Aim: Fix π and let χ vary P-adically. We want to show that, generically,

$$
\operatorname{ord}_{s=1 / 2} L(s, \pi \times \pi(\chi))=\left\{\begin{array}{lll}
0 & \text { if } \epsilon=+1 \\
1 & \text { if } \epsilon=-1
\end{array}\right.
$$

With:

- π is an irreducible automorphic representation of $G L_{2}\left(\mathbf{A}_{F}\right)$, where
- F is a totally real number field;
- K is a totally imaginary quadratic extension of F and
- χ is a Grossencharacter of K, inducing an automorphic representation $\pi(\chi)$ of $G L_{2}\left(\mathbf{A}_{F}\right)$;
- P is a prime of F.

Notations and Assumptions

- π : cuspidal, weight $(2, \cdots, 2)$, level \mathcal{N}, and central char. $\omega: F^{\times} \backslash \mathbf{A}_{F}^{\times} \rightarrow \mathbf{C}^{\times}$.
- χ is a ring class character, i.e.: there exists $c \subset \mathcal{O}_{F}$ such that χ factors through

$$
\chi: K^{\times} \backslash \mathbf{A}_{K}^{\times} / K_{\infty}^{\times} \widehat{\mathcal{O}}_{c}^{\times} \simeq \operatorname{Pic}\left(\mathcal{O}_{c}\right) \rightarrow \mathbf{C}^{\times}
$$

where $\mathcal{O}_{c}:=\mathcal{O}_{F}+c \mathcal{O}_{K}$. The conductor $c(\chi)$ of χ is the largest such c.

- By CFT, we may view χ as a character on $\mathrm{Gal}(K[c] / K)$, where $K[c]$ is the ring class field of conductor c of K.
- \mathcal{D} is the support of $\operatorname{disc}(K / F)$. Write

$$
\mathcal{D}=(P) \mathcal{D}^{\prime} \quad \text { and } \quad \mathcal{N}=P^{\delta} \mathcal{N}^{\prime}
$$

with $\left(\mathcal{D}^{\prime}, P\right)=1=\left(\mathcal{N}^{\prime}, P\right)$. We require:

$$
\left(\mathcal{N}^{\prime}, \mathcal{D}^{\prime}\right)=1
$$

We need:

$$
\left.\omega \cdot \chi\right|_{\mathbf{A}_{F}^{\times}}=1 \quad \text { on } \mathbf{A}_{F}^{\times} .
$$

Then:

- $L(s, \pi \times \pi(\chi))$ is entire, and
- $L(s, \pi \times \pi(\chi))$ has a F.E. $s \leftrightarrow 1-s$,
- This F.E. has a sign $\epsilon \in\{ \pm 1\}$.

Moreover, ω is an unramified character of F (because χ is a ring class character of K).
(Thm) For all $n \gg 0$, there exists a ring class character χ with $c(\chi)=P^{n}$ and $\left.\omega \cdot \chi\right|_{\mathbf{A}_{F}^{\times}}=1$ such that

$$
\operatorname{ord}_{s=1 / 2} L(s, \pi \times \pi(\chi))= \begin{cases}0 & \text { if } \epsilon=+1 \\ 1 & \text { if } \epsilon=-1\end{cases}
$$

From now on,

$$
\text { Weonlyconsiderthe } \epsilon=-1
$$

case.

Thanks to the work of S. Zhang (Gross-Zagier formulas for $G L_{2}, I I$), we now have to show:

Thm For all $n \gg 0$ and $x \in C M\left(P^{n}\right)$, there exists a χ with $c(\chi)=P^{n}$ and $\left.\omega \cdot \chi\right|_{\mathbf{A}_{F}^{\times}}=1$ such that

$$
e_{\chi} \cdot \alpha(x) \neq 0 \quad \text { in } A \otimes \mathbf{C}
$$

Here:

- M is a Shimura curve, A is a quotient of $J=\mathrm{Pic}^{0}(M)$ and $\alpha: M \rightsquigarrow A$ is an F-morphism.
- $C M$: Points with CM by K in M and $C M(c) \subset M(K[c])$: those of conductor c.
- $G(n)=\operatorname{Gal}\left(K\left[P^{n}\right] / K\right)$ and

$$
e_{\chi}=\frac{1}{|G(n)|} \sum_{\sigma \in G(n)} \bar{\chi}(\sigma) \cdot \sigma
$$

Formula for ϵ.

When $\left.\omega \cdot \chi\right|_{\mathbf{A}_{F}^{\times}}=1$,

$$
\begin{aligned}
\epsilon & =\prod \epsilon_{v}=(-1)^{|S|} \\
\text { and } \quad S & =\left\{v ; \epsilon_{v} \neq \eta_{v} \cdot \omega_{v}(-1)\right\} .
\end{aligned}
$$

Under our assumption that \mathcal{N} and \mathcal{D} are relatively prime away from P, and provided that χ is sufficently ramified at P, we find:

$$
S=\left\{\begin{array}{l|l}
v \left\lvert\, \begin{array}{l}
v \mid \infty \text { or } v \nmid P \infty \text { is inert in } K \\
\text { and such that } v(\mathcal{N}) \equiv 1 \bmod 2
\end{array}\right.
\end{array}\right\}
$$

Therefore

$$
\square^{\epsilon}=-1 \quad \Leftrightarrow \quad|S| \equiv 1 \bmod 2
$$

The Hodge "embedding".

There exists $\delta \in \operatorname{Pic}(M) \otimes \mathrm{Q}$ which has degree 1 on each geometrical connected component of M. This δ defines an element $\iota: M \rightsquigarrow J$ of $\operatorname{Mor}_{F}(M, J) \otimes \mathbf{Q}$ given by

$$
x \mapsto\left(x-\delta_{c}\right)
$$

where δ_{c} is the restriction of δ to the geometrical connected component c of $x \in M(\mathbf{C})$.

We put

$$
\alpha: M \stackrel{\iota}{\rightsquigarrow} J \xrightarrow{\pi} A
$$

so that α belongs to $\operatorname{Mor}_{F}(M, A) \otimes \mathbf{Q}$.

A Filtration

$$
1 \subset G_{2} \subset G_{1} \subset G_{0} \subset G(\infty)
$$

- $G(\infty)=\lim G(n)=\operatorname{Gal}\left(K\left[P^{\infty}\right] / K\right)$ and $G_{0}=G(\infty)_{\text {torsion }}$.
- $G(\infty)^{\text {rat }}=<\mathrm{Frob}_{Q} ; Q \nmid P>\subset G(\infty)$ and $G_{1}=G(\infty)_{\text {torsion }}^{\text {rat }}$.
- $G_{2}=\operatorname{rec}_{K}\left(\widehat{F}^{\times}\right) \subset G(\infty)$.

Then $G_{2} \subset G_{1} \subset G_{0}$ and

- G_{0} is finite, $G(\infty) \simeq G_{0} \times \mathbf{Z}_{p}^{\left[F_{P}, \mathbf{Q}_{p}\right]}$.
- $G_{2} \simeq \operatorname{Pic}\left(\mathcal{O}_{F}\right)$.
- G_{1} / G_{2} is an \mathbf{F}_{2}-vector space with basis

$$
\left\{\sigma_{q}=\operatorname{Frob}_{Q} ; Q^{2}=q \mathcal{O}_{K}, q \mid \mathcal{D}^{\prime}\right\}
$$

Fix $\chi_{0}: G_{0} \rightarrow \mathbf{C}^{\times}$such that $\chi_{0} \cdot \omega=1$ on \mathbf{A}_{F}^{\times}.

Thm For all $n \gg 0$ and $x \in C M\left(P^{n}\right)$, there exists a χ with $c(\chi)=P^{n}$ and $\left.\chi\right|_{G_{0}}=\chi_{0}$ such that

$$
e_{\chi} \cdot \alpha(x) \neq 0 \quad \text { in } A \otimes \mathbf{C}
$$

Proof: Put $e_{\chi_{0}, n}=\sum e_{\chi}$ where χ runs through the above characters (i.e. those inducing χ_{0} on G_{0} and such that $\left.c(\chi)=P^{n}\right)$. We want:

Thm For all $n \gg 0$ and $x \in C M\left(P^{n}\right)$,

$$
e_{\chi_{0}, n} \cdot \alpha(x) \neq 0 \quad \text { in } A \otimes \mathbf{C}
$$

Lemma 1 In the group ring $\mathrm{C}[G(n)]$,

$$
e_{\chi 0, n}=\frac{1}{q\left|G_{0}\right|} \sum_{\sigma \in G_{0}} \bar{\chi}_{0}(\sigma) \sigma \cdot\left(q-\operatorname{Tr}_{Z(n)}\right)
$$

with $q=\left|\mathcal{O}_{F} / P\right|$ and

$$
Z(n)=\operatorname{Gal}\left(K\left[P^{n}\right] / K\left[P^{n-1}\right]\right) .
$$

Lemma $2 \exists M^{\prime}, J^{\prime}=\operatorname{Pic}^{0} M^{\prime}, \pi^{\prime}: J^{\prime} \rightarrow A$ and

$$
x \in C M\left(P^{n}\right) \mapsto x^{\prime} \in C M^{\prime}\left(P^{n}\right) \quad(n \geq 2)
$$

such that if $\alpha^{\prime}=\pi^{\prime} \circ \iota^{\prime}: M^{\prime} \rightsquigarrow A$,

$$
\left(q-\operatorname{Tr}_{Z(n)}\right) \alpha(x)=\alpha^{\prime}\left(x^{\prime}\right) \quad \text { in } A \otimes \mathbf{C}
$$

We thus want:

Thm For all $n \gg 0$ and $x^{\prime} \in C M^{\prime}\left(P^{n}\right)$,

$$
\sum_{\sigma \in G_{0}} \bar{\chi}_{0}(\sigma) \cdot \sigma \alpha^{\prime}\left(x^{\prime}\right) \neq 0 \quad \text { in } A \otimes \mathbf{C}
$$

Put $\chi=\chi_{0}, M=M^{\prime}, J=J^{\prime}, \alpha=\alpha^{\prime} \ldots$
Put $C_{i}=\mathbf{Z}\left[\chi\left(G_{i}\right)\right]$ so that

$$
\mathbf{Z} \subset C_{2} \subset C_{1} \subset C_{0} \subset \mathbf{C}
$$

We want:

The For all but finitely many $x \in C M\left(P^{\infty}\right)$,
(*) $\quad \sum_{\sigma \in G_{0}} \bar{\chi}(\sigma) \sigma \alpha(x) \neq$ tors. in $A \otimes_{\mathbf{Z}} C_{0}$

Proposition $3(*) \Leftrightarrow$

$$
\begin{aligned}
& \Leftrightarrow \sum_{\sigma \in G_{0} / G_{2}} \bar{\chi}(\sigma) \sigma \alpha(x) \neq \text { tors. in } A \otimes_{C_{2}} C_{0} \\
& \Leftrightarrow \sum_{\sigma \in G_{0} / G_{1}} \bar{\chi}(\sigma) \sigma \alpha_{1}\left(x_{1}\right) \neq \text { tors. in } A_{1} \otimes_{C_{1}} C_{0}
\end{aligned}
$$

Action of G_{2}.

The center \widehat{F}^{\times}of $G\left(\mathbf{A}_{f}\right)$ acts on M, J, and A through its quotient

$$
\hat{F}^{\times} / F^{\times} \widehat{\mathcal{O}}_{F}^{\times} \simeq \operatorname{Pic}\left(\mathcal{O}_{F}\right) \quad\left(\simeq G_{2}\right)
$$

For a CM point $x=[g] \in T(\mathbf{Q}) \backslash G\left(\mathbf{A}_{f}\right) / H$,
Galois action: $\sigma \in \mathrm{Gal}_{K}^{\mathrm{ab}}$ acts by

$$
\sigma \cdot x=[\lambda g]
$$

where $\sigma=\operatorname{rec}_{K}(\lambda)$ with $\lambda \in \widehat{K}^{\times}$.
Automorphic action: $\theta \in \operatorname{Pic}\left(\mathcal{O}_{F}\right)$ acts by

$$
\theta(x)=[g \lambda]
$$

where $\theta=[\lambda]$ with $\lambda \in \widehat{F}^{\times}$.
For $\sigma \in G_{2} \leftrightarrow \theta \in \operatorname{Pic}\left(\mathcal{O}_{F}\right), \lambda \in \widehat{F}$ and

$$
\sigma \cdot x=[\lambda g]=[g \lambda]=\theta(x)
$$

Action of G_{1} / G_{2}.

Recall that $G_{1} / G_{2}=\left\{\sigma_{D} ; D \mid \mathcal{D}^{\prime}\right\}$ where

$$
\sigma_{D}=\prod_{q \mid D} \sigma_{q}, \quad \sigma_{q}=\operatorname{Frob}_{Q}, \quad Q^{2}=q \mathcal{O}_{K}
$$

Lemma $4 \exists\left\{\operatorname{deg}_{D}: M_{1} \rightarrow M ; D \mid \mathcal{D}^{\prime}\right\}$ and

$$
x \in C M\left(P^{n}\right) \mapsto x_{1} \in C M_{1}\left(P^{n}\right)
$$

such that for all $D \mid \mathcal{D}$ and $x \in C M\left(P^{n}\right)$,

$$
\sigma_{D} \cdot x=\operatorname{deg}_{D}\left(x_{1}\right) \quad(\text { in } M .)
$$

Take $A_{1}=A \otimes_{C_{2}} C_{1}$ and

$$
\alpha_{1}: M_{1} \stackrel{\iota_{1}}{\rightsquigarrow} J_{1} \xrightarrow{\pi_{1}} A_{1}
$$

where $\pi_{1}: J_{1} \rightarrow A_{1}$ is defined by

Fix a set $\mathcal{R} \subset G_{0}$ of representatives for G_{0} / G_{1}. We now want:

Thm For all but finitely many $x \in C M_{1}\left(P^{\infty}\right)$

$$
\sum_{\sigma \in \mathcal{R}} \bar{\chi}(\sigma) \cdot \sigma \alpha_{1}(x) \neq \text { torsion in } A_{1} \otimes_{C_{1}} C_{0}
$$

Lemma 5 For any abelian variety B,

$$
B\left(K\left[P^{\infty}\right]\right)_{\text {torsion }} \text { is finite. }
$$

Let $\mathcal{E} \subset C M_{1}\left(P^{\infty}\right)$ be an infinite subset of counterexample to our theorem. Then:

$$
x \mapsto \sum_{\sigma \in \mathcal{R}} \bar{\chi}(\sigma) \cdot \sigma \alpha_{1}(x) \in A_{1} \otimes_{C_{1}} C_{0}
$$

takes finitely many values on \mathcal{E}, and we want to get a contradiction out of this.

Replace $M_{1}, J_{1}, A_{1} \ldots$ by $M, J, A \ldots$

First Proof: using Andre-Oort (Edixhoven + Yafaev)

Proposition 6 For any infinite subset \mathcal{E} of $C M\left(P^{\infty}\right)$, the Zariski closure of $\delta(\mathcal{E})$ in $M^{\mathcal{R}} / \mathrm{C}$ contains a connected component.

If $\Phi \circ \delta(\mathcal{E})$ is finite, Φ is constant on some geometrical connected component of $M^{\mathcal{R}}$. Then $\alpha: M \rightarrow A$ should be constant on some geometrical connected component of M. Being defined over F, α should then be constant on M (because M is connected as an F-curve), and π would be trivial, a contradiction.

Sketch of the proof of Proposition 6.

If some component of the Zariski closure of

$$
\{(x, \sigma x) ; x \in \mathcal{E}\} \subset M^{2}
$$

is a curve, then

- This curve is a connected component of some Hecke correspondance $\mathcal{T}_{\mathcal{M}}$, and
- σ belongs to the subgroup

$$
<\operatorname{Frob}_{Q} ; Q \mid \mathcal{M} ; Q \nmid P>
$$ of $G(\infty)^{\text {rat }}$.

- If also $\sigma \in G_{0}=G(\infty)_{\text {torsion }}$, we obtain

$$
\sigma \in G(\infty))_{\text {torsion }}^{\text {rat }}=G_{1} .
$$

Second Proof: using Ratner's Theorem

1- We want: for all $n \gg 0$ and $x \in C M\left(P^{n}\right)$,

$$
\sum_{\sigma \in \mathcal{R}} \bar{\chi}(\sigma) \cdot \sigma \alpha(x)=\Phi \circ \delta(x)
$$

has a large Galois orbit. This orbit equals

$$
G(\infty) \cdot \Phi \circ \delta(x)=\Phi \circ \delta(G(\infty) \cdot x)
$$

2- Reducing everything at some place v of $K\left[P^{\infty}\right]$ and using red $\circ \Phi=\Phi \circ$ red, we want

$$
\operatorname{RED}(G(\infty) \cdot x) \subset M^{\mathcal{R}}(k)
$$

to be large when $n \gg 0$, where

$$
\mathrm{RED}=\operatorname{red} \circ \delta: C M\left(P^{\infty}\right) \rightarrow M^{\mathcal{R}}(k)
$$

maps x to $(\operatorname{red}(\sigma x))_{\sigma \in \mathcal{R}}$ and k is the residue field of v.

3- Choose v above some prime ℓ of F which is inert in K and not in \mathcal{N}. Then k is finite and $\operatorname{red}(C M) \subset M^{\text {ss }}(k)=\{$ supersingular points $\}$.

Is it true that

$$
\text { RED }: C M\left(P^{\infty}\right) \rightarrow M^{\mathrm{SS}}(k)^{\mathcal{R}}
$$

is surjective? The answer is no.

4- Let $c: M \rightarrow \mathcal{M}$ be the Stein factorisation of $M \rightarrow \operatorname{Spec}\left(\mathcal{O}_{F_{v}}\right)$, put $C=c^{\mathcal{R}}$

$$
C: M^{\mathrm{SS}}(k)^{\mathcal{R}} \rightarrow \mathcal{M}(k)^{\mathcal{R}}
$$

Then $C \circ$ RED : $C M\left(P^{\infty}\right) \rightarrow \mathcal{M}(k)^{R}$ is not surjective, but:

Thm For any $x \in C M\left(P^{n}\right)$ with $n \gg 0$, $\operatorname{RED}(G(\infty) \cdot x)=C^{-1}(C \circ \operatorname{RED}(G(\infty) \cdot x))$.

5- Carayol gives an adelic description of $M^{\text {SS }}(k)$, $\mathcal{M}(k)$ and $c: M^{\mathrm{SS}}(k) \rightarrow \mathcal{M}(k)$. The strong approximation theorem at P then provides a P adic description of the fibers of $c: M^{\text {SS }}(k) \rightarrow$ $\mathcal{M}(k)$. On the other hand, one checks that $C M\left(P^{\infty}\right)$ may be covered by finitely many "strong P-isogeny classes", and the latter each have a P-adic parametrisation by $B_{P}^{1} \simeq S L_{2}\left(F_{P}\right)$.

Altogether, we find that for a strong P-isogeny class $\mathcal{H} \subset C M\left(P^{\infty}\right)$ and $z=C \circ \operatorname{RED}(\mathcal{H})$, the map

$$
\mathcal{H} \rightarrow C^{-1}(z) \subset M^{\mathrm{SS}}(k)^{\mathcal{R}}
$$

looks like

$$
S L_{2}\left(F_{P}\right) \xrightarrow{\Delta} \prod_{\sigma \in \mathcal{R}} \Gamma_{\sigma \backslash S L_{2}\left(F_{P}\right) / V}
$$

where Δ is the diagonal, V is a compact open subgroup of $S L_{2}\left(F_{P}\right)$ and the Γ_{σ} 's are noncommensurable cocompact lattices in $S L_{2}\left(F_{P}\right)$.

6- Let us already show that this map is surjective. Put $\mathcal{G}=S L_{2}\left(F_{P}\right)$ and $\Gamma=\prod_{\sigma \in \mathcal{R}} \Gamma_{\sigma}$.

Ratner's theorem (Orbit closure) There exists a closed subgroup Σ of $\mathcal{G}^{\mathcal{R}}$ such that

$$
\overline{\Gamma \cdot \Delta(\mathcal{G})}=\Gamma \cdot \Sigma \quad \text { in } \quad \mathcal{G}^{\mathcal{R}}
$$

We may furthermore assume that $\Delta(\mathcal{G}) \subset \Sigma$: then Σ is essentially a "product of diagonals". As $\Gamma \cdot \Sigma$ is closed, $\Gamma \cap \Sigma$ is a cocompact lattice in Σ. The non commensurability of the Γ_{σ} 's then implies $\Sigma=\mathcal{G}^{\mathcal{R}}$, and $\Gamma \cdot \Delta(\mathcal{G})$ is dense in $\mathcal{G}^{\mathcal{R}}$. A fortiori, $\Gamma \cdot \Delta(\mathcal{G}) \cdot V^{\mathcal{R}}=\mathcal{G}^{\mathcal{R}}$.

7- To obtain our theorem, we need a better decomposition of $C M\left(P^{\infty}\right)$: a finite union of

$$
\cup_{n \geq 0} G(\infty) \cdot U\left(\kappa_{n}\right)
$$

where $t \mapsto U(t)$ is "one parameter unipotent familly of CM points'", κ is a compact open subgroup of \mathcal{O}_{F}^{\times}and $\kappa_{n}=\pi^{-n} \kappa$, with π a local uniformiser at P.

Another theorem of M. Ratner tells us that

$$
\frac{1}{\lambda\left(\kappa_{n}\right)} \int_{\kappa_{n}} f \circ \Delta(\sigma U(t)) d t \rightarrow \int f d \mu_{\sigma}
$$

for any continuous function f on $\Gamma \backslash \mathcal{G}^{\mathcal{R}}$. We show that for almost all $\sigma \in G(\infty), \mu_{\sigma}=\mu$ is the unique $\mathcal{G}^{\mathcal{R}}$ invariant measure on $\Gamma \backslash \mathcal{G}^{\mathcal{R}}$. Fubini's theorem then allows us to analyse the asymptotic behavior of

$$
\int_{G(\infty)} f \circ \operatorname{RED}(g \cdot x) d g
$$

for $x \in C M\left(P^{n}\right)$ with $n \rightarrow \infty$ and f any function on the finite set $M^{\mathrm{SS}}(k)^{\mathcal{R}}$.

