Chapter 1

Heegaard-Floer homologyfor knots, grid model

1.1 Grid diagrams

Définition 1.1.1. A grid diagram of size $n \geq 2$ is a couple of sets of n points \mathbb{X} and \mathbb{O} in the $[0, n]^{2} \cap\left(\frac{1}{2}+\mathbb{Z}\right)^{2}$, such that:

- the $2 n$ points are all distinct,
- each column and each row contain exactly one point in \mathbb{X} and one point in \mathbb{O}.

A grid diagram defines an oriented link diagram by joining vertically \mathbb{X} to \mathbb{O} and horizontally \mathbb{O} to \mathbb{X}, with vertical arcs going over at crossings.

Théorème 1.1.2 (Cromwell, see Dynnikov proposition 4). Any oriented link admits a grid diagram presentation. The relation on grid diagrams corresponding to isotopy is generated by

- cyclic permutation of rows or columns,
- exchange of non interleaving adjacent rows or columns,
- stabilization.

Remarque 1.1.3. We may consider grid diagrams on the torus rather than on the square, which removes the cyclic permutation move in the preceeding theorem.
Exercice 1.1.4. 1. Give a presentation of the fundamental group of the complement of a link given by a grid diagram, using meridian curves around vertical arcs as generating set.
2. Give a presentation of the Alexander module of a knot given by a grid diagram.
3. Give a formula for Alexander polynomial of a knot given by a grid diagram.

1.2 Combinatorial Heegaard-Floer complex, tilde version

Here we are working with scalar field \mathbb{F}_{2}. Let $G=(\mathbb{X}, \mathbb{O})$ be a grid diagram of size n. We will consider this diagram on the torus. The complex $\widetilde{C K}(G)$ has dimension n ! and basis S formed with sets of n integral points in the grid representing permutations (graphs of permutations).

$$
S=\left\{\mathbf{x}_{\sigma}, \sigma \in \mathcal{S}_{n}\right\}
$$

For \mathbf{x}, \mathbf{y} in S, we consider an associated set of empty rectangles in the torus $\operatorname{Rect}^{0}(\mathbf{x}, \mathbf{y})$ which is empty unless the two permutations are obtain from each other by composing with a tranposition. In the case where $\mathbf{x}=\mathbf{x}_{\sigma}, \mathbf{y}=\mathbf{y}_{\tau}$ with $\tau=\sigma \circ(i j)$, then $\operatorname{Rect}^{0}(\mathbf{x}, \mathbf{y})$ contains the rectangles in the square with

- corners in \mathbf{x}, \mathbf{y},
- horizontal edges from \mathbf{x} to \mathbf{y},
- vertical edges from \mathbf{y} to \mathbf{x},
- no points from \mathbf{x} and \mathbf{y} inside.

The formula for the boundary map $\widetilde{\partial}$ is given by

$$
\widetilde{\partial} \mathbf{x}=\sum_{\mathbf{y}} \sum_{\substack{r \in \operatorname{Rect} 0 \\ \mathbb{X}(\mathbf{x}, \mathbf{y}) \\ \mathbb{X}(r)=0(r)=0}} \mathbf{y} .
$$

Here, $\mathbb{X}(r)$ and $\mathbb{O}(r)$ are counting \mathbb{X} or \mathbb{O} points in the rectangle.
Proposition 1.2.1. One has $\widetilde{\partial} \circ \widetilde{\partial}=0$.

Gradings

The M grading is uniquelly defined by

$$
M(\mathbf{y})-M(\mathbf{x})=1-2 \mathbb{O}(r), \text { for all } r \in \operatorname{Rect}^{0}(\mathbf{x}, \mathbf{y}),
$$

and normalisation $M\left(\mathbf{x}_{0}=1-n\right.$, where \mathbf{x}_{0} is formed with lower left corners of \mathbb{O} points.
The unormalised Alexander grading is defined as the sum of minus winding numbers:

$$
a(\mathbf{x})=\sum_{x \in \mathbf{x}} a(x),
$$

where $-a(x)$ is the linking number between the knot and the oriented vertical throw x.
Proposition 1.2.2. The boundary map $\widetilde{\partial}$ decreases M by 1 and respects a.

We get a bigraded homology $\widetilde{H K}(G)=\sum_{i, j} \widetilde{H K}_{i, j}(G)$. Its graded Euler characteristic is the polynomial

$$
\chi(\widetilde{H K}(G))=\chi(\widetilde{H K}(G))=\sum_{i, j}(-1)^{i} \operatorname{rk}\left(\widetilde{C K}_{i, j}(G)\right) t^{j}
$$

Théorème 1.2.3. Suppose that G represents a knot K, then the graded Euler characteristic $\chi(\widetilde{H K}(G))$ is related to the Alexander polynomial $\Delta_{K}(t)$ by the formula

$$
\chi(\widetilde{H K}(G)) \doteq(t-1)^{n-1} \Delta_{K}(t)
$$

Here the \doteq means equality up to sign and power of t. One can normalise the Alexander grading in $\frac{1}{2} \mathbb{Z}$ in order to get an exact formula with symmetrised Alexander polynomial.

One can show that $\widetilde{H K}(G)$ is invariant by exchange move, but not by stabilisation. The changing in stabilisation move can be understood, and in fact $\widetilde{H K}(G)$ determines the hat Heegaard-Floer homology $\widehat{H F K}(K)$.

1.3 Combinatorial Heegaard-Floer homology of knots, full package

We consider the case of a knot given by a grid diagram od size $n, G=(\mathbb{X}, \mathbb{O})$. We introduce n indeterminates U_{1}, \ldots, U_{n}. The complex $C F K(G)$ is feely generated over $\mathbb{F}_{2}\left[U_{1}, \ldots, U_{n}\right]$ by the previous set S. The boundary map is defined by

$$
\partial \mathbf{x}=\sum_{\mathbf{y}} \sum_{\substack{r \in \operatorname{Rect} 0^{0}(\mathbf{x}, \mathbf{y}) \\ \text { x(r) }\\}} U_{1}^{\mathbb{Q}_{1}(r)} \ldots U_{n}^{\mathbb{Q}_{n}(r)} \mathbf{y} .
$$

The M grading is extended by setting $M\left(U_{k}\right)=-2$. The unormalised Alexander grading is extended by $a\left(U_{k}\right)=-1$, and further normalised by $A(\mathbf{x})=a(\mathbf{x})-A_{0}$ (see formula for A_{0} in reference MOST).

Théorème 1.3.1. a) $(C F K(G), \partial)$ is a bigraded complex.
b) Exchange or stabilisation moves produces homotopy equivalent complexes as modules over $\mathbb{F}_{2}\left[U_{1}\right]$.
c) The bigraded $\mathbb{F}_{2}\left[U_{1}\right]$-module $\operatorname{HFK}(G)=\operatorname{HFK}(K)$ is an invariant of the knot.
d) By setting $U_{1}=0$ one get the bigraded homology $\widehat{H F K}(K)$ whose graded Euler characteristic is the symmetrised Alexander polynomial.

The full package is developed in reference MOST for links and produces a complex with filtration whose filtrated homotopy type is an invariant.

