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Vaughan Jones and foundation of Quantum Topology

The Jones polynomial
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For the trace invariant we have
THEOREM 12. 1/tVp- —tV+ = (Vt— 1/Vt)VL.

The Jones polynomial invariant of links V; is uniquely determined by the
above relation and the normalisation value 1 for the unknot.
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Kauffman state sum construction

» Kauffman Louis, State models and the Jones polynomial. Topology 26
(1987), no. 3, 395-407.
» Kauffman bracket, recursive definition

(%) =A00+A"K)
(DUQ) =(-A% — A7?)(D)

(D) = Z AX SO (A2 _ A=2)ED.
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» Jones polynomial is recovered by V(L) = [(— ) _A2<D> } =y
4

where w is the writhe of an oriented diagram D representing the link L,

w(ly)=1, w(Ll-)=-1, w(D) = Z w(c) .
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Witten's Physical interpretation

» Witten Edward, Topological quantum field theory. Comm. Math. Phys.
117 (1988), no. 3, 353-386.

> Witten Edward, Quantum field theory and the Jones polynomial. Comm.
Math. Phys. 121 (1989), no. 3, 351-399.

Quantum Field Theory and the Jones Polynomial *

Edward Witten **

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,
NJ 08540, USA

Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S? to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 + 1 dimensions.
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Atiyah's contribution

> Atiyah Michael, Topological quantum field theory. Inst. Hautes Etudes
Sci. Publ. Math. No. 68 (1988), 175-186.

» Atiyah Michael, The Jones-Witten invariants of knots. Séminaire
Bourbaki, Vol. 1989/90. Astérisque No. 189-190 (1990), Exp. No. 715,
7-16.

The Jones polynomial can be profitably studied from many angles and
it has been generalized in several ways to produce further knot invariants.
Much of this work has involved important ideas from theoretical physics,
essentially physics of 2 dimensions. However a major break-through came in
1988 when Witten [10] gave a simple interpretation of the Jones polynomial
in terms of 3-dimensional physics. These ideas of Witten are based on a
heuristic use of the Feynman integral, but they lead to very explicit results
and calculations which can be verified by alternative rigorous methods. A
full mathematical treatment of Witten’s theory has yet to appear, so my

account has to be somewhat sketchy and incomplete.
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Homfly-pt polynomial

» Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B. R.; Millett, K.; Ocneanu,
A. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc.
(N.S.) 12 (1985), no. 2, 239-246.

» Przytycki Jézef H., Traczyk, Pawet, Invariants of links of Conway type.
Kobe J. Math. 4 (1988), no. 2, 115-139.

» Jones, V. F. R. Hecke algebra representations of braid groups and link
polynomials. Ann. of Math. (2) 126 (1987), no. 2, 335-388.
ProposiTION 6.2. To each oriented link L (up to isotopy) there is a Laurent

polynomial P, (t, x) in the two variables t and x such that, if N and q satisfy
t=v\/q, x=(Jqg — 1/ /q) then P,(t, x) = X,(q, \). Moreover, P,(t, x) is
uniquely defined by the “Skein rule”: If L, L_ and L, are links that have
profections identical, except in one crossing where they are as in Figure 6.3:

XA R
L, L L,

Ficure 6.3

then t"'P; —tP, =xP; .
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Colored Jones and Statistical models

» Jones Vaughan, On knot invariants related to some statistical mechanical
models. Pacific J. Math. 137 (1989), no. 2, 311-334.

ExampLE 1.20. The quantum group formalism of [Ji], [Dr] sug-
gests that there is a vertex model invariant associated with any finite
dimensional representation of any complex simple Lie algebra. In-
deed, Example 1.18 corresponds to s/, in its n dimensional identity
representation and Example 1.19 embraces the B,, C, and D, series
in their fundamental representations. In support of this conjecture
we give another example, corresponding to the N-dimensional irre-
ducible representation of s/,. The matrix R(0) can be deduced from
[Dr] and [Ji2]. These examples have apparently also been discovered
using braids by Akutsu and Wadati [AW] and Wenzl [W2] although it
is difficult to be absolutely sure, as only the first three cases are given
in [AW] and only an existence result occurs in [W2] (which also gives

» Turaev Vladimir, The Yang-Baxter equation and invariants of links.
Invent. Math. 92 (1988), no. 3, 527-553.
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Quantum Group constructions

» Reshetikhin Nikolai, Turaev Vladimir, Ribbon graphs and their invariants
derived from quantum groups. Comm. Math. Phys. 127 (1990), no. 1,
1-26.

» Reshetikhin Nikolai, Turaev Vladimir, Invariants of 3-manifolds via link

polynomials and quantum groups. Invent. Math. 103 (1991), no. 3,
547-597.

» Turaev Vladimir, Quantum invariants of knots and 3-manifolds. De
Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin,
1994,
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Construction from skein theory

» Lickorish, W. B. R. Three-manifolds and the Temperley-Lieb algebra.
Math. Ann. 290 (1991), no. 4, 657-670

» Lickorish, W. B. R. Invariants for 3-manifolds from the combinatorics of
the Jones polynomial. Pacific J. Math. 149 (1991), no. 2, 337-347.

» Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P. Three-manifold
invariants derived from the Kauffman bracket. Topology 31 (1992), no. 4,
635-699

» Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P. Topological quantum
field theories derived from the Kauffman bracket. Topology 34 (1995), no.
4, 883-927.
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Jones representation of genus 2 MCG

» Jones, V. F. R. Hecke algebra representations of braid groups and link
polynomials. Ann. of Math. (2) 126 (1987), no. 2, 335-388.

10. Mapping class groups

The problem of classification of closed 3-manifolds can be reduced
via Heegard decompositions to the study of the mapping class groups
(= diffeomorphism groups modulo the connected component of the identity) of
closed orientable surfaces of arbitrary genus. It would be significant if one could
find representations of these groups and an invariant via the Reidemeister—Singer
theorem ([36]) as we have done for links via Markov’s theorem. We have not yet
succeeded but we would like to describe some progress towards that goal.

> The genus g surface ¥, is a double covering of the sphere S? branched
over 2g + 2 points.
Birman Hilden homorphism M(S?,2g + 2) — M(X,) whose image is the
so called hyperelliptic MCG.

> In genus 2 the hyperelliptic MCG is equal to M(X>).
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Jones representation of genus 2 MCG

» Vaughan Jones obtained representations of the genus g hyperelliptic MCG
from certain representations of the Hecke algebra Hogo.

» The Hecke algebra is the quotient of the braid group algebra by a
quadratic relation.

» Irreducible representations of the Hecke algebra are indexed by Young
diagrams.

Theorem (V. Jones criterion)

The representation of Hzg12 indexed by the Young diagram Y can be
renormalised into a representation which extends to the hyperelliptic MCG if
and only if Y is rectangular.

TueoreM 10.2. Let Y be a Young diagram and let w} be the corresponding
representation of B,,, adjusted as above so that w}(o,...0, )™ = 1. Then
defines a representation of M(0, m) via w,— 7wy(0;) if and only if Y is
rectangular.



Representations of Mapping Class Groups

Jones representation of genus 2 MCG

However, in genus two, the group generated by the 6,’s is the whole
mapping class group so that we do obtain representations of this group M(2,0).
Up to symmetry there is only one rectangular tableau on 6 nodes, so in fact there
is really only one representation. Here is a choice of matrices corresponding

to @ which, when multiplied by ¢ =%, give a representation

-1 00 0 gq q 0 0 0 0
0 -1 1 00 0 q 0 0 0
6, 0 0 g 00 b:{0 g -1 0 0
0 0 1 -10 10 0 -1 0
0 0 0 0 q 1 0 0 0 -1
-1 0 0 g¢q 0 q 0 0 0 0
0 -1 1 0 0 1 -1 0 00
4, 0 0 g 0 0 0,: 10 0 -1 0 g
0 0 0 g 0 1 0 0 -1 0
0 01 0 -1 0 0 0 0 gq
-1 q 0 0 0
0 g O 0 0
3 0 0 g 0 0l
00 1 -1 0
0 0 1 0 -1
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Representations of Mapping Class Groups

>

>

3-dimensional TQFTs contain representations of central extensions of
MCG.

MCG act on skein algebras of surfaces which have interesting connections
with character varieties and geometry.

Using classical topology we construct action of MCG on homologies of
surface configurations with local coefficents built from representations of
the Heisenberg group.

CB, Martin Palmer, Awais Shaukat, Heisenberg homology on surface
configurations. arXiv:2109.00515 .
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Lawrence representations

> Lawrence (1990): Family of representations, n > 2,
Ly : Bn — GL(Ha(Ca(D2))

> C, is a Z*-cover of the unordered configuration space C,(DZ) of n points
in the m-punctured disc.

» Theorem ( Bigelow, Krammer, 2001-2002): L, is faithful.

» Kohno: Lawrence (LKB) representations are equivalent to s/(2) quantum
representations on heighest weight spaces.
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Homological representations of MCG

> B, =9M(D2) is a mapping class group.
Goal: LKB type representations for M(X, 1), g > 2.

v

> A local system on C,(X,,1) is obtained from a representation V of the
Heisenberg group Hg, which will appear as a quotient of
Br(Xg1) = mi(Ca(Xg,1))-

> We obtain a twisted action of the MCG on H,(Cn(X;,1), V).

> For the Shrodinger representation (L*(R€) or L*(Z5,)) we obtain
representations

M(Eg1) = PU(HA(Cr(Zg 1), V)) -

In the case L*(Z%), the dimension is (2g+:_1) NE.

» For the 2g + 2 dimensional representation defined from the left regular
action we obtain linear representations of the native MCG.
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Surface braid groups

> B(Zg1) = m1(Ca(Zg1)).

» Bellingeri presentation, revisited by Bellingeri-Godelle: generators

01,...,0n-1, Q1,...,0g, P1,...,B and relations:
(BR1) [oi,0i] =1 for |i — j| > 2,
(BR2) gjojoi = ojojo; for |i — j| =1,
(CR1) [ar,0i] =[Br,0i] =1 for i > 1 and all r,
(CR2) [ar,010r01] = [Br,018r01] = 1 for all r,
(CR3) [ar, o7 tasar] = [ar, 07 ' Bso1]

= [Br, 07 aso1] = [Br,07 1 Bso1] =1 forall r <s,

(SCR) o1p,010,01 = a,01 5, for all r.

Composition is written from right to left.

» First presentation in closed case:
Scott, G. P. Braid groups and the group of homeomorphisms of a surface.
Proc. Cambridge Philos. Soc. 68 (1970), 605-617.
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SCR relation ay0181 = 0181010101

LU

L
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Heisenberg group

» The Heisenberg group H, is the central extension of H = H1(X, 1)
defined with the intersection cocycle.

» He =7 x Hwith (k,x)(l,y) =(k+ 1+ x.y,x+y).

» Theorem: B,(X.,1)/(o1 central) is isomorphic to the Heisenberg group
He.

» We consider the associated regular covering C~,,(Zg,1) and its homology
which support a right action of #,.
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Model surface for ¥ =¥ 1

0%

> Cn(X,07 (X)) is the properly embedded subspace of C,(X) consisting of all
configurations intersecting a given arc 0~ X C 0X.

> HBY denotes the Borel-Moore homology,

Hi " (Ca(£), Ca(E,07(£)); Z) = lim Ha(Ca(E), Ca(E, 07 (£)U(CH(EN\ T): Z),

the inverse limit is taken over all compact subsets T C C,(X).

Theorem
For g > 1, n > 2, the module HEY(C,(X),C,(Z,07 (X)), Z) is a free

Z[H]-module of rank < 2g+n-1 ) Furthermore, it is the only

non-vanishing module in HEM((? (X),Cn(Z,07 (%)), Z).
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Representations

Let a;, bi € Hi(X,Z) be the classes of o, 8i, 1 <i < g.

» 7, can be realised as a group of matrices, which gives a faithful
(g + 2)-dimensional representation:

k+p-q
2

g 1 p

(k,x = Z piai + q;b;) — 0 I q ,
i=1 0 0 1

where p = (pi) is a row vector and g = (¢;) is a column vector.

» The left regular action of the Heisenberg group #, is affine on
M, =2 Z?6T . Its linearisation gives a 2g 4 2 dimensional representation L.
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Unitary representations

» Schrodinger representation on the Hilbert space W 22 [*(R#):

g k_p.q .
[pw (k,x => piai+ q,-b,) w] (5) = " F ey (s — g).

i=1

> Schrédinger representation on the f.d. Hilbert space Wy = [(Z5)).

For N even, h = %’
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MCG action on Heisenberg group

> For [f] € M(X), the diffeomorphism C,(f) induces an automorphism
fy € Aut™(H) (identity on center).

» For a representation p : Hgy — GL(V) and 7 € Aut(H), the 7-twisted
representation p o 7 is denoted by V.
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Local system from an Heisenberg group representation

» The (singular or cellular) chain complex of the Heisenberg group cover,
denoted by S5.(Cn(X)), is a right Z[H,]|-module.

> Given a representation p : Hy — GL(V), the corresponding local homology

is that of the complex S5.(Ci(X), V) := Si(Ca(X)) ®zpw,) V-
> For [f] € M(X), the map C,(f) lifts to the Heisenberg cover and the lift
Cn(f) induces a chain map S.(C,(f)) which is twisted linear over Z[H,],

S.(Ca(F))(z.h) = 5.(Ca(F))(2).Fre(h) .
» We get chain maps
5.(Ca(F), V) : 5.(Ca(X), £,V) = S.(Ca(X), V) ,
5u(Ca(F), 2V) = 5u(Ca(E), rory V) = Su(Ca(E), V) , 7 € Aut(H,) -
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Notation

> HEM denotes the Borel-Moore homology,

H"(Cn(E); V) = lim Ha(Ca(X), Ca(E) \ T V),

the inverse limit is taken over all compact subsets T C Cn(X)

» Cn(X,07 (X)) is the properly embedded subspace of C,(X) consisting of all
configurations intersecting a given arc 9~ X C 0X.
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Twisted representation

Theorem

Let n > 2, g > 1, V a representation of the discrete Heisenberg group H; over

aring R.

a)The module HE (Ca(Z), Ca(X, 07 (X)); V) is isomorphic to the direct sum of
2g+n—1

(",

module in HEY(Cn(X), Ca(Z,07(X)); V).

b) There is a natural twisted representation of the mapping class group 9(X)

on the modules

copies of V. Furthermore, it is the only non-vanishing

HZM (Co(E), Ca(E, 87 (X)); -V) , T € Aut(H) ,

where the action of f € M(X) is Co(f)x :
HnBM (C"(Z)v C"(Zv o (Z))v TOfHV) - HnBM (C"(z)7 C"(zv ai(z))v TV)
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Schrodinger representation

> The left action of Hj D H, on the Hilbert space W =2 [*(R#),
parametrised by the non zero real number h.

g k—pg
|:pW (k,x = Z piai + qibi> 1/)} (s) = e 2 e,hp'sl/’(s -q).

i=1

Theorem (Stone-von Neumann)

W is an irreducible representation of H§ and up to isomorphism is the unique

. . . . ink
irreducible representation whose character on the center is (k,0) — &2,
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Finite dimensional Schrodinger representation

> For N > 2 even, H acts on the f.d. Hilbert space Wy = L*(Z%):

g
. k—pq 2m
PW,N <k,X = Zpiai + q:'bi> 1/1] (s)=¢e" 7/\7‘76'%;:451/,(5 -q).

i=1

Theorem (Stone-von Neumann)

Wi is an irreducible representation of 7 and up to unitary isomorphism is the
unique irreducible unitary representation whose character on the center is

-k
(k,0) — e'™ .



Representations of Mapping Class Groups

Untwisted representation of MCG

» For 7 € Aut(H), The Stone-von Neumann theorem provides a unitary
isomorphism W = W (resp. Wy = Wy) defined up to St

» We deduce projective actions
M(T) — PUVa) , Vo = HY (Ca(E), Ca(Z, 07 (T)); W)

M(L) — PUVN,n) 5 Vo = HEY (Co(E), Ca(E, 07 (X)); Way)
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> The left regular action of (ko, x0) € Hg is an automorphism of
H, = Z*61. We decompose xo = po + qo, po € As = Span(a;, 1 < i < g),
go € N\» = Span(b;, 1 < i < g), then the action is written

k' =k + ko + po.g — qo.p
p=p+po
9 =g+
» We consider the linearisation p; of this affine action on L = H, ® Z. The

linear action of pg(ko, o) is as follows.

k' = k + tko + po.q — qo.p

p'=p+tpo
q' = q+ tqo
t'=t

> For 7 € Aut*(H,), the linear map 7 x id : L + ,L gives an isomorphism
of Z[Hg]-module.
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Theorem
There is a representation

M(E = Ty1) = Aut(Ho(Ca(X), Co(Z,07(T))i L)

which associates to f € M(X,,1) the composition of the coefficient
isomorphism induced by fy,

H,,(C,,():),C,,():,(T(Z)); L) — H, (Cn(Z),Cn(Z,af(Z)); fu L) ,
with the functorial homology isomorphism

Hn(Ca(X),Ca(Z,07(X)); 1, L) — Ha(Ca(X),Ca(X,07 (X)) L) ,
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Going further

Is this classical or quantum ?
Action of cobordisms ?
Faithfulness ?

In unitary case, can we find almost invariant vectors ?

vVvYyyvyy

What about closed surfaces ? Is there a Jones type criterion for extending
subrepresentations to closed surfaces ?
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