Generators of the pro-p Iwahori and Galois representations

Christophe Cornut¹ and Jishnu Ray²

¹CNRS - Institut de Mathématiques de Jussieu - Paris Rive Gauche, 4, place Jussieu, 75252 Paris Cedex 05, France, christophe.cornut@imj-prg.fr ²Département de Mathématiques, Université Paris-Sud 11, 91405 Orsay Cedex, France, jishnu.ray@u-psud.fr

Abstract

For an odd prime p, we determine a minimal set of topological generators of the pro-p Iwahori subgroup of a split reductive group G over \mathbb{Z}_p . In the simple adjoint case and for any sufficiently large regular prime p, we also construct Galois extensions of \mathbb{Q} with Galois group between the pro-p and the standard Iwahori subgroups of G.

1 Introduction

Let p be an odd prime, let G be a split reductive group over \mathbb{Z}_p , fix a Borel subgroup G be G with unipotent radical G and maximal split torus G be G. The Iwahori subgroup G and pro-G-Iwahori subgroup G are defined G by

$$I = \{ g \in \mathbf{G}(\mathbb{Z}_p) : \operatorname{red}(g) \in \mathbf{B}(\mathbb{F}_p) \},$$

$$I(1) = \{ g \in \mathbf{G}(\mathbb{Z}_p) : \operatorname{red}(g) \in \mathbf{U}(\mathbb{F}_p) \}.$$

where 'red' is the reduction map red: $\mathbf{G}(\mathbb{Z}_p) \to \mathbf{G}(\mathbb{F}_p)$. The subgroups I and I(1) are both open subgroups of $\mathbf{G}(\mathbb{Z}_p)$. Thus $I = I(1) \rtimes T_{tors}$ and $\mathbf{T}(\mathbb{Z}_p) = T(1) \times T_{tors}$ where T(1) and T_{tors} are respectively the pro-p and torsion subgroups of $\mathbf{T}(\mathbb{Z}_p)$. Following [3] (who works with $\mathbf{G} = \mathbf{GL}_n$), we construct in section 2 a minimal set of topological generators for I(1).

More precisely, let $M = X^*(\mathbf{T})$ be the group of characters of \mathbf{T} , $R \subset M$ the set of roots of \mathbf{T} in $\mathfrak{g} = \mathrm{Lie}(\mathbf{G})$, $\Delta \subset R$ the set of simple roots with respect to \mathbf{B} , $R = \coprod_{c \in \mathcal{C}} R_c$ the decomposition of R into irreducible components, $\Delta_c = \Delta \cap R_c$ the simple roots in R_c , $\alpha_{c,max}$ the highest positive root in R_c . We let $\mathcal{D} \subset \mathcal{C}$ be the set of irreducible components of type G_2 and for $d \in \mathcal{D}$, we denote by $\delta_d \in R_{d,+}$ the sum of the two simple roots in Δ_d . We denote by $M^{\vee} = X_*(\mathbf{T})$ the group of cocharacters of \mathbf{T} , by $\mathbb{Z}R^{\vee}$ the subgroup spanned by the coroots $R^{\vee} \subset M^{\vee}$ and we fix a set of representatives $\mathcal{S} \subset M^{\vee}$ for an \mathbb{F}_p -basis of

$$(M^{\vee}/\mathbb{Z}R^{\vee})\otimes\mathbb{F}_p=\oplus_{s\in\mathcal{S}}\mathbb{F}_p\cdot s\otimes 1.$$

We show (see theorem 2.4.1):

Theorem. The following elements form a minimal set of topological generators of the pro-p-Iwahori subgroup I(1) of $G = \mathbf{G}(\mathbb{Q}_p)$:

- 1. The semi-simple elements $\{s(1+p): s \in \mathcal{S}\}\ of\ T(1),$
- 2. For each $c \in \mathcal{C}$, the unipotent elements $\{x_{\alpha}(1) : \alpha \in \Delta_c\}$,
- 3. For each $c \in \mathcal{C}$, the unipotent element $x_{-\alpha_{c,max}}(p)$,
- 4. (If p=3) For each $d \in \mathcal{D}$, the unipotent element $x_{\delta_d}(1)$.

This result generalizes Greenberg [3] proposition 5.3, see also Schneider and Ollivier ([9], proposition 3.64, part i) for $G = SL_2$.

Let \mathbf{T}^{ad} be the image of \mathbf{T} in the adjoint group \mathbf{G}^{ad} of \mathbf{G} . The action of \mathbf{G}^{ad} on \mathbf{G} induces an action of $\mathbf{T}^{ad}(\mathbb{Z}_p)$ on I and I(1) and the latter equips the Frattini quotient $\tilde{I}(1)$ of I(1) with a structure of $\mathbb{F}_p[T_{tors}^{ad}]$ -module, where T_{tors}^{ad} is the torsion subgroup of $\mathbf{T}^{ad}(\mathbb{Z}_p)$ (cf. section 2.12). Any element β in $\mathbb{Z}R = M^{ad} = X^*(\mathbf{T}^{ad})$ induces a character $\beta: T_{ad}^{tors} \to \mathbb{F}_p^{\times}$ and we denote by $\mathbb{F}_p(\beta)$ the corresponding simple (1-dimensional) $\mathbb{F}_p[T_{tors}^{ad}]$ -module. With these notations, the theorem implies that

Corollary. The $\mathbb{F}_p[T_{tors}^{ad}]$ -module $\tilde{I}(1)$ is isomorphic to

$$\mathbb{F}_p^{\sharp \mathcal{S}} \oplus \Big(\oplus_{\alpha \in \Delta} \mathbb{F}_p(\alpha) \Big) \oplus \Big(\oplus_{c \in \mathcal{C}} \mathbb{F}_p(-\alpha_{c,max}) \Big) \Big(\oplus \Big(\oplus_{d \in \mathcal{D}} \mathbb{F}_p(\delta_c) \Big) \text{ if } p = 3 \Big).$$

Here $\sharp S$ is the cardinality of S. Suppose from now on in this introduction that G is simple and of adjoint type. Then:

Corollary The $\mathbb{F}_p[T_{tors}]$ -module $\tilde{I}(1)$ is multiplicity free unless p=3 and G is of type A_1 , B_ℓ or C_ℓ ($\ell \geq 2$), F_4 or G_2 .

Let now K be a Galois extension of \mathbb{Q} , Σ_p the set of primes of K lying above p. Let M be the compositum of all finite p-extensions of K which are unramified outside Σ_p , a Galois extension over \mathbb{Q} . Set $\Gamma = \operatorname{Gal}(M/K)$, $\Omega = \operatorname{Gal}(K/\mathbb{Q})$ and $\Pi = \operatorname{Gal}(M/\mathbb{Q})$. We say that K is p-rational if Γ is a free pro-p group, see [6]. The simplest example is $K = \mathbb{Q}$, where $\Gamma = \Pi$ is also abelian and M is the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . Other examples of p-rational fields are $\mathbb{Q}(\mu_p)$ where p is a regular prime.

Assume K is a p-rational, totally complex, abelian extension of \mathbb{Q} and $(p-1)\cdot\Omega=0$. Then Greenberg in [3] constructs a continuous homomorphism

$$\rho_0: \operatorname{Gal}(M/\mathbb{Q}) \to GL_n(\mathbb{Z}_p)$$

such that $\rho_0(\Gamma)$ is the pro-p Iwahori subgroup of $SL_n(\mathbb{Z}_p)$, assuming that there exists n distinct characters of Ω , trivial or odd, whose product is the trivial character.

In section 3, we are proving results which show the existence of p-adic Lie extensions of \mathbb{Q} where the Galois group corresponds to a certain specific p-adic Lie algebra. More precisely, for p-rational fields, we construct continuous morphisms with open image $\rho: \Pi \to I$ such that $\rho(\Gamma) = I(1)$. We

show in corollary 3.3.1 that

Corollary Suppose that K is a p-rational totally complex, abelian extension of \mathbb{Q} and $(p-1)\cdot\Omega=0$. Assume also that if p=3, our split simple adjoint group \mathbf{G} is not of type A_1 , B_ℓ or C_ℓ ($\ell \geq 2$), F_4 or G_2 . Then there is a morphism $\rho:\Pi\to I$ such that $\rho(\Gamma)=I(1)$ if and only if there is morphism $\overline{\rho}:\Omega\to T_{tors}$ such that the characters $\alpha\circ\overline{\rho}:\Omega\to\mathbb{F}_p^\times$ for $\alpha\in\{\Delta\cup-\alpha_{max}\}$ are all distinct and belong to $\hat{\Omega}_{odd}^{\mathcal{S}}$.

Here $\hat{\Omega}_{odd}^{\mathcal{S}}$ is a subset of the characters of Ω with values in \mathbb{F}_p^{\times} (it is defined after proposition 3.2.1). Furthermore assuming $K = \mathbb{Q}(\mu_p)$ we show the existence of such a morphism $\overline{\rho}: \Omega \to T_{tors}$ provided that p is a sufficiently large regular prime (cf. section 3.2):

Corollary There is a constant c depending only upon the type of G such that if p > c is a regular prime, then for $K = \mathbb{Q}(\mu_p)$, M, Π and Γ as above, there is a continuous morphism $\rho : \Pi \to I$ with $\rho(\Gamma) = I(1)$.

The constant c can be determined from lemmas 3.4.1, 3.4.2 and remark 3.4.3.

In section 2, we find a minimal set of topological generators of I(1) and study the structure of $\tilde{I}(1)$ as an $\mathbb{F}_p[T_{tors}^{ad}]$ -module. In section 3, assuming our group \mathbf{G} to be simple and adjoint, we discuss the notion of p-rational fields and construct continuous morphisms $\rho: \Pi \to I$ with open image.

We would like to thank Marie-France Vignéras for useful discussions and for giving us the reference [9]. We are also deeply grateful to Ralph Greenberg for numerous conversations on this topic.

2 Topological Generators of the pro-p Iwahori

This section is organized as follows. In sections (2.1-2.3) we introduce the notations, then section 2.4 states our main result concerning the minimal set of topological generators of I(1) (see theorem 2.4.1) with a discussion of the Iwahori factorisation in section 2.5. Its proof for G simple and simply connected is given in sections (2.6-2.10), where section 2.10 deals with the case of a group of type G_2 . The proof for an arbitrary split reductive group over \mathbb{Z}_p is discussed in sections (2.11-2.14). In particular, section 2.14 establishes the minimality of our set of topological generators. Finally, in section 2.15 we study the structure of the Frattini quotient $\tilde{I}(1)$ of I(1) as an $\mathbb{F}_p[T_{tors}^{ad}]$ -module and determine the cases when it is multiplicity free.

2.1 Let p be an odd prime, G be a split reductive group over \mathbb{Z}_p . Fix a pinning of G [11, XXIII 1]

$$(\mathbf{T}, M, R, \Delta, (X_{\alpha})_{\alpha \in \Delta})$$
.

Thus **T** is a split maximal torus in **G**, $M = X^*(\mathbf{T})$ is its group of characters,

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \oplus_{\alpha \in R} \mathfrak{g}_{\alpha}$$

is the weight decomposition for the adjoint action of **T** on $\mathfrak{g} = \text{Lie}(\mathbf{G})$, $\Delta \subset R$ is a basis of the root system $R \subset M$ and for each $\alpha \in \Delta$, X_{α} is a \mathbb{Z}_p -basis of \mathfrak{g}_{α} .

2.2 We denote by $M^{\vee} = X_*(\mathbf{T})$ the group of cocharacters of \mathbf{T} , by α^{\vee} the coroot associated to $\alpha \in R$ and by $R^{\vee} \in M^{\vee}$ the set of all such coroots. We expand $(X_{\alpha})_{\alpha \in \Delta}$ to a Chevalley system $(X_{\alpha})_{\alpha \in R}$ of \mathbf{G} [11, XXIII 6.2]. For $\alpha \in R$, we denote by $\mathbf{U}_{\alpha} \subset \mathbf{G}$ the corresponding unipotent group, by $x_{\alpha} : \mathbf{G}_{a,\mathbb{Z}_p} \to \mathbf{U}_{\alpha}$ the isomorphism given by $x_{\alpha}(t) = \exp(tX_{\alpha})$. The height $h(\alpha) \in \mathbb{Z}$ of $\alpha \in R$ is the sum of the coefficients of α in the basis Δ of R. Thus $R_+ = h^{-1}(\mathbb{Z}_{>0})$ is the set of positive roots in R, corresponding to a Borel subgroup $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$ of \mathbf{G} with unipotent radical \mathbf{U} . We let \mathcal{C} be the set of irreducible components of R, so that

$$R = \coprod_{c \in \mathcal{C}} R_c, \quad \Delta = \coprod_{c \in \mathcal{C}} \Delta_c, \quad R_+ = \coprod_{c \in \mathcal{C}} R_{c,+}$$

with R_c irreducible, $\Delta_c = \Delta \cap R_c$ is a basis of R_c and $R_{c,+} = R_+ \cap R_c$ is the corresponding set of positive roots in R_c . We denote by $\alpha_{c,max} \in R_{c,+}$ the highest root of R_c . We let $\mathcal{D} \subset \mathcal{C}$ be the set of irreducible components of type G_2 and for $d \in \mathcal{D}$, we denote by $\delta_d \in R_{d,+}$ the sum of the two simple roots in Δ_d .

2.3 Since G is smooth over \mathbb{Z}_p , the reduction map

$$\operatorname{red}: \mathbf{G}(\mathbb{Z}_p) \to \mathbf{G}(\mathbb{F}_p)$$

is surjective and its kernel G(1) is a normal pro-p-subgroup of $\mathbf{G}(\mathbb{Z}_p)$. The Iwahori subgroup I and pro-p-Iwahori subgroup $I(1) \subset I$ of $\mathbf{G}(\mathbb{Z}_p)$ are defined [13, 3.7] by

$$I = \{g \in \mathbf{G}(\mathbb{Z}_p) : \operatorname{red}(g) \in \mathbf{B}(\mathbb{F}_p)\},$$

$$I(1) = \{g \in \mathbf{G}(\mathbb{Z}_p) : \operatorname{red}(g) \in \mathbf{U}(\mathbb{F}_p)\}.$$

Thus I(1) is a normal pro-p-sylow subgroup of I which contains $\mathbf{U}(\mathbb{Z}_p)$ and

$$I/I(1) \simeq \mathbf{B}(\mathbb{F}_p)/\mathbf{U}(\mathbb{F}_p) \simeq \mathbf{T}(\mathbb{F}_p).$$

Since $\mathbf{T}(\mathbb{Z}_p) \twoheadrightarrow \mathbf{T}(\mathbb{F}_p)$ is split by the torsion subgroup $T_{tors} \simeq \mathbf{T}(\mathbb{F}_p)$ of $\mathbf{T}(\mathbb{Z}_p)$,

$$\mathbf{T}(\mathbb{Z}_p) = T(1) \times T_{tors}$$
 and $I = I(1) \rtimes T_{tors}$

where

$$T(1) = \mathbf{T}(\mathbb{Z}_p) \cap I(1) = \ker (\mathbf{T}(\mathbb{Z}_p) \to \mathbf{T}(\mathbb{F}_p))$$

is the pro-p-sylow subgroup of $\mathbf{T}(\mathbb{Z}_p)$. Note that

$$T(1) = \operatorname{Hom}(M, 1 + p\mathbb{Z}_p) = M^{\vee} \otimes (1 + p\mathbb{Z}_p),$$

 $T_{tors} = \operatorname{Hom}(M, \mu_{p-1}) = M^{\vee} \otimes \mathbb{F}_p^{\times}.$

2.4 Let $S \subset M^{\vee}$ be a set of representatives for an \mathbb{F}_p -basis of

$$(M^{\vee}/\mathbb{Z}R^{\vee})\otimes\mathbb{F}_p=\oplus_{s\in\mathcal{S}}\mathbb{F}_p\cdot s\otimes 1.$$

Theorem 2.4.1. The following elements form a minimal set of topological generators of the prop-Iwahori subgroup I(1) of $G = \mathbf{G}(\mathbb{Q}_p)$:

- 1. The semi-simple elements $\{s(1+p): s \in \mathcal{S}\}\$ of T(1).
- 2. For each $c \in \mathcal{C}$, the unipotent elements $\{x_{\alpha}(1) : \alpha \in \Delta_c\}$.
- 3. For each $c \in \mathcal{C}$, the unipotent element $x_{-\alpha_{c,max}}(p)$.
- 4. (If p = 3) For each $d \in \mathcal{D}$, the unipotent element $x_{\delta_d}(1)$.

2.5 By [11, XXII 5.9.5] and its proof, there is a canonical filtration

$$\mathbf{U} = \mathbf{U}_1 \supset \mathbf{U}_2 \supset \cdots \supset \mathbf{U}_h \supset \mathbf{U}_{h+1} = 1$$

of U by normal subgroups such that for $1 \le i \le h$, the product map (in any order)

$$\prod_{h(\alpha)=i}\mathbf{U}_{\alpha}\to\mathbf{U}$$

factors through U_i and yields an isomorphism of group schemes

$$\prod_{h(\alpha)=i} \mathbf{U}_{\alpha} \xrightarrow{\simeq} \overline{\mathbf{U}}_{i}, \quad \overline{\mathbf{U}}_{i} = \mathbf{U}_{i}/\mathbf{U}_{i+1}.$$

By [11, XXII 5.9.6] and its proof,

$$\overline{\mathbf{U}}_i(R) = \mathbf{U}_i(R)/\mathbf{U}_{i+1}(R)$$

for every \mathbb{Z}_p -algebra R. It follows that the product map

$$\prod_{h(\alpha)=i} \mathbf{U}_{\alpha} \times \mathbf{U}_{i+1} \to \mathbf{U}_{i}$$

is an isomorphism of \mathbb{Z}_p -schemes and by induction, the product map

$$\prod_{h(\alpha)=1}\mathbf{U}_{\alpha}\times\prod_{h(\alpha)=2}\mathbf{U}_{\alpha}\times\cdots\times\prod_{h(\alpha)=h}\mathbf{U}_{\alpha}\to\mathbf{U}$$

is an isomorphism of \mathbb{Z}_p -schemes. Similarly, the product map

$$\prod_{h(\alpha)=-h} \mathbf{U}_{\alpha} \times \prod_{h(\alpha)=-h+1} \mathbf{U}_{\alpha} \times \cdots \times \prod_{h(\alpha)=-1} \mathbf{U}_{\alpha} \to \mathbf{U}^{-}$$

is an isomorphism of \mathbb{Z}_p -schemes, where \mathbf{U}^- is the unipotent radical of the Borel subgroup $\mathbf{B}^- = \mathbf{U}^- \rtimes \mathbf{T}$ opposed to \mathbf{B} with respect to \mathbf{T} . Then by [11, XXII 4.1.2], there is an open subscheme Ω of \mathbf{G} (the "big cell") such that the product map

$$\mathbf{U}^- \times \mathbf{T} \times \mathbf{U} \to \mathbf{G}$$

is an open immersion with image Ω . Plainly, $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$ is a closed subscheme of Ω . Thus by definition of I, $I \subset \Omega(\mathbb{Z}_p)$ and therefore any element of I (resp. I(1)) can be written uniquely as a product

$$\prod_{h(\alpha)=-h} x_{\alpha}(a_{\alpha}) \times \cdots \times \prod_{h(\alpha)=-1} x_{\alpha}(a_{\alpha}) \times t \times \prod_{h(\alpha)=1} x_{\alpha}(a_{\alpha}) \times \cdots \times \prod_{h(\alpha)=h} x_{\alpha}(a_{\alpha})$$

where $a_{\alpha} \in \mathbb{Z}_p$ for $\alpha \in R_+$, $a_{\alpha} \in p\mathbb{Z}_p$ for $\alpha \in R_- = -R_+$ and $t \in \mathbf{T}(\mathbb{Z}_p)$ (resp. T(1)). This is the Iwahori decomposition of I (resp. I(1)). If I^+ is the group spanned by $\{x_{\alpha}(\mathbb{Z}_p) : \alpha \in R_+\}$ and I^- is the group spanned by $\{x_{\alpha}(p\mathbb{Z}_p) : \alpha \in R_-\}$, then $I^+ = \mathbf{U}(\mathbb{Z}_p)$, $I^- \subset \mathbf{U}^-(\mathbb{Z}_p)$ and every $x \in I$ (resp. I(1)) has a unique decomposition $x = u^-tu^+$ with $u^{\pm} \in I^{\pm}$ and $t \in \mathbf{T}(\mathbb{Z}_p)$ (resp. $t \in T(1)$).

2.6 Suppose first that **G** is semi-simple and simply connected. Then $M^{\vee} = \mathbb{Z}R^{\vee}$, thus $S = \emptyset$. Moreover, everything splits according to the decomposition $R = \coprod R_c$:

$$\mathbf{G} = \prod \mathbf{G}_c, \quad \mathbf{T} = \prod \mathbf{T}_c, \quad \mathbf{B} = \prod \mathbf{B}_c, \quad I = \prod I_c \quad \text{and} \quad I(1) = \prod I_c(1).$$

To establish the theorem in this case, we may thus furthermore assume that G is simple. From now on until section 2.11, we therefore assume that

G is (split) simple and simply connected.

2.7 As a first step, we show that

Lemma 2.7.1. The group generated by I^+ and I^- contains T(1).

Proof. Since G is simply connected,

$$\prod_{\alpha \in \Delta} \alpha^{\vee} : \prod_{\alpha \in \Delta} \mathbf{G}_{m, \mathbb{Z}_p} \to \mathbf{T}$$

is an isomorphism, thus

$$T_c(1) = \prod_{\alpha \in \Delta} \alpha^{\vee} (1 + p\mathbb{Z}_p).$$

Now for any $\alpha \in \Delta$, there is a unique morphism [11, XX 5.8]

$$f_{\alpha}: \mathbf{SL}(2)_{\mathbb{Z}_p} \to \mathbf{G}$$

such that for every $u, v \in \mathbb{Z}_p$ and $x \in \mathbb{Z}_p^{\times}$,

$$f_{\alpha}\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} = x_{\alpha}(u), \quad f_{\alpha}\begin{pmatrix} 1 & 0 \\ v & 1 \end{pmatrix} = x_{-\alpha}(v) \quad \text{and} \quad f_{\alpha}\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} = \alpha^{\vee}(x).$$

Since for every $x \in 1 + p\mathbb{Z}_p$ [11, XX 2.7],

$$\left(\begin{array}{cc} 1 & 0 \\ x^{-1} - 1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ x - 1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & -x^{-1} \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} x & 0 \\ 0 & x^{-1} \end{array}\right)$$

in $\mathbf{SL}(2)(\mathbb{Z}_p)$, it follows that $\alpha^{\vee}(1+p\mathbb{Z}_p)$ is already contained in the subgroup of $\mathbf{G}(\mathbb{Z}_p)$ generated by $x_{\alpha}(\mathbb{Z}_p^{\times})$ and $x_{-\alpha}(p\mathbb{Z}_p)$. This proves the lemma.

2.8 Recall from [11, XXI 2.3.5] that for any pair of non-proportional roots $\alpha \neq \pm \beta$ in R, the set of integers $k \in \mathbb{Z}$ such that $\beta + k\alpha \in R$ is an interval of length at most 3, i.e. there are integers $r \geq 1$ and $s \geq 0$ with $r + s \leq 4$ such that

$$R \cap \{\beta + \mathbb{Z}\alpha\} = \{\beta - (r-1)\alpha, \cdots, \beta + s\alpha\}.$$

The above set is called the α -chain through β and any such set is called a root chain in R. Let $\|-\|: R \to \mathbb{R}_+$ be the length function on R.

Proposition 2.8.1. Suppose $\|\alpha\| \leq \|\beta\|$. Then for any $u, v \in \mathbf{G}_a$ the commutator

$$[x_{\beta}(v):x_{\alpha}(u)] = x_{\beta}(v)x_{\alpha}(u)x_{\beta}(-v)x_{\alpha}(-u)$$

is given by the following table, with (r, s) as above:

```
 \begin{array}{lll} (r,s) & [x_{\beta}(v):x_{\alpha}(u)] \\ (-,0) & 1 \\ (1,1) & x_{\alpha+\beta}(\pm uv) \\ (1,2) & x_{\alpha+\beta}(\pm uv) \cdot x_{2\alpha+\beta}(\pm u^2v) \\ (1,3) & x_{\alpha+\beta}(\pm uv) \cdot x_{2\alpha+\beta}(\pm u^2v) \cdot x_{3\alpha+\beta}(\pm u^3v) \cdot x_{3\alpha+2\beta}(\pm u^3v^2) \\ (2,1) & x_{\alpha+\beta}(\pm 2uv) \\ (2,2) & x_{\alpha+\beta}(\pm 2uv) \cdot x_{2\alpha+\beta}(\pm 3u^2v) \cdot x_{\alpha+2\beta}(\pm 3uv^2) \\ (3,1) & x_{\alpha+\beta}(\pm 3uv) \end{array}
```

The signs are unspecified, but only depend upon α and β .

Proof. This is [11, XXIII 6.4].

Corollary 2.8.2. If $r + s \leq 3$ and $\alpha + \beta \in R$ (i.e. $s \geq 1$), then for any $a, b \in \mathbb{Z}$, the subgroup of G generated by $x_{\alpha}(p^{a}\mathbb{Z}_{p})$ and $x_{\beta}(p^{b}\mathbb{Z}_{p})$ contains $x_{\alpha+\beta}(p^{a+b}\mathbb{Z}_{p})$.

Proof. This is obvious if (r, s) = (1, 1) or (2, 1) (using $p \neq 2$ in the latter case). For the only remaining case where (r, s) = (1, 3), note that

$$[x_{\beta}(v): x_{\alpha}(u)][x_{\beta}(w^{2}v): x_{\alpha}(uw^{-1})]^{-1} = x_{\alpha+\beta}(\pm uv(1-w)).$$

Since $p \neq 2$, we may find $w \in \mathbb{Z}_p^{\times}$ with $(1-w) \in \mathbb{Z}_p^{\times}$. Our claim easily follows.

Lemma 2.8.3. If R contains any root chain of length 3, then G is of type G_2 .

Proof. Suppose that the α -chain through β has length 3. By [11, XXI 3.5.4], there is a basis Δ' of R such that $\alpha \in \Delta'$ and $\beta = a\alpha + b\alpha'$ with $\alpha' \in \Delta'$, $a, b \in \mathbb{N}$. The root system R' spanned by $\Delta' = \{\alpha, \alpha'\}$ [11, XXI 3.4.6] then also contains an α -chain of length 3. By inspection of the root systems of rank 2, for instance in [11, XXIII 3], we find that R' is of type G_2 . In particular, the Dynkin diagram of R contains a triple edge (linking the vertices corresponding to α and α'), which implies that actually R = R' is of type G_2 .

2.9 We now establish our theorem 2.4.1 for a group **G** which is simple and simply connected, but not of type G_2 .

Lemma 2.9.1. The group I^+ is generated by $\{x_{\alpha}(\mathbb{Z}_p) : \alpha \in \Delta\}$.

Proof. Let $H \subset I^+$ be the group spanned by $\{x_{\alpha}(\mathbb{Z}_p) : \alpha \in \Delta\}$. We show by induction on $h(\gamma) \geq 1$ that $x_{\gamma}(\mathbb{Z}_p) \subset H$ for every $\gamma \in R_+$. If $h(\gamma) = 1$, γ already belongs to Δ and there is nothing to prove. If $h(\gamma) > 1$, then by [1, VI.1.6 Proposition 19], there is a simple root $\alpha \in \Delta$ such that $\beta = \gamma - \alpha \in R_+$. Then $h(\beta) = h(\gamma) - 1$, thus by induction $x_{\beta}(\mathbb{Z}_p) \subset H$. Since also $x_{\alpha}(\mathbb{Z}_p) \subset H$, $x_{\gamma}(\mathbb{Z}_p) \subset H$ by Corollary 2.8.2.

Lemma 2.9.2. The group generated by I^+ and $x_{-\alpha_{max}}(p\mathbb{Z}_p)$ contains I^- .

Proof. Let $H \subset I$ be the group spanned by I^+ and $x_{-\alpha_{max}}(p\mathbb{Z}_p)$. We show by descending induction on $h(\gamma) \geq 1$ that $x_{-\gamma}(p\mathbb{Z}_p) \subset H$ for every $\gamma \in R_+$. If $h(\gamma) = h(\alpha_{max})$, then $\gamma = \alpha_{max}$ and there is nothing to prove. If $h(\gamma) < h(\alpha_{max})$, then by [1, VI.1.6 Proposition 19], there is a pair of positive roots α, β such that $\beta = \gamma + \alpha$. Then $h(\beta) = h(\gamma) + h(\alpha) > h(\gamma)$, thus by induction $x_{-\beta}(p\mathbb{Z}_p) \subset H$. Since also $x_{\alpha}(\mathbb{Z}_p) \subset H$, $x_{-\gamma}(p\mathbb{Z}_p) \subset H$ by Corollary 2.8.2.

Remark 2.9.3. From the Hasse diagrams in [10], it seems that in the previous proof, we may always require α to be a simple root.

Proof. (Of theorem 2.4.1 for **G** simple, simply connected, not of type G_2) By lemma 2.7.1, 2.9.1, 2.9.2 and the Iwahori decomposition of section 2.5, I(1) is generated by

$$\{x_{\alpha}(\mathbb{Z}_p) : \alpha \in \Delta\} \cup \{x_{-\alpha_{max}}(p\mathbb{Z}_p)\}$$

thus topologically generated by

$$\{x_{\alpha}(1): \alpha \in \Delta\} \cup \{x_{-\alpha_{max}}(p)\}.$$

None of these topological generators can be removed: the first ones are contained in $I^+ \subsetneq I(1)$, and all of them are needed to span the image of

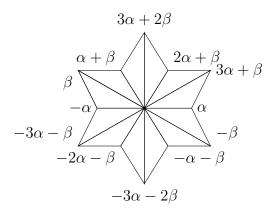
$$I(1) \twoheadrightarrow \mathbf{U}(\mathbb{F}_p) \twoheadrightarrow \overline{\mathbf{U}}_1(\mathbb{F}_p) \simeq \prod_{\alpha \in \Delta} \mathbf{U}_{\alpha}(\mathbb{F}_p),$$

a surjective morphism that kills $x_{-\alpha_{max}}(p)$.

2.10 Let now **G** be simple of type G_2 , thus $\Delta = \{\alpha, \beta\}$ with $\|\alpha\| < \|\beta\|$ and

$$R_{+} = \{\alpha, \beta, \beta + \alpha, \beta + 2\alpha, \beta + 3\alpha, 2\beta + 3\alpha\}.$$

The whole root system looks like this:



Lemma 2.10.1. The group generated by I^+ and $x_{-2\beta-3\alpha}(p\mathbb{Z}_p)$ contains I^- .

Proof. Let $H \subset I(1)$ be the group generated by I^+ and $x_{-2\beta-3\alpha}(p\mathbb{Z}_p)$. Then, for every $u, v \in \mathbb{Z}_p$, H contains

$$[x_{-2\beta-3\alpha}(pv):x_{\beta}(u)] = x_{-\beta-3\alpha}(\pm puv)$$

$$[x_{-2\beta-3\alpha}(pv):x_{\beta+3\alpha}(u)] = x_{-\beta}(\pm puv)$$

$$[x_{-2\beta-3\alpha}(pv):x_{\beta+2\alpha}(u)] = x_{-\beta-\alpha}(\pm puv) \cdot x_{\alpha}(\pm pu^{2}v) \cdot x_{\beta+3\alpha}(\pm pu^{3}v) \cdot x_{-\beta}(\pm p^{2}u^{3}v^{2})$$

It thus contains $x_{-\beta-3\alpha}(p\mathbb{Z}_p)$, $x_{-\beta}(p\mathbb{Z}_p)$ and $x_{-\beta-\alpha}(p\mathbb{Z}_p)$, along with

$$[x_{-\beta-3\alpha}(pv) : x_{\alpha}(u)] = x_{-\beta-2\alpha}(\pm puv) \cdot x_{-\beta-\alpha}(\pm pu^{2}v) \cdot x_{-\beta}(\pm pu^{3}v) \cdot x_{-2\beta-3\alpha}(\pm p^{2}u^{3}v^{2})$$

$$[x_{-\beta-3\alpha}(pv) : x_{\beta+2\alpha}(u)] = x_{-\alpha}(\pm puv) \cdot x_{\beta+\alpha}(\pm pu^{2}v) \cdot x_{2\beta+3\alpha}(\pm pu^{3}v) \cdot x_{\beta}(\pm p^{2}u^{3}v^{2})$$

It therefore also contains $x_{-\beta-2\alpha}(p\mathbb{Z}_p)$ and $x_{-\alpha}(p\mathbb{Z}_p)$.

The filtration $(\mathbf{U}_i)_{i\geq 1}$ of \mathbf{U} in section 2.5 induces a filtration

$$I^{+} = I_{1}^{+} \supset \cdots \supset I_{5}^{+} \supset I_{6}^{+} = 1$$

of $I^+ = \mathbf{U}(\mathbb{Z}_p)$ by normal subgroups $I_i^+ = \mathbf{U}_i(\mathbb{Z}_p)$ whose graded pieces

$$\overline{I}_i^+ = \overline{\mathbf{U}}_i(\mathbb{Z}_p) = I_i^+ / I_{i+1}^+$$

are free \mathbb{Z}_p -modules, namely

$$\overline{I}_{1}^{+} = \mathbb{Z}_{p} \cdot \overline{x}_{\alpha} \oplus \mathbb{Z}_{p} \cdot \overline{x}_{\beta}, \qquad \overline{I}_{2}^{+} = \mathbb{Z}_{p} \cdot \overline{x}_{\alpha+\beta}$$

$$\overline{I}_{3}^{+} = \mathbb{Z}_{p} \cdot \overline{x}_{2\alpha+\beta}, \qquad \overline{I}_{4}^{+} = \mathbb{Z}_{p} \cdot \overline{x}_{3\alpha+\beta}, \qquad \overline{I}_{5}^{+} = \mathbb{Z}_{p} \cdot \overline{x}_{3\alpha+2\beta}$$

where \overline{x}_{γ} is the image of $x_{\gamma}(1)$. The commutator defines \mathbb{Z}_p -linear pairings

$$[-,-]_{i,j}: \overline{I}_i^+ \times \overline{I}_j^+ \to \overline{I}_{i+j}^+$$

with $[y, x]_{j,i} = -[x, y]_{i,j}$, $[x, x]_{i,i} = 0$ and, by Proposition 2.8.1,

$$[\overline{x}_{\beta}, \overline{x}_{\alpha}] = \pm \overline{x}_{\alpha+\beta}, \quad [\overline{x}_{\alpha+\beta}, \overline{x}_{\alpha}] = \pm 2\overline{x}_{2\alpha+\beta}, \quad [\overline{x}_{2\alpha+\beta}, \overline{x}_{\alpha}] = \pm 3\overline{x}_{3\alpha+\beta}, [\overline{x}_{\alpha+\beta}, \overline{x}_{2\alpha+\beta}] = \pm x_{3\alpha+2\beta} \quad \text{and} \quad [\overline{x}_{\beta}, \overline{x}_{3\alpha+\beta}] = \pm x_{2\alpha+2\beta}$$

Let H be the subgroup of I^+ generated by $x_{\alpha}(\mathbb{Z}_p)$ and $x_{\beta}(\mathbb{Z}_p)$ and denote by H_i its image in $I^+/I^+_{i+1}=G_i$. Then $H_1=G_1$, H_2 contains $[\overline{x}_{\beta},\overline{x}_{\alpha}]=\pm\overline{x}_{\alpha+\beta}$ thus $H_2=G_2$, H_3 contains $[\overline{x}_{\alpha+\beta},\overline{x}_{\alpha}]=\pm2\overline{x}_{2\alpha+\beta}$ thus $H_3=G_3$ since $p\neq 2$, H_4 contains $[\overline{x}_{2\alpha+\beta},\overline{x}_{\alpha}]=\pm3\overline{x}_{3\alpha+\beta}$ thus $H_4=G_4$ if $p\neq 3$, in which case actually $H=H_5=G_5=I^+$ since H always contains $[\overline{x}_{\alpha+\beta},\overline{x}_{2\alpha+\beta}]=\pm x_{3\alpha+2\beta}$.

If p=3, let us also consider the exact sequence

$$0 \to J_4 \to G_4 \to \overline{I}_1^+ \to 0$$

The group $J_4 = I_2^+/I_5^+$ is commutative, and in fact again a free \mathbb{Z}_3 -module:

$$J_4 = (\mathbf{U}_2/\mathbf{U}_5)(\mathbb{Z}_p) = \mathbb{Z}_3 \tilde{x}_{\alpha+\beta} \oplus \mathbb{Z}_3 \tilde{x}_{2\alpha+\beta} \oplus \mathbb{Z}_3 \overline{x}_{3\alpha+\beta}$$

where \tilde{x}_{γ} is the image of $x_{\gamma}(1)$. The action by conjugation of \overline{I}_{1}^{+} on J_{4} is given by

$$\overline{x}_{\alpha} \mapsto \begin{pmatrix} 1 \\ \pm 2 & 1 \\ \pm 3 & \pm 3 & 1 \end{pmatrix} \quad \overline{x}_{\beta} \mapsto \begin{pmatrix} 1 \\ & 1 \\ & & 1 \end{pmatrix}$$

in the indicated basis of J_4 . The \mathbb{Z}_3 -submodule $H'_4 = H_4 \cap J_4$ of J_4 satisfies

$$H'_4 + \mathbb{Z}_3 \overline{x}_{3\alpha+\beta} = J_4$$
 and $3\overline{x}_{3\alpha+\beta} \in H'_4$.

Naming signs $\epsilon_i \in \{\pm 1\}$ in formula (1,3) of proposition 2.8.1, we find that H'_4 contains

$$\epsilon_1 uv \cdot \tilde{x}_{\alpha+\beta} + \epsilon_2 u^2 v \cdot \tilde{x}_{2\alpha+\beta} + \epsilon_3 u^3 v \cdot \overline{x}_{3\alpha+\beta}$$

for every $u, v \in \mathbb{Z}_3$. Adding these for v = 1 and $u = \pm 1$, we obtain

$$\tilde{x}_{2\alpha+\beta} \in H_4'$$
.

It follows that H'_4 actually contains the following \mathbb{Z}_3 -submodule of J_4 :

$$J_4' = \{ a \cdot \tilde{x}_{\alpha+\beta} + b \cdot \tilde{x}_{2\alpha+\beta} + c \cdot \overline{x}_{3\alpha+\beta} : a, b, c \in \mathbb{Z}_3, \, \epsilon_1 a \equiv \epsilon_3 c \bmod 3 \}.$$

Now observe that J'_4 is a normal subgroup of G_4 , and the induced exact sequence

$$0 \to J_4/{J'}_4 \to G_4/{J'}_4 \to \overline{I}_1^+ \to 0$$

is an abelian extension of $\overline{I}_1^+ \simeq \mathbb{Z}_3^2$ by $J_4/J_4' \simeq \mathbb{F}_3$. Since H_4/J_4' is topologically generated by two elements and surjects onto \overline{I}_1^+ , it actually defines a splitting:

$$G_4/J_4' = H_4/J_4' \oplus J_4/J_4'.$$

Thus $H'_4 = J'_4$, H_4 is a normal subgroup of G_4 , H is a normal subgroup of I^+ and

$$I^+/H \simeq G_4/H_4 \simeq J_4/J_4' \simeq \mathbb{F}_3$$

is generated by the class of $x_{\alpha+\beta}(1)$ or $x_{3\alpha+\beta}(1)$. We have shown:

Lemma 2.10.2. The group I^+ is spanned by $x_{\alpha}(\mathbb{Z}_p)$ and $x_{\beta}(\mathbb{Z}_p)$ plus $x_{\alpha+\beta}(1)$ if p=3.

Proof. (Of theorem 2.4.1 for **G** simple of type G_2) By lemma 2.7.1, 2.10.1, 2.10.2 and the Iwahori decomposition of section 2.5, the pro-p-Iwahori I(1) is generated by $x_{\alpha}(\mathbb{Z}_p)$, $x_{\beta}(\mathbb{Z}_p)$, $x_{-2\beta-3\alpha}(p\mathbb{Z}_p)$, along with $x_{\alpha+\beta}(1)$ if p=3. It is therefore topologically generated by $x_{\alpha}(1)$, $x_{\beta}(1)$, $x_{-2\beta-3\alpha}(p)$, along with $x_{\alpha+\beta}(1)$ if p=3. The surjective reduction morphism $I(1) \to \mathbf{U}(\mathbb{F}_p) \to \overline{\mathbf{U}}_1(\mathbb{F}_p)$ shows that the first two generators can not be removed. The third one also can not, since all the others belong to the closed subgroup $I_+ \subsetneq I(1)$. Finally, suppose that p=3 and consider the extension

$$1 \rightarrow \mathbf{U}_2/\mathbf{U}_5 \rightarrow \mathbf{U}/\mathbf{U}_5 \rightarrow \mathbf{U}/\mathbf{U}_1 \rightarrow 1$$

With notations as above, the reduction of

$$J_4' \subset J_4 = \mathbf{U}_2(\mathbb{Z}_3)/\mathbf{U}_5(\mathbb{Z}_3) = (\mathbf{U}_2/\mathbf{U}_5)(\mathbb{Z}_3)$$

is a normal subgroup Y of $X = (\mathbf{U}/\mathbf{U}_5)(\mathbb{F}_3)$ with quotient $X/Y \simeq \mathbb{F}_3^3$. The surjective reduction morphism

$$I(1) \twoheadrightarrow \mathbf{U}(\mathbb{F}_3) \twoheadrightarrow \mathbf{U}(\mathbb{F}_3)/\mathbf{U}_5(\mathbb{F}_3) = X \twoheadrightarrow X/Y$$

then kills $x_{-2\beta-3\alpha}(p)$. The fourth topological generator $x_{\alpha+\beta}(1)$ of I(1) thus also can not be removed, since the first two certainly do not span $X/Y \simeq \mathbb{F}_3^3$.

2.11 We now return to an arbitrary split reductive group **G** over \mathbb{Z}_p . Let

$$\mathbf{G}^{sc} woheadrightarrow \mathbf{G}^{der} \hookrightarrow \mathbf{G} woheadrightarrow \mathbf{G}^{ad}$$

be the simply connected cover \mathbf{G}^{sc} of the derived group \mathbf{G}^{der} of \mathbf{G} , and the adjoint group $\pi : \mathbf{G} \twoheadrightarrow \mathbf{G}^{ad}$ of \mathbf{G} . Then

$$\left(\mathbf{T}^{ad}, M^{ad}, R^{ad}, \Delta^{ad}, \left(X_{\alpha}^{ad}\right)_{\alpha \in \Delta^{ad}}\right) = \left(\pi(\mathbf{T}), \mathbb{Z}R, R, \Delta, \left(\pi(X_{\alpha})\right)_{\alpha \in \Delta}\right)$$

is a pinning of \mathbf{G}^{ad} and this construction yields a bijection between pinnings of \mathbf{G} and pinnings of \mathbf{G}^{ad} . Applying this to \mathbf{G}^{sc} or \mathbf{G}^{der} , we obtain pinnings

$$\left(\mathbf{T}^{sc}, M^{sc}, R^{sc}, \Delta^{sc}, \left(X^{sc}_{\alpha}\right)_{\alpha \in \Delta^{sc}}\right) \quad \text{and} \quad \left(\mathbf{T}^{der}, M^{der}, R^{der}, \Delta^{der}, \left(X^{der}_{\alpha}\right)_{\alpha \in \Delta^{sc}}\right)$$

for \mathbf{G}^{sc} and \mathbf{G}^{der} : all of the above constructions then apply to \mathbf{G}^{ad} , \mathbf{G}^{sc} or \mathbf{G}^{der} , and we will denote with a subscript ad, sc or der for the corresponding objects. For instance, we have a sequence of Iwahori (resp. pro-p-Iwahori) subgroups

$$I^{sc} \to I^{der} \hookrightarrow I \to I^{ad}$$
 and $I^{sc}(1) \to I^{der}(1) \hookrightarrow I(1) \to I^{ad}(1)$.

2.12 The action of G on itself by conjugation factors through a morphism

$$Ad: \mathbf{G}^{ad} \to Aut(\mathbf{G}).$$

For $b \in \mathbf{B}^{ad}(\mathbb{F}_p)$, $\mathrm{Ad}(b)(\mathbf{B}_{\mathbb{F}_p}) = \mathbf{B}_{\mathbb{F}_p}$ and $\mathrm{Ad}(b)(\mathbf{U}_{\mathbb{F}_p}) = \mathbf{U}_{\mathbb{F}_p}$. We thus obtain an action of the Iwahori subgroup I^{ad} of $G^{ad} = \mathbf{G}^{ad}(\mathbb{Q}_p)$ on I or I(1). Similar consideration of course apply to \mathbf{G}^{sc} and \mathbf{G}^{der} , and the sequence

$$I^{sc}(1) \to I^{der}(1) \hookrightarrow I(1) \to I^{ad}(1)$$

is equivariant for these actions of $I^{ad} = I^{ad}(1) \rtimes T^{ad}_{tors}$.

2.13 Let J be the image of $I^{sc}(1) \to I(1)$, so that J is a normal subgroup of I. From the compatible Iwahori decompositions for I(1) and $I^{sc}(1)$ in section 2.5, we see that $T(1) \hookrightarrow I(1)$ induces a T^{ad} -equivariant isomorphism

$$T(1)/T(1) \cap J \rightarrow I(1)/J$$
.

Since the inverse image of $\mathbf{T}(\mathbb{Z}_p)$ in $\mathbf{G}^{sc}(\mathbb{Z}_p)$ equals $\mathbf{T}^{sc}(\mathbb{Z}_p)$ and since also

$$T^{sc}(1) = \mathbf{T}^{sc}(\mathbb{Z}_p) \cap I^{sc}(1),$$

we see that $T(1) \cap J$ is the image of $T^{sc}(1) \to T(1)$. Also, the kernel of $I^{sc}(1) \to I(1)$ equals $Z \cap I^{sc}(1)$ where

$$Z = \ker(\mathbf{G}^{sc} \to \mathbf{G})(\mathbb{Z}_p) = \ker(\mathbf{T}^{sc} \to \mathbf{T})(\mathbb{Z}_p).$$

Therefore $Z \cap I^{sc}(1)$ is the kernel of $T^{sc}(1) \to T(1)$, which is trivial since Z is finite and $T^{sc}(1) \simeq \text{Hom}(M^{sc}, 1 + p\mathbb{Z}_p)$ has no torsion. We thus obtain exact sequences

where the cokernel Q is the finitely generated \mathbb{Z}_p -module

$$Q = (M^{\vee}/\mathbb{Z}R^{\vee}) \otimes (1 + p\mathbb{Z}_p).$$

Remark 2.13.1. If **G** is simple, then $M^{\vee}/\mathbb{Z}R^{\vee}$ is a finite group of order c, with $c \mid \ell+1$ if **G** is of type A_{ℓ} , $c \mid 3$ if **G** is of type E_6 and $c \mid 4$ in all other cases. Thus Q = 0 and $I^{sc}(1) = I(1)$ unless **G** is of type A_{ℓ} with $p \mid c \mid \ell+1$ or p = 3 and **G** is adjoint of type E_6 . In these exceptional cases, $M^{\vee}/\mathbb{Z}R^{\vee}$ is cyclic, thus $Q \simeq \mathbb{F}_p$.

2.14 It follows that I(1) is generated by $I^{sc}(1)$ and $s(1 + p\mathbb{Z}_p)$ for $s \in \mathcal{S}$, thus topologically generated by $I^{sc}(1)$ and s(1+p) for $s \in \mathcal{S}$. In view of the results already established in the simply connected case, this shows that the elements listed in (1-4) of Theorem 2.4.1 indeed form a set of topological generators for I(1).

None of the semi-simple elements in (1) can be removed: they are all needed to generate the above abelian quotient Q of I(1) which indeed kills the unipotent generators in (2-4). Likewise, none of the unipotent elements in (2) can be removed: they are all needed to generate the abelian quotient

$$I(1) \twoheadrightarrow \mathbf{U}(\mathbb{F}_p) \twoheadrightarrow \overline{\mathbf{U}}_1(\mathbb{F}_p) \simeq \prod_{\alpha \in \Delta} \mathbf{U}_{\alpha}(\mathbb{F}_p)$$

which kills the other generators in (1), (3) and (4). One checks easily using the Iwahori decomposition of I(1) and the product decomposition $\mathbf{U}^- = \prod_{c \in \mathcal{C}} \mathbf{U}_c^-$ that none of the unipotent elements in (3) can be removed. Finally if p = 3 and $d \in \mathcal{D}$, the central isogeny $\mathbf{G}^{sc} \to \mathbf{G}^{ad}$ induces an isomorphism $\mathbf{G}_d^{sc} \to \mathbf{G}_d^{ad}$ between the simple (simply connected and adjoint) components corresponding to d, thus also an isomorphism between the corresponding pro-p-Iwahori's $I_d^{sc}(1) \to I_d^{ad}(1)$. In particular, the projection $I(1) \to I^{ad}(1) \twoheadrightarrow I_d^{ad}(1)$ is surjective. Composing it with the projection $I_d^{ad}(1) \twoheadrightarrow \mathbb{F}_3^3$ constructed in section 2.10, we obtain an abelian quotient $I(1) \twoheadrightarrow \mathbb{F}_3^3$ that kills all of our generators except $x_{\alpha}(1)$, $x_{\beta}(1)$ and $x_{\alpha+\beta}(1)$ where $\Delta_d = \{\alpha, \beta\}$. In particular, the generator $x_{\alpha+\beta}(1)$ from (4) is also necessary. This finishes the proof of Theorem 2.4.1.

2.15 The action of $I^{ad} = I^{ad}(1) \rtimes T^{ad}_{tors}$ on I(1) induces an \mathbb{F}_p -linear action of

$$T_{tors}^{ad} = \operatorname{Hom}\left(M^{ad}, \mu_{p-1}\right) = \operatorname{Hom}\left(\mathbb{Z}R, \mathbb{F}_p^{\times}\right)$$

on the Frattini quotient $\tilde{I}(1)$ of I(1). Our minimal set of topological generators of I(1) reduces to an eigenbasis of $\tilde{I}(1)$, i.e. an \mathbb{F}_p -basis of $\tilde{I}(1)$ made of eigenvectors for the action of T_{tors}^{ad} . We denote by $\mathbb{F}_p(\alpha)$ the 1-dimensional representation of T_{tors}^{ad} on \mathbb{F}_p defined by $\alpha \in \mathbb{Z}R$. We thus obtain:

Corollary 2.15.1. The $\mathbb{F}_p[T_{tors}^{ad}]$ -module $\tilde{I}(1)$ is isomorphic to

$$\mathbb{F}_p^{\sharp \mathcal{S}} \oplus \Big(\oplus_{\alpha \in \Delta} \mathbb{F}_p(\alpha) \Big) \oplus \Big(\oplus_{c \in \mathcal{C}} \mathbb{F}_p(-\alpha_{c,max}) \Big) \Big(\oplus \Big(\oplus_{d \in \mathcal{D}} \mathbb{F}_p(\delta_c) \Big) \text{ if } p = 3 \Big).$$

Here $\sharp S$ denotes the cardinality of the set S. The map $\alpha \mapsto \mathbb{F}_p(\alpha)$ yields a bijection between $\mathbb{Z}R/(p-1)\mathbb{Z}R$ and the isomorphism classes of simple $\mathbb{F}_p[T_{tors}^{ad}]$ -modules. In particular some of the simple modules in the previous corollary may happen to be isomorphic. For instance if G is simple of type B_ℓ and p=3, then $-\alpha_{max} \equiv \alpha \mod 2$ where $\alpha \in \Delta$ is a long simple root. An inspection of the tables in [1] yields the following:

Corollary 2.15.2. If G is simple, the $\mathbb{F}_p[T_{tors}^{ad}]$ -module $\tilde{I}(1)$ is multiplicity free unless p=3 and G is of type A_1 , B_ℓ or C_ℓ ($\ell \geq 2$), F_4 or G_2 .

In the next section we use this result to construct Galois representations landing in I^{ad} with image containing $I^{ad}(1)$.

3 The Construction of Galois Representations

Let **G** be a split simple adjoint group over \mathbb{Z}_p and let I(1) and $I = I(1) \rtimes T_{tors}$ be the corresponding Iwahori groups, as defined in the previous section. We want here to construct Galois representations of a certain type with values in I with image containing I(1). After a short review of p-rational fields in section 3.1, we establish a criterion for the existence of our representations in sections 3.2 and 3.3 and finally give some examples in section 3.4.

3.1 Let K be a number field, $r_2(K)$ the number of complex primes of K, Σ_p the set of primes of K lying above p, M the compositum of all finite p-extensions of K which are unramified outside Σ_p , M^{ab} the maximal abelian extension of K contained in M, and L the compositum of all cyclic extensions of K of degree p which are contained in M or M^{ab} . If we let Γ denote $\operatorname{Gal}(M/K)$, then Γ is a pro-p group, $\Gamma^{ab} \cong \operatorname{Gal}(M^{ab}/K)$ is the maximal abelian quotient of Γ , and $\tilde{\Gamma} \cong \Gamma^{ab}/p\Gamma^{ab} \cong \operatorname{Gal}(L/K)$ is the Frattini quotient of Γ .

Definition A number field K is p-rational if the following equivalent conditions are satisfied:

- (1) $rank_{\mathbb{Z}_p}(\Gamma^{ab}) = r_2(K) + 1$ and Γ^{ab} is torsion-free as a \mathbb{Z}_p -module,
- (2) Γ is a free pro-p group with $r_2(K) + 1$ generators,
- (3) Γ is a free pro-p group.

The equivalence of (1), (2) and (3) follows from [6], see also proposition 3.1 and the discussion before remark 3.2 of [3]. There is a considerable literature concerning p-rational fields, including [8], [4].

Examples:

- (1) Suppose that K is a quadratic field and that either $p \geq 5$ or p = 3 and is unramified in K/\mathbb{Q} . If K is real, then K is p-rational if and only if p does not divide the class number of K and the fundamental unit of K is not a p-th power in the completions K_v of K at the places v above p. On the other hand, if K is complex and p does not divide the class number of K, then K is a p-rational field (cf. proposition 4.1 of [3]). However, there are p-rational complex K's for which p divides the class number (cf. chapter 2, section 1, p. 25 of [7]). For similar results, see also [2] and [5] if K is complex.
- (2) Let $K = \mathbb{Q}(\mu_p)$. If p is a regular prime, then K is a p-rational field (cf. [12], see also [3], proposition 4.9 for a shorter proof).
- **3.2** Suppose that K is Galois over \mathbb{Q} and p-rational with $p \nmid [K : \mathbb{Q}]$. Since K is Galois over \mathbb{Q} , so is M and we have an exact sequence

$$1 \to \Gamma \to \Pi \to \Omega \to 1 \tag{3.2.1}$$

where $\Omega = \operatorname{Gal}(K/\mathbb{Q})$ and $\Pi = \operatorname{Gal}(M/\mathbb{Q})$. Conjugation in Π then induces an action of Ω on the Frattini quotient $\tilde{\Gamma} = \operatorname{Gal}(L/K)$ of Γ . Any continuous morphism $\rho : \Pi \to I$ maps Γ to I(1) and induces a morphism $\bar{\rho} : \Omega \to I/I(1) = T_{tors}$ and a $\bar{\rho}$ -equivariant morphism $\tilde{\rho} : \tilde{\Gamma} \to \tilde{I}(1)$. If $\rho(\Gamma) = I(1)$, then $\tilde{\rho}$ is also surjective. Suppose conversely that we are given the finite data

$$\overline{\rho}: \Omega \to T_{tors}$$
 and $\tilde{\rho}: \tilde{\Gamma} \twoheadrightarrow \tilde{I}(1)$.

Then as Ω has order prime to p, the Schur-Zassenhaus theorem ([14], proposition 2.3.3) implies that the exact sequence 3.2.1 splits. The choice of a splitting $\Pi \simeq \Gamma \rtimes \Omega$ yields a non-canonical action of Ω on Γ which lifts the canonical action of Ω on the Frattini quotient $\tilde{\Gamma}$. By [3], proposition 2.3, $\tilde{\rho}$ lifts to a continuous Ω -equivariant surjective morphism $\rho': \Gamma \twoheadrightarrow I(1)$, which plainly gives a continuous morphism

$$\rho = (\rho', \overline{\rho}) : \Pi \simeq \Gamma \rtimes \Omega \to I = I(1) \rtimes T_{tors}$$

inducing $\overline{\rho}: \Omega \to T_{tors}$ and $\tilde{\rho}: \tilde{\Gamma} \twoheadrightarrow \tilde{I}(1)$. Thus:

Proposition 3.2.1. Under the above assumptions on K, there is a continuous morphism $\rho: \Pi \to I$ such that $\rho(\Gamma) = I(1)$ if and only if there is a morphism $\overline{\rho}: \Omega \to T_{tors}$ such that the induced $\mathbb{F}_p[\Omega]$ -module $\overline{\rho}^* \tilde{I}(1)$ is a quotient of $\tilde{\Gamma}$.

The Frattini quotient $\tilde{I}(1)$ is an $\mathbb{F}_p[T_{tors}]$ -module and by the map $\overline{\rho}$, we can consider $\tilde{I}(1)$ as an $\mathbb{F}_p[\Omega]$ -module which we denote by $\overline{\rho}^*\tilde{I}(1)$.

3.3 Suppose now that

A(K): K is a totally complex abelian (thus CM) Galois extension of \mathbb{Q} which is p-rational of degree $[K:\mathbb{Q}] \mid p-1$.

Let $\hat{\Omega}$ be the group of characters of Ω with values in \mathbb{F}_p^{\times} , $\hat{\Omega}_{odd} \subset \hat{\Omega}$ the subset of odd characters (those taking the value -1 on complex conjugation), and $\chi_0 \in \hat{\Omega}$ the trivial character. Then by [3] proposition 3.3,

$$\tilde{\Gamma} = \bigoplus_{\chi \in \hat{\Omega}_{odd} \cup \{\chi_0\}} \mathbb{F}_p(\chi)$$

as an $\mathbb{F}_p[\Omega]$ -module. In particular, $\tilde{\Gamma}$ is multiplicity free. Suppose therefore also that the $\mathbb{F}_p[T_{tors}]$ -module $\tilde{I}(1)$ is multiplicity free, i.e. by corollary 2.15.2,

B(G): If p=3, then **G** is not of type A_1 , B_ℓ or C_ℓ ($\ell \geq 2$), F_4 or G_2 .

For S as in section 2.4, we define

$$\hat{\Omega}_{odd}^{\mathcal{S}} = \begin{cases} \hat{\Omega}_{odd} \cup \chi_0, & \text{if } \mathcal{S} = \emptyset \\ \hat{\Omega}_{odd}, & \text{if } \mathcal{S} \neq \emptyset. \end{cases}$$

Note that $S = \emptyset$ unless **G** if of type A_{ℓ} with $p \mid \ell + 1$ or **G** is of type E_6 with p = 3, in which both cases S is a singleton. We thus obtain:

Corollary 3.3.1. Under the assumptions A(K) on K and B(G) on G, there is a morphism $\rho: \Pi \to I$ such that $\rho(\Gamma) = I(1)$ if and only if there is morphism $\overline{\rho}: \Omega \to T_{tors}$ such that the characters $\alpha \circ \overline{\rho}: \Omega \to \mathbb{F}_p^{\times}$ for $\alpha \in \Delta \cup \{-\alpha_{max}\}$ are all distinct and belong to $\hat{\Omega}_{odd}^{\mathcal{S}}$.

- **3.4** Some examples. Write $\Delta = \{\alpha_1, ..., \alpha_\ell\}$ and $\alpha_{max} = n_1\alpha_1 + \cdots + n_\ell\alpha_\ell$ using the conventions of the tables in [1]. In this part we suppose that p is a regular (odd) prime and take $K = \mathbb{Q}(\mu_p)$, so that K is p-rational and $\Omega = \mathbb{Z}/(p-1)\mathbb{Z}$.
- **Lemma 3.4.1.** Suppose **G** is of type A_{ℓ} , B_{ℓ} , C_{ℓ} or D_{ℓ} and $p \geq 2l+3$ (resp. $p \geq 2l+5$) if $p \equiv 1 \mod 4$ (resp. $p \equiv 3 \mod 4$). Then we can find distinct characters $\phi_1, ..., \phi_{\ell+1} \in \hat{\Omega}_{odd} \cup \chi_0$ such that $\phi_1^{n_1} \phi_2^{n_2} \cdots \phi_{\ell}^{n_{\ell}} \phi_{\ell+1} = \chi_0$. Furthermore, if **G** is of type A_{ℓ} and ℓ is odd, then one can even choose the characters $\phi_1, ..., \phi_{\ell+1}$ to be inside $\hat{\Omega}_{odd}$.

Proof. Since Ω is (canonically) isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$, $\sharp \hat{\Omega}_{odd} = \frac{p-1}{2}$ and there are exactly $[\frac{p-1}{4}]$ pairs of characters $\{\chi, \chi^{-1}\}$ with $\chi \neq \chi^{-1}$ in $\hat{\Omega}_{odd}$. The condition on p is equivalent to $\ell \leq 2[\frac{p-1}{4}]-1$.

If **G** is of type A_{ℓ} , then $\alpha_{max} = \alpha_1 + \cdots + \alpha_{\ell}$. If ℓ is even and $\frac{\ell}{2} \leq \left[\frac{p-1}{4}\right]$, then we can pick $\frac{\ell}{2}$ distinct pairs of odd characters $\{\chi, \chi^{-1}\}$ as above for $\{\phi_1, \cdots, \phi_{\ell}\}$ and set $\phi_{\ell+1} = \chi_0$. If ℓ is odd and $\frac{\ell+1}{2} \leq \left[\frac{p-1}{4}\right]$, then we can choose $\frac{\ell+1}{2}$ distinct such pairs for the whole set $\{\phi_1, \cdots, \phi_{\ell+1}\}$.

If **G** is of type D_{ℓ} (with $\ell \geq 4$), then $\alpha_{max} = \alpha_1 + 2\alpha_2 + ... + 2\alpha_{\ell-2} + \alpha_{\ell-1} + \alpha_{\ell}$. Now if ℓ is odd we can pick $\frac{\ell+1}{2}$ such pairs $\{\chi, \chi^{-1}\}$, one for $\{\phi_{\ell-1}, \phi_{\ell}\}$, another pair for $\{\phi_1, \phi_{\ell+1}\}$ and $\frac{\ell-3}{2}$ such pairs for $\{\phi_2, ..., \phi_{\ell-2}\}$. If ℓ is even, we let ϕ_2 be the trivial character, and we can choose $\frac{\ell}{2}$ such pairs of characters $\{\chi, \chi^{-1}\}$, one pair for $\{\phi_1, \phi_{\ell-1}\}$, another pair for $\{\phi_\ell, \phi_{\ell+1}\}$ and $\frac{\ell-4}{2}$ such pairs for $\{\phi_3, ..., \phi_{\ell-2}\}$. So the inequality that we will need is $4 \leq \ell \leq 2[\frac{p-1}{4}] - 1$.

If **G** is of type B_{ℓ} (with $\ell \geq 2$), then $\alpha_{max} = \alpha_1 + 2\alpha_2 + ... + 2\alpha_{\ell}$. If ℓ is odd then we pick $\frac{\ell+1}{2}$ pairs of characters $\{\chi, \chi^{-1}\}$; one pair for $\{\phi_1, \phi_{\ell+1}\}$ and $\frac{\ell-1}{2}$ such pairs for $\{\phi_2, ..., \phi_{\ell}\}$. If ℓ is even then we need $\frac{\ell}{2}$ pairs of $\{\chi, \chi^{-1}\}$; one pair for $\{\phi_1, \phi_{\ell+1}\}$ and $\frac{\ell-2}{2}$ such pairs for $\{\phi_3, ..., \phi_{\ell}\}$ and we let ϕ_2 be the trivial character. So in this case we need $3 \leq \ell \leq 2[\frac{p-1}{4}] - 1$.

The remaining C_{ℓ} case is analogous.

Lemma 3.4.2. Suppose **G** is of type E_6 , E_7 , E_8 , F_4 or G_2 and $p \ge \sum_{i=1}^{\ell} (2i-1)n_i + 2\ell$. Then we can find distinct characters $\phi_1, ..., \phi_{\ell+1} \in \hat{\Omega}_{odd}$ such that $\phi_1^{n_1} \phi_2^{n_2} \cdots \phi_{\ell}^{n_{\ell}} \phi_{\ell+1} = \chi_0$.

Proof. The choice of a generator ξ of \mathbb{F}_p^{\times} yields an isomorphism $\mathbb{Z}/(p-1)\mathbb{Z} \simeq \hat{\Omega}$, mapping i to χ_i and $1 + 2\mathbb{Z}/(p-1)\mathbb{Z}$ to $\hat{\Omega}_{odd}$. Set $\phi_i = \chi_{2i-1} \in \hat{\Omega}_{odd}$ for $i = 1, \dots, \ell$ and $\phi_{\ell+1} = \chi_{-r}$ where $r = \sum_{i=1}^{\ell} n_i \cdot (2i-1)$. The tables in [1] show that $h = \sum_{i=1}^{\ell} n_i$ is odd, thus also $\phi_{\ell+1} \in \hat{\Omega}_{odd}$ and plainly $\phi_1^{n_1} \cdots \phi_\ell^{n_\ell} \phi_{\ell+1} = 1$. If $p \geq \sum_{i=1}^{\ell} (2i-1)n_i + 2\ell$, the elements $\{2i-1, -\sum_{i=1}^{\ell} n_i \cdot (2i-1); i \in [1, \ell]\}$ are all distinct modulo p-1, which proves the lemma.

Remark 3.4.3. For **G** of type E_6 , E_7 , E_8 , F_4 or G_2 , the tables in [1] show that the constant $\sum_{i=1}^{\ell} (2i-1)n_i + 2\ell$ of lemma 3.4.2 is 79, 127, 247, 53, 13 respectively.

Corollary 3.4.4. There is a constant c depending only upon the type of G such that if p > c is a regular prime, then for $K = \mathbb{Q}(\mu_p)$, M, Π and Γ as above, there is a continuous morphism $\rho: \Pi \to I$ with $\rho(\Gamma) = I(1)$.

In conclusion, we have determined a minimal set of topological generators of the pro-p Iwahori subgroup of a split reductive groups over \mathbb{Z}_p (theorem 2.4.1) and used it to study the structure of the Frattini quotient $\tilde{I}(1)$ as an $\mathbb{F}_p[T_{tors}^{ad}]$ -module (corollary 2.15.1). Then we have used corollary 2.15.1 to determine when $\tilde{I}(1)$ is multiplicity free (see corollary 2.15.2). Furthermore in proposition 3.2.1 and corollary 3.3.1, assuming p-rationality, we have shown that we can construct Galois representations if and only if we can find a suitable list of distinct characters in Ω , the existence of which is discussed in section 3.4 under the assumption $K = \mathbb{Q}(\mu_p)$, for any sufficiently large regular prime p (see corollary 3.4.4).

References

- [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, (1968).
- [2] S. Fujii, On the maximal pro-p extension unramified outside p of an imaginary quadratic field, Osaka J. Math. 45, (2008), 41-60.
- [3] R. Greenberg, Galois representation with open image, Annales mathématiques du Québec, Volume 40, Issue 1, (2016), 83-119.
- [4] J. F. Jaulent, T. Nguyen Quang Do, Corps p-rationnels, corps p-réguliers, et ramification restreinte, Séminaire de Théorie des Nombres de Bordeaux, (1987-88), Exposé 10, 10-01 10-26.
- [5] J. Minardi, Iwasawa modules for \mathbb{Z}_p^d -extensions of algebraic number fields, University of Washington Ph. D. thesis, (1986).
- [6] A. Movahhedi, T. Nguyen Quang Do, Sur l'arithmétique des corps de nombres p-rationnels, Prog. Math. 81, Birkhauser, (1990), 155-200.
- [7] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Thèse de doctorat en Mathématiques, Paris 7, (1988).
- [8] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nach, 149, (1990), 163-176.
- [9] R. Ollivier, P. Schneider, A canonical torsion theory for pro-p Iwahori-Hecke modules, https://arxiv.org/pdf/1602.00738v1.pdf, (2016).
- [10] C. M. Ringel, The (n-1)-antichains in a root poset of width n, http://arxiv.org/abs/1306.1593v1, (2013).
- [11] Séminaire de Géométrie Algébrique du Bois Marie 1962-64 Schémas en groupes (SGA 3) Philippe Gille and Patrick Polo, editors.
- [12] I. R. Shafarevich, Extensions with given points of ramification, Amer. Math. Soc, Translations 59, (1966), 128-149.
- [13] J. Tits, Reductive groups over local fields, In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 29-69. Amer. Math. Soc., Providence, R.I., (1979).
- [14] J. S. Wilson, *Profinite Groups*, Oxford Science Publications, London Mathematical Society Monographs, New Series 19, (2005).