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Lawrence representations

I Lawrence (1990): Family of representations, n ≥ 2,

Ln : Bm → GL(Hn(C̃n(D2
m))

I C̃n is a Z2-cover of the unordered configuration space Cn(D2
m)

of n points in the m-punctured disc.

I Theorem ( Bigelow, Krammer, 2001-2002): L2 is faithful.

I Kohno: Lawrence (LKB) representations are equivalent to
sl(2) quantum representations on heighest weight spaces.
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Homological representations of MCG

I Bm = M(D2
m) is a mapping class group.

I Goal: LKB type representations for M(Σ = Σg ,1), g ≥ 2.

I A Heisenberg local system on Cn(Σ) is obtained from a
representation V of the Heisenberg group H(H1(Σ,Z)), which
will appear as a quotient of Bn(Σ) = π1(Cn(Σ)).

I We obtain a twisted action of the MCG on Hn(Cn(Σ),V ).

I For the Shrödinger representation (L2(Rg ) or L2(Zg
N)) we

obtain linear representations of the stably universal central
extension of the MCG.
In the case L2(Zg

N), the dimension is
(2g+n−1

n

)
Ng .
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Surface braid groups

I Bn(Σ) = π1(Cn(Σ)).

I Bellingeri presentation, revisited by Bellingeri-Godelle:
generators σ1, . . . , σn−1, α1, . . . , αg , β1, . . . , βg and relations:

(BR1) [σi , σj ] = 1 for |i − j | ≥ 2,

(BR2) σiσjσi = σjσiσj for |i − j | = 1,

(CR1) [αr , σi ] = [βr , σi ] = 1 for i > 1 and all r ,

(CR2) [αr , σ1αrσ1] = [βr , σ1βrσ1] = 1 for all r ,

(CR3) [αr , σ
−1
1 αsσ1] = [αr , σ

−1
1 βsσ1]

= [βr , σ
−1
1 αsσ1] = [βr , σ

−1
1 βsσ1] = 1 for all r < s,

(SCR) σ1βrσ1αrσ1 = αrσ1βr for all r .
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SCR relation α1σ1β1 = σ1β1σ1α1σ1
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Heisenberg group

I The Heisenberg group H(H) is the central extension of
H = H1(Σ) defined with the intersection cocycle.

I H(H) = Z× H with (k , x)(l , y) = (k + l + x .y , x + y).

I Theorem: Bn(Σ)/(σ1 central) is isomorphic to the Heisenberg
group H(H).

I The above isomorphism is not canonical.
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Representations
I H can be realised as a group of matrices, which gives a

faithful (g + 2)-dimensional representation:(
k, x =

g∑
i=1

piai + qibi

)
7−→

 1 p k+p·q
2

0 Ig q
0 0 1

 ,

where p = (pi ) is a row vector and q = (qi ) is a column vector

I Schrödinger representation on the Hilbert space W ∼= L2(Rg ):[
ρW

(
k , x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = e i~

k−p·q
2 e i~p·sψ(s−q).

I Schrödinger representation on the f.d. Hilbert space
WN
∼= L2(Zg

N), N even: ~ = 2π
N
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MCG action on Heisenberg group

I For f = [g ] ∈M(Σ), the diffeomorphism Cn(g) induces an
automorphism gH = fH ∈ Aut+(H) (identity on center).

I Aut+(H) ' Sp(H) n H∗ is the affine symplectic group.

I fH = (k , x) 7→ (k + df (x), f∗(x)), with df ∈ H∗.

I f 7→ df is a crossed homomorphism, i.e.

dg◦f (x) = df (x) + f ∗(dg )(x) .

I The crossed homomorphism d was already defined by Morita
and generates H1(M(Σ),H∗) ∼= Z.
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Notation

I HBM
∗ denotes the Borel-Moore homology,

HBM
n (Cn(Σ);V ) = lim←−

T

Hn(Cn(Σ), Cn(Σ) \ T ;V ),

the inverse limit is taken over all compact subsets T ⊂ Cn(Σ)

I Cn(Σ, ∂−(Σ)) is the properly embedded subspace of Cn(Σ)
consisting of all configurations intersecting a given arc
∂−Σ ⊂ ∂Σ.

I Borel-Moore homology is functorial with respect to proper
maps and for a proper embedding B ⊂ A, the relative
homology HBM

∗ (A,B) is defined.

I For a representation ρ : H → GL(V ) and τ ∈ Aut(H), the
τ -twisted representation ρ ◦ τ is denoted by τV .
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Local system from an Heisenberg group representation
I The (singular or cellular) chain complex of the Heisenberg

group cover, denoted by S∗(C̃n(Σ)), is a right Z[H]-module.

I Given a representation ρ : H → GL(V ), the corresponding
local homology is that of the complex
S∗(Cn(Σ),V ) := S∗(C̃n(Σ))⊗Z[H] V .

I For f = [g ] ∈M(Σ), the map Cn(g) lifts to the Heisenberg
cover and the lift C̃n(g) induces a chain map S∗(C̃n(g)) which
is twisted linear: S∗(C̃n(g))(z .h) = S∗(C̃n(g))(z).fH(h) .

I We get chain maps

S∗(Cn(g),V ) : S∗(Cn(Σ), fHV )→ S∗(Cn(Σ),V ) ,

S∗(Cn(g), τV ) : S∗(Cn(Σ), τ◦fHV )→ S∗(Cn(Σ), τV ) , τ ∈ Aut(H) .
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Main result

Theorem
Let n ≥ 2, g ≥ 1, V a representation of the discrete Heisenberg
group H = H(Σ = Σg ,1) over a ring R.
a)The module HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ));V ) is isomorphic to the

direct sum of

(
2g + n − 1

n

)
copies of V . Furthermore, it is the

only non-vanishing module in HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ));V ).

b) There is a natural twisted representation of the mapping class
group M(Σ) on the R-modules

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
, τ ∈ Aut(H) ,

where the action of f ∈M(Σ) is Cn(f )∗ :

HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τ◦fHV

)
→ HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
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Model surface

...
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Schrödinger representation

I The left action of H ⊂ HR on the Hilbert space W ∼= L2(Rg ),
parametrised by the non zero real number ~.[
ρW

(
k , x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = e i~

k−p·q
2 e i~p·sψ(s−q) .

Theorem (Stone-von Neumann)

W is an irreducible representation of HR and up to isomorphism is
the unique irreducible representation whose character on the center

is (k , 0) 7→ e i~
k
2 .
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Finite dimensional Schrödinger representation

I For N ≥ 2 even, H acts on the f.d. Hilbert space
WN
∼= L2(Zg

N):[
ρW ,N

(
k , x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = e iπ

k−p·q
N e i

2π
N
p·sψ(s−q) .

Theorem (Stone-von Neumann)

WN is an irreducible representation of H and up to unitary
isomorphism is the unique irreducible unitary representation whose

character on the center is (k , 0) 7→ e iπ
k
N .
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Untwisted representation of MCG

I For τ ∈ Aut(H), The Stone-von Neumann theorem provides a
unitary isomorphism τW ∼= W (resp. τWN

∼= WN) defined up
to S1.

I We deduce projective actions

M(Σ)→ PU(Vn) , Vn = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

)
M(Σ)→ PU(VN,n) , VN,n = HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));WN

)
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Stable universal central extension

I For g ≥ 4, M(Σg ,1) has a universal central extension

Z ↪→ M̃(Σg ,1)�M(Σg ,1) .

which is compatible with the inclusion M(Σg ,1) ⊂M(Σg+1,1).

I By pulling back to Σg ,1, g < 4, we have a stable universal
extension for every g .

I The previous projective actions lift to unitary representations

M̃(Σg ,1)→ U(Vn) , M̃(Σg ,1)→ U(VN,n) ,

Vn = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));W

)
,

VN,n = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ));WN

)
.
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Subgroups of MCG

I Action on Heisenberg group

M(Σ)→ Aut(H) ∼= Sp(H) n H∗ , f 7→ fH = (f∗, df ) .

I fH is inner iff f is in the Torelli subgroup T (Σ); fH = Id iff f
is in the Chillingworth subgroup Chill(Σ) ⊂ T (Σ).

I For any representation V of the Heisenberg group, the
homology action gives a representation of Chill(Σ) which
extends (via untwisting) as a linear representation on T (Σ).

I For the Schrödinger representations the homological action
can be untwisted as a linear representation on the subgroup
Mor(Σ) = ker(d) (Morita subgroup).
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Questions

I Kernel ?
From Moriyama, the Johnson filtration is recovered from the
trivial representation.

I Does the Hilbert representation have almost invariant vectors?

I Classical or Quantum ?

I Relation with categorification of infinite generators Heisenberg
algebra ?
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