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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 27, Number 1, January 1971

A NEW PROOF OF BROWN’S
COLLARING THEOREM

ROBERT CONNELLY

The aim of this note is to give a new proof that if a subspace B,
compact for convenience, is locally collared in a space X, then it is
collared. The idea of the proof is simply to add a collar BXI to X
to get X+ and then to construct a homeomorphism of X with X+ by
pushing B down on one collared open set at a time.

The theorem, of course, is essentially that of [1]. However, the
proof easily works in the piecewise linear (PL) category (i.e. all maps
are PL and spaces are polyhedra), and when B, the boundary, is a
pair or flag, cf. [3]. At the end of the paper we shall note briefly how
the noncompact case and the PL case can be handled by our tech-
niques.

A closed subspace BCX is locally collared if B is covered by sets
U, open in B, such that for each U there is a closed embedding
R:TX [0, 1]-X such that #~1(B)=TUX {0}, k(x, 0) =% for xET,
and k(U X [0, 1)) is open in X. For metric spaces this is equivalent to
the definition in [1]. B is said to be collared if one U can be taken to
be all of B.

THEOREM. If BCX is compact and locally collared in X, which is
Hausdorff, then B is collared in X.

Proor. Let Uy, Uy, + - -, U, bean open cover of B such that each U;
is as in the definition. By the normality of B, shrink the cover to find
another cover Vi, -+, V. such that V;CU;, ¢=1,--- , n. Let

X+=XUBX|[—1, 0] where (x, 0) is identified to %, and let 4;:TU;
X[Q,_ 1]>X be the embeddings given by the local collars. Let
H::U;X[—1, 1]-X*, i=1, -+, n, be the embedding defined by

Hi(x) = hi(x) forx & T; X [0,1],
=z forx € T; X [—1,0].

Inductively we shall define maps f:: B—[—1, 0] and embeddings
giiX—X+ 7=0,1, - - -, n,such that
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(a) fi(x) = —1if xEUjsiV 5

(b) gi(x) = (%, fi(x)) if xEB, and

© g:(X) =XU{(,0)|t2f)}.

Note that since the V.'s cover B, g.(X) =X+ and thus g, ' will give
the required collar.

Define go=1, and inductively suppose gi;—1 has been defined. Let
it Hi1g; 1(X)—TU:X[—1, 1] be an embedding that pushes down
along fibers such that ¢:H,"'g; (Vi) =V:X {—1} and ¢:| (T:—U.)
X [—1, 1]UT;x {1} =1. Such a ¢; can be defined as follows: Let
N\i:T:—[0, 1] be a Urysohn function which is 0 on U;— U; and 1 on
Vi Let so:[fiaa(x), 1]—=[(1 =Ni(x))fica(®) +Ni(x)(—1), 1] be the
unique order preserving simplicial homeomorphism given by s.(f)
=((b—1)/(@a—1))(¢t—1)+1 where a=f;_1(x) and b= (1 —N;(x))fi-a(x)
+M:(x)(—1). Now define ¢;(x, t) = (x, s,(£)). Clearly ¢. is continuous.
Then define ®;:g; 1(X)—X+ by:

®;(x) = Hi¢'£H:1(x) for x € gia(X) N H(T X [—1,1)),

=z otherwise,

and g;=®,g;_1. Clearly ®; and thus g; is well defined and an embedding
since ¢i|(TU:—U)X[—1, 1]UT:x {1} =1, ¢; is an embedding
(since each s, is), and gia(X)NH(U:;X[—1, 1)) =H(T:x [0, 1])
U{(x, §)|t=fia(x) and x€T;} by (c) for gis. Note that (b) now
defines fi(x), and (a) and (c) are satisfied by construction.

REMARK 1. The noncompact case. The method of proof used above
can be extended to certain cases when X is not compact. For in-
stance, the proof works if we assume that X has a slightly stronger
property than paracompactness, namely if every open cover has a
star finite refinement (cf. [2] for definitions). In this case it is possible
to order the U/’s, although infinite, so that every point in X+ has an
open neighborhood which moves only finitely often.

REMARK 2. The PL case. The theorem is still true if all spaces and
maps mentioned (including the definition of local collaring) are
polyhedra and PL respectively. The same proof goes through except
that the particular definition of ¢; must be altered slightly. Namely to
make ¢; PL it is easiest to triangulate U;X[—1, 1] so that V;
X[—1, 1] and H;! g;i(X)are subcomplexes and projection m:T;
X [—1, 1]-T;is simplicial. Then it is easy to define a simplicial map
¢:so that it has the desired properties.

The author wishes to thank the referee for many useful comments
and suggestions.
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