UNIVERSITÉ PARIS DIDEROT Année 2014-2015, Master 2 Topology of low dimensional manifolds.

Exam, 03/03/2015 (duration: 3 hours)

Ι

We consider the sequence of framed knots K_n , $n \ge 1$, below:

- 1. Identify knot K_1 (trivial knot, left or right-handed trefoil ?).
- 2. Write a presentation for the Alexander module of knot K_2 .
- 3. Compute the Alexander polynomial of K_2 .
- 4. Compute the Alexander polynomial of K_n for odd n.

Π

1. Compute the homology $H_*(S^3(L))$ of the 3-manifold obtained by surgery on the framed link L depicted below.

- 2. Let $j = j_{-1} \amalg j_1 : D^2 \times S^0 \to S^2$ be an oriented embedding. Give a handle decomposition of the manifold $W = D^3 \times S^1 \cup_g D^2 \times D^1 \times S^1$, where $g: D^2 \times S^0 \times S^1 \to \partial (D^3 \times S^1) = S^2 \times S^1$, is defined by $g(x, -1, y) = (j_{-1}(x), y)$ and $g(x, 1, y) = (j_1(\overline{x}), \overline{y})$.
- 3. Show that the boundary of W is diffeomorphic to the mapping tore

$$T_f = [0,1] \times S^1 \times S^1 / (1,x,y) \sim (0, f(x,y)) ,$$

where $f: S^1 \times S^1 \to S^1 \times S^1$ is the map defined by $f(x, y) = (\overline{x}, \overline{y})$.

4. Show that T_f is diffeomorphic to $S^3(L)$.

In this exercise we study evaluation of Kauffman bracket at $A = e^{\frac{i\pi}{8}}$. We use the notation < > for this evaluation.

- 1. Compute evaluation at A of Kauffman bracket a) for the trivial knot with framing k, b) for right-handed trefoil knot with framing k.
- 2. Show that $\langle L \rangle$ vanishes for a link L containing a component L_j which has odd total linking number with the rest of the link: $lk(L_j, L L_j) = 0$. You may start with the case where L_j is trivial.

A link L is called a **proper link** if and only if any component has even total linking number with the rest of the link.

3. Show that, for a proper link L , any link L^\prime obtained by connecting two component of L with a band is also a proper link, and

$$< L >= (-A^2 - A^{-2}) < L' > .$$

(Observe that in this situation, the link L'' depicted below is not a proper link.)

4. Show that for a knot K with framing k, one has

<

$$< K >= (-A^2 - A^{-2})(-A^3)^k \epsilon_K$$
, where $\epsilon_K = \pm 1$.

Remark: $\epsilon_K = (-1)^{Arf(K)}$ gives a definition for the Arf invariant: $Arf(K) \in \{0, 1\}$.

