Topologie algébrique

Cours sino-français Hefei, automne 2025

Devoir n°3 pour le 30 octobre

Ι

Soit $C = S^1 \times \mathbb{R}$ le cylindre dans \mathbb{R}^3 produit du cercle unité $S^1 \subset \mathbb{R}^2 \times \{0\}$ avec \mathbb{R} .

- 1. Ecrire explicitement une rétraction par déformation de C sur $S^1 \times 0$. Déduire l'homologie de C.
- 2. Déterminer l'intersection de C avec la sphère S de rayon 2 centrée à l'origine de \mathbb{R}^3 .
- 3. Soit X la réunion du cylindre C avec la sphère S. Calculer $H_*(C)$.

П

Soit X le quotient de la sphère $S^2 \subset \mathbb{R}^3$ par la relation qui identifie les points antipodaux (opposés) du cercle équatorial $S^1 = \{(x, y, 0), \ x^2 + y^2 = 1\}$.

- 1. Démontrer avec précision que X a une structure de CW-complexe.
- 2. Calculer l'homologie $H_*(X)$.
- 3. Est-ce que X est une variété?

III

Soit M une variété orientée compacte connexe de dimension $n \geq 0$ à bord non vide. On note M_0 et M_1 deux copies de M, et on définit le double D(M) en recollant M_0 et M_1 sur leurs bords avec l'identité.

- 1. Justifier brièvement que D(M) est une variété connexe sans bord.
- 2. Démontrer que l'orientation de $M_0 \subset D(M)$ se prolonge en une orientation de D(M).
- 3. En utilisant l'inclusion $i_0: M_0 \to D(M)$, démontrer que $H_n(M)$ est nul.
- 4. Démontrer que la variété ∂M est orientée et décrire sa classe fondamentale.