Heisenberg homology of surface configurations

Christian Blanchet

IMJ-PRG, Université de Paris

January 31, 2022

Recent Developments in Link Homology

joint with Martin Palmer and Awais Shaukat, arXiv:2109.00515

Lawrence representations

• Lawrence (1990): Family of representations, $n \ge 2$,

$$L_n: B_m \to GL(H_n(\widetilde{\mathcal{C}}_n(D_m^2)))$$

- ▶ \widetilde{C}_n is a \mathbb{Z}^2 -cover of the unordered configuration space $C_n(D_m^2)$ of *n* points in the *m*-punctured disc.
- Theorem (Bigelow, Krammer, 2001-2002): L₂ is faithful.
- Kohno: Lawrence (LKB) representations are equivalent to sl(2) quantum representations on heighest weight spaces.

Homological representations of MCG

- $B_m = \mathfrak{M}(D_m^2)$ is a mapping class group.
- ► Goal: LKB type representations for $\mathfrak{M}(\Sigma = \Sigma_{g,1})$, $g \ge 2$.
- A Heisenberg local system on $C_n(\Sigma)$ is obtained from a representation V of the Heisenberg group $\mathcal{H}(H_1(\Sigma, \mathbb{Z}))$, which will appear as a quotient of $B_n(\Sigma) = \pi_1(C_n(\Sigma))$.
- We obtain a twisted action of the MCG on $H_n(\mathcal{C}_n(\Sigma), V)$.
- ► For the Shrödinger representation (L²(ℝ^g) or L²(ℤ^g_N)) we obtain linear representations of the stably universal central extension of the MCG.

In the case $L^2(\mathbb{Z}_N^g)$, the dimension is $\binom{2g+n-1}{n}N^g$.

Surface braid groups

 $\blacktriangleright B_n(\Sigma) = \pi_1(\mathcal{C}_n(\Sigma)).$

Bellingeri presentation, revisited by Bellingeri-Godelle: generators σ₁,...,σ_{n-1}, α₁,...,α_g, β₁,...,β_g and relations:

$$\begin{cases} (\mathbf{BR1}) \ [\sigma_i, \sigma_j] = 1 & \text{for } |i - j| \ge 2, \\ (\mathbf{BR2}) \ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\ (\mathbf{CR1}) \ [\alpha_r, \sigma_i] = [\beta_r, \sigma_i] = 1 & \text{for } i > 1 \text{ and all } r, \\ (\mathbf{CR2}) \ [\alpha_r, \sigma_1 \alpha_r \sigma_1] = [\beta_r, \sigma_1 \beta_r \sigma_1] = 1 & \text{for all } r, \\ (\mathbf{CR3}) \ [\alpha_r, \sigma_1^{-1} \alpha_s \sigma_1] = [\alpha_r, \sigma_1^{-1} \beta_s \sigma_1] & \\ = [\beta_r, \sigma_1^{-1} \alpha_s \sigma_1] = [\beta_r, \sigma_1^{-1} \beta_s \sigma_1] = 1 & \text{for all } r < s, \\ (\mathbf{SCR}) \ \sigma_1 \beta_r \sigma_1 \alpha_r \sigma_1 = \alpha_r \sigma_1 \beta_r & \text{for all } r. \end{cases}$$

SCR relation $\alpha_1 \sigma_1 \beta_1 = \sigma_1 \beta_1 \sigma_1 \alpha_1 \sigma_1$

Heisenberg group

- The Heisenberg group H(H) is the central extension of H = H₁(Σ) defined with the intersection cocycle.
- $\blacktriangleright \mathcal{H}(H) = \mathbb{Z} \times H \text{ with } (k, x)(l, y) = (k + l + x.y, x + y).$
- Theorem: B_n(Σ)/(σ₁ central) is isomorphic to the Heisenberg group H(H).
- The above isomorphism is not canonical.

Representations

➤ H can be realised as a group of matrices, which gives a faithful (g + 2)-dimensional representation:

$$\left(k,x=\sum_{i=1}^g p_i a_i+q_i b_i
ight)\longmapsto \left(egin{array}{ccc}1&p&rac{k+p\cdot q}{2}\\0&l_g&q\\0&0&1\end{array}
ight)$$

where $p = (p_i)$ is a row vector and $q = (q_i)$ is a column vector Schrödinger representation on the Hilbert space $W \cong L^2(\mathbb{R}^g)$:

$$\left[\rho_W\left(k,x=\sum_{i=1}^g p_ia_i+q_ib_i\right)\psi\right](s)=e^{i\hbar\frac{k-p\cdot q}{2}}e^{i\hbar p\cdot s}\psi(s-q).$$

Schrödinger representation on the f.d. Hilbert space $W_N \cong L^2(\mathbb{Z}_N^g)$, N even: $\hbar = \frac{2\pi}{N}$

MCG action on Heisenberg group

For f = [g] ∈ 𝔐(Σ), the diffeomorphism C_n(g) induces an automorphism g_H = f_H ∈ Aut⁺(H) (identity on center).

•
$$\operatorname{Aut}^+(\mathcal{H}) \simeq Sp(H) \ltimes H^*$$
 is the affine symplectic group.

▶
$$f_{\mathcal{H}} = (k, x) \mapsto (k + \mathfrak{d}_f(x), f_*(x))$$
, with $\mathfrak{d}_f \in H^*$.

• $f \mapsto \mathfrak{d}_f$ is a crossed homomorphism, i.e.

$$\mathfrak{d}_{g\circ f}(x) = \mathfrak{d}_f(x) + f^*(\mathfrak{d}_g)(x) \; .$$

The crossed homomorphism ∂ was already defined by Morita and generates H¹(𝔐(Σ), H^{*}) ≃ ℤ.

Notation

• H_*^{BM} denotes the Borel-Moore homology,

$$H_n^{BM}(\mathcal{C}_n(\Sigma); V) = \varprojlim_{T} H_n(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma) \setminus T; V),$$

the inverse limit is taken over all compact subsets $\,\mathcal{T}\subset\mathcal{C}_n(\Sigma)\,$

- C_n(Σ, ∂⁻(Σ)) is the properly embedded subspace of C_n(Σ) consisting of all configurations intersecting a given arc ∂⁻Σ ⊂ ∂Σ.
- Borel-Moore homology is functorial with respect to proper maps and for a proper embedding B ⊂ A, the relative homology H^{BM}_{*}(A, B) is defined.
- For a representation $\rho : \mathcal{H} \to GL(V)$ and $\tau \in Aut(\mathcal{H})$, the τ -twisted representation $\rho \circ \tau$ is denoted by τV .

Local system from an Heisenberg group representation

- The (singular or cellular) chain complex of the Heisenberg group cover, denoted by S_{*}(C̃_n(Σ)), is a right Z[H]-module.
- Given a representation ρ : H → GL(V), the corresponding local homology is that of the complex S_{*}(C_n(Σ), V) := S_{*}(C̃_n(Σ)) ⊗_{Z[H]} V.
- ► For $f = [g] \in \mathfrak{M}(\Sigma)$, the map $\mathcal{C}_n(g)$ lifts to the Heisenberg cover and the lift $\widetilde{\mathcal{C}}_n(g)$ induces a chain map $S_*(\widetilde{\mathcal{C}}_n(g))$ which is twisted linear: $S_*(\widetilde{\mathcal{C}}_n(g))(z,h) = S_*(\widetilde{\mathcal{C}}_n(g))(z).f_{\mathcal{H}}(h)$.
- We get chain maps

$$S_*(\mathcal{C}_n(g), V) : S_*(\mathcal{C}_n(\Sigma), {}_{f_{\mathcal{H}}}V) \to S_*(\mathcal{C}_n(\Sigma), V) ,$$

 $S_*(\mathcal{C}_n(g),{}_{\tau}V):S_*(\mathcal{C}_n(\Sigma),{}_{\tau\circ f_{\mathcal{H}}}V)\to S_*(\mathcal{C}_n(\Sigma),{}_{\tau}V)\,,\tau\in\operatorname{Aut}(\mathcal{H})\,.$

Main result

Theorem

Let $n \geq 2$, $g \geq 1$, V a representation of the discrete Heisenberg group $\mathcal{H} = \mathcal{H}(\Sigma = \Sigma_{g,1})$ over a ring R. a) The module $H_n^{BM}(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); V)$ is isomorphic to the direct sum of $\binom{2g + n - 1}{n}$ copies of V. Furthermore, it is the only non-vanishing module in $H_*^{BM}(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); V)$. b) There is a natural twisted representation of the mapping class group $\mathfrak{M}(\Sigma)$ on the R-modules

$$H_n^{BM}ig({\mathcal C}_n(\Sigma), {\mathcal C}_n(\Sigma, \partial^-(\Sigma)); {}_ au Vig) \;, \; au \in {
m Aut}({\mathcal H}) \;,$$

where the action of $f \in \mathfrak{M}(\Sigma)$ is $\mathcal{C}_n(f)_*$: $H_n^{BM}(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); _{\tau \circ f_{\mathcal{H}}}V) \to H_n^{BM}(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); _{\tau}V)$

Model surface

leisenberg homology of surface configurations

Schrödinger representation

The left action of H ⊂ H_R on the Hilbert space W ≅ L²(R^g), parametrised by the non zero real number ħ.

$$\left[\rho_W\left(k,x=\sum_{i=1}^g p_ia_i+q_ib_i\right)\psi\right](s)=e^{i\hbar\frac{k-p\cdot q}{2}}e^{i\hbar p\cdot s}\psi(s-q).$$

Theorem (Stone-von Neumann)

W is an irreducible representation of $\mathcal{H}_{\mathbb{R}}$ and up to isomorphism is the unique irreducible representation whose character on the center is $(k, 0) \mapsto e^{i\hbar \frac{k}{2}}$.

Finite dimensional Schrödinger representation

▶ For $N \ge 2$ even, \mathcal{H} acts on the f.d. Hilbert space $W_N \cong L^2(\mathbb{Z}_N^g)$:

$$\left[\rho_{W,N}\left(k,x=\sum_{i=1}^{g}p_{i}a_{i}+q_{i}b_{i}\right)\psi\right](s)=e^{i\pi\frac{k-p\cdot q}{N}}e^{i\frac{2\pi}{N}p\cdot s}\psi(s-q)$$

Theorem (Stone-von Neumann)

 W_N is an irreducible representation of \mathcal{H} and up to unitary isomorphism is the unique irreducible unitary representation whose character on the center is $(k, 0) \mapsto e^{i\pi \frac{k}{N}}$.

Untwisted representation of MCG

- For *τ* ∈ Aut(*H*), The Stone-von Neumann theorem provides a unitary isomorphism _{*τ*}*W* ≅ *W* (resp. _{*τ*}*W_N* ≅ *W_N*) defined up to *S*¹.
- We deduce projective actions

$$\mathfrak{M}(\Sigma) \to PU(\mathcal{V}_n) \ , \ \mathcal{V}_n = H_n^{BM}(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); W)$$

 $\mathfrak{M}(\Sigma) \to PU(\mathcal{V}_{N,n}) , \ \mathcal{V}_{N,n} = H_n^{BM} \big(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); \ W_N \big)$

Stable universal central extension

► For $g \ge 4$, $\mathfrak{M}(\Sigma_{g,1})$ has a universal central extension

$$\mathbb{Z} \hookrightarrow \widetilde{\mathfrak{M}}(\Sigma_{g,1}) \twoheadrightarrow \mathfrak{M}(\Sigma_{g,1}) \;.$$

which is compatible with the inclusion $\mathfrak{M}(\Sigma_{g,1}) \subset \mathfrak{M}(\Sigma_{g+1,1})$.

- By pulling back to Σ_{g,1}, g < 4, we have a stable universal extension for every g.</p>
- The previous projective actions lift to unitary representations

$$\widetilde{\mathfrak{M}}(\Sigma_{g,1}) o U(\mathcal{V}_n) \;,\; \widetilde{\mathfrak{M}}(\Sigma_{g,1}) o U(\mathcal{V}_{N,n}) \;,$$

 $\begin{aligned} \mathcal{V}_n &= H_n^{BM} \big(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); W \big), \\ \mathcal{V}_{N,n} &= H_n^{BM} \big(\mathcal{C}_n(\Sigma), \mathcal{C}_n(\Sigma, \partial^-(\Sigma)); W_N \big). \end{aligned}$

Subgroups of MCG

Action on Heisenberg group

 $\mathfrak{M}(\Sigma) \to \operatorname{Aut}(\mathcal{H}) \cong \textit{Sp}(H) \ltimes H^* \ , \ f \mapsto f_{\mathcal{H}} = (f_*, \mathfrak{d}_f) \ .$

- *f*_H is inner iff *f* is in the Torelli subgroup *T*(Σ); *f*_H = *Id* iff *f* is in the Chillingworth subgroup Chill(Σ) ⊂ *T*(Σ).
- For any representation V of the Heisenberg group, the homology action gives a representation of Chill(Σ) which extends (via untwisting) as a linear representation on T(Σ).
- For the Schrödinger representations the homological action can be untwisted as a linear representation on the subgroup Mor(Σ) = ker(ϑ) (Morita subgroup).

Questions

Kernel ?

From Moriyama, the Johnson filtration is recovered from the trivial representation.

- Does the Hilbert representation have almost invariant vectors?
- Classical or Quantum ?
- Relation with categorification of infinite generators Heisenberg algebra ?