Colored Jones invariants involving $S L_{2}(\mathbb{C})$-connections

Christian Blanchet

IMJ-PRG, Université de Paris
October 7, 2020

Teichmüller Theory: Classical, Higher, Super and Quantum
CIRM October 5-9, 2020
https://webusers.imj-prg.fr/~christian.blanchet

Link invariants, s/(2) family

- V. Jones 1984, Jones polynomial.
- V. Jones 1989, N. Reshetikhin and V. Turaev 1990, Colored Jones polynomial.
Components are colored with representations of generic quantum $s l(2)$ (integral weights).
Vector representation recovers Jones polynomial.
- Agutsu-Deguchi-Ohtsuki 1992, J. Murakami, N. Geer and B. Patureau, Renormalised/modified trace invariants from quantum $s l(2)$ at root of 1 (colored Alexander invariants). They are based on nilpotent representations with complex highest weights.
$U(1)$ flat connections are implicite.
At 4-th root of 1 it recovers Alexander polynomial.

Motivation and context

- The colored Jones polynomial invariant of links uses irreducible representations of quantum $s /(2)$ with integral weights.
- Quantum $s /(2)$ at root of unity has much more irreducible representations.
- At $q^{2 p}=1$, there exists a map

$$
\operatorname{Irrep}\left(U_{q}(s /(2)) \longrightarrow S L_{2}(\mathbb{C})\right.
$$

which is a p-fold covering on a dense open subset.

- Purpose: extended colored Jones invariants involving $S L_{2}(\mathbb{C})$ gauge theory.

Main result

Theorem (BGPR)

For each $p \geq 2$, there exists an invariant of gauge classes of generic $S L_{2}(\mathbb{C})$ flat connections on link complements, enhanced for each component of the link with a root of the degree p equation

$$
\mathcal{T}_{p}(x)=- \text { trace }(\text { holonomy on meridian }),
$$

where $\mathcal{T}_{p}(x)$ is the renormalized p-th Chebyshev polynomial determined by $\mathcal{T}_{p}(2 \cos \theta)=2 \cos (p \theta)$.

- This invariant extends the colored Alexander polynomial.
- Up to now this invariant is defined up to a p^{2}-th root of 1 .
- Calvin McPhail-Snyder: For $p=2$ it recovers $S L_{2}(\mathbb{C})$ torsion.

References

- Our paper: B-Geer-Patureau-Reshetikhin, Holonomy braidings, biquandles and quantum invariants of links with SL2(C) flat connections, Selecta Mathematica volume 26, (2020), arXiv:1806.02787.
- Based on: R. Kashaev, N. Reshetikhin - Braiding for quantum gl2 at roots of unity. Noncommutative geometry and representation theory in mathematical physics, 183-197, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005.
- Case $p=2$: C. McPhail-Snyder, Holonomy invariants of links and non abelian Reidemeister torsion, arXiv:2005.01133.

Quantum s/(2)

- Let $q=e^{\frac{i \pi}{\rho}}, p \geq 2$.

The \mathbb{C}-algebra \mathcal{U}_{q} is defined by generators E, F, K, K^{-1} and relations $K K^{-1}=K^{-1} K=1$ and

$$
K E K^{-1}=q^{2} E, K F K^{-1}=q^{-2} F,[E, F]=\frac{K-K^{-1}}{q-q^{-1}} .
$$

- Hopf algebra structure

$$
\begin{aligned}
\Delta(E) & =1 \otimes E+E \otimes K, & \varepsilon(E) & =0, & S(E) & =-E K^{-1}, \\
\Delta(F) & =K^{-1} \otimes F+F \otimes 1, & \varepsilon(F) & =0, & S(F) & =-K F, \\
\Delta(K) & =K \otimes K & \varepsilon(K) & =1, & S(K) & =K^{-1}, \\
\Delta\left(K^{-1}\right) & =K^{-1} \otimes K^{-1} & \varepsilon\left(K^{-1}\right) & =1, & S\left(K^{-1}\right) & =K .
\end{aligned}
$$

The center

- K^{p}, E^{p}, F^{p} are central.
- They generate a Hopf subalgebra Z_{0}.
- The center Z is a degree p extension of Z_{0}, generated by the Casimir element

$$
C=\left(q-q^{-1}\right)^{2} F E+K q+K^{-1} q^{-1}
$$

with relation

$$
\mathcal{T}_{p}(C)=\left(q-q^{-1}\right)^{2 p} E^{p} F^{p}-\left(K^{p}+K^{-p}\right)
$$

where \mathcal{T}_{p} is the renormalized p-th Chebyshev polynomial determined by $\mathcal{T}_{p}(2 \cos \theta)=2 \cos (p \theta)$.

Irreducible representations

- An irreducible representation induces a character \equiv on Z, and its restriction χ on Z_{0}.
- A character χ on Z_{0} is generic if and only if the Casimir equation below has simple roots.

$$
\mathcal{T}_{p}(c)=\left(q-q^{-1}\right)^{2 p} \chi\left(E^{p} F^{p}\right)-\chi\left(K^{p}+K^{-p}\right) .
$$

(Critical values of $\mathcal{T}_{p}(x)$ are ± 2.)

- A generic character χ on Z_{0} is realized by p non isomorphic irreducible representations which are p-dimensional: $V_{(\chi, c)}$, with c a solution of the Casimir equation.

Irreducible representations

- Nilpotent case: $\chi\left(E^{p}\right)=\chi\left(F^{p}\right)=0$. An irreducible representation is generated by a highest weight vector v_{λ}, $E v_{\lambda}=0, K v_{\lambda}=q^{\lambda} v_{\lambda}=e^{\frac{i \pi \lambda}{\rho}} v_{\lambda}$.
- Case $\chi\left(E^{p} F^{p}\right) \neq 0$: cyclic representations, basis composed with weight vectors, E and F rotate with appropriate coefficients.

Subalgebra Z_{0}^{+}generated by K^{p}, E^{p}

- Hopf algebra structure

$$
\begin{array}{lll}
\Delta\left(E^{p}\right)=1 \otimes E^{p}+E^{p} \otimes K^{p}, & \varepsilon\left(E^{p}\right)=0, & S\left(E^{p}\right)=-E^{p} K^{-p}, \\
\Delta\left(K^{p}\right)=K^{p} \otimes K^{p} & \varepsilon\left(K^{p}\right)=1, & S\left(K^{p}\right)=K^{-p}
\end{array}
$$

- Z_{0}^{+}is isomorphic to the coordinate Hopf algebra on the group

$$
G^{u}=\left\{\left(\begin{array}{cc}
1 & \epsilon \\
0 & \kappa
\end{array}\right), \kappa \in \mathbb{C}^{*}, \epsilon \in \mathbb{C}\right\} \subset G L_{2}(\mathbb{C})
$$

$-\left(\begin{array}{cc}1 & \epsilon \\ 0 & \kappa\end{array}\right)\left(\begin{array}{cc}1 & \epsilon \\ 0 & \kappa^{\prime}\end{array}\right)=\left(\begin{array}{cc}1 & \epsilon^{\prime}+\epsilon \kappa^{\prime} \\ 0 & \kappa \kappa^{\prime}\end{array}\right)$, hence coproduct δ :

$$
\delta(\kappa)=\kappa \otimes \kappa, \delta(\epsilon)=1 \otimes \epsilon+\epsilon \otimes \kappa .
$$

Hopf subalgebra Z_{0}

- The Hopf algebra Z_{0} is isomorphic to the coordinate Hopf algebra on the group (subgroup of $G L_{2}(\mathbb{C})^{2}$)

$$
G^{*}=\left\{M(\kappa, \epsilon, \phi)=\left(\left(\begin{array}{cc}
\kappa & 0 \\
\phi & 1
\end{array}\right),\left(\begin{array}{cc}
1 & \epsilon \\
0 & \kappa
\end{array}\right)\right): \epsilon, \phi \in \mathbb{C}, \kappa \in \mathbb{C}^{*}\right\}
$$

- We identify G^{*} with characters on Z_{0} by

$$
\begin{gathered}
M(\kappa, \epsilon, \phi)\left(K^{p}\right)=\kappa, \quad M(\kappa, \epsilon, \phi)\left(E^{p}\right)=\left(q-q^{-1}\right)^{-p} \epsilon, \\
M(\kappa, \epsilon, \phi)\left(F^{p}\right)=\left(q-q^{-1}\right)^{-p} \phi \kappa^{-1} .
\end{gathered}
$$

- $G^{*}=S L_{2}(\mathbb{C})^{*}$ is the Poisson-Lie dual of $S L_{2}(\mathbb{C})$.

Factorization map

- Given a character χ on $Z_{0}\left(\chi \in G^{*}\right)$, let

$$
\phi_{+}(\chi)=\left(\begin{array}{ll}
\kappa & 0 \\
\phi & 1
\end{array}\right) \text { and } \phi_{-}(\chi)=\left(\begin{array}{cc}
1 & \epsilon \\
0 & \kappa
\end{array}\right)
$$

- Let $\psi: G^{*} \rightarrow S L_{2}(\mathbb{C})$

$$
\psi(\chi)=\phi_{+}(\chi)\left(\phi_{-}(\chi)\right)^{-1}=\left(\begin{array}{cc}
\kappa & -\epsilon \\
\phi & \frac{1}{\kappa}-\frac{\epsilon \phi}{\kappa}
\end{array}\right) .
$$

- The map ψ is a bijection from G^{*} to the set of matrices $M=\left(m_{i j}\right) \in S L_{2}(\mathbb{C})$ such that $m_{11} \neq 0$.

Outer automorphism

- Kashaev-Reshetikhin: Outer algebra automorphism \mathcal{R} of the division ring $\mathcal{Q}\left(U_{q}^{\otimes 2}\right)$ (comes from conjugation by R-matrix on h-adic quantum $s /(2))$.
- The map \mathcal{R} is given on $Z_{0} \otimes Z_{0}$ by

$$
\begin{array}{r}
\mathcal{R}\left(K^{p} \otimes 1\right)=\left(K^{p} \otimes 1\right) W, \quad \mathcal{R}\left(1 \otimes K^{p}\right)=\left(1 \otimes K^{p}\right) W^{-1}, \\
\mathcal{R}\left(E^{p} \otimes 1\right)=E^{p} \otimes K^{p}, \quad \mathcal{R}\left(1 \otimes F^{p}\right)=K^{-p} \otimes F^{p}, \\
\mathcal{R}\left(1 \otimes E^{p}\right)=K^{p} \otimes E^{p}+\left(E^{p} \otimes 1\right)\left(1-\left(1 \otimes K^{2 p}\right) W^{-1}\right), \\
\mathcal{R}\left(F^{p} \otimes 1\right)=F^{p} \otimes K^{-p}+\left(1 \otimes F^{p}\right)\left(1-\left(K^{-2 p} \otimes 1\right) W^{-1}\right),
\end{array}
$$

where

$$
W=1+\left(q-q^{-1}\right)^{2 p} K^{-p} E^{p} \otimes F^{p} K^{p}
$$

Outer automorphism

- Yang-Baxter relation: $\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}$.
- More relations

$$
\begin{aligned}
(\Delta \otimes 1) \mathcal{R}(u \otimes v) & =\mathcal{R}_{13} \mathcal{R}_{23}(\Delta(u) \otimes v), \\
(1 \otimes \Delta) \mathcal{R}(u \otimes v) & =\mathcal{R}_{13} \mathcal{R}_{12}(u \otimes \Delta(v)), \\
(\epsilon \otimes 1) \mathcal{R}(u \otimes v) & =\epsilon(u) v, \\
(1 \otimes \epsilon) \mathcal{R}(u \otimes v) & =\epsilon(v) u, \\
\mathcal{R}(\Delta(a)) & =(\tau \circ \Delta)(a) .
\end{aligned}
$$

Partial biquandle map

- From \mathcal{R} we deduce a (partial) map on (generic) pairs of characters on Z_{0} :

$$
B\left(\chi_{1}, \chi_{2}\right)=\left(\chi_{4}, \chi_{3}\right)
$$

so that $\left(\chi_{3} \otimes \chi_{4}\right) \circ \mathcal{R}=\chi_{1} \otimes \chi_{2}$.

- B is the transpose of the map

$$
\mathcal{R}^{-1} \circ \tau: Z_{0} \otimes Z_{0} \rightarrow Z_{0} \otimes Z_{0}
$$

- B satisfies the set braiding relation (Yang-Baxter equation).
- $\left(G^{*}, B\right)$ is a (generically defined) biquandle.

Definition

A biquandle is a set X with a bijective map
$B=\left(B_{1}, B_{2}\right): X \times X \rightarrow X \times X$ such that:

1. The map B satisfies the set Yang-Baxter equation

$$
(\mathrm{id} \times B) \circ(B \times \mathrm{id}) \circ(\mathrm{id} \times B)=(B \times \mathrm{id}) \circ(\mathrm{id} \times B) \circ(B \times \mathrm{id})
$$

2. There exists a unique bijective map $S: X \times X \rightarrow X \times X$ such that

$$
S\left(B_{1}(x, y), x\right)=\left(B_{2}(x, y), y\right)
$$

for all $x, y \in X$.
3. The map S induces a bijection $\alpha: X \rightarrow X$ on the diagonal:

$$
S(x, x)=(\alpha(x), \alpha(x))
$$

for all $x \in X$.

Quandle

- A quandle is a set Q with a binary operation $(a, b) \rightarrow a \triangleright b$ such that

1. for all $a, b, c \in Q, a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c)$,
2. for all $a, b \in Q$ there is a unique $c \in Q$ such that $a=b \triangleright c$,
3. for any $a \in Q, a \triangleright a=a$.

- A group G with $a \triangleright b=a^{-1} b a$ is a quandle, any union of conjugacy classes is a subquandle.
- A biquandle (X, B) with $B_{2}\left(x_{1}, x_{2}\right)=x_{1}$ is a quandle with $a \triangleright b=B_{1}(a, b)$.

R-matrix over biquandle

Suppose that $B\left(\chi_{1}, \chi_{2}\right)=\left(\chi_{4}, \chi_{3}\right)$. Let c_{1}, c_{2} be solutions of the Casimir equations associated with χ_{1}, χ_{2}.

- Then c_{1}, c_{2} are also compatibles with χ_{3}, χ_{4}.
- There exists an isomorphism

$$
R_{\left(\chi_{1}, c_{1}\right),\left(\chi_{2}, c_{2}\right)}: V_{\left(\chi_{1}, c_{1}\right)} \otimes V_{\left(\chi_{2}, c_{2}\right)} \rightarrow V_{\left(\chi_{3}, c_{1}\right)} \otimes V_{\left(\chi_{4}, c_{2}\right)}
$$

which is defined up to a p^{2} root of 1 .

- The isomorphisms

$$
\tau \circ R_{\left(\chi_{1}, c_{1}\right),\left(\chi_{2}, c_{2}\right)}: V_{\left(\chi_{1}, c_{1}\right)} \otimes V_{\left(\chi_{2}, c_{2}\right)} \rightarrow V_{\left(\chi_{4}, c_{2}\right)} \otimes V_{\left(\chi_{3}, c_{1}\right)}
$$

are invariant (intertwinner) and satisfies the colored braid relation modulo a p^{2}-th root of 1 .

Colored braid relation

Denote $\tau \circ R_{\left(\chi_{1}, c_{1}\right),\left(\chi_{2}, c_{2}\right)}$ by $\check{R}_{\left(\chi_{1}, c_{1}\right),\left(\chi_{2}, c_{2}\right)}$.
For any $\bar{\Xi}_{i}=\left(\chi_{i}, c_{i}\right), i=1,2,3$, we have an equality up to a p^{2}-th root of 1 of isomorphisms

$$
\begin{aligned}
& \left(\check{R}_{\diamond, \diamond} \otimes \mathrm{id}_{\diamond}\right) \circ\left(\mathrm{id}_{\diamond} \otimes \check{R}_{\diamond, \diamond}\right) \circ\left(\check{R}_{\Xi_{1}, \Xi_{2}} \otimes \operatorname{id}_{V_{\Xi_{3}}}\right), \\
& \left(\operatorname{id}_{\diamond} \otimes c_{\diamond, \diamond}\right) \circ\left(c_{\diamond, \diamond} \otimes \operatorname{id}_{\diamond}\right) \circ\left(\operatorname{id}_{V_{\Xi_{1}}} \otimes \check{R}_{\bar{\Xi}_{2}, \Xi_{3}}\right),
\end{aligned}
$$

where the \diamond objects are completed with the biquandle structure B.

Link diagrams

- Reshetikhin-Turaev type functor on tangles colored with irreducible representations.
- It vanishes on link diagrams, but a modified trace gives a non trivial evaluation.
- Evaluation is invariant by colored Reidemeister moves.
- Topological interpretation for the biquandle coloring ?

From biquandle to quandle

- From V. Lebed and L. Vendramin (2017).

Let (X, B) be a biquandle. For $x, y \in X$ the operation \triangleright given by

$$
x \triangleright y=B_{1}\left(x, S_{1}(x, y)\right):
$$

defines a quandle structure on X.

- There is a dictionary between biquandle colorings and associated quandle colorings.

Recovering flat connections

- Recall that we have the factorization map $\psi: G^{*} \rightarrow S L_{2}(\mathbb{C})$, and a (partial) biquandle structure B on G^{*}.
- On G^{*}, the quandle associated with B is the pullback of the conjugacy quandle on $S L_{2}(\mathbb{C})$.
- G^{*} colorings \longleftrightarrow generic representations $\pi_{1}\left(S^{3}-L\right) \rightarrow S L_{2}(\mathbb{C})$.
- Casimir equation becomes $\mathcal{T}_{p}(x)=$-trace(holonomy).

Conclusion

Theorem (BGPR)

For each $p \geq 2$, there exists an invariant of gauge classes of $S L_{2}(\mathbb{C})$ flat connections on link complements with trace of holonomies on meridians $\neq \pm 2$, enhanced for each component of the link with a root of the degree p equation

$$
\mathcal{T}_{p}(x)=-\operatorname{trace}(\text { holonomy on meridian }),
$$

where $\mathcal{T}_{p}(x)$ is the renormalized p-th Chebyshev polynomial determined by $\mathcal{T}_{p}(2 \cos \theta)=2 \cos (p \theta)$. This invariant is a complex number up to p^{2}-th root of 1 .

