
MORPHING ETALE SPACES

CHRISTOPHE CORNUT

Abstract. We give a simple description of the category of sheaves on the
small etale site of an irreducible scheme whose local rings are geometrically uni-
branch and henselian, which affords a characterization of representable sheaves.

1. Introduction

Let S be a scheme, ι : Z ↪→ S a closed immersion with complementary open
immersion j : U ↪→ S. By Grothendieck’s gluing theorem [2, IV, 9.5], the category
Shv(Set) of sheaves on the small etale site of S is equivalent to the category of
triples (BZ , BU , ℓB) where BZ ∈ Shv(Zet), BU ∈ Shv(Uet), and ℓB : BZ → ι∗j∗BU

is a morphism in Shv(Zet). The equivalence takes B ∈ Shv(Set) to BZ = ι∗B,
BU = j∗B, and ℓB = ι∗(uB) where uB : B → j∗j

∗B is the unit of the adjunction

j∗ : Shv(Set)→ Shv(Uet) : j∗.

This gets particularly simple when Z and U are punctual schemes, corresponding to
the closed and generic points s and η of a 1-dimensional irreducible local scheme S:
by the topological invariance of etale sheaves, the first two components of our triples
may then be viewed as etale sheaves on the corresponding residue fields, i.e. as sets
equipped with a smooth action of the corresponding absolute Galois groups. The
description of the connecting morphism ℓB is however somewhat trickier.

When S is the spectrum of a henselian discrete valuation ring O, we arrive at
the following picture. Let K be the fraction field of O, Ksep a separable closure of
K, Knr the maximal unramified extension of K in Ksep, Onr the integral closure of
O in Knr, G = Gal(Ksep/K) the Galois group and I = Gal(Ksep/Knr) the inertia
subgroup, so that G/I = Gal(Knr/K) ≃ Gal(ksep/k) where ksep is the residue field
of Onr, a separable closure of the residue field k of O. Then Shv(Set) is equivalent
to the category of morphisms of smooth G-sets ℓB : Bs → Bη where I acts trivially
on Bs. A sheaf B is mapped to the localization morphism between its stalks at the
geometric points s and η of S = Spec(O) which are respectively determined by

Onr

** **
Onr � x

**O '
� 44

** **
ksep and O '

� 44
w�

**
Knr �

� // Ksep.

k �&
44

K �&
44
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When B = HomS(−, X) for some X ∈ Set, we obtain the morphism

X(ksep)
ℓB // X(Ksep)

X(Onr)

≃

OO

// X(Knr)
� ?

OO

When X belongs to the strictly full subcategory Sset of separated etale S-schemes,
the morphism ℓB is injective by the valuative criterion of separatedness. In general,
covering X by affines, we find that ℓB is injective on G-orbits, i.e.

∀x ∈ X(ksep), ∀g ∈ G : ℓB(gx) = ℓB(x) ⇐⇒ gx = x.

It turns out that the converse implications hold. Namely, a sheaf B ∈ Shv(Set) is
representable by some X ∈ Sset (resp. by some X ∈ Set) if and only if ℓB : Bs → Bη

is injective (resp. injective on orbits). In particular, there are adjunctions

(−)set : Shv(Set)←→ Sset : yon

(−)et : Shv(Set)←→ Set : yon

where yon is the Yoneda embedding, and the left adjoints (−)set and (−)et corre-
spond to the functors which map a G-morphism ℓB : Bs → Bη to respectively

(ℓB)set : Im(Bs → Bη)
� � inc // Bη

(ℓB)et : Im(Bs → Bη ×G\Bs)
p1 // Bη

The modest goal of this paper is to explain and generalize this to the case where S
is irreducible with geometrically unibranch henselian local rings, e.g. S = Spec(O)
where O is an arbitrary henselian valuation ring. Sections 2 to 6 investigate the
relations between various notions of etale objects over S: etale algebraic spaces,
etale sheaves, fet-sheaves (which are sheaves on the subsite Sfet of Set whose objects
are finite etale over opens of S), Zariski sheaves of finite etale sheaves, Zariski
sheaves of π-sets or G-sets. Under good assumptions on S, we arrive at a fairly
concrete strictly full subcategory Shv⋆G(SZar) of the category of Zariski sheaves of
G-sets, which is equivalent to all categories previously considered. We explore its
features in section 7, and collect our findings in section 8. Section 9 spells them
out when S = Spec(O) for a henselian valuation ring O.

2. From etale algebraic spaces to etale sheaves

We fix a big fppf site (Sch/S)fppf as defined in [6, Tag 021L] and let Set be
the corresponding small etale site, whose underlying category is the strictly full
subcategory of X’s in (Sch/S)fppf which are etale over S, equipped with the induced
topology. The embedding Set ↪→ (Sch/S)fppf induces a morphism of sites

θ : (Sch/S)fppf → Set,

https://stacks.math.columbia.edu/tag/021L
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whence an adjunction between the corresponding pull-back and push-out functors
on sheaves, both of which 2-commute with the Yoneda embeddings:

Setyon

��

yon

��
Shv(Set)

θ∗
// Shv((Sch/S)fppf )

θ∗

oo

Let AlgSp(S) be the strictly full subcategory of algebraic spaces in Shv((Sch/S)fppf ),
and AlgSpet(S) the strictly full subcategory of algebraic spaces etale over S.

Proposition 1. The above adjunction restricts to mutually inverse equivalences

θ∗ : Shv(Set)←→ AlgSpet(S) : θ∗

and induces an adjunction

inc : AlgSpet(S)←→ Shv((Sch/S)fppf ) : θ
∗θ∗.

Proof. It is sufficient to establish that for A ∈ AlgSpet(S) and B ∈ Shv(Set),
(1) The counit θ∗θ∗A→ A is an isomorphism.
(2) θ∗B belongs to AlgSpet(S) and the unit B → θ∗θ

∗B is an isomorphism.
For X ∈ Set, we denote by HX ∈ Shv((Sch/S)fppf ) and hX ∈ Shv(Set) the images
of X under the Yoneda embeddings. Thus θ∗HX = hX and θ∗hX ≃ HX .

Since A is an etale algebraic space over S, there is a U ∈ Set and a section
a ∈ A(U) such that the corresponding morphism a : HU → A is etale surjective,
i.e. relatively representable by etale surjective morphisms of schemes. In particular,
a : HU → A is an epimorphism in Shv((Sch/S)et). So it is also an epimorphism
in Shv((Sch/S)fppf ), and θ∗a, which is the morphism a : hU → θ∗A corresponding
to a in θ∗A(U) = A(U), is an epimorphism in Shv(Set). By general properties of
topoi, these epimorphisms induce isomorphisms HU/Σ ≃ A and hU/σ ≃ θ∗A, where
Σ = HU ×A HU and σ = hU ×θ∗A hU are the induced equivalence relations on HU

and hU . Since θ∗ is a right adjoint, it commutes with all limits, so σ = θ∗Σ. Since
a : HU → A is etale surjective, so are both projections Σ→ HU . In particular, Σ is
representable by a scheme R which is etale over U , hence etale over S, i.e. Σ = HR

and σ = hR with R ∈ Set. Since θ∗ is exact, θ∗θ∗A is the quotient of θ∗hU ≃ HU

by θ∗hR ≃ HR, i.e. θ∗θ∗A ≃ HU/HR ≃ A. One checks that the isomorphism
θ∗θ∗A→ A thus constructed is the counit of our adjunction, and this proves (1).

Fix a set S of generators of Set, for instance the set of all standard etale affine
schemes over affine open subschemes of S. Let B be the set of pairs (X,x) with
X ∈ S and x ∈ B(X). Set U =

∐
(X,x)∈B X, so that U ∈ Set. Let b : hU → B be

the morphism of etale sheaves on S corresponding to the section b ∈ B(U) whose
restriction to the (X,x)-component X of U equals x ∈ B(X). Then b : hU → B is an
epimorphism in Shv(Set). By general properties of topoi, it induces an isomorphism
hU/σ ≃ B where σ = hU ×B hU is the equivalence relation on hU induced by b. By
lemma 2 below applied to the diagonal of B, the etale sheaf σ is representable by an
open subscheme R of U×SU , so R ∈ Set is an etale equivalence relation on U ∈ Set

and σ = hR. Since B ≃ hU/hR and θ∗ is exact, θ∗B ≃ HU/HR, which belongs
to AlgSpet(S). As above, θ∗θ∗B ≃ hU/hR ≃ B, and the isomorphism B → θ∗θ

∗B
thus constructed is the unit of our adjunction. This proves (2). □

Lemma 2. Any monomorphism of Shv(Set) is representable by open immersions.
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Proof. Let B′ be a subsheaf of B ∈ Shv(Set), fix T ∈ Set and b ∈ B(T ). Since B′ is
a Zariski subsheaf of B, there is a largest open U of T such that b|U ∈ B′(U). Let
f : T ′ → T be any morphism in Set such that c = f∗b ∈ B(T ′) belongs to B′(T ′).
Let V = f(T ′) be the image of f . Since f is etale, V is open in T , f : T ′ ↠ V
is an etale covering, and T ′′ = T ′ ×V T ′ equals T ′ ×T T ′. Let pi : T ′′ → T ′ be
the projections. Since p∗1f

∗b = p∗2f
∗b in B(T ′′), p∗1c = p∗2c in B′(T ′′); since B′ is a

sheaf, c = f∗b′ for some b′ ∈ B′(V ); since B is a sheaf and f∗b′ = c = f∗(b|V ) in
B(T ′), b′ = b|V in B(V ). So b|V = b′ belongs to B′(V ) and V ⊂ U . It follows that
U ↪→ T represents B′ ×B T ↪→ T , which proves the lemma. □

For later use, we also record here the following consequence.

Proposition 3. If B = ∪Bi in Shv(Set) with Bi representable by (Xi, bi), Xi ∈ Set,
bi ∈ Bi(Xi), then B is representable by (X, b) for some X ∈ Set, b ∈ B(X), Bi ↪→ B
is representable by an open immersion Xi ↪→ X, with X = ∪Xi and b|Xi = bi.

Proof. This follows from the previous lemma and a variant of [6, Tag 01JJ]. □

We denote by α the restriction of θ∗ to AlgSpet(S), an equivalence of categories

α : AlgSpet (S)→ Shv (Set) .

Remark 4. Let A ∈ AlgSpet(S) and B = α(A) ∈ Shv(Set). If A is a scheme, i.e. A
is representable by an S-scheme X, then X → S is etale, i.e. X ∈ Set, and X
represents B. Conversely if B is representable by X ∈ Set, then X, viewed as an
algebraic space over S, is etale over S and α(X) ≃ B, so A ≃ X, i.e. A is a scheme.

Proposition 5. For a morphism f : S′ → S, there is a 2-commutative diagram

Shv(Set)
θ∗

//

f∗

��

AlgSpet(S)α
oo � � inc //

f∗

��

Shv((Sch/S)fppf )

f∗

��
Shv(S′

et)
θ∗
// AlgSpet(S

′)
α

oo � � inc // Shv((Sch/S′)fppf )

with right adjoint 2-commutative diagram

Shv(Set)
θ∗

// AlgSpet(S)α
oo Shv((Sch/S)fppf )

θ∗θ∗oo

Shv(S′
et)

θ∗
//

f∗

OO

AlgSpet(S
′)

α
oo

fet
∗

OO

Shv((Sch/S′)fppf )
θ∗θ∗oo

f∗

OO

Proof. Consider the commutative diagram of morphisms of sites

(Sch/S)fppf
θ // Set

(Sch/S′)fppf

f

OO

θ
// S′

et

f

OO

whose underlying continuous functors, going in opposite directions, are given by

f(X) = X ×S S′ and θ(X) = X.

https://stacks.math.columbia.edu/tag/01JJ
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The corresponding pull-back and push-out functors respectively give the forward
and backward outer rectangles of our diagrams, and the 2-commutativity of all
remaining possible squares follow from proposition 1. □

Remark 6. While f∗ : AlgSpet(S)→ AlgSpet(S
′) is the restriction of the eponymous

functor on fppf sheaves, its right adjoint fet
∗ : AlgSpet(S

′)→ AlgSpet(S) is given by

Shv(Set)
θ∗

// AlgSpet(S) Shv((Sch/S)fppf )
θ∗θ∗oo

Shv(S′
et)

f∗

OO

AlgSpet(S
′)

αoo � � inc //

fet
∗

OO

Shv((Sch/S′)fppf )

f∗

OO

Let s → S be a geometric point of S over s ∈ S, k(s, s) the separable closure
of k(s) in k(s), Osh

S,s the strict henselization of OS,s with respect to k(s) ↪→ k(s).
Then k(s, s) is the residue field of Osh

S,s and the action of Γ(s) = Gal(k(s, s)/k(s))

on k(s, s) lifts uniquely to a continuous action on the local ring Osh
S,s. Evaluation

at s gives points of the topoi Shv((Sch/S)fppf ) and Shv(Set), with stalks

Shv(Set)
θ∗

// Shv((Sch/S)fppf )
(−)(s) // SetAut(s/s)

forget // Set

where for any group H, SetH is the category of sets with a left action of H.

Proposition 7. For A in AlgSpet(S) with image B = α(A) in Shv(Set), there are
functorial Aut(s/s)-equivariant isomorphisms of Γ(s)-sets

Bs = lim−→(X,x)∈Set(s)B(X) ≃ A(Osh
S,s) ≃ A (k(s, s)) ≃ A(s)

where Set(s) is the category of pairs (X,x) with X ∈ Set, x ∈ X(s).

Proof. For (X,x) ∈ Set(s), there is a canonical factorization of x : s→ X as

s↠ Spec (k(s, s)) ↪→ Spec
(
Osh

S,s

)
→ X.

Evaluating on A and taking colimits gives an Aut(s/s)-equivariant sequence

lim−→(X,x)∈Set(s)B(X)→ A(Osh
S,s)→ A (k(s, s))→ A(s).

We have to show that all maps are bijections. In the colimit, we may restrict the
indexing category to the full initial category Uaf

et (s) of pairs (X,x) where X is affine
over some fixed affine neighborhood U of s in S. Then by [6, Tag 04GW],

Spec
(
Osh

S,s

)
= lim←−(X,x)∈Uaf

et (s)X in Sch/S.

On the other hand, A is locally of finite presentation over S by [6, Tag 0468], so

lim−→(X,x)∈Set(s)B(X)
≃−→ A(Osh

S,s)

by [6, Tag 01ZC]. For A = HomS(−, X) with X ∈ Set, we have isomorphisms

A
(
Osh

S,s

) ≃−→ A (k(s, s))
≃−→ A(s)

by [4, 18.5.4.4] for the first map, and using that the fiber Xs → s is a disjoint
union of spectra of finite separable extensions of k(s) for the second map. For
a general A, choose a presentation A ≃ (U/R)fppf with U,R ∈ Set. It is now
sufficient to establish that for any O in {Osh

S,s, k(s, s), k(s)}, the map U(O)→ A(O)
identifies A(O) with the quotient of U(O) by the equivalence relation R(O). Since

https://stacks.math.columbia.edu/tag/04GW
https://stacks.math.columbia.edu/tag/0468
https://stacks.math.columbia.edu/tag/01ZC
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U ×A U = R as presheaves on Sch/S, U(O)/R(O) → A(O) is injective. Since
U → A is etale surjective and O is strictly henselian, it is also surjective. □

3. From etale sheaves to finite etale sheaves

Definition 8. A morphism of schemes f : X → Y is fet if it factors as X → U ↪→ Y
where f ′ : X → U is finite etale and U ↪→ Y is an open immersion.

Note that f ′(X) is then clopen in U , and open in Y . In particular, we may
always take U = f(X). Thus f : X → Y is fet if and only if f(X) is open in
Y and f : X → f(X) is finite etale. A fet morphism is separated and etale, and
an etale morphism f is fet if and only if X → f(X) is finite. Fet morphisms are
plainly stable under arbitrary base change. A morphism f : X → Y between a fet
S-scheme X and a separated etale S-scheme Y is fet, and its image f(X) is fet over
S. Indeed if U is the image of X in S, then f factors as X → YU ↪→ Y . Since X
is finite etale over U and YU is separated etale over U , X → YU is finite etale and
f(X) is finite etale over U , so X → Y is fet and f(X)→ S is fet.

Definition 9. We denote by Sfet the site whose underlying category is the strictly
full subcategory of fet S-schemes in Set, equipped with the induced topology.

By [1, III, Corollaire 3.3] and the next lemma, coverings in Sfet are just coverings
in Set, i.e. jointly surjective families of morphisms in Sfet with fixed target.

Lemma 10. The category Sfet is stable under fiber products.

Proof. Let X1 → X3 and X2 → X3 be morphisms in Sfet, Ui the image of Xi in
S, and V = U1 ∩ U2. The cartesian diagram

X1 ×X3 X2
//

��

X2,V
//

��

X2

��
X1,V

//

��

X3,V
� � //
� _

��

X3,U2� _

��
X1

// X3,U1

� � // X3

shows that X1 ×X3
X2 is finite etale over X3,V = X3 ×U3

V which is finite etale
over V , so X1 ×X3

X2 is finite etale over V and indeed fet over S. □

We denote by Shv(Sfet) the category of fet-sheaves, i.e. sheaves on Sfet, and let

β : Shv(Set)→ Shv(Sfet)

be the restriction functor. This is usually badly behaved.

Example 11. Let O be the local ring of Z[X]/(X2 +1) at the prime P = (X − 2)
above p = 5. Take S = Spec(Z(p)), X = Spec(O), X ′ the S-scheme obtained by
gluing two copies of X along its generic fiber Y , ι : Y ↪→ X and a, b : X ↪→ X ′ the
corresponding open embeddings. Let ι : Y ↪→ X and a, b : X → X ′ be the induced
morphisms between the corresponding representable etale sheaves on S. Then β(ι)
is an isomorphism while ι is not, so β does not reflect isomorphisms; β(a) = β(b)
while a ̸= b, so β is not faithful; and the nontrivial automorphism of β(Y) = β(X )
does not lift to any morphism of X , so β is not full. Note that Z(p) is normal,
local. . . but not henselian: this is necessary by corollary 15 below.
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Definition 12. We say that S is locally henselian (resp. locally strictly henselian)
if OS,s is henselian (resp. strictly henselian) for every s ∈ S.

Example 13. The spectrum of an absolutely integrally closed ring is locally strictly
henselian [6, Tag 0DCS]. An integral normal scheme with separably closed func-
tion field is locally strictly henselian [6, Tag 09Z9]. A punctual scheme is locally
henselian [6, Tag 06RS]. A henselian valuation ring is locally henselian: this follows
from Gabber’s criterion for henselian pairs [6, Tag 09XI].

Proposition 14. Suppose that S is locally henselian. Then any object of Set has
a Zariski covering by objects of Sfet.

Proof. Let f : X → S be an etale morphism, x ∈ X, s = f(x). We have to find an
open neighborhood U of x in X such that f : U → f(U) is finite etale. Shrinking
S and X, we may assume that both are affine, in which case f is affine, with finite
fibers. Let X(s) → S(s) be the base change of f to S(s) = Spec(OS,s). By [5,
2.3.2], there is a clopen decomposition X(s) = X(s)f

∐
X(s)′ with X(s)f → S(s)

finite (and etale) and X(s)′s = ∅ – so x ∈ X(S)f . By [3, §8], shrinking S further
around s, we may assume that it comes from a clopen decomposition X = Xf

∐
X ′

with Xf finite over S. Then U = Xf is the desired neighborhood of x in X. □

Corollary 15. If S is locally henselian, then β is an equivalence of categories.

Proof. This now follows from the comparison lemma of [1, III, Théorème 4.1]. □

Corollary 16. Suppose that S is locally henselian. Then B ∈ Shv(Set) is repre-
sentable if and only if β(B) ∈ Shv(Sfet) is a union of representable subpresheaves.

Proof. Suppose B = HomSet
(−, X) for some X ∈ Set. Let X = ∪Xi be a Zariski

covering of X by objects Xi ∈ Sfet and set Bi = HomSet
(−, Xi), a subsheaf of

B. Then B = ∪Bi in Shv(Set), so β(B) = ∪β(Bi) in Shv(Sfet), with β(Bi) ∈
Shv(Sfet) representable by Xi ∈ Sfet. Suppose conversely that B′ = β(B) is a
union of representable subpresheaves: there is a collection of objects Xi ∈ Sfet and
sections bi ∈ B′(Xi) inducing monomorphisms (−)∗bi : HomSfet

(−, Xi) ↪→ B′ with
image B′

i ⊂ B′ such that B′ = ∪B′
i in Shv(Sfet). Then the sections bi ∈ B(Xi)

induce monomorphisms (−)∗bi : HomSet
(−, Xi) ↪→ B with image Bi ⊂ B such that

B = ∪Bi in Shv(Set). Note that bi ∈ Bi(Xi) and (Xi, bi) represents Bi. Then by
proposition 3, B is representable by a pair (X, b), X ∈ Set, b ∈ B(X), with Bi ⊂ B
representable by an open embedding Xi ↪→ X, with X = ∪Xi and b|Xi = bi. □

Proposition 17. Let f : X → S be an integral morphism with X irreducible and
S locally henselian. Then f(X) is closed and f : X → f(X) is an homeomorphism.

Proof. Since f is universally closed [6, Tag 01WM], we just have to show that it
is injective. Fix s ∈ f(S). Our assumptions on f are stable under base change to
Spec(OS,s), so we may assume that S is local henselian with closed point s. By [6,
Tag 09XI], any idempotent of Γ(Xs,OXs) lifts to an idempotent of Γ(X,OX). Since
X is connected, it follows that Xs is connected. But Xs is also totally disconnected
by [6, Tag 00GS and Tag 04MG], so it must be a single point. □

4. From fet-sheaves to Zariski Fet-sheaves

Let SZar be the usual Zariski site of S. For U ∈ SZar, let FetU be the category of
finite etale U -schemes, which we view as a strictly full subcategory of Sfet and equip

https://stacks.math.columbia.edu/tag/0DCS
https://stacks.math.columbia.edu/tag/09Z9
https://stacks.math.columbia.edu/tag/06RS
https://stacks.math.columbia.edu/tag/09XI
https://stacks.math.columbia.edu/tag/01WM
https://stacks.math.columbia.edu/tag/09XI
https://stacks.math.columbia.edu/tag/00GS
https://stacks.math.columbia.edu/tag/04MG
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with the induced topology. Since FetU is stable under fiber products, coverings in
FetU still correspond to jointly surjective families of morphisms, and for V ⊂ U ,
the base change functor FetU → FetV is continuous. Plainly Sfet = ∪UFetU . For
V = ∅, Fet∅ is the initial object ∅ of Sfet, Shv(Fet∅) is the punctual category with
a single sheaf B∅ whose direct image under ∅ → U is the final object of Shv(FetU ).

Definition 18. A Zariski Fet-sheaf is given by the following data:
(1) For U ∈ SZar, a sheaf BU ∈ Shv(FetU ),
(2) For jUV : V ↪→ U in SZar, a morphism rVU : BU → (jUV )∗(BV ) in Shv(FetU ).

Here (jUV )∗(BV )(X) = BV (XV ) for X ∈ FetU . These are required to satisfy
(1) the cocycle relation rWU = (jUV )∗(r

W
V ) ◦ rVU for W ⊂ V ⊂ U ,

(2) the sheaf-like condition that for any covering U = ∪Ui in SZar,

BU = ker

∏
i

(jUUi
)∗BUi ⇒

∏
i,j

(jUUi,j
)∗BUi,j


in Shv(FetU ), where Ui,j = Ui ∩ Uj as usual.

A morphism from ((BU ), (r
V
U )) to ((B′

U ), (r
′V
U )) is given by a collection b = (bU )U

of morphisms bU : BU → B′
U in Shv(FetU ), such that for any V ⊂ U , the diagram

BU
bU //

rVU
��

B′
U

r′VU
��

(jUV )∗(BV )
(jUV )∗(bV ) // (jUV )∗(B

′
V )

is commutative in Shv(FetU ). We denote by ShvFet(SZar) the category thus defined.

Remark 19. We may also describe objects of ShvFet(SZar) as pairs ((BU ), (r̃
V
U ))

where for jUV : V ↪→ U in SZar, r̃VU : (jUV )∗BU → BV is a morphism in Shv(FetV ).
The cocycle relation becomes r̃WU = r̃WV ◦ (jVW )∗(r̃VU ), but the formulation of the
sheaf-like condition requires passing back to the adjoint morphisms BU → (jUV )∗BV .

Proposition 20. There is an equivalence of categories

γ1 : Shv(Sfet)→ ShvFet(SZar), B 7→ ((BU ), (r
V
U ))

where BU is the restriction of B to FetU and for V ⊂ U and X ∈ FetU ,

(rVU )X : BU (X) = B(X)
res−→ B(XV ) = BV (XV ) = (jUV )∗(BV )(X).

Proof. Any X in Sfet belongs to FetU where U is the image of X in S, so γ1 is
faithful: for a morphism b : B → B′ in Shv(Sfet), bX : B(X) → B′(X) equals
bU,X : BU (X)→ B′

U (X). A morphism f : Y → X in Sfet factors as Y → XV ↪→ X
where V ⊂ U is the image of Y in S and f ′ : Y → XV is a morphism in FetV , so γ1
is full: for any morphism (bU ) : γ1(B)→ γ1(B

′), the formula bX = bU,X defines a
morphism of presheaves b : B → B′ since in the commutative diagram

B(X)

bX

��

BU (X)

bU,X

��

(rVU )X // BV (XV )

bV,XV

��

resf′
// BV (Y )

bV,Y

��

B(Y )

bY

��
B′(X) B′

U (X)
(r′VU )X // B′

V (XV )
resf′

// B′
V (Y ) B′(Y )
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the compositions of the horizontal maps are the restrictions along f : Y → X on
B and B′; plainly, γ1(b) = (bU ). Finally, we will see in lemma 21 below that any
covering {Xi → X} in Sfet has a refinement {X ′

j,k → XUj → X} where U = ∪Uj

is a Zariski covering and for each index j, {X ′
j,k → XUj

} is a covering in the full
subcategory FetUj . It follows that γ1 is essentially surjective.

Indeed for ((BU ), (r
V
U )) in ShvFet(SZar), we may set B(X) = BU (X) and for

f : Y → X, define resf : B(X) → B(Y ) by the first line of the above diagram. If
g : Z → Y is another morphism in Sfet, W ⊂ V the image of Z and g′ : Z → YW

the induced morphism, the definition of ShvFet(SZar) yields a commutative diagram

B(X)
resf // B(Y )

resg

��

BU (X)

(rWU )X %%

(rVU )X // BV (XV )

(rWV )XV

��

resf′
// BV (Y )

(rWV )Y

��
BW (XW )

res(f◦g)′ &&

resf′
// BW (YW )

resg′

��
BW (Z)

B(Z)

whose outer triangle gives resf◦g = resg ◦ resf . We have thus defined a presheaf
B on Sfet, and it remains to establish that it satisfies the sheaf property with
respect to (1) horizontal coverings X = ∪XUi

, U = ∪Ui, and (2) vertical coverings
{fj : Xj → X} entirely occurring in FetU . For (1), this follows from the sheaf-like
condition that we have imposed on ((BU ), (r

U
V )). For (2), we have to show that

B(X)
?
= ker

∏
i

B(Xi)⇒
∏
i,j

B(Xi ×X Xj)

 in Set.

Unwinding the definitions, we have to show that

BU (X)
?
= ker

∏
i

BUi(Xi)⇒
∏
i,j

BU ′
i,j
(Xi ×X Xj)

 in Set

where Ui ⊂ U is the image of Xi and U ′
i,j ⊂ Ui,j is the image of Xi ×X Xj . Since

all schemes in sight are finite etale over U , any V ∈ {Ui, U
′
i,j} is actually clopen in

U . Our sheaf-like condition for the resulting Zariski covering U = V
∐

V ′ shows
that (rVU , rV

′

U ) induces an isomorphism BU ≃ (jUV )∗(BV )× (jUV ′)∗(BV ′). Thus

(rUi

U )Xi : BU (Xi) → BUi(Xi)

and (r
U ′

i,j

U )Xi×XXj
: BU (Xi ×X Xj) → BU ′

i,j
(Xi ×X Xj)
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are bijections. The desired equality now becomes the sheaf condition

BU (X) = ker

∏
i

BU (Xi)⇒
∏
i,j

BU (Xi ×X Xj)

 in Set

for the sheaf BU ∈ Shv(FetU ) with respect to the covering {Xi → X}. So we have
constructed a B ∈ Shv(Sfet). For any open U of S and Y ∈ FetU with image
V ⊂ U , we have B|FetU (Y ) = B(Y ) = BV (Y ) by definition of B, and we define(

BU (Y )
bU,Y // B|FetU (Y )

)
=

(
BU (Y )

(rVU )Y // BV (Y )

)
.

We have just seen that, as V is clopen in U , bU,Y is a bijection. One checks that
(bU,Y )Y defines an isomorphism bU : BU → B|FetU in Shv(FetU ), and that (bU )U
defines an isomorphism ((BU ), (r

V
U ))→ γ1(B). So γ1 is essentially surjective. □

Lemma 21. Any covering {Xi → X} in Sfet has a refinement of the form

{Xj,k → XUj ↪→ X}
where Xj,k is open in some Xi, U = ∪jUj is a Zariski covering of the image U of
X in S and for each index j, {Xj,k → XUj

} is a finite covering in FetUj
.

Proof. Let {fi : Xi → X} be a covering in Sfet. Let π : X → S be the structural
morphism and let U be its image. Since π : X → U is finite etale, there is an open
partition U =

∐
n≥1 Un such that Xn = π−1(Un) is finite flat of rank n over Un. Set

Xn,i = π−1
i (Un), where πi : Xi → S is the structural morphism. So {Xn,i → Xn} is

a covering in Un,fet. If {Xn,j,k → Xn,Un,j
↪→ Xn} is a refinement for {Xn,i → Xn}

as desired, then so is {Xn,j,k → XUn,j
↪→ X} for {Xi → X}. We may thus assume

that π is surjective of constant degree n ≥ 1. We instead assume that π is surjective
of degree bounded by n ≥ 1 and argue by induction on n. If n = 1, then π is an
isomorphism and the covering {Xi ↠ fi(Xi) ↪→ X} is already of the desired form.
In general, let Si be the image of the structural morphism πi : Xi → S, so that
fi factors as Xi → XSi

↪→ X, where f ′
i : Xi → XSi

is a morphism between finite
etale Si-schemes, hence itself finite etale. The image Yi of f ′

i is clopen in XSi
, so

XSi
= Yi

∐
Zi with Yi and Zi finite etale over Si. The image S′

i of Zi in Si is
clopen in Si, so Si = S′

i

∐
Si,∗. Since Yi → Si is surjective by construction, the

degree of the finite etale surjective morphism Zi ↠ S′
i is bounded by n − 1. By

our induction hypothesis, each one of the induced coverings {f−1
i′ (Zi) → Zi} has

a refinement of the form {Xi,j,k → Zi,Si,j → Zi} where S′
i = ∪jSi,j is a Zariski

covering and {Xi,j,k → Zi,Si,j} is a finite covering in FetSi,j , with Xi,j,k open in
some f−1

i′ (Zi) ⊂ Xi′ . For any fixed i, {Si,j} ∪ {Si,∗} is a Zariski covering of Si,
and since the Si’s cover S, we obtain a Zariski cover of S. Over Si,j ⊂ S′

i ⊂ Si,
XSi,j = Yi,Si,j

∐
Zi,Si,j has a finite covering in FetSi,j obtained by adjoining to

{Xi,j,k → Zi,Si,j
↪→ XSi,j

} the single morphism {Xi,Si,j
↠ Yi,Si,j

↪→ XSi,j
}. Over

Si,∗ ⊂ Si, XSi,∗ = Yi,Si,∗ is covered by the single morphism {Xi,Si,∗ ↠ XSi,∗}. This
yields a refinement of {Xi → X} of the desired form. □

5. From Zariski Fet-sheaves to Zariski π-sheaves

We now assume that our base scheme S is irreducible with generic point η, and
pick a geometric point η of S over η.
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For a nonempty open U of S, U is irreducible hence connected, and the category
of sheaves on FetU is equivalent to the category of smooth π(U)-sets, where the
fundamental group π(U) is the automorphism group π(U, η) of the fiber functor
FetU → Set which takes X to X(η). Here π(U) is equipped with the coarsest topol-
ogy for which the actions of π(U) on the finite discrete sets X(η) are continuous, so
π(U) is a profinite group; and given a left π(U)-set Y , we say that y ∈ Y is smooth
if its stabilizer π(U)y is open in π(U), we let Y sm be the set of smooth points in
Y , and we say that Y is smooth if Y sm = Y , so that Y 7→ Y sm is right adjoint
to the inclusion of the strictly full subcategory Setsmπ(U) of smooth π(U)-sets in the
category Setπ(U) of all π(U)-sets. The fiber functor induces equivalences

FetU
(−)(η) //

_�

yon

��

Setfsmπ(U)� _

inc

��
Shv(FetU )

(−)(η) // Setsmπ(U)

where Setfsmπ(U) is the full subcategory of finite smooth π(U)-sets in Setsmπ(U), and the
bottom functor takes a sheaf BU ∈ Shv(FetU ) to the smooth π(U)-set

BU (η) = lim−→(X,x)∈FetU (η)BU (X)

= lim−→(X,x)∈FetcU (η)BU (X)

Here FetU (η) is the category of pairs (X,x) with X ∈ FetU and x ∈ X(η), on which
π(U) acts by g ·(X,x) = (X, g ·x), and FetcU (η) is the π(U)-stable strictly full initial
subcategory where X is connected.

For nonempty opens V ⊂ U , the base change functor FetU → FetV is compatible
with the fiber functors. It induces a continuous morphism π(V ) → π(U), and the
pull-back functor (jUV )∗ : Shv(FetU ) → Shv(FetV ) corresponds to the restriction
functor res : Setsmπ(U) → Setsmπ(V ). Accordingly, the data ((BU ), (r̃

V
U )) which specifies

a Zariski Fet-sheaf may now be viewed as a pair (C, ρ), where C is a presheaf
of sets on nonempty opens of S, with each C(U) equipped with an action ρU of
π(U), such that the restriction maps C(U)→ C(V ) are equivariant with respect to
π(V ) → π(U). We extend C to all opens by C(∅) = {⋆}. The sheaf condition on
((BU ), (r

V
U )) unwinds to the following sheaf condition on C: for any Zariski covering

U = ∪Ui of a nonempty open U of S and any smooth π(U)-set Y ,

Homπ(U) (Y,C(U)) = ker

∏
i

Homπ(Ui) (Y,C(Ui))⇒
∏
i,j

Homπ(Ui,j) (Y,C(Ui,j))


We denote by Shvπ(SZar) the category of these Zariski π-sheaves, and let

γ2 : ShvFet(SZar)→ Shvπ(SZar)

be the equivalence of categories just defined.

Remark 22. Irreducibility of S also implies that any X in Set is locally connected.
Indeed X → S is open, hence generizing, so the minimal points of X belong to Xη.
Since X → S is etale, Xη is discrete, so its points are the minimal points of X, and
they are locally finite in X. Therefore any quasi-compact open U of X has finitely
many irreducible components, thus also finitely many connected components; being
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closed and disjoint, they must be open in U , hence also in X. So any point of X
has a connected open neighborhood, and the connected components of X are open.

6. From Zariski π-sheaves to Zariski sheaves of G-sets

With assumptions as above, suppose moreover that S is geometrically unibranch.
For s ∈ S, set S(s) = Spec(OS,s), so that S(s) = lim←−V where V runs through the
affine open neighborhoods of s in S. For U open in S with s ∈ U , pull-back along

η ↪→ S(s)→ U

and evaluation at η induce compatible fiber functors

FetU → FetS(s) → Fetη → Set

and the corresponding continuous morphisms between the fundamental groups

π(η)→ π(S(s))→ π(U).

Our new assumption implies that the latter are surjective [6, Tag 0BQI]. The group
G = π(η) is the Galois group of the separable closure of k(η) in k(η). We set

I(s) = ker (G↠ π(S(s))) and I(U) = ker (G↠ π(U)) .

Note that I(η) = {1}, i.e. π(η) ≃ π(S(η)) by [6, Tag 0BQN].

Proposition 23. (1) For any s ∈ S, I(s) = ∩s∈UI(U). (2) For any nonempty
open U of S, I(U) is the closure of the subgroup of G generated by {I(s) : s ∈ U}.

Proof. (1) Plainly I(s) ⊂ ∩s∈UI(U). Suppose conversely that g ∈ ∩s∈UI(U). Let
X be a finite etale S(s)-scheme. By [3, 8.8.2.ii & 8.10.5.x] and [4, 17.7.8.ii], X
extends to a finite etale U -scheme X ′ for some affine open neighborhood U of s in
S. Since g ∈ I(U), g acts trivially on X ′(η) = X(η). Thus g ∈ I(s).

(2) Let I ′(U) be the closure of the subgroup of G generated by {I(s) : s ∈ U}.
Plainly I ′(U) ⊂ I(U). Conversely, let Ω be an open subgroup of G containing I ′(U).
Then for all s ∈ U , Ω/I(s) is an open subgroup of π(S(s)) = G/I(s), so there is a
finite connected etale S(s)-scheme X(s) and a point x(s) ∈ X(s)(η) with stabilizer
Ω in G. As above, we may and do extend X(s) to a scheme Xs which is finite
etale over some small neighborhood Us of s in U . For s, s′ ∈ U , there is a unique
isomorphism between the restrictions of Xs and Xs′ over the intersection Us ∩ Us′

which maps x(s) to x(s′). It follows that the Us-schemes Xs glue to a scheme
X which is finite etale over U , and equipped with a G-equivariant isomorphism
G/Ω ≃ X(η). Since I(U) acts trivially on X(η), we obtain I(U) ⊂ Ω. Since I ′(U)
is closed, it is the intersection of all such Ω’s, thus also I(U) ⊂ I ′(U). □

Given the proposition, the following convention seems reasonable: we set

π(∅) = G and I(∅) = {1}.

For any open U of S, we identify Setπ(U) with the strictly full subcategory of SetG
where I(U) acts trivially, and Setsmπ(U) with Setπ(U) ∩ SetsmG . Accordingly, we may
now view a Zariski π-sheaf as a presheaf of G-sets, and the category Shvπ(SZar)
as the strictly full subcategory of PreShvG(SZar) whose objects are characterized

https://stacks.math.columbia.edu/tag/0BQI
https://stacks.math.columbia.edu/tag/0BQN
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by the following sheaf-like property: a presheaf of G-sets C on SZar belongs to
Shvπ(SZar) if and only if for every Zariski covering U = ∪iUi in SZar,

C(U) = ker

∏
i

C(Ui)⇒
∏
i,j

C(Ui,j)

sm,I(U)

.

Note that taking the empty covering of the empty open retrieves our condition that
C(∅) is a singleton, now viewed as a terminal object in Setsmπ(∅) = SetsmG .

Applying the sheafification functor a : PreShvG(SZar)→ ShvG(SZar), we obtain

γ3 : Shvπ(SZar)→ ShvG(SZar).

Proposition 24. There is an adjunction

γ3 : Shvπ(SZar)←→ ShvG(SZar) : (−)sm,I

HomShvG(SZar) (γ3(C), D) = HomShvπ(SZar)

(
C,Dsm,I

)
for C ∈ Shvπ(SZar) and D ∈ ShvG(SZar), where for any open U of S,

Dsm,I(U) = D(U)sm,I(U)

The functor γ3 is fully faithful, and a Zariski sheaf of G-sets D ∈ ShvG(SZar)
belongs to the essential image of γ3 if and only if the following conditions hold:

(1) For every quasi-compact open U of S, D(U) is a smooth G-set.
(2) For every s ∈ S, I(s) acts trivially on the stalk Ds of D at s.

Proof. The formula Dsm,I(U) = D(U)sm,I(U) defines a subpresheaf Dsm,I of D
since for opens V ⊂ U of S, we have I(V ) ⊂ I(U), so D(U) → D(V ) maps
Dsm,I(U) to D(V )sm,I(U) ⊂ D(V )sm,I(V ) = Dsm,I(V ). If U = ∪Ui, then

Dsm,I(U) = ker

∏
i

D(Ui)⇒
∏
i,j

D(Ui,j)

sm,I(U)

= ker

∏
i

D(Ui)
sm,I(Ui) ⇒

∏
i,j

D(Ui,j)
sm,I(Ui,j)

sm,I(U)

= ker

∏
i

Dsm,I(Ui)⇒
∏
i,j

Dsm,I(Ui,j)

sm,I(U)

using the sheaf property of D for the first equality, so Dsm,I belongs to Shvπ(SZar)
and the functor (−)sm,I : ShvG(SZar)→ Shvπ(SZar) is well-defined. We have

HomShvG(SZar) (γ3(C), D) = HomPreShvG(SZar) (C,D)
= HomPreShvG(SZar)

(
C,Dsm,I

)
= HomShvπ(SZar)

(
C,Dsm,I

)
by the defining adjunction for γ3, the fact that all C(U)’s are smooth G-sets fixed
by I(U), and the fact that Shvπ(SZar) is a full subcategory of PreShvG(SZar).

The full faithfulness of γ3 is equivalent to the unit C → γ3(C)sm,I being an
isomorphism, which we now establish. It is a monomorphism since the sheaf-like
condition on C implies that C is a separated presheaf, so already C → γ3(C) is a
monomorphism. For any section d of D = γ3(C) over U , there is a Zariski covering
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U = ∪Ui such that d|Ui
= ci in D(Ui) for some ci ∈ C(Ui); then (ci) belongs

to the kernel K of
∏

i C(Ui) ⇒
∏

i,j C(Ui,j) by injectivity of C(Ui,j) → D(Ui,j).
If d moreover belongs to Dsm,I(U), there is a compact open subgroup Ω of G
containing I(U) and fixing d; then Ω also fixes all d|Ui ’s, all ci’s by injectivity of
C(Ui)→ D(Ui), and (ci) thus belongs to Ksm,I(U), which is the image of C(U) by
the sheaf-like property of C; so there’s a c ∈ C(U) such that c|Ui = ci = d|Ui for
all i, whence d = c by the sheaf property of D. So C(U) = Dsm,I(U) as claimed.

A sheaf of G-sets D belongs to the essential image of γ3 if and only if the counit
cD : γ3(D

sm,I) → D is an isomorphism. Note that cD is always a monomorphism
since Dsm,I is a subpresheaf of D, so cD is an isomorphism if and only if it is an
epimorphism, i.e. for any U and d ∈ D(U), there is a covering U = ∪Ui such that
the stabilizer Gd|Ui

of d|Ui is open in G and contains I(Ui). The necessity of our
conditions is thus clear. Conversely, assume (1) and (2). Fix s ∈ S, ds ∈ Ds, and
lift ds to d ∈ D(U) for some affine neighborhood U of s. Let Gd and Gds be the
stabilizers of d and ds, so that Gd ⊂ Gds

. By (1), Gd is open in G, so [Gds
: Gd] is

finite. Pick a set of representatives σ1, · · · , σn ∈ Gds
for Gds

/Gd. Since

(σ1d)s = · · · = (σnd)s,

there is a smaller affine neighborhood s ∈ U ′ ⊂ U where also

σ1d|U ′ = · · · = σnd|U ′ .

Replacing U by U ′, we may thus assume that Gds = Gd. The G-orbit of d is finite
and for s ∈ V1 ⊂ V2 ⊂ U , we have I(V1) · d ⊂ I(V2) · d. So shrinking U again, we
may assume that I(V ) · d = I(U) · d for all V ⊂ U with s ∈ V . This means that

I(V )/I(V )d ≃ I(U)/I(U)d

or equivalently:
I(U)d/I(V )d ≃ I(U)/I(V )

for all V ⊂ U with s ∈ V . Taking limits over all such V ′s, we find that

I(U)d/I(s)d ≃ I(U)/I(s)

by proposition 23, or equivalently,

I(s)/I(s)d ≃ I(U)/I(U)d.

But by (2), I(s) ⊂ Gds which equals Gd, so I(s)d = I(s), and I(U)d = I(U). In
other words, d ∈ Dsm,I(U). A fortiori, ds belongs to the image of

cD,s : γ3(D
sm,I)s → Ds.

Since ds and s were arbitrary, cD is surjective on stalks, hence an epimorphism,
thus an isomorphism: D ≃ γ3(D

sm,I) belongs to the essential image of γ3. □

We denote by Shv⋆G(SZar) the strictly full subcategory of ShvG(SZar) defined in
the previous proposition, so that γ3 induces an equivalence of categories

γ3 : Shvπ(SZar)→ Shv⋆G(SZar).

Remark 25. If S is irreducible and geometrically unibranch, any X in Set is locally
irreducible. Indeed we have seen that any quasi-compact open U of X has finitely
many irreducible components. Since U is etale over S, it is also geometrically
unibranch, so its irreducible components are disjoint, hence open. It follows that
the irreducible components of X are open, and equal to its connected components.
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7. The category Shv⋆G(SZar)

With assumptions and notations as in the previous section (S irreducible and
geometrically unibranch), we review here various constructions related to Zariski
sheaves of G-sets. We write Shv, Shv⋆G etc. . . for Shv(SZar), Shv⋆G(SZar) etc. . .

7.1. Sheafification. We start with the classical adjunction

(7.1) a : PreShvG ←→ ShvG : inc

where a is the sheafification functor. For D ∈ PreShvG, the sheaf of sets underlying
the sheaf of G-sets a(D) is the sheafification of the presheaf of sets underlying D.
For every s ∈ S, the unit D → a(D) induces an isomorphism of G-sets Ds → a(D)s.

7.2. Smoothness for sheaves of G-sets. Let D be a sheaf of G-sets. For a
subgroup H of G, the formula DH(U) = D(U)H defines a subsheaf DH of D, with
(DH)s ⊂ (Ds)

H for all s ∈ S. We denote by Dsm the subsheaf of D defined by

Dsm = ∪DΩ in Shv

where Ω runs through the compact open subgroups of G; this is a G-stable subsheaf
of D with D(U)sm ⊂ Dsm(U) for every open U of S and (Dsm)s ⊂ (Ds)

sm for every
s ∈ S. We say that D is smooth if Dsm = D, and we denote by ShvsmG the strictly
full subcategory of smooth sheaves of G-sets in ShvG. We have adjunctions:

(7.2) inc : ShvsmG ←→ ShvG : (−)sm.

The counit is the embedding Dsm ↪→ D.

Lemma 26. For a Zariski sheaf of G-sets D, the following are equivalent:
(1) For every quasi-compact open U of S, D(U) is a smooth G-set,
(2) For every affine open U of S, D(U) is a smooth G-set,
(3) D is smooth, i.e. D ∈ ShvsmG .

They imply
(4) For every s ∈ S, Ds is a smooth G-set.
(5) For every open U of S and d ∈ D(U) the stabilizer Gd of d is closed in G.

Proof. Plainly (1) ⇒ (2) ⇒ (4) and (4) ⇒ (5) by injectivity of D(U) →
∏

s∈U Ds.
If (2) holds, then Dsm(U) = D(U) for all affine open U , hence for all U by the sheaf
property for Dsm and D, so (2)⇒ (3). Finally (3)⇒ (1) by [6, Tag 0738]. □

7.3. The ⋆-condition. Plainly, Shv⋆G ⊂ ShvsmG and again, there is an adjunction

(7.3) inc : Shv⋆G ←→ ShvsmG : (−)⋆.
The right adjoint functor takes D ∈ ShvsmG to its subsheaf D⋆ defined by

D⋆(U) =
{
d ∈ D(U) : ∀s ∈ U, ds ∈ DI(s)

s

}
The counit is the embedding D⋆ ↪→ D and

∀s ∈ S : D⋆
s = DI(s)

s .

Indeed D⋆
s ⊂ D

I(s)
s by definition, and the proof of proposition 24 gives the other in-

clusion: the stabilizer Gds of ds ∈ D
I(s)
s is open in G and contains I(s) = ∩s∈UI(U),

so it contains I(U) for some sufficiently small affine neighborhood U of s. Shrinking
U if necessary, we may assume that ds lifts to d ∈ D(U), and shrinking it further,
that Gd = Gds

. Then Gd contains I(U), so d ∈ D⋆(U), hence ds ∈ D⋆
s .

https://stacks.math.columbia.edu/tag/0738
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7.4. Monomorphisms and epimorphisms. Let d be a morphism in Shv⋆G.
Since Shv⋆G is stable under fiber products in PreShvG, d is a monomorphism in

Shv⋆G if and only if d is a monomorphism in PreShvG. Since Shv⋆G ↪→ ShvG has a
right adjoint whose counits are monomorphisms, d is an epimorphism in Shv⋆G if
and only if d is an epimorphism in ShvG (i.e. also: an epimorphism in Shv).

7.5. Sheaves of G-sets with trivial G-action. They belong to Shv⋆G, and form
a strictly full subcategory which we identify with Shv. It fits into adjunctions

(7.4) inc : Shv←→ Shv⋆G : (−)G

(7.5) (−)G : Shv⋆G ←→ Shv : inc

These are both restrictions of analogous adjunctions for the embedding of Shv into
the larger category ShvG, where the right and left adjoints are given by

DG(U) = D(U)G and DG = a(U 7→ G\D(U)).

The counit DG ↪→ D is a monomorphism and the unit D ↠ DG is an epimorphism.

7.6. Constant sheaves. The constant sheaf functor has left and right adjoints,

(7.6) (−)η : ShvG ←→ SetG : (−)S

(7.7) (−)S : SetG ←→ ShvG : Γ(S,−)

Here Γ(S,D) = D(S) while (−)η is the stalk functor at the generic point η of S.
The unit X → Γ(S,XS) and counit (XS)η → X are isomorphisms, so (−)S is fully
faithful. Passing to the smooth subcategories, we obtain adjunctions

(7.8) (−)η : ShvsmG ←→ SetsmG : (−)S

(7.9) (−)S : SetsmG ←→ ShvsmG : Γ(S,−)sm.

Composing (−)S with (−)⋆ gives a new functor (−)⋆S fitting in an adjunction

(7.10) (−)η : Shv⋆G ←→ SetsmG : (−)⋆S
with unit D → (Dη)

⋆
S . The counit is an isomorphism since (X⋆

S)η = XI(η) = X, so
the right adjoint functor (−)⋆S is fully faithful.

Lemma 27. For D ∈ Shv⋆G, the following conditions are equivalent:
(1) D belongs to the essential image of (−)⋆S
(2) The unit D → (Dη)

⋆
S is an isomorphism.

(3) For any s ∈ S, Ds → D
I(s)
η is bijective,

(4) For any open U ̸= ∅ of S, D(U)→ D
I(U)
η is bijective.

Proof. (1)⇔ (2) by general properties of adjunctions, (2)⇔ (3) since

∀s ∈ S : ((Dη)
⋆
S)s = DI(s)

η

and (2)⇔ (4) since for U ̸= ∅,

(Dη)
⋆
S(U) = {d ∈ Dη : ∀s ∈ U, d ∈ DI(s)

η } = DI(U)
η

by proposition 23 and smoothness of Dη. □
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7.7. Et/Set sheaves. For D ∈ ShvG, taking images of counits in ShvG, we define

Det = Im (D → (Dη)S ×DG) and Dset = Im (D → (Dη)S) .

For D ∈ Shv⋆G, these are also images of the corresponding counits in Shv⋆G:

Dset = Im (D → (Dη)
⋆
S)

Det = Im (D → (Dη)
⋆
S ×DG)

= Im (D → Dset ×DG)

So we have epimorphisms in Shv⋆G,

Dset

D // // Det

55 55

)) ))
DG

We denote by ShvetG and ShvsetG ⊂ ShvetG the strictly full subcategories of Shv⋆G where
D ≃ Det, respectively D ≃ Dset. We thus obtain new adjunctions

(7.11) (−)et : Shv⋆G ←→ ShvetG : inc

(7.12) (−)set : Shv⋆G ←→ ShvsetG : inc

with epimorphic units D ↠ Det and D ↠ Dset.

7.8. Opens. For an open embedding jU : U ↪→ S, we have the usual adjunctions

(7.13) j∗U : ShvG(SZar)←→ ShvG(UZar) : jU∗

(7.14) jU ! : ShvG(UZar)←→ ShvG(SZar) : j
∗
U

where jU ! takes E ∈ ShvG(UZar) to its extension

V ∈ SZar 7→ jU !(E)(V ) =

{
∅ if V ̸⊂ U,

E(V ) if V ⊂ U.

The unit E → j∗U jU !E is an isomorphism, so jU ! is fully faithful, and the counit
jU !j

∗
UD → D is a monomorphism. The adjunction (7.14) preserves the full subcat-

egories ShvsmG , Shv⋆G, Shv, and is compatible with the stalk functor (−)η (if U ̸= ∅),
so it is compatible with all of the above constructions – details left to the reader.

7.9. Characterization of et/set-sheaves. For every sheaf of G-sets D ∈ ShvG,
we also have the following constructions.

• The support of D is the open subset of S defined by

Supp(D) = {s ∈ S : Ds ̸= ∅} .
• The set of connected components of D is π0(D) = G\Dη. For c ∈ π0(D)

viewed as a G-orbit in Dη, we define D(c) by the cartesian diagram

D(c) //
� _

��

cS� _

��
D // (Dη)S

So D(c) is a G-stable subsheaf of D and D =
∐

c∈π0(D) D(c) in ShvG.
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• We denote by SG(D) the set of all pairs (U, γ) where U ̸= ∅ is open in S
and γ ⊂ D(U) is a G-orbit, and equip SG(D) with the partial order

(U, γ) ≤ (U ′, γ′) ⇐⇒ U ⊂ U ′ and γ = γ′|U .
We denote by S m

G (D) the set of maximal elements in (SG(D),≤).
• Sending (U, γ) ∈ SG(D) to the image γη ⊂ Dη of γ ⊂ D(U) defines maps

S m
G (D) ↪→ SG(D)↠ π0(D).

We denote by S m
G (D, c) ↪→ SG(D, c) their fibers over c ∈ π0(D). Thus

S m
G (D, c) = S m

G (D(c)) and SG(D, c) = SG(D(c)).

• Fix (U, γ) ∈ SG(D). Since D(U) = Γ(U, j∗UD), the isomorphisms

HomG (γ,D(U)) = HomShvG(UZar) (γU , j
∗
UD)

= HomShvG(SZar) (jU !(γU ), D)

map the G-equivariant embedding γ ↪→ D(U) to a morphism

jU !(γU )→ D in ShvG(SZar)

whose evaluation at V ⊂ S is ∅ → D(V ) if V ̸⊂ U , and the composition
of the embedding γ ↪→ D(U) with the restriction map D(U) → D(V ) if
V ⊂ U . In particular it factors through D(c) ⊂ D, where c = γη ∈ π0(D).

• Summing these morphisms across S m
G (D), we obtain a morphism∐

(U,γ)∈S m
G (D)

jU !(γU )→ D in ShvG(SZar)

whose fiber over D(c) ↪→ D is the morphism∐
(U,γ)∈S m

G (D(c))

jU !(γU )→ D(c) in ShvG(SZar).

Lemma 28. If D is smooth, any element of SG(D) has a majorant in S m
G (D).

Proof. Fix (U, γ). By Zorn’s lemma, we have to show that any chain C in

M = {(V, θ) ∈ SG(D) : (U, γ) ≤ (V, θ)}
has an upper bound in M . Let U ′ = ∪(V,θ)∈CV . Then any element of

lim←−(V,θ)∈C θ ⊂ lim←−(V,θ)∈CD(V ) = D(U ′)

defines a G-orbit γ′ ⊂ D(U ′) such that (U ′, γ′) ∈M dominates C . So we have to
show that the left hand side limit is not empty. For each single (V, θ) ∈ C , we may
first choose some x ∈ θ, consider the corresponding orbit map G↠ θ, and equip θ
with the induced quotient topology. One checks that it does not depend upon x,
and turns θ into a compact topological space which is Hausdorff since the stabilizer
Gx is closed. Then (V, θ) 7→ θ is an inverse system of nonempty compact Hausdorff
spaces indexed by a filtered set (namely C ), so its limit is not empty. □

Proposition 29. Suppose that D ∈ ShvsmG (SZar). Then
(1) The morphism ∐

(U,γ)∈S m
G (D)

jU !(γU )→ D

is an epimorphism.



MORPHING ETALE SPACES 19

(2) The canonical map

S m
G (D)→ π0(D)

is surjective.
(3) The following conditions are equivalent:

(a) For any opens ∅ ≠ V ⊂ U of S, D(U)→ D(V ) is injective on orbits,
(b) For any open U of S and s ∈ U , D(U)→ Ds is injective on orbits,
(c) For any open U ̸= ∅ of S, D(U)→ Dη is injective on orbits,
(d) For any s ∈ S, Ds → Dη is injective on orbits,
(e) For any specialization s′ ⇝ s in S, Ds → Ds′ is injective on orbits,
(f) For every (U, γ) ∈ SG(D), jU !(γU )→ D is a monomorphism,
(g) For every (U, γ) ∈ S m

G (D), jU !(γU )→ D is a monomorphism,
(h) The product of units D → (Dη)S ×DG is a monomorphism,
(i) The unit D → Det is an isomorphism.

(4) The following conditions are equivalent:
(a) For any opens ∅ ≠ V ⊂ U of S, D(U)→ D(V ) is injective,
(b) For any open U of S and s ∈ U , D(U)→ Ds is injective,
(c) For any open U ̸= ∅ of S, D(U)→ Dη is injective,
(d) For any s ∈ S, Ds → Dη is injective,
(e) For any specialization s′ ⇝ s in S, Ds → Ds′ is injective,
(f) D satisfies the conditions of (3) and S m

G (D)→ π0(D) is bijective,
(g) The morphism

∐
(U,γ)∈S m

G (D) jU !(γU )→ D is an isomorphism,
(h) The unit D → (Dη)S is a monomorphism.
(i) The unit D → Dset is an isomorphism.

Proof. (1) For U ⊂ S and d ∈ D(U) with G-orbit γ, pick (U ′, γ′) ∈ S m
G (D) over

(U, γ). Evaluating jU ′!γ
′
U ′ → D at U gives γ′ ↪→ D(U ′) → D(U), whose image

equals γ, and so contains d: our morphism is already surjective in PreShv.
(2) Let c be a G-orbit in Dη, dη ∈ c, U a small open of S where dη lifts to

d ∈ D(U), γ the G-orbit of d, and (U ′, γ′) ∈ S m
G (D) over (U, γ). Then (U ′, γ′)

maps to γη = c in G\Dη = π0(D): our morphism S m
G (D)→ π0(D) is surjective.

In (3) and (4), the equivalence of conditions (a) trough (e) are easy, (d) ⇔ (h)
since monomorphicity is equivalent to injectivity on all stalks, and (h) ⇔ (i) by
definition of Det and Dset. Also: (3, a) ⇔ (3, f) ⇒ (3, g) and (4, g) ⇒ (4, a) are
obvious. It remains to establish the following three implications:

(3, g) ⇒ (3, a). Let V ⊂ U be nonempty opens of S, γ a G-orbit in D(U).
Pick (U ′, γ′) ∈ S m

G (D) above (U, γ). By (3, g), jU ′!γ
′
U ′ → D is a monomorphism.

Evaluating it at V gives an injection γ′ ↪→ D(U ′)→ D(V ), which factors as

γ′ ↠ γ ↪→ D(U)→ D(V )

So γ′ → γ is a bijection and the restriction map D(U)→ D(V ) is injective on γ.
(4, c)⇒ (4, f). Plainly (4, c)⇒ (3, c), so D satisfies all conditions of (3). Suppose

that (U1, γ1) and (U2, γ2) in S m
G (D) have the same image γη in π0(D) = G\Dη.

Fix x ∈ γη and lift it to xi ∈ γi. By (4, c) applied to V = U1 ∩U2 ̸= ∅, x1|V = x2|V
in D(V ), so the xi’s glue to x ∈ D(U) where U = U1 ∪ U2. Let γ be the G-orbit
of x. Then (Ui, γi) ≤ (U, γ) in SG(D), whence (U1, γ1) = (U, γ) = (U2, γ2) by
maximality of (Ui, γi). Given (2), this proves (4, f).
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(4, f) ⇒ (4, g). Using (1) and the decomposition D =
∐

c∈π0(D) D(c), it is
sufficient to establish that for any c ∈ π0(D), the morphism∐

(U,γ)∈S m
G (D,c)

jU !(γU )→ D(c)

is a monomorphism. The second part of (4, f) tells us that S m
G (D, c) contains a

single element (U, γ), and the first part of (4, f) tells us that (3, f) holds, which
implies that jU !(γU )→ D(c) is indeed a monomorphism. □

Remark 30. If D ∈ Shv⋆G, we may replace (Dη)S by (Dη)
⋆
S in (3, h) and (4, h), and

(3, i) ⇐⇒ D ∈ ShvetG , (4, i) ⇐⇒ D ∈ ShvsetG .

Lemma 31. For D ∈ ShvetG(SZar) and any open U of S,

D(U) is a smooth G-set with trivial action of I(U).

Proof. If U = ∅, D(U) = ⋆ with trivial action. If U ̸= ∅ and s ∈ U , the localization
D(U) → Ds is G-equivariant, injective on orbits, and Ds is smooth, with trivial
action of I(s). It follows that D(U) is smooth, with trivial action of I(s) for all
s ∈ U , hence with trivial action of I(U) by proposition 23. □

8. Harvest

8.1. We now assume all of the above assumptions:

S is locally henselian, geometrically unibranch, and irreducible.

We thus have equivalence of categories

(8.1) AlgSpet(S)
α // Shv(Set)

β // Shv(Sfet)
γ // Shv⋆G(SZar)

A � // B � // C � // D

where γ = γ3 ◦γ2 ◦γ1 and G = π1(η, η). We set δ = γ ◦β ◦α. In the sequel, we may
often simplify our notations to AlgSpet = AlgSpet(S), Shv

⋆
G = Shv⋆G(SZar), etc. . .

8.2. Monomorphisms and epimorphisms. Let a : A1 → A2 be a morphism in
AlgSpet with image d : D1 → D2 in Shv⋆G. Since δ is an equivalence of categories

a is a monomorphism ⇐⇒ d is a monomorphism
a is an epimorphism ⇐⇒ d is an epimorphism

We have described monomorphisms and epimorphisms of Shv⋆G in section 7.4.
In AlgSpet, monomorphisms are open immersions. Indeed since the embedding of

AlgSpet into AlgSp commutes with fiber products, a is a monomorphism in AlgSpet
if and only if it is a monomorphism in AlgSp. Since A1 and A2 are etale over S, a
is an etale morphism by [6, Tag 03FV], so a is a monomorphism if and only if it is
an open immersion by [6, Tag 05W5]. We thus obtain:

a is an open immersion ⇐⇒ d is a monomorphism of presheaves.

https://stacks.math.columbia.edu/tag/03FV
https://stacks.math.columbia.edu/tag/05W5
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In AlgSpet, a is an epimorphism if and only if a is surjective. Indeed by [6, Tag
03MF], a is surjective if and only if there is a commutative diagram

A′
1

//

��

A′
2

��
A1

// A2

with A′
i ∈ Set, A′

1 → A′
2 surjective, and A′

1 → A1 (representable) surjective and
etale. As observed in the proof of proposition 1, A′

i → Ai and A′
1 → A′

2 are
then epimorphisms in Shv((Sch/S)et)), thus also in Shv((Sch/S)fppf ), AlgSp(S)
and AlgSpet(S), so a is an epimorphism. Conversely if a is an epimorphism in
AlgSpet, let A′

2 → A2 and A′
1 → A1 ×A2

A′
2 be surjective etale morphisms with

A′
i ∈ Set. Then A′

1 → A1 is also surjective etale, and we want to show that
A′

1 → A′
2 is surjective. We have just seen that A′

1 → A1 ×A2
A′

2 is an epimorphism
in AlgSpet; since a is an epimorphism, so is its base change A1×A2 A

′
2 → A′

2 in the
topos AlgSpet(S) ≃ Shv(Set), thus A′

1 → A′
2 is also an epimorphism in AlgSpet. We

are reduced to: if a morphism a : A1 → A2 is Set is an epimorphism in AlgSpet,
it is surjective as a morphism of schemes. This is obvious: glue two copies of A2

along the (open!) image of a to obtain a new scheme A3 ∈ Set, equipped with two
morphisms b1, b2 : A2 → A3 such that b1 ◦ a = b2 ◦ a in Set ⊂ AlgSpet. Since a is
an epimorphism in AlgSpet, b1 = b2, therefore a is surjective. So:

a is surjective ⇐⇒ d is an epimorphism of sheaves.

8.3. Representable etale algebraic spaces.

Lemma 32. For X ∈ Sfet with image U in S viewed as an element of AlgSpet,

δ(X) = jU !(X(η)U ) in ShvG.

Proof. Set A = HomS(−, X) and D = δ(A). Unwinding the definitions, D is the
Zariski sheafification of the presheaf which takes V ∈ SZar to the G-set with trivial
action of I(V ) corresponding to the smooth π(V )-set defined by

BV (η) = lim−→(Y,y)∈FetV (η)BV (Y ) = lim−→(Y,y)∈FetV (η)HomV (Y,XV ).

Since S is irreducible, so are the nonempty V ’s, thus for any (Y, y) ∈ FetV (η), the
nonempty clopen image of the finite etale map Y → V equals V , i.e. Y ↠ V is
surjective. Hence BV (η) = ∅ when V is not contained in the image U of X in S.
For V ⊂ U , XV ∈ FetV and the map which takes s ∈ HomV (Y,XV ) to s(y) ∈ X(η)
induces a G-equivariant isomorphism BV (η) → X(η) of smooth G-sets. It follows
that our presheaf is already a sheaf, namely D = jU !(X(η)U ). □

Corollary 33. There is a 2-commutative diagram

FetU
(−)(η) //

_�

��

Setfsmπ(U)

(−)U // ShvsetG (U)

jU!

��
Sfet
_�

��

δ // ShvsetG (S)� _

��
AlgSpet(S)

δ // Shv⋆G(S)

https://stacks.math.columbia.edu/tag/03MF
https://stacks.math.columbia.edu/tag/03MF
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Proof. For X ∈ FetU , Y = X(η) belongs to Setfsmπ(U); for Y ∈ Setsmπ(U), the constant
G-sheaf Z = YU belongs to ShvsetG (U); for Z ∈ ShvsetG (U), the extension D = jU !(Z)
belongs to ShvsetG (S). For X,Y, Z,D as indicated, we have seen that D = δ(X).
This gives the 2-commutativity of the outer diagram. Since any X ∈ Sfet belongs
to FetU for some U (the image of X in S), we also have δ(Sfet) ⊂ ShvsetG (S). □

Theorem 34. The functor δ induces equivalence of categories

Sset
δ //

_�

yon

��

ShvsetG� _

inc
��

Set
δ //

_�

yon

��

ShvetG� _
inc
��

AlgSpet
δ // Shv⋆G

where Sset is the strictly full subcategory of separated S-schemes in Set.

Proof. Let A,B,C,D be as in 8.1. We have

A ∈ AlgSpet(S) is representable (by some X ∈ Set)

⇐⇒ B ∈ Shv(Set) is representable (by the same X ∈ Set)
⇐⇒ C = ∪Ci in Shv(Sfet)with Ci representable (by some Xi ∈ Sfet)

⇐⇒ D = ∪Di in Shv⋆G(SZar)with Di ≃ δ(Xi) for some Xi ∈ Sfet

using remark 4 and corollary 16. We have seen that δ maps Sfet to ShvsetG ⊂ ShvetG .
Since ShvetG is stable under arbitrary unions, we thus find that δ maps representable
A’s to D’s in ShvetG . Suppose conversely that D ∈ ShvetG . Then by proposition 29,

D = ∪(U,γ)∈S m
G (D)D(U,γ) in Shv⋆G

where D(U,γ) = jU !(γU ) with γ ∈ Setfsmπ(U) by lemma 31, whence

D(U,γ) ≃ δ(X(U,γ))

for an S-scheme X(U,γ) ∈ FetU ⊂ Sfet with X(U,γ)(η) ≃ γ as G-sets. Thus D
satisfies the last displayed property, and A is representable by some X ∈ Set which
is a union of the X(U,γ)’s. If moreover D ∈ ShvsetG , then in fact

D =
∐

(U,γ)∈S m
G (D)D(U,γ) in Shv⋆G

so A is representable by X =
∐

(U,γ) X(U,γ), which is indeed separated over S.
Finally, suppose that A = HomS(−, X) for some X ∈ Sset. We have to show

that D ∈ ShvsetG , and we use the characterization (4, c) of proposition 29. So
let U ̸= ∅ be open in S, and suppose that d1, d2 ∈ D(U) have the same image
d1,η = d2,η = d in Dη. Let γi be the G-orbit of di, γ the G-orbit of d. We
already know that D ∈ ShvetG , thus D(U) → Dη induces G-equivariant bijections
γ1 → γ and γ2 → γ, whose inverse we denote by γ ∋ e 7→ ei ∈ γi. By lemma 31,
γ ∈ Setfsmπ(U), so there is a (Y, y) ∈ FetcU (η) with (Y (η), y) ≃ (γ, d) as pointed G-sets.
Since δ(Y ) ≃ jU !(γU ), we obtain morphisms ji : Y → X, corresponding to the
morphisms jU !(γU ) ≃ jU !(γi,U ) ↪→ D. Let Z ↪→ Y be the pull-back of the diagonal
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of X under (j1, j2) : Y → X ×S X and set E = δ(Z). Since δ commutes with fiber
products, E is the pull-back of the diagonal of D under jU !(γ)→ D ×D. So

E(U) = {e ∈ γ : e1 = e2 in D(U)} and Eη = γ.

Since X is separated etale over S, Z ↪→ Y is a clopen immersion, and since Y is
finite etale over U , so is Z. Thus E ≃ jU !(Z(η)U ) and E(U) → Eη is a bijection.
It follows that d1 = d2, which checks the characterization (4, c), so D ∈ ShvsetG . □

Remark 35. A punctual scheme S is irreducible, locally henselian and geometrically
unibranch, with Shv⋆G = ShvetG = ShvsetG . So we retrieve the well known fact that
over such an S, every etale algebraic space is representable by a separated S-scheme.

Corollary 36. Any X ∈ Sset is a disjoint union of irreducible fet S-schemes.

Proof. This either follows from the proof of theorem 34, or from the equivalence
δ : Sset → ShvsetG and the characterization (4, g) of ShvsetG in proposition 29. □

8.4. Underlying topological spaces. Let Top be the category of topological
spaces and continuous maps. For S ∈ Top, we denote by Sloc the strictly full
subcategory of Top/S whose objects are local homeomorphisms X → S. It is well
known that the functor sec : Sloc → Shv(S) which takes X to its sheaf of sections
is an equivalence of categories. An inverse functor maps a sheaf of sets C on S to
the corresponding espace étalé: the underlying set is

∐
s∈S Cs, and a basis of open

neighborhoods of x ∈ Cs is given by the subsets {cy : y ∈ V }, for V open in S
containing s and c ∈ C(V ) with cs = x.

Likewise, if Sloc is the full subcategory of Set whose objects are local isomor-
phisms X → S, then the functor sec : Sloc → Shv(SZar) which takes X → S
to its sheaf of sections is an equivalence of categories. An inverse functor maps
a sheaf of sets C on SZar to the object X of Sloc whose underlying topological
space |X| is as above, equipped with the sheaf of rings OX which is the pull-back
through |X| → |S| of OS . It follows that the functor Sloc → |S|loc which forgets
the structure sheaves is an equivalence of categories.

Proposition 37. There is a 2-commutative diagram of equivalences

Sloc_�

yon

��

sec // Shv� _

inc

��
AlgSpet

δ // Shv⋆G

Proof. Let f : X → S be a local isomorphism, X = sec(X) its sheaf of sections,
D = δ(X). Since X ∈ Sloc, there is a Zariski covering X = ∪Xi such that f induces
an isomorphism from Xi to an open Ui = f(Xi) of S. Then D = ∪Di with

Di = δ(Xi) = jUi!(⋆Ui) where Xi(η) = {⋆}.
In particular Di has trivial action of G, and so does D = ∪Di. Let U be an open
of S. A section x ∈ X (U) is an S-morphism U → X which δ maps to a morphism
jU !(⋆U )→ D corresponding to a section d ∈ D(U). Conversely, a section d ∈ D(U)
gives a morphism jU !(⋆U )→ D which is the image of an S-morphism U → X which
is a section x ∈ X (U). We thus obtain an isomorphism of sheaves X → D on SZar

which is plainly functorial in X, and this yields the desired isomorphism

inc ◦ sec→ δ ◦ yon
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between functors Sloc → Shv⋆G. □

We have seen in 7.5 that the embedding Shv ↪→ Shv⋆G has left and right adjoints

(−)G, (−)G : Shv⋆G → Shv

with epimorphic units D ↠ DG and monomorphic counits DG ↪→ D. So the
Yoneda embedding Sloc → AlgSpet has matching left and right adjoints

(−)loc, (−)loc : AlgSpet → Sloc

with surjective units A↠ Aloc and open immersion counits Aloc ↪→ A. To describe
these functors, we first record the following consequence of our assumptions.

Lemma 38. The topological space |A| associated to A ∈ AlgSpet belongs to |S|loc.

Proof. Suppose first that A = HomS(−, X) for some X ∈ Set. Then |A| = |X| by [6,
Tag 03BX]. By proposition 14, X has a Zariski covering X = ∪Xi with Xi ∈ Sfet.
By remark 25, we may assume that Xi is irreducible. Then by proposition 17,
Xi → S is an homeomorphism onto its image. So |X| ∈ |S|loc. For the general
case, let X → A be a surjective etale morphism with X ∈ Set. Then R = X ×A X
also belongs to Set, and |A| is the quotient of |X| by the equivalence relation |R| in
Top, see [6, Tag 03BX]. Since |X| , |R| ∈ |S|loc ≃ Shv(|S|), there is also a quotient
Q = |X| / |R| in |S|loc. Since morphisms in |S|loc are local homeomorphisms, hence
open, |X| → Q is open. Since |X| → Q is an epimorphism in |S|loc, it is surjective:
glue two copies of Q along the open image of |X| to obtain Q′ in |S|loc with two
continuous maps Q → Q′ inducing the same map |X| → Q′; then these two maps
must be equal, so |X| → Q is indeed surjective. Since open surjective continuous
maps are quotient maps in Top, Q is the quotient of |X| by the equivalence relation
|X| ×Q |X| in Top. Since this fiber product belongs to |S|loc, it is equal to the
corresponding fiber product in |S|loc ≃ Shv(|S|), which is |R| by general properties
of topoi. Thus |A| ≃ Q, and |A| belongs to |S|loc. □

Proposition 39. Left and right adjoints of Sloc → AlgSpet are as follows:
(1) (−)loc : AlgSpet → Sloc takes A to the S-scheme Aloc ∈ Sloc with

|Aloc| = |A| , OAloc
= pull-back of OS through |A| → |S| .

The unit A↠ Aloc is a surjective homeomorphism.
(2) (−)loc : AlgSpet → Sloc takes A to the largest open subspace Aloc of A which

belongs to Sloc. The counit is the open embedding Aloc ↪→ A.

Proof. The given formula for Aloc defines a functor

(−)loc : AlgSpet → Sloc.

We have to show that it is left adjoint to the embedding Sloc ↪→ AlgSpet. This
amounts to constructing a functorial unit A→ Aloc which is an isomorphism when
A ∈ Sloc. If A = HomS(−, X) for some f : X → S in Set, Xloc has the same
underlying space as X, with structure sheaf OXloc

= f∗OS (pull-back as sheaves).
The structure morphism X → S gives a morphism OS → f∗OX whose adjoint
f∗OS → OX is a morphism OXloc

→ Id∗OX , which yields our unit ϵX : X → Xloc.
This construction is functorial in X and gives the identity when X ∈ Sloc, so it
produces the desired left adjoint of Sloc ↪→ Set. Extending our units from Set to
AlgSpet is then a formal consequence of proposition 1: to define ϵA : A → Aloc

in AlgSpet amounts to defining a morphism between the corresponding sheaves on

https://stacks.math.columbia.edu/tag/03BX
https://stacks.math.columbia.edu/tag/03BX
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Set, and this we do by mapping a section a ∈ A(X) corresponding to a morphism
a : X → A, to the section a∼loc ∈ Aloc(X) which corresponds to the morphism

X
ϵX // Xloc

aloc // Aloc.

For the right adjoint, we know that it exists, and its counits are open immersions.
Thus Aloc is an open subspace of A belonging to Sloc, and by the adjunction prop-
erty, any such open is contained in Aloc. So Aloc is the largest such open. □

8.5. Connected components. By definition, the set of connected components
π0(A) of an algebraic space A over S is the set of connected components of the
associated topological space |A|. For A ∈ AlgSpet, |A| = |Aloc|, so π0(A) is also the
set of connected components of the etale S-scheme Aloc, which by remark 22, is the
set of points of its generic fiber Aloc,η. Since Aloc → S is a local isomorphism, so is
its generic fiber, thus π0(A) is also the set of sections of Aloc,η → η. If D = δ(A),
then DG ≃ δ(Aloc) ≃ sec(Aloc) so π0(A) ≃ DG,η ≃ G\Dη = π0(D).

We may also work this out as follows, without passing through Aloc. Since A is
etale over S, |A| is locally connected: this follows from remark 22 and [6, Tag 03BT]
(and holds whenever S locally has a finite number of irreducible components). We
may then redefine π0(A) as the set of minimal nonempty clopen subsets of |A|,
and |A| is the disjoint union of these connected components. By [6, Tag 03BZ],
opens of |A| correspond bijectively with opens of A, which as seen above, are just
the subobjects of A in AlgSpet. Thus π0(A) is also the set of minimal nontrivial
complemented elements in the poset of all subobjects of A in AlgSpet, and A is the
disjoint union of these subobjects. Passing this categorical description through the
equivalence δ, we obtain another set π′

0(D) of connected components of D = δ(A),
and we must check that it matches the set π0(D) from section 7.9. Since

D =
∐

c∈π0(D)D(c) in Shv⋆G

we have to show that any nontrivial complemented G-stable subsheaf D1 of D
contained in D(c) equals D(c). Since D1 is complemented in D, it is also comple-
mented in D(c): there is a G-stable subsheaf D2 with D(c) = D1

∐
D2. But then

c = D1,η

∐
D2,η, and this forces one of the Di,η’s to be empty, which can only occur

if Di itself is the empty sheaf. So D1 = D(c), and indeed π0(D) = π′
0(D).

8.6. Base change. Let S′ be another irreducible, locally henselian and geometri-
cally unibranch scheme, and let f : S′ → S be a morphism inducing an isomorphism
on generic points. For instance, we could take any of the following:

(1) An open immersion jU : U ↪→ S with U ̸= ∅,
(2) A monomorphism S(s) ↪→ S with S(s) = Spec(OS,s) for some s ∈ S,
(3) The closed immersion Sred ↪→ S,
(4) The generic point map ι : η → S.

Proposition 40. There is a 2-commutative diagram

AlgSpet(S)

f∗

��

α // Shv(Set)

f∗

��

γ◦β // Shv⋆G(SZar)

f∗

��

� � inc // ShvG(SZar)

f∗

��
AlgSpet(S

′)
α // Shv(S′

et)
γ◦β // Shv⋆G(S

′
Zar)
� � inc // ShvG(S′

Zar)

https://stacks.math.columbia.edu/tag/03BT
https://stacks.math.columbia.edu/tag/03BZ
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Proof. The 2-commutativity of the first square was established in proposition 5.
For the second and third square, we first construct a base change morphism

Shv (Set)

f∗

��

γ◦β // ShvG(SZar)

f∗

��

bc

��
Shv (S′

et) γ◦β
// ShvG(S′

Zar)

adjoint to Shv (Set)

f∗

��

γ◦β //

bc′
22

ShvG(SZar)

Shv (S′
et) γ◦β

// ShvG(S′
Zar)

f∗

OO

So let B ∈ Shv(Set), B′ = f∗B and let C and C ′ be their images under γ2 ◦ γ1 ◦ β,
viewed as presheaves of G-sets, so that γ3 is the sheafification functor a. We have to
construct a morphism of sheaves bc′ : a(C)→ f∗a(C

′), or equivalently a morphism
of presheaves C → f∗a(C

′); it is sufficient to construct a morphism of presheaves
C → f∗C

′. Now for any open U of S with preimage U ′ = f−1(U) in S′, we have

C(U) = lim−→(X,x)∈FetU (η)B(X)

f∗C
′(U) = lim−→(X′,x′)∈FetU′ (η)B

′(X ′)

The unit B → f∗f
∗B = f∗B

′ induces a morphism

FetU (η)

−×UU ′

��

B(−)

++
��

Set

FetU ′(η)
B′(−)

33

whose colimit gives a G-equivariant map C(U)→ f∗C
′(U), which yields the desired

morphism C → f∗C
′. As a consequence, we obtain a factorization

Shv (Set)

f∗

��

γ◦β // Shv⋆G(SZar)

f∗

��

� � inc // ShvG(SZar)

f∗

��

bc

��
Shv (S′

et) γ◦β
// Shv⋆G(S

′
Zar)
� � inc // ShvG(S′

Zar)

and we now have to show that the natural transformation of the first square is
an isomorphism bc : f∗ ◦ (γ ◦ β) → (γ ◦ β) ◦ f∗. Since all functors in sight are
left adjoints or equivalences, they commute with all colimits. Since any etale sheaf
B on S is a colimit of representable sheaves, we may, by proposition 14, restrict
our attention to B = HomS(−, X) with X in Sfet, say with image U in S. Then
f∗B = HomS′(−, X ′) with X ′ = X ×S S′ in S′

fet with image U ′ = f−1(U) in S′.
Note that X ′(η) ≃ X(η) as G-sets. By lemma 32, we have

γ ◦ β(B) = jU !(X(η)U ) and γ ◦ β(f∗B) = jU ′!(X
′(η)U ′).
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So we are reduced to showing that the following diagram is 2-commutative:

ShvG(UZar)

f∗

��

jU! // ShvG(SZar)

f∗

��

SetG

(−)U
77

(−)U′ ''
ShvG(U

′
Zar)

jU′! // ShvG(S′
Zar)

This follows from the obvious 2-commutativity of the right adjoint diagram:

ShvG(UZar)
Γ(U,−)

ww

ShvG(SZar)
j∗Uoo

SetG

ShvG(U
′
Zar)

Γ(U ′,−)

gg f∗

OO

ShvG(S
′
Zar)

j∗
U′oo

f∗

OO

This proves the proposition. □

Corollary 41. There is a right adjoint dual 2-commutative diagram

AlgSpet(S)
α // Shv(Set)

γ◦β // Shv⋆G(SZar)

AlgSpet(S
′)

fet
∗

OO

α // Shv(S′
et)

f∗

OO

γ◦β // Shv⋆G(S
′
Zar)

fet
∗

OO

Remark 42. As in remark 6, while f∗ on Shv⋆G is the restriction of the eponymous
functor on ShvG, their respective right adjoints fet

∗ and f∗ are related by

Shv⋆G(SZar) ShvG(SZar)
(−)sm,⋆

oo

Shv⋆G(S
′
Zar)

fet
∗

OO

� � inc // ShvG(S′
Zar)

f∗

OO

When f is quasi-compact, f∗ takes smooth sheaves to smooth sheaves, and we may
thus replace the right column by f∗ : ShvsmG (S′

Zar)→ ShvsmG (SZar).

Corollary 43. For A ∈ AlgSpet(S) with pull-back Ared ∈ AlgSpet(Sred),

A is representable ⇐⇒ Ared is representable.

Moreover, Ared(X ×S Sred) = A(X) for any proetale morphism X → S.

Proof. Apply the proposition to f : Sred → S and note that the pull-back functor
on Zariski sheaves Shv⋆G(SZar) → Shv⋆G(Sred,Zar) is the identity of Shv⋆G(|S|). For
the second assertion, the proetale case follows from the etale case by [6, Tag 0468],
which itself follows from the fact that f∗ is here an equivalence. □

https://stacks.math.columbia.edu/tag/0468
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8.7. Generic fiber. Applying proposition 40 to ι : η → S, we obtain

AlgSpet(S)

ι∗

��

α // Shv(Set)

ι∗

��

γ◦β // Shv⋆G(SZar)

ι∗

��

(−)η

��
AlgSpet(η)

α // Shv(ηet)
γ◦β // Shv⋆G(ηZar)

Γ(η,−) // SetsmG

where we have added the obviously 2-commutative triangle at the end, in which
Γ(η,−) is an equivalence. Passing to right adjoints, we obtain

AlgSpet(S)
α // Shv(Set)

γ◦β // Shv⋆G(SZar)

AlgSpet(η)

ιet∗

OO

α // Shv(ηet)

ι∗

OO

γ◦β // Shv⋆G(ηZar)

ιet∗

OO

Γ(η,−) // SetsmG

(−)⋆S

mm

where the last adjunction is taken from (7.10), whose counits are isomorphisms. It
follows that our right adjoints are fully faithful. The composite bottom equivalence
is easily computed: it takes A ∈ AlgSpet(η) to the G-set A(η). We thus find that

δ(ιet∗ A) ≃ A(η)⋆S .

Proposition 44. The right adjoint ιet∗ factors through the strictly full subcategory
of algebraic spaces which are representable by separated etale S-schemes.

Proof. For A ∈ AlgSpet(η), set A = ιet∗ A and D = A(η)⋆S , so that D ≃ δ(A), and
D plainly belongs to ShvsetG (S): we conclude by theorem 34. Concretely:

D =
∐

c∈π0(D)

D(c) with D(c) ≃ jU(c)!(γ(c)U(c))

where (U(c), γ(c)) is the unique element of S m
G (D) above c ∈ G\A(η). By lemma 27,

U(c) is the largest open U of S such that c is fixed pointwise by I(U), namely

U(c) = {s ∈ S : c ⊂ A(η)I(s)}.
Also, γ(c) = c in D(U(c)) = A(η)I(U(c)). Let X(c) be a connected finite etale
U(c)-scheme with X(c)(η) ≃ c as π(U(c))-sets. Then D(c) ≃ δ(X(c)), so

A ≃ HomS(−, X) with X =
∐

c∈π0(A)

X(c).

Since all X(c)’s are separated over S, so is X. □

8.8. The functor S[−]et. The previous proposition tells us that there is a functor

S[−]et : AlgSpet(η)→ Sset

whose composition with the Yoneda embedding

Sset ↪→ Set ↪→ AlgSpet(S)

is right adjoint to the generic fiber functor: for A ∈ AlgSpet(S) and A ∈ AlgSpet(η),

HomAlgSp(η)(Aη,A) ≃ HomAlgSp(S)(A,S[A]et)
where Aη = ι∗A is the generic fiber of A. The counit S[A]etη → A is an isomorphism,
so S[−]et is fully faithful, and δ maps the unit A→ S[Aη]

et to the unit D → (Dη)
⋆
S ,

where D = δ(A). For an irreducible A, S[A]et belongs to the subcategory FetcU of
Sset, where U is the largest open of S such that I(U) acts trivially on A(η).
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Proposition 45. If S is normal, then S[A]et is the largest open S[A]◦ of the
normalization S[A] of S along A → η → S which is etale over S.

Proof. By corollary 36, we may write S[A]et =
∐

Xi with irreducible Xi’s in Sfet.
Then A = S[A]etη =

∐
Xi,η, so S[A] =

∐
S[Xi,η] where S[Xi,η] is the normalization

of S along Xi,η → η → S, and S[A]◦ =
∐

S[Xi,η]
◦ where S[Xi,η]

◦ is the largest
open of S[Xi,η] which is etale over S. Let Ui be the image of Xi in S. Since Xi → Ui

is finite etale and Ui is normal, Xi is normal and isomorphic to the normalisation
Ui[Xi,η] of Ui along Xi,η → η → Ui. Since Ui[Xi,η] ≃ Xi is etale, the open Ui[Xi,η]
of S[Xi,η] is contained in S[Xi,η]

◦. We thus obtain an open embedding

S[A]et ≃
∐

Ui[Xi,η]
� � // ∐S[Xi,η]

◦ = S[A]◦

extending Id : A → A. Conversely by the universal property of S[A]et, there is a
unique S-morphism S[A]◦ → S[A]et extending Id : A → A. Composing it with our
open embedding, we obtain an S-morphism S[A]◦ → S[A]◦ extending Id : A → A.
Since S[A]◦ is separated etale over S, there is a unique such morphism, namely the
identity of S[A]◦. Our embedding is therefore surjective, and S[A]et ≃ S[A]◦. □

8.9. The (−)set and (−)et functors. For A ∈ AlgSpet, define

Aset = Im
(
A→ S[Aη]

et
)

and Aet = Im
(
A→ S[Aη]

et ×Aloc

)
.

By the results of section 8.2,

• Aset is open in S[Aη]
et and thus belongs to Sset,

• Aet is open in S[Aη]
et ×Aloc and thus belongs to Set,

and we have a diagram of surjective morphisms in AlgSpet

Aset

A // // Aet

55 55

)) ))
Aloc

which δ maps to the analogous diagram from section 7.7,

Dset

D // // Det

55 55

)) ))
DG

This construction defines functors A 7→ Aset and A 7→ Aet which are left adjoint to
the Yoneda embeddings Sset ↪→ AlgSpet and Set ↪→ AlgSpet, with units A ↠ Aset

and A↠ Aet, the latter inducing an homeomorphism on the underlying topological
spaces. We have obtained 2-commutative diagrams of adjunctions

AlgSpet

δ

��

(−)et // Set

δ
��

(−)set //
_?yon

oo Sset

δ
��

(−)η //
_?inc

oo ηet

(−)(η)

��

S[−]et
oo

Shv⋆G
(−)et // ShvetG

(−)set //
_?inc

oo ShvsetG

(−)η //
_?inc

oo SetsmG
(−)⋆S

oo
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AlgSpet

δ

��

(−)et // Set

δ
��

(−)loc //
_?yon

oo Sloc

δ

��

_?inc
oo ∼

|−| // |S|loc
sec

��
Shv⋆G

(−)et // ShvetG
(−)G //

_?inc
oo Shv_?inc

oo Shv

8.10. Stalks. Since all morphisms in FetS are finite etale, we may define

S{η} = lim←−(X,x)∈FetS(η)X = lim←−(X,x)∈FetcS(η)X = lim←−(X,x)∈FetgS(η)X.

Here FetcS and FetgS ⊂ FetcS are the strictly full subcategories of X’s in FetS which
are respectively connected and Galois over S: the corresponding strictly full subcat-
egories FetcS(η) and FetgS(η) are initial in FetS(η). So S{η} is a connected proetale
cover of S with Galois group π(S) = G/I(S). By remark 25 and [3, 8.2.9], S{η} is ir-
reducible; by proposition 17, S{η} → S is an homeomorphism. Let E(S) be the cat-
egory of finite subextensions L of the Galois extension k(η, S) = k(η, η)I(S) of k(η),
where k(η, η) is the separable closure of k(η) in k(η). Mapping (X,x) ∈ FetcS(η) to

L(X,x) = image of x♯ : Γ(Xη,OXη )→ k(η)

defines a G-equivariant equivalence of categories FetcS(η) → E(S)opp. An inverse
functor takes L ∈ E(S) to the finite etale S-scheme S[L]et = S[Spec(L)]et equipped
with the η-valued point given by η → Spec(L) ≃ S[L]etη → S[L]et. Thus also

S{η} = lim←−L∈E(S)S[L]
et.

For s ∈ S and U ∋ s open in S, the base change functors FetS → FetU → FetS(s)

induce G-equivariant proetale S-morphisms S(s){η} → U{η} → S{η}, and

S(s){η} = lim←−s∈U⊂SU{η} = lim←−(X,x)∈Sfet(η,s)X.

Here S(s) = Spec(OS,s) while Sfet(η, s) = ∪s∈UFetU (η) is the category of all pairs
(X,x) where X ∈ Sfet is such that its image U in S contains s, and x ∈ X(η). For
any such pair, we denote by x̃ : S(s){η} → X the corresponding S-morphism. Since
S(s){η} → S(s) is an homeomorphism, S(s){η} is a local scheme. Let s̃→ S(s){η}
be a geometric point over the closed point s of S(s){η}. This yields a geometric
point of S over s, and the corresponding strict henselization of OS,s is given by

Spec(Osh
S,s̃) = lim←−(Y,y)∈Set(s̃)Y = lim←−(Y,y)∈Sfet(s̃)Y.

Here Set(s̃) is the category of pairs (Y, y) with Y ∈ Set and y ∈ Y (s̃), and Sfet(s̃)
is the strictly full subcategory where Y ∈ Sfet, which is initial by proposition 14.
Mapping (X,x) to (Y, y) where Y = X ∈ Sfet and y ∈ Y (s̃) is the composition

s̃ // S(s){η} x̃ // X

defines an equivalence of categories Sfet(η, s)→ Sfet(s̃). We thus obtain

S(s){η} ≃ Spec(Osh
S,s̃).

A posteriori, we find that we can essentially take s̃ → S(s){η} to be the closed
immersion s ↪→ S(s){η} of the closed point s of S(s){η}, whose residue field k(s)
is indeed a separable closure of k(s). With these conventions:
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Proposition 46. For any s ∈ S, there is a 2-commutative diagram

AlgSpet(S)
α //

(−)(s) ..

Shv(Set)
γ◦β //

(−)s

��

Shv⋆G(SZar)

(−)sppSetsmG

Proof. Proposition 7 gives commutativity of the first triangle, except that the target
category was SetΓ(s), with Γ(s) = Gal(k(s)/k(s)). Since S(s){η} = Spec(Osh

S,s),

Γ(s) = Aut(Osh
S,s/OS,s) = Aut(S(s){η}/S(s)) = π(S(s)) = G/I(s).

Since the third functor lands in the strictly full subcategory SetsmG of SetG, it
remains to establish the 2-commutativity of the second triangle. Unwinding the
definitions, we find that for B ∈ Shv(Set), C = γ2 ◦ γ1 ◦ β(B) and D = γ3(C),

Bs = lim−→(Y,y)∈Set(s)B(Y ) = lim−→(Y,y)∈Sfet(s)B(Y )

Ds = Cs = lim−→s∈UC(U) = lim−→s∈U lim−→(X,x)∈FetU (η)B(X) = lim−→(X,x)∈Sfet(η,s)B(X)

The equivalence Sfet(η, s) → Sfet(s) considered above between the indexing cate-
gories of these colimits then yields the desired functorial isomorphism. □

For a specialization s′ ⇝ s in S, the base change functor FetS(s) → FetS(s′)

induces a G-equivariant S-morphism

Spec(Osh
S,s′) = S(s′){η} // S(s){η} = Spec(Osh

S,s).

The localization morphism between Zariski stalk functors

loc : (−)s → (−)s′

corresponds to the localization morphism between etale stalk functors

loc : (−)s → (−)s′

induced by the functor Set(s)→ Set(s
′) mapping (Y, y) to (Y, y′), with y′ given by

s′ �
� // Spec(Osh

S,s′)
// Spec(Osh

S,s)
ỹ // Y

where ỹ is the canonical map Spec(Osh
S,s) = lim←−(Y,y)∈Set(s)Y → Y . On AlgSpet(S),

it corresponds to the localization morphism between geometric section functors

loc : (−)(s)→ (−)(s′)

whose evaluation at A ∈ AlgSpet(S) is given by

A(s) A
(
Osh

S,s

)≃oo // A
(
Osh

S,s′

)
≃ // A(s′)

The morphism Spec(Osh
S,s′)→ Spec(Osh

S,s) is a proetale cover of its image, which is
the inverse image of S(s′) in Spec(Osh

S,s). It follows that the middle map factors as

A
(
Osh

S,s

)
// A
(
Osh

S,s ⊗OS,s
OS,s′

) � � // A
(
Osh

S,s′

)
.

In particular by proposition 29, A is representable if and only if for all s ∈ S,
A
(
Osh

S,s

)
→ A

(
Osh

S,s ⊗OS,s
OS,η

)
is injective on G-orbits.
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9. Henselian valuation rings

We now apply the above results to the case where S is the spectrum of a valuation
ring O with fraction field K, maximal ideal m, residue field k(m) = O/m, and
value group Γ = K×/O×, whose group structure will be denoted additively. So if
v : K× ↠ Γ is the quotient map, v(xy) = v(x) + v(y) and the formula

v(x) ≥ v(y) ⇐⇒ x ∈ Oy
turns Γ into a totally ordered commutative group. We extend v to K → Γ ∪ {∞}
by v(0) =∞, so that O = {x ∈ K : v(x) ≥ 0} and m = {x ∈ K : v(x) > 0}.

The set of O-submodules of K is totally ordered by inclusion: if I1 and I2 are
O-submodules of K such that I1 ̸⊂ I2, then for any x1 ∈ I1 \ I2 and x2 ∈ I2,
x1 /∈ Ox2, so v(x1) < v(x2), hence x2 ∈ mx1 ⊂ Ox1 ⊂ I1, whence I2 ⊂ I1.

In particular, S = Spec(O) is totally ordered by inclusion. This totally ordered
set is not entirely random: it has a smallest element 0, a largest element m, and
any subset S ≠ ∅ of S has an inf and a sup in S, respectively given by

inf(S) = ∩q∈Sq and sup(S) = ∪q∈Sq.

Thus all nonempty closed subsets of S are irreducible, of the form V (p) = [p,m] for
a unique p ∈ S, using standard notations for intervals in posets. Accordingly, any
open U ̸= S of S is of the form [0, p[ for a unique p ∈ S. For p ⊂ q in S, p is a prime
ideal of Oq and O(p, q) = Oq/p is a valuation ring with spectrum [p, q], fraction
field k(p) = Op/p, residue field k(q) = Oq/q, and value group Γ(p)/Γ(q), where
Γ(p) = v(O×

p ) and Γ(q) = v(O×
q ) are convex subgroups of Γ. If O is henselian, then

so are all O(p, q)’s; in particular, O and all O(p, q)’s are locally henselian.

Proposition 47. For an open U ̸= ∅ of S, the following conditions are equivalent:
(1) U is a local scheme.
(2) U is affine.
(3) U is quasi-compact.
(4) U is special, i.e. U = D(f) for some nonzero f ∈ O.
(5) U = [0, p] for some p ∈ Spec(O).

Proof. Plainly (1)⇒ (2)⇒ (3) and (5)⇒ (1) with U = Spec(Op). For (3)⇒ (4): If
U is quasi-compact, it is covered by finitely many special opens D(fi) = Spec(Ofi)
for nonzero fi’s in O, and so U = D(f) for any f ∈ {fi} with v(f) = min{v(fi)}.
For (4)⇒ (5): If U = D(f), then p = ∪q∈Uq belongs to D(f) = U , so U = [0, p]. □

Definition 48. A prime p of O is special if [0, p] is open in Spec(O).

The map p 7→ [0, p] is an increasing bijection from special primes of O to special
opens of Spec(O). A prime p ̸= m is special if and only if {r : p ⊊ r} has a minimal
element q; then [0, p] = [0, q[= D(f) for any f ∈ q \p and the valuation ring O(p, q)
has height 1. The constructible partitions of Spec(O) are given by

Spec(O) = [0, p1]∪]p1, p2] ∪ · · · ∪]pn−1, pn]

for finite sequences p1 ⊊ p2 ⊊ · · · ⊊ pn = m of special primes of O.
Given the simple structure of S, a Zariski sheaf on S is uniquely characterized

by its restriction to nonempty special opens, its sections on such opens match the
stalk at the corresponding special primes, and the restriction maps between these
spaces of sections match the localization maps associated to the corresponding
specializations among special points. In other words, the category of Zariski sheaves
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of sets D on S is equivalent to the category of functors D : Sp(O)◦ → Set, where
Sp(O) is the totally ordered set of special points in Spec(O), viewed as a category:

D(p) = D([0, p]) = Dp and D(U) = lim←−p∈Sp(O)∩UD(p).

In particular for all q ∈ Spec(O),

D([0, q[) = lim←−p∈Sp(O),p<qD(p) and Dq = lim−→p∈Sp(O),p≥qD(p).

Similar considerations apply to sheaves of G-sets.
Suppose now that O is henselian and fix a geometric point η → S over the

generic point η of S. Let Ksep = k(η, η) be the separable closure of k(η) = K in
k(η) and set G = Gal(Ksep/K). For s ∈ U ⊂ S, let K(U) ⊂ K(s) ⊂ Ksep be the
fixed fields of I(U) ⊃ I(s), and let E(U) ⊂ E(s) be the finite extensions of K in
K(U) and K(s). So E(η) is the set of all finite extensions of K in Ksep, and

K(s) = ∪s∈UK(U), K(U) = ∩s∈UK(s),
E(s) = ∪s∈UE(U), E(U) = ∩s∈UE(s),

by proposition 23. For any integral K-algebra L, let S[L] be the normalization of
S in Spec(L) ↪→ S, i.e. S[L] = Spec(O[L]) where O[L] is the integral closure of O
in L. If L is field, then S[L]→ S is an homeomorphism by proposition 17, and for
s ∈ S, we denote by sL ∈ S[L] the unique point above s. For L ∈ E(η), S[L]→ S
is etale at sL if and only if L ∈ E(s), and S[L]et = U [L] where U is the largest
open of S such that L ∈ E(U). In particular for a special s ∈ Sp(O),

I(s) = I([0, s]), K(s) = K([0, s]) and E(s) = E([0, s]).

With notations as in section 8.10, we have

S{η} = lim←−L∈E(S)S[L] = S[K(S)]

S(s){η} = lim←−s∈UU{η} = lim←−L∈E(s)S(s)[L] = S(s)[K(s)] = Spec(Osh
S,s)

where s = sK(s) is the closed point of S(s){η}.

Summary. The category of etale algebraic spaces A over S and the category of
etale sheaves B on S are equivalent to the category of presheaves of smooth G-sets
D on Sp(O) such that for all special prime s of O, I(s) acts trivially on D(s), with

D(s) = A(s) = A(Osh
S,s) = Bs = lim−→L∈E(s)B(S[L]et) = lim−→L∈E(s)B(S(s)[L]).

The representable (resp. representable and separated) objects correspond to those
D ′s such that for every s′ ⊂ s in Sp(O), the localization map D(s) → D(s′) is
injective on G-orbits (resp. injective). Under these equivalences,

• A 7→ Aη corresponds to D 7→ Dη = lim−→s∈Sp(O)D(s),
• A 7→ Aset to D 7→ Dset, with Dset(s) = Im(D(s)→ Dη),
• A 7→ Aloc to D 7→ Dloc, with Dloc(s) = G\D(s),
• A 7→ Aet to D 7→ Det, with Det(s) = Im(D(s)→ Dη ×G\D(s)).
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