Chapitre 6

Calcul d'intégrales et primitives

6.1 Primitives classiques

cf section 17.1 dans le polycopié.

Fin du cours du 14/02

Primitives : utilisation des fonctions trigonométriques et leurs fonctions réciproques; utilisation des fonctions hyperboliques et leurs fonctions réciproques.

Fin du cours du 20/02

6.2 Méthodes usuelles

cf section 17.2 dans le polycopié.

6.2.1 Intégration par parties

6.2.2 Changement de variable

Fin du cours du 21/02

Exemples de changements de variable.

Application aux fonctions paires, impaires et périodiques.

6.2.3 Intégration des fractions rationnelles

On appelle fraction rationnelle tout quotient de deux polynômes. On admet le résultat suivant qui sera précisé plus loin :

Théorème 6.2.1 (Décomposition en éléments simples). Toute fraction rationnelle f(t) se décompose comme combinaison linéaire d'éléments de la forme :

$$\begin{aligned} & x^n, \ n \geq 0 \\ & \frac{1}{(t-a)^k}, \ a \in \mathbb{R} \ et \ k > 0, \\ & \frac{t}{((t-c)^2 + b^2)^l}, \ b \in \mathbb{R}, \ c \in \mathbb{R}, \ et \ l > 0, \\ & \frac{1}{((t-c)^2 + b^2)^l}, \ b \in \mathbb{R}, \ c \in \mathbb{R}, \ et \ l > 0. \end{aligned}$$

Les trois premiers types s'intègrent avec les fonctions usuelles.

Le dernier se ramène par changement de variable à $\frac{1}{(X^2+1)^l}$; pour l=1 on a une primitive : Artan; on obtient les intégrales pour les valeurs successives de l en intégrant par partie.

Fin du cours du 27/02

On va préciser la décomposition en éléments simples.

Théorème 6.2.2. Si $f(t) = \frac{P(t)}{Q(t)}$, où P est un polynôme, et :

$$Q(t) = \prod_{i} (t - a_i)^{\alpha_i} \prod_{j} ((t - c_j)^2 + b_j^2)^{\beta_j}$$

alors f(t) s'écrit de manière unique comme combinaison linéaire des éléments suivants :

$$x^{n}, 0 \leq n \leq \deg(P) - \deg(Q),$$

$$\frac{1}{(t-a_{i})^{k_{i}}}, 0 < k_{i} \leq \alpha_{i},$$

$$\frac{t}{((t-c_{j})^{2}+b_{j}^{2})^{l_{j}}}, 0 < l_{j} \leq \beta_{j},$$

$$\frac{1}{((t-c_{i})^{2}+b_{j}^{2})^{l_{j}}}, 0 < l_{j} \leq \beta_{j}.$$

Exemples: a) Cas de facteurs simples de degré 1;

- b) Cas de facteurs simples de degré 1 et 2;
- c) Cas où il y a un facteur simple de degré 1 avec multiplicité.

Fin du cours du 28/02

6.3 Décomposition en éléments simples : compléments

6.3.1 Utilisation de la division euclidienne

Théorème 6.3.1. Soient A et $B \neq 0$ deux polynômes, alors il existe un unique couple de polynôme (Q, R) tel que :

$$A = BQ + R$$
, $\deg(R) < \deg(Q)$.

Applications : calcul de la partie entière ; exemple avec multiplicité : décomposition de $\frac{t^3+t+3}{t^2+t+1}$.

6.3.2 Division suivant les puissances croissantes

Théorème 6.3.2. Soient A et B deux polynômes avec $B(0) \neq 0$, soit k > 0, alors il existe un polynôme R tel que :

$$A(t) = (a_0 + a_1t + \dots a_{k-1}t^{k-1}Q + t^kR(t) .$$

Application : cas d'un facteur t^{α} ; cas d'un facteur $(t-a)^{\alpha} = X^{\alpha}$.

6.4 Utilisation de la parité

Exemple.