
Aim: Fix π and let χ vary P -adically. We want
to show that, generically,

ords=1/2L(s, π × π(χ)) =

{
0 if ε = +1
1 if ε = −1

With:

• π is an irreducible automorphic representa-
tion of GL2(AF ), where

• F is a totally real number field;

• K is a totally imaginary quadratic extension
of F and

• χ is a Grossencharacter of K, inducing an
automorphic representation π(χ) of GL2(AF );

• P is a prime of F .



Notations and Assumptions

• π: cuspidal, weight (2, · · · ,2), level N , and
central char. ω : F×\A×F → C×.

• χ is a ring class character, i.e.: there exists
c ⊂ OF such that χ factors through

χ : K×\A×K/K×∞Ô×c ' Pic(Oc)→ C×.

where Oc := OF + cOK . The conductor
c(χ) of χ is the largest such c.

• By CFT, we may view χ as a character on
Gal(K[c]/K), where K[c] is the ring class
field of conductor c of K.

• D is the support of disc(K/F ). Write

D = (P )D′ and N = P δN ′

with (D′, P ) = 1 = (N ′, P ). We require:

(N ′,D′) = 1.



We need:

ω · χ|A×F
= 1 on A×F .

Then:

• L(s, π × π(χ)) is entire, and

• L(s, π × π(χ)) has a F.E. s↔ 1− s,

• This F.E. has a sign ε ∈ {±1}.

Moreover, ω is an unramified character of F

(because χ is a ring class character of K).



(Thm) For all n� 0, there exists a ring class
character χ with c(χ) = Pn and ω ·χ|A×F

= 1

such that

ords=1/2L(s, π × π(χ)) =

{
0 if ε = +1
1 if ε = −1

From now on,

Weonlyconsiderthe ε = −1

case.

Thanks to the work of S. Zhang (Gross-Zagier
formulas for GL2, II), we now have to show:



Thm For all n � 0 and x ∈ CM(Pn), there
exists a χ with c(χ) = Pn and ω · χ|A×F

= 1

such that

eχ · α(x) 6= 0 in A⊗C.

Here:

• M is a Shimura curve,
A is a quotient of J = Pic0(M) and
α : M  A is an F -morphism.

• CM : Points with CM by K in M and
CM(c) ⊂M(K[c]): those of conductor c.

• G(n) = Gal(K[Pn]/K) and

eχ =
1

|G(n)|
∑

σ∈G(n)

χ(σ) · σ.



Formula for ε.

When ω · χ|A×F
= 1,

ε =
∏

εv = (−1)|S|

and S = {v; εv 6= ηv · ωv(−1)}.

Under our assumption that N and D are rela-
tively prime away from P , and provided that χ

is sufficently ramified at P , we find:

S =

{
v

∣∣∣∣∣ v | ∞ or v - P∞ is inert in K
and such that v(N ) ≡ 1 mod 2

}

Therefore

ε = −1 ⇔ |S| ≡ 1 mod 2.



The Hodge “embedding”.

There exists δ ∈ Pic(M)⊗Q which has degree
1 on each geometrical connected component
of M . This δ defines an element ι : M  J of
MorF (M, J)⊗Q given by

x 7→ (x− δc)

where δc is the restriction of δ to the geomet-
rical connected component c of x ∈M(C).

We put

α : M
ι J

π−→ A

so that α belongs to MorF (M, A)⊗Q.



A Filtration
1 ⊂ G2 ⊂ G1 ⊂ G0 ⊂ G(∞).

• G(∞) = lim←−G(n) = Gal(K[P∞]/K) and
G0 = G(∞)torsion.

• G(∞)rat =< FrobQ; Q - P >⊂ G(∞) and
G1 = G(∞)rattorsion.

• G2 = recK(F̂×) ⊂ G(∞).

Then G2 ⊂ G1 ⊂ G0 and

• G0 is finite, G(∞) ' G0 × Z
[FP ,Qp]
p .

• G2 ' Pic(OF ).

• G1/G2 is an F2-vector space with basis

{σq = FrobQ; Q2 = qOK, q | D′}.



Fix χ0 : G0 → C× such that χ0 · ω = 1 on A×F .

Thm For all n � 0 and x ∈ CM(Pn), there
exists a χ with c(χ) = Pn and χ |G0

= χ0

such that

eχ · α(x) 6= 0 in A⊗C.

Proof : Put eχ0,n =
∑

eχ where χ runs through
the above characters (i.e. those inducing χ0

on G0 and such that c(χ) = Pn). We want:

Thm For all n� 0 and x ∈ CM(Pn),

eχ0,n · α(x) 6= 0 in A⊗C.



Lemma 1 In the group ring C[G(n)],

eχ0,n =
1

q |G0|
∑

σ∈G0

χ0(σ)σ · (q −TrZ(n))

with q = |OF/P | and

Z(n) = Gal(K[Pn]/K[Pn−1]).

Lemma 2 ∃M ′, J ′ = Pic0M ′, π′ : J ′ � A and

x ∈ CM(Pn) 7→ x′ ∈ CM ′(Pn) (n ≥ 2)

such that if α′ = π′ ◦ ι′ : M ′  A,

(q −TrZ(n))α(x) = α′(x′) in A⊗C.

We thus want:

Thm For all n� 0 and x′ ∈ CM ′(Pn),∑
σ∈G0

χ0(σ) · σα′(x′) 6= 0 in A⊗C.



Put χ = χ0, M = M ′, J = J ′, α = α′. . .

Put Ci = Z[χ(Gi)] so that

Z ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C

We want:

Thm For all but finitely many x ∈ CM(P∞),

(∗)
∑

σ∈G0

χ(σ)σα(x) 6= tors. in A⊗Z C0

Proposition 3 (∗)⇔

⇔
∑

σ∈G0/G2

χ(σ)σα(x) 6= tors. in A⊗C2
C0

⇔
∑

σ∈G0/G1

χ(σ)σα1(x1) 6= tors. in A1 ⊗C1
C0



Action of G2.

The center F̂× of G(Af) acts on M , J, and A

through its quotient

F̂×/F×Ô×F ' Pic(OF ) (' G2)

For a CM point x = [g] ∈ T (Q)\G(Af)/H,

Galois action: σ ∈ GalabK acts by

σ · x = [λg]

where σ = recK(λ) with λ ∈ K̂×.

Automorphic action: θ ∈ Pic(OF ) acts by

θ(x) = [gλ]

where θ = [λ] with λ ∈ F̂×.

For σ ∈ G2 ↔ θ ∈ Pic(OF ), λ ∈ F̂ and

σ · x = [λg] = [gλ] = θ(x).



Action of G1/G2.

Recall that G1/G2 = {σD; D | D′} where

σD =
∏
q|D

σq, σq = FrobQ, Q2 = qOK.

Lemma 4 ∃{degD : M1 →M ; D | D′} and

x ∈ CM(Pn) 7→ x1 ∈ CM1(P
n)

such that for all D | D and x ∈ CM(Pn),

σD · x = degD(x1) (in M.)

Take A1 = A⊗C2
C1 and

α1 : M1
ι1 J1

π1
� A1

where π1 : J1 � A1 is defined by

J1 → J{D|D} π→ A{D|D} → A1
x 7→ (degD(x)) (xD) 7→

∑
χ(σD)xD



Fix a set R ⊂ G0 of representatives for G0/G1.
We now want:

Thm For all but finitely many x ∈ CM1(P
∞)∑

σ∈R
χ(σ) · σα1(x) 6= torsion in A1 ⊗C1

C0.

Lemma 5 For any abelian variety B,

B(K[P∞])torsion is finite.

Let E ⊂ CM1(P
∞) be an infinite subset of

counterexample to our theorem. Then:

x 7→
∑

σ∈R
χ(σ) · σα1(x) ∈ A1 ⊗C1

C0

takes finitely many values on E, and we want
to get a contradiction out of this.

Replace M1, J1, A1. . . by M, J, A. . .



First Proof: using Andre-Oort
(Edixhoven + Yafaev)

Proposition 6 For any infinite subset E of
CM(P∞), the Zariski closure of δ(E) in MR/C

contains a connected component.

If Φ ◦ δ(E) is finite, Φ is constant on some ge-
ometrical connected component of MR. Then
α : M → A should be constant on some ge-
ometrical connected component of M . Being
defined over F , α should then be constant on
M (because M is connected as an F -curve),
and π would be trivial, a contradiction.



Sketch of the proof of Proposition 6.

If some component of the Zariski closure of

{(x, σx); x ∈ E} ⊂M2

is a curve, then

• This curve is a connected component of
some Hecke correspondance TM, and

• σ belongs to the subgroup

< FrobQ;Q | M; Q - P >

of G(∞)rat.

• If also σ ∈ G0 = G(∞)torsion, we obtain

σ ∈ G(∞)rattorsion = G1.



Second Proof: using Ratner’s Theorem

1- We want: for all n� 0 and x ∈ CM(Pn),∑
σ∈R

χ(σ) · σα(x) = Φ ◦ δ(x)

has a large Galois orbit. This orbit equals

G(∞) ·Φ ◦ δ(x) = Φ ◦ δ(G(∞) · x).

2- Reducing everything at some place v of
K[P∞] and using red ◦Φ = Φ ◦ red, we want

RED(G(∞) · x) ⊂MR(k)

to be large when n� 0, where

RED = red ◦ δ : CM(P∞)→MR(k)

maps x to (red(σx))σ∈R and k is the residue
field of v.

3- Choose v above some prime ` of F which is
inert in K and not in N . Then k is finite and

red(CM) ⊂Mss(k) = {supersingular points}.



Is it true that

RED : CM(P∞)→Mss(k)R

is surjective? The answer is no.

4- Let c : M → M be the Stein factorisation
of M → Spec(OFv), put C = cR

C : Mss(k)R →M(k)R.

Then C ◦RED : CM(P∞)→M(k)R is not sur-
jective, but:

Thm For any x ∈ CM(Pn) with n� 0,

RED(G(∞) · x) = C−1 (C ◦RED(G(∞) · x)) .



5- Carayol gives an adelic description of Mss(k),
M(k) and c : Mss(k)→M(k). The strong ap-
proximation theorem at P then provides a P -
adic description of the fibers of c : Mss(k) →
M(k). On the other hand, one checks that
CM(P∞) may be covered by finitely many “strong
P -isogeny classes”, and the latter each have a
P -adic parametrisation by B1

P ' SL2(FP ).

Altogether, we find that for a strong P -isogeny
class H ⊂ CM(P∞) and z = C ◦ RED(H), the
map

H → C−1(z) ⊂Mss(k)R

looks like

SL2(FP )
∆−→

∏
σ∈R

Γσ\SL2(FP )/V

where ∆ is the diagonal, V is a compact open
subgroup of SL2(FP ) and the Γσ’s are non-
commensurable cocompact lattices in SL2(FP ).



6- Let us already show that this map is surjec-
tive. Put G = SL2(FP ) and Γ =

∏
σ∈RΓσ.

Ratner’s theorem (Orbit closure) There ex-
ists a closed subgroup Σ of GR such that

Γ ·∆(G) = Γ ·Σ in GR.

We may furthermore assume that ∆(G) ⊂ Σ:
then Σ is essentially a “product of diagonals”.
As Γ ·Σ is closed, Γ∩Σ is a cocompact lattice
in Σ. The non commensurability of the Γσ’s
then implies Σ = GR, and Γ ·∆(G) is dense in
GR. A fortiori, Γ ·∆(G) · V R = GR.

7- To obtain our theorem, we need a better
decomposition of CM(P∞): a finite union of

∪n≥0G(∞) · U(κn)

where t 7→ U(t) is “one parameter unipotent
familly of CM points”, κ is a compact open
subgroup of O×F and κn = π−nκ, with π a local
uniformiser at P .



Another theorem of M. Ratner tells us that
1

λ(κn)

∫
κn

f ◦∆(σU(t))dt→
∫

fdµσ

for any continuous function f on Γ\GR. We
show that for almost all σ ∈ G(∞), µσ = µ

is the unique GR invariant measure on Γ\GR.
Fubini’s theorem then allows us to analyse the
asymptotic behavior of∫

G(∞)
f ◦RED(g · x)dg

for x ∈ CM(Pn) with n→∞ and f any function
on the finite set Mss(k)R.


