Chapter 3

Symmetric spaces

Let X be a topological space. For $n \ge 1$, we denote by $SP^n(X)$ the quotient of X^n by action of the symmetric group S^n .

3.1 Examples

 $SP^{n}(\mathbb{C}) \cong \mathbb{C}^{n}, SP^{n}(\mathbb{C}P^{1}) \cong \mathbb{C}P^{n}.$ $SP^{2}(S^{1})$ is a Mobius band.

Proposition 3.1.1. Let Σ be a complex curve, then $SP^n(\Sigma)$ is a smooth complex manifold.

If X has basepoint $x_0 \in X$, then adding a base point defines an inclusion map $SP^n(X) \in SP^{n+1}(X)$. It will be useful to consider the inductive limite $SP^{\infty}(X) = \bigcup_n SP^n(X)$. There is a natural map $SP^n(X) \times SP^m(X) \to SP^{n+m}(X)$. If we fix the base point, then we get a commutative monoid structure on $SP^{\infty}(X)$. We denote by * the monoid operation.

3.2 Symmetric spaces of complex curve

Let Σ be a genus g complex curve (closed real surface). We denote by $\Sigma^1 = \bigvee_{2g} S^1$ its 1-squeleton for a standard cell decomposition with one 0-cell v_0 , 2g 1-cells e_1, \ldots, e_g , $e_{g+1} = e'_1, \ldots, e_{2g} = e'_q$ and one 2 - cell denoted d with boundary $\partial d = \prod_{i=1}^g e_i e'_i \overline{e'_i}$.

The space $SP^n(\Sigma^{1})$ contains many Mobius bands coming from second symmetric product of 1-cells.

We define $\overline{SP}^n(\Sigma^1)$ (resp. $\overline{SP}^n(\Sigma)$) to be the quotient of $SP^n(\Sigma^1)$ (resp. $SP^n(\Sigma)$) by identification of x * y with $v_0 * xy$ for $x, y \in e_i \cong S^1$, $1 \le i \le 2g$.

The space $\overline{SP}^{n}(\Sigma^{1})$ (resp. $\overline{SP}^{n}(\Sigma)$) is homotopy equivalent to $SP^{n}(\Sigma^{1})$ (resp. $SP^{n}(\Sigma)$).

The monoid structure on $SP^{\infty}(\Sigma^1)$ and $SP^{\infty}(\Sigma)$ induces one on the quotients $\overline{SP}^{\infty}(\Sigma^1)$ and $\overline{SP}^{\infty}(\Sigma)$.

Lemma 3.2.1. $(SP^{s}(D^{2}), SP^{s}(D^{2}) - SP^{s}(\mathring{D}^{2})$ is a 2s-cell (i.e. homeomorphic to $(D^{2s}, S^{2s-1}))$.

We denote by u_s the 2s-cell $SP^s(d)$.

Using the monoid structure, we get a CW-complex structure on $\overline{SP}^{\infty}(\Sigma)$ with cells v_0 and

 $e_{i_1} * e_{i_2} * \cdots * e_{i_t} * u_s, \quad i_1 < \cdots < i_t, \quad s \ge 0$.

In the cell complex, all boundaries are zero.

Homology and cohomology as modules follow. The monoid structure gives a product on homology:

Theorem 3.2.2. The algebra $H_*(SP^{\infty}(\Sigma)) \cong H_*(\overline{SP}^{\infty}(\Sigma))$ is multiplicatively generated by $e_i, 1 \le i \le 2g, u_s, s \ge 0$ with relations $e_i^2 = 0,$ $e_i e_j = -e_j e_i, \text{ for } i \ne j,$ $e_i u_s = u_s e_i,$ $u_s u_{s'} = {s+s' \choose s} u_{s+s'}.$

Theorem 3.2.3. The map $\pi^* : H^*(SP^n(\Sigma)) \to H^*(\Sigma^n)$ is an injective homomorphism, with image the subring of invariant classes under action of symmetric group: $H^*(\Sigma^n)^{S_n}$.

Theorem 3.2.4. The ring $H^*(SP^n(\Sigma))$ is generated by the 1-dimensional classes $f_i = e_i^*$, and the 2-dimensional class $b = u_1^*$.

Exercice 3.2.5. Prove the previous theorem.

Theorem 3.2.6. For $n \geq 2$, $\pi_1(SP^n(\Sigma)) \cong H_1(\Sigma)$.

We will need the group $\pi'_2(SP^n(\Sigma))$ which is the quotient of $\pi_2(SP^n(\Sigma))$ by action of $\pi_1(SP^n(\Sigma))$ (the action is trivial for $n \geq 3$).

An hyperelliptic involution on Σ is an involution with 2g + 2 fixed points τ . We then get $\Sigma/\tau \simeq S^2$.

For $n \geq 2$ we defined a map $S: S^2 \to SP^n(\Sigma)$ by quotienting the map

 $Id \times \tau \times const : \Sigma \to \Sigma^n$.

Theorem 3.2.7. For $n \geq 2$, $\pi'_2(SP^n(\Sigma)) \approx \mathbb{Z}$, generated by S.

3.3 Symmetric spaces and Heegaard diagrams

ch référence Ozsvath-Szabo, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158, section 2.