Aim: Fix π and let χ vary *P*-adically. We want to show that, generically,

$$\operatorname{ord}_{s=1/2}L(s, \pi \times \pi(\chi)) = \begin{cases} 0 & \text{if } \epsilon = +1\\ 1 & \text{if } \epsilon = -1 \end{cases}$$

With:

- π is an irreducible automorphic representation of $GL_2(\mathbf{A}_F)$, where
- F is a totally real number field;
- K is a totally imaginary quadratic extension of F and
- χ is a Grossencharacter of K, inducing an automorphic representation $\pi(\chi)$ of $GL_2(\mathbf{A}_F)$;
- P is a prime of F.

Notations and Assumptions

- π : cuspidal, weight $(2, \dots, 2)$, level \mathcal{N} , and central char. $\omega : F^{\times} \setminus \mathbf{A}_F^{\times} \to \mathbf{C}^{\times}$.
- χ is a ring class character, i.e.: there exists $c \in \mathcal{O}_F$ such that χ factors through $\chi : K^{\times} \setminus \mathbf{A}_K^{\times} / K_{\infty}^{\times} \widehat{\mathcal{O}}_c^{\times} \simeq \operatorname{Pic}(\mathcal{O}_c) \to \mathbf{C}^{\times}.$ where $\mathcal{O}_c := \mathcal{O}_F + c\mathcal{O}_K$. The conductor $c(\chi)$ of χ is the largest such c.
- By CFT, we may view χ as a character on Gal(K[c]/K), where K[c] is the *ring class field* of conductor c of K.
- \mathcal{D} is the support of disc(K/F). Write

 $\mathcal{D} = (P)\mathcal{D}' \text{ and } \mathcal{N} = P^{\delta}\mathcal{N}'$ with $(\mathcal{D}', P) = 1 = (\mathcal{N}', P)$. We require: $(\mathcal{N}', \mathcal{D}') = 1$. We need:

$$\omega \cdot \chi|_{\mathbf{A}_F^{\times}} = 1 \quad \text{on } \mathbf{A}_F^{\times}.$$

Then:

- $L(s, \pi \times \pi(\chi))$ is entire, and
- $L(s, \pi \times \pi(\chi))$ has a F.E. $s \leftrightarrow 1-s$,
- This F.E. has a sign $\epsilon \in \{\pm 1\}$.

Moreover, ω is an unramified character of F (because χ is a ring class character of K).

(Thm) For all $n \gg 0$, there exists a ring class character χ with $c(\chi) = P^n$ and $\omega \cdot \chi|_{\mathbf{A}_F^{\times}} = 1$ such that

$$\operatorname{ord}_{s=1/2}L(s,\pi\times\pi(\chi)) = \begin{cases} 0 & \text{if } \epsilon = +1\\ 1 & \text{if } \epsilon = -1 \end{cases}$$

From now on,

Weonlyconsider the
$$\epsilon = -1$$

case.

Thanks to the work of S. Zhang (*Gross-Zagier* formulas for GL_2 , II), we now have to show:

Thm For all $n \gg 0$ and $x \in CM(P^n)$, there exists a χ with $c(\chi) = P^n$ and $\omega \cdot \chi|_{\mathbf{A}_F^{\times}} = 1$ such that

$$e_{\chi} \cdot \alpha(x) \neq 0$$
 in $A \otimes \mathbf{C}$.

Here:

- M is a Shimura curve,
 A is a quotient of J = Pic⁰(M) and
 α : M → A is an F-morphism.
- CM: Points with CM by K in M and $CM(c) \subset M(K[c])$: those of conductor c.
- $G(n) = \operatorname{Gal}(K[P^n]/K)$ and

$$e_{\chi} = \frac{1}{|G(n)|} \sum_{\sigma \in G(n)} \overline{\chi}(\sigma) \cdot \sigma.$$

Formula for ϵ .

When
$$\omega \cdot \chi|_{\mathbf{A}_{F}^{\times}} = 1$$
,
 $\epsilon = \prod \epsilon_{v} = (-1)^{|S|}$
and $S = \{v; \epsilon_{v} \neq \eta_{v} \cdot \omega_{v}(-1)\}.$

Under our assumption that \mathcal{N} and \mathcal{D} are relatively prime away from P, and provided that χ is sufficiently ramified at P, we find:

$$S = \left\{ v \mid v \mid \infty \text{ or } v \nmid P\infty \text{ is inert in } K \\ \text{and such that } v(\mathcal{N}) \equiv 1 \mod 2 \end{array} \right\}$$

Therefore

$$\Box^{\epsilon} = -1 \quad \Leftrightarrow \quad |S| \equiv 1 \bmod 2.$$

The Hodge "embedding".

There exists $\delta \in \operatorname{Pic}(M) \otimes \mathbf{Q}$ which has degree 1 on each geometrical connected component of M. This δ defines an element $\iota : M \rightsquigarrow J$ of $\operatorname{Mor}_F(M, J) \otimes \mathbf{Q}$ given by

$$x \mapsto (x - \delta_c)$$

where δ_c is the restriction of δ to the geometrical connected component c of $x \in M(\mathbf{C})$.

We put

$$\alpha: M \stackrel{\iota}{\leadsto} J \stackrel{\pi}{\longrightarrow} A$$

so that α belongs to $Mor_F(M, A) \otimes \mathbf{Q}$.

A Filtration $1 \subset G_2 \subset G_1 \subset G_0 \subset G(\infty)$.

- $G(\infty) = \lim_{K \to 0} G(n) = \operatorname{Gal}(K[P^{\infty}]/K)$ and $G_0 = G(\infty)_{\text{torsion}}$.
- $G(\infty)^{\operatorname{rat}} = < \operatorname{Frob}_Q; Q \nmid P > \subset G(\infty)$ and $G_1 = G(\infty)^{\operatorname{rat}}_{\operatorname{torsion}}.$
- $G_2 = \operatorname{rec}_K(\widehat{F}^{\times}) \subset G(\infty).$

Then $G_2 \subset G_1 \subset G_0$ and

• G_0 is finite, $G(\infty) \simeq G_0 \times \mathbf{Z}_p^{[F_P, \mathbf{Q}_p]}$.

•
$$G_2 \simeq \operatorname{Pic}(\mathcal{O}_F).$$

• G_1/G_2 is an \mathbf{F}_2 -vector space with basis $\{\sigma_q = \operatorname{Frob}_Q; \ Q^2 = q\mathcal{O}_K, q \mid \mathcal{D}'\}.$

Fix $\chi_0 : G_0 \to \mathbf{C}^{\times}$ such that $\chi_0 \cdot \omega = 1$ on \mathbf{A}_F^{\times} .

Thm For all $n \gg 0$ and $x \in CM(P^n)$, there exists a χ with $c(\chi) = P^n$ and $\chi \mid_{G_0} = \chi_0$ such that

$$e_{\chi} \cdot \alpha(x) \neq 0$$
 in $A \otimes \mathbf{C}$.

Proof: Put $e_{\chi_0,n} = \sum e_{\chi}$ where χ runs through the above characters (i.e. those inducing χ_0 on G_0 and such that $c(\chi) = P^n$). We want:

Thm For all $n \gg 0$ and $x \in CM(P^n)$,

$$e_{\chi_0,n} \cdot \alpha(x) \neq 0$$
 in $A \otimes \mathbf{C}$.

Lemma 1 In the group ring C[G(n)],

$$e_{\chi_0,n} = \frac{1}{q |G_0|} \sum_{\sigma \in G_0} \overline{\chi}_0(\sigma) \sigma \cdot (q - \operatorname{Tr}_{Z(n)})$$

with $q = |\mathcal{O}_F/P|$ and

$$Z(n) = \operatorname{Gal}(K[P^n]/K[P^{n-1}]).$$

Lemma 2 $\exists M', J' = \operatorname{Pic}^0 M', \pi' : J' \to A$ and $x \in CM(P^n) \mapsto x' \in CM'(P^n) \quad (n \ge 2)$ such that if $\alpha' = \pi' \circ \iota' : M' \rightsquigarrow A$,

$$(q - \operatorname{Tr}_{Z(n)})\alpha(x) = \alpha'(x')$$
 in $A \otimes C$.

We thus want:

Thm For all $n \gg 0$ and $x' \in CM'(P^n)$,

$$\sum_{\sigma \in G_0} \overline{\chi}_0(\sigma) \cdot \sigma \alpha'(x') \neq 0 \quad \text{in } A \otimes \mathbf{C}.$$

Put $\chi = \chi_0$, M = M', J = J', $\alpha = \alpha' \dots$

Put $C_i = \mathbf{Z}[\chi(G_i)]$ so that

$$\mathbf{Z} \subset C_2 \subset C_1 \subset C_0 \subset \mathbf{C}$$

We want:

Thm For all but finitely many $x \in CM(P^{\infty})$,

(*)
$$\sum_{\sigma \in G_0} \overline{\chi}(\sigma) \sigma \alpha(x) \neq \text{tors. in } A \otimes_{\mathbf{Z}} C_0$$

Proposition 3 (*) \Leftrightarrow

$$\Leftrightarrow \sum_{\sigma \in G_0/G_2} \overline{\chi}(\sigma) \sigma \alpha(x) \neq \text{tors. in } A \otimes_{C_2} C_0$$

$$\Leftrightarrow \sum_{\sigma \in G_0/G_1} \overline{\chi}(\sigma) \sigma \alpha_1(x_1) \neq \text{tors. in } A_1 \otimes_{C_1} C_0$$

Action of G_2 .

The center \widehat{F}^{\times} of $G(\mathbf{A}_f)$ acts on M,~J, and A through its quotient

$$\widehat{F}^{\times}/F^{\times}\widehat{\mathcal{O}}_F^{\times} \simeq \operatorname{Pic}(\mathcal{O}_F) \quad (\simeq G_2)$$

For a CM point $x = [g] \in T(\mathbf{Q}) \setminus G(\mathbf{A}_f) / H$,

Galois action: $\sigma \in \text{Gal}_K^{ab}$ acts by

$$\sigma \cdot x = [\lambda g]$$

where $\sigma = \operatorname{rec}_{K}(\lambda)$ with $\lambda \in \widehat{K}^{\times}$.

Automorphic action: $\theta \in Pic(\mathcal{O}_F)$ acts by

 $\theta(x) = [g\lambda]$ where $\theta = [\lambda]$ with $\lambda \in \widehat{F}^{\times}$.

For
$$\sigma \in G_2 \leftrightarrow \theta \in \operatorname{Pic}(\mathcal{O}_F)$$
, $\lambda \in \widehat{F}$ and
 $\sigma \cdot x = [\lambda g] = [g\lambda] = \theta(x)$.

Action of G_1/G_2 .

Recall that $G_1/G_2 = \{\sigma_D; D \mid \mathcal{D}'\}$ where $\sigma_D = \prod_{q \mid D} \sigma_q, \quad \sigma_q = \operatorname{Frob}_Q, \quad Q^2 = q\mathcal{O}_K.$

Lemma 4 $\exists \{ \deg_D : M_1 \to M; D \mid \mathcal{D}' \}$ and $x \in CM(P^n) \mapsto x_1 \in CM_1(P^n)$ such that for all $D \mid \mathcal{D}$ and $x \in CM(P^n)$,

$$\sigma_D \cdot x = \deg_D(x_1) \quad (\text{in } M.)$$

Take $A_1 = A \otimes_{C_2} C_1$ and

$$\alpha_1: M_1 \stackrel{\iota_1}{\rightsquigarrow} J_1 \stackrel{\pi_1}{\twoheadrightarrow} A_1$$

where $\pi_1: J_1 \twoheadrightarrow A_1$ is defined by

Fix a set $\mathcal{R} \subset G_0$ of representatives for G_0/G_1 . We now want:

Thm For all but finitely many $x \in CM_1(P^{\infty})$

 $\sum_{\sigma \in \mathcal{R}} \overline{\chi}(\sigma) \cdot \sigma \alpha_1(x) \neq \text{torsion} \quad \text{in } A_1 \otimes_{C_1} C_0.$

Lemma 5 For any abelian variety B,

 $B(K[P^{\infty}])_{\text{torsion}}$ is finite.

Let $\mathcal{E} \subset CM_1(P^{\infty})$ be an infinite subset of counterexample to our theorem. Then:

$$x \mapsto \sum_{\sigma \in \mathcal{R}} \overline{\chi}(\sigma) \cdot \sigma \alpha_1(x) \in A_1 \otimes_{C_1} C_0$$

takes finitely many values on \mathcal{E} , and we want to get a contradiction out of this.

Replace $M_1, J_1, A_1 \dots$ by $M, J, A \dots$

First Proof: using Andre-Oort (Edixhoven + Yafaev)

Proposition 6 For any infinite subset \mathcal{E} of $CM(P^{\infty})$, the Zariski closure of $\delta(\mathcal{E})$ in $M^{\mathcal{R}}/\mathbb{C}$ contains a connected component.

If $\Phi \circ \delta(\mathcal{E})$ is finite, Φ is constant on some geometrical connected component of $M^{\mathcal{R}}$. Then $\alpha : M \to A$ should be constant on some geometrical connected component of M. Being defined over F, α should then be constant on M (because M is connected as an F-curve), and π would be trivial, a contradiction.

Sketch of the proof of Proposition 6.

If some component of the Zariski closure of $\{(x,\sigma x); \ x\in \mathcal{E}\}\subset M^2$

is a curve, then

- This curve is a connected component of some Hecke correspondance $\mathcal{T}_{\mathcal{M}}$, and
- σ belongs to the subgroup < Frob_Q; $Q \mid \mathcal{M}$; $Q \nmid P >$ of $G(\infty)^{rat}$.
- If also $\sigma \in G_0 = G(\infty)_{\text{torsion}}$, we obtain $\sigma \in G(\infty)_{\text{torsion}}^{\text{rat}} = G_1.$

Second Proof: using Ratner's Theorem

1- We want: for all $n \gg 0$ and $x \in CM(P^n)$,

$$\sum_{\sigma \in \mathcal{R}} \overline{\chi}(\sigma) \cdot \sigma \alpha(x) = \Phi \circ \delta(x)$$

has a large Galois orbit. This orbit equals

$$G(\infty) \cdot \Phi \circ \delta(x) = \Phi \circ \delta(G(\infty) \cdot x).$$

2- Reducing everything at some place v of $K[P^{\infty}]$ and using red $\circ \Phi = \Phi \circ$ red, we want

$$\mathsf{RED}(G(\infty) \cdot x) \subset M^{\mathcal{R}}(k)$$

to be large when $n \gg 0$, where

$$\mathsf{RED} = \mathsf{red} \circ \delta : CM(P^{\infty}) \to M^{\mathcal{R}}(k)$$

maps x to $(red(\sigma x))_{\sigma \in \mathcal{R}}$ and k is the residue field of v.

3- Choose v above some prime ℓ of F which is inert in K and not in \mathcal{N} . Then k is finite and

 $red(CM) \subset M^{ss}(k) = {supersingular points}.$

Is it true that

$$\mathsf{RED}: CM(P^{\infty}) \to M^{\mathsf{ss}}(k)^{\mathcal{R}}$$

is surjective? The answer is no.

4- Let $c: M \to \mathcal{M}$ be the Stein factorisation of $M \to \operatorname{Spec}(\mathcal{O}_{F_v})$, put $C = c^{\mathcal{R}}$

$$C: M^{\mathsf{SS}}(k)^{\mathcal{R}} \to \mathcal{M}(k)^{\mathcal{R}}.$$

Then $C \circ \text{RED} : CM(P^{\infty}) \to \mathcal{M}(k)^R$ is not surjective, but:

Thm For any $x \in CM(P^n)$ with $n \gg 0$,

 $\mathsf{RED}(G(\infty) \cdot x) = C^{-1} \left(C \circ \mathsf{RED} \left(G(\infty) \cdot x \right) \right).$

5- Carayol gives an adelic description of $M^{ss}(k)$, $\mathcal{M}(k)$ and $c: M^{ss}(k) \to \mathcal{M}(k)$. The strong approximation theorem at P then provides a Padic description of the fibers of $c: M^{ss}(k) \to \mathcal{M}(k)$. On the other hand, one checks that $CM(P^{\infty})$ may be covered by finitely many "strong P-isogeny classes", and the latter each have a P-adic parametrisation by $B_P^1 \simeq SL_2(F_P)$.

Altogether, we find that for a strong *P*-isogeny class $\mathcal{H} \subset CM(P^{\infty})$ and $z = C \circ \text{RED}(\mathcal{H})$, the map

$$\mathcal{H} \to C^{-1}(z) \subset M^{\mathrm{ss}}(k)^{\mathcal{R}}$$

looks like

$$SL_2(F_P) \xrightarrow{\Delta} \prod_{\sigma \in \mathcal{R}} \Gamma_{\sigma} \backslash SL_2(F_P) / V$$

where Δ is the diagonal, V is a compact open subgroup of $SL_2(F_P)$ and the Γ_{σ} 's are *noncommensurable* cocompact lattices in $SL_2(F_P)$. **6**- Let us already show that this map is *surjective*. Put $\mathcal{G} = SL_2(F_P)$ and $\Gamma = \prod_{\sigma \in \mathcal{R}} \Gamma_{\sigma}$.

Ratner's theorem (Orbit closure) There exists a closed subgroup Σ of $\mathcal{G}^{\mathcal{R}}$ such that

$$\overline{\Gamma \cdot \Delta(\mathcal{G})} = \Gamma \cdot \Sigma \quad in \quad \mathcal{G}^{\mathcal{R}}.$$

We may furthermore assume that $\Delta(\mathcal{G}) \subset \Sigma$: then Σ is essentially a "product of diagonals". As $\Gamma \cdot \Sigma$ is closed, $\Gamma \cap \Sigma$ is a cocompact lattice in Σ . The non commensurability of the Γ_{σ} 's then implies $\Sigma = \mathcal{G}^{\mathcal{R}}$, and $\Gamma \cdot \Delta(\mathcal{G})$ is dense in $\mathcal{G}^{\mathcal{R}}$. A fortiori, $\Gamma \cdot \Delta(\mathcal{G}) \cdot V^{\mathcal{R}} = \mathcal{G}^{\mathcal{R}}$.

7- To obtain our theorem, we need a better decomposition of $CM(P^{\infty})$: a finite union of

$$\cup_{n\geq 0}G(\infty)\cdot U(\kappa_n)$$

where $t \mapsto U(t)$ is "one parameter unipotent family of CM points", κ is a compact open subgroup of \mathcal{O}_F^{\times} and $\kappa_n = \pi^{-n}\kappa$, with π a local uniformiser at P. Another theorem of M. Ratner tells us that

$$\frac{1}{\lambda(\kappa_n)}\int_{\kappa_n} f \circ \Delta(\sigma U(t))dt \to \int f d\mu_{\sigma}$$

for any continuous function f on $\Gamma \setminus \mathcal{G}^{\mathcal{R}}$. We show that for almost all $\sigma \in G(\infty)$, $\mu_{\sigma} = \mu$ is the unique $\mathcal{G}^{\mathcal{R}}$ invariant measure on $\Gamma \setminus \mathcal{G}^{\mathcal{R}}$. Fubini's theorem then allows us to analyse the asymptotic behavior of

$$\int_{G(\infty)} f \circ \mathsf{RED}(g \cdot x) dg$$

for $x \in CM(P^n)$ with $n \to \infty$ and f any function on the finite set $M^{ss}(k)^{\mathcal{R}}$.