q,>
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(Notice that ¢, (e2™(1+7P°)/4P) = 0 since ged(1+ p?,4p) = 2.)

Proof. For the chosen value of A, we have A, = 2 cos(x(k+1)/p).
Hence 0 < Ay < Ag =6 for0 < k£ < n(p)—1. By lemma 3.3, it follows

that lim y— o (%)N is a projector onto the eigenspace corresponding
to the eigenvalue §. The result now follows from lemma 3.4.

Lemma 3.6. Let p > 6 be even. Embed A, into C by setting

A = ¥/, Let e € {0,1}. Then for all z € V{9 ® C such that
<z ># 0, one has

) z\:N 1z ng)
i ()" 225 -
N—oo \ § <z> < Qif) >

Proof. By lemma 3.3, the self-map of V, induced by multiplication
by 2% has eigenvalues A2 where k = 0,...,n(p) — 1. Since A? takes
[(n(p)+1)/2] different values, it is easy to see that the eigenspaces of
z? are two-dimensional, except for the eigenvalue zero which occurs
if p = 0 mod 4, and whose eigenspace is one-dimensional. Moreover,
each of the two-dimensional eigenspaces splits into even and odd
parts which are exchanged by multiplication by 2. Hence for both
€ = 0 and ¢ = 1, multiplication by 22 has distinct non-negative

eigenvalues on V,f 9 , and for the chosen value of A, the strictly largest

eigenvalue is Aj = §%. But lemma 3.4 implies zQ{”) = 6Q{") and

zQ;I) — 6920), hence z"’ng) = 62926). The result follows as in the
proof of lemma 3.5.

Proof of theorem 3.1. The result follows from lemmas 3.5 and
3.6. (If p is even, this uses the fact that < Q,(po) >=< Qg,l) >.)
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