
What is an Euler System?

It’s a collection of cohomology classes

xQ ∈ H1(Q,T )

satisfying certain (1) distribution relations
and (2) congruence relations.

Here: K is a number field, T is a geometric
p-adic representation of GalK and the classes
are indexed by K ⊂f Q ⊂ K[∞] for some fixed
infinite abelian extension K[∞] of K.

Such Euler systems are used to bound the
Selmer groups of T ?(1). In the self-dual case
T = T ?(1), one gets

xK 6= tors.⇒ it spans H1
f (K,T ).



Example: Heegner Points.

• K is a totally imaginary quadratic extension
of a totally real number field F ,

• T = TpA for a quotient π : Pic0X → A,
where X is a Shimura curve X over F ,

• K[∞] is the fixed field of the image of the
transfert Ver : GalabF → GalabK , so that

K[∞] = ∪cK[c]

where K[c] is the ring class field with

Gal(K[c])/K) = K̂×/F̂×Ô×c
where Oc = OF + cOK.

• The xQ’s are the images by an Abel-Jacobi
map of certain divisors supported on spe-
cial points with CM by K.



Distribution and congruence relations.

For ` - c, the distribution relations compare

P`(f`) · xK[c] and CoresK[c`]/K[c] · xK[c`]

in H1(K[c], T ), where

P` = det(f` −X · Id|T ?(1)),

f` = geometric Frobenius.

In the classical Heegner points example,

P` = X2 − T`X + `

and for the xQ’s that are usually used,

P`(f`) · f−1
` xK[c]

= CoresK[c`]/K[c](f
−1
` xK[c] − xK[c`]).

The congruence relations compare the lo-
calisations of xc and xc` at some place λ | `
of K[c`] above `. They can often be deduced
from the distribution relations.



The general setting

We keep the CM extension K/F , the infinite
abelian extension K[∞]/K, but we want to
consider more general T ’s:

• T= lattice in the p-adic etale realisation of

• M= an irreducible motive over F , pure of
weight −1, with coefficients in a number
field C ⊂ C, with a perfect symplectic
pairing M ⊗M → C(1).

We want to

• find out when we expect an Euler system
to exist in this situation, and

• try to construct such an Euler system in
some cases.



L-functions and ε-factors

For a place v of F , let Mv be the complex
symplectic repr. of the Weil-Deligne group

W ′
v =




Wv if v | ∞
Wv × SU2(R) if v -∞

conjecturally attached toM . They should come
from a representation of a motivic Galois group.

Each continuous character

χ : Gal(K[∞]/K) → C×

yields a character of WK (global Weil group)
which induces to an orthogonal 2-dimensional
representation Indχ of WF . Write Indvχ for its
restriction to Wv or W ′

v.

Then Mv ⊗ Indvχ is a symplectic Weil-Deligne
representation. Define

L(M,χ, s) =
∏
Lv(Mv ⊗ Indvχ, s),

ε(M,χ, s) =
∏
εv(Mv ⊗ Indvχ, s, ψv),

with ψ : F\AF → C× as usual.



Signs as hint for Euler Systems

• The L-function L(M,χ, s) should have a mero-
morphic extension to C and a functional equa-
tion s↔ −s with root number

ε(M,χ) = ε(M,χ,0) ∈ {±1}.
Fact: ε(M,χ) = ε(M,K) does not depend upon
χ, provided χ does not ramify where M does.

• If ε(M,K) equals −1, then the order of van-
ishing of L(M,χ, s) at s = 0 should be 1 for
almost all χ. Accordingly, the rank of the χ

component of H1
f (K(χ),M) should be 1 for

almost all χ’s.

• So if ε(M,K) = −1, there should be enough
room for a non-trivial Euler system to exist, it
should essentially be unique, and account (by
Kolyvagin’s method) for the fact that most of
the H1

f (K(χ),M)’s have rank one. Thus:

Assumption 1: ε(M,K) = −1.



Automorphicity

Assumption 2: M is automorphic.

There exists an admissible global parameter

φ : LF → Sp2n(C)

such that for all v, the local parameter

φv : W ′
v → Sp2n(C)

is isomorphic to Mv(
−1
2 ). Then:

• M pure of weight −1 ⇒ φ is tempered,

• M irreducible ⇒ Z(φ) = {±1}

where

{±1} ⊂ Z(φ) ⊂ Z(φv) ⊂ Sp2n(C)

are the centralizer of φ and φv.



Conjectures of Langlands, Arthur, Vogan...

Let Π(φ) be the set of isomorphism classes
of pairs (G, π) where G is an (inner) form of
SO(2n+1) over F , and π belongs to the global
L-paquet Π(G,φ), i.e. (1) π is an irreducible
unitary representation of G(AF ) which occurs
with multiplicity m(π) > 0 in L2

d(G(F )\G(AF ))

and (2) π = ⊗′πv where for each v, the rep-
resentation πv of Gv = G(Fv) belongs to the
local Langlands L-paquet Π(Gv, φv).

The inclusion Z(φ) ↪→ Z(φv) induces a map
from A = π0(Z(φ)) to Av = π0(Z(φv)). Let
∆ : A→ ∏

vAv be the diagonal.

Conjecture There are natural bijections

Π(φv) ' A∨v and Π(φ) '
(∏
v
Av/∆(A)

)∨
.

Moreover, m(π) = 1 for all (G, π) ∈ Π(φ).



Local Signs and characters

Let X be the space of φ : LF → Sp(X). For
s ∈ Z(φv)[2], put X(s) = {x ∈ X|sx = −x} and

cv(χ, s) = εv(X(s)⊗ Indvχ) · ηv(−1)
dimX(s)

2

where η = ⊗ηv : A×
F → Gal(K/F ) = {±1} is the

reciprocity map.

Lemma This yields a character

cv(χ) : Av → {±1}
which is ≡ 1 if Kv splits or φv is unramified.

By construction, the root number

ε(M,χ) =
∏
v
cv(χ,−1) = (−1)#S(χ)

where S(χ) = {v|cv(χ,−1) = −1}.



Modification of the cv’s at ∞, I

For χ’s which do not ramify where M does,

cv(χ) = cv and S(χ) = S

with

(
∏
cv)(−1) = (−1)#S = ε(M,K) = −1

so we need to modify some cv.

Assumption 3: for v | ∞, φv is discrete.

Which means that

φv = ⊕ni=1Ind(z/z)ai,v

with ai,v ∈ 1
2Z− Z and a1,v > · · · > an,v > 0.

Then Av = Z(φv) = ⊕Z/2Z · εi and cv(εi) = −1

corresponds to a representation of



SO(n+ 1, n) if n ≡ 0 mod 2,

SO(n+ 2, n− 1) if n ≡ 1 mod 2.



Modification of the cv’s at ∞, II

For j = 0, · · · , n define

cv(j)(εi) = (−1)i+1+n+δ(i,j)

which corresponds to

{π0
v} = Π(SO(2n+ 1), φv)

{π1
v , · · · , πnv } = Π(SO(2n− 1,2), φv)

Fix v0 | ∞ and define

cjv =





cv if v -∞
cv(j) if v = v0
cv(0) if v | ∞, v 6= v0

so that

(
∏
cjv)(−1) = (−1)δ0,j+

[F :Q]·n(3n+5)
2

Assumption 4: 2 | [F : Q] if n ≡ 2,3 mod 4.

Then (
∏
c
j
v)(−1) = 1 for j = 1, · · · , n.



The Automorphic Representations

These characters (for j = 1, · · · , n)
(
∏
v
cjv) ∈ (

∏
v
Av/∆A)∨ ' Π(φ)

correspond to automorphic representations

πj = ⊗′vπjv = πf ⊗ πj∞
• on the same group G0 = SO(V, φ), where
(V, φ) is a quadratic space of dimension 2n+1
with Witt invariants

Wittv(V, φ) = cjv(−1)

and signature at v | ∞

signv(V, φ) =




(2n− 1,2) if v = v0,

(2n+ 1,0) if v 6= v0;

• with the same finite part πf ,
• with infinite parts running through a single
L-paquet for G0,∞ = SO(V ⊗R, φ⊗R).

{πj∞|j = 1, · · · , n} = Π(φ∞, G0,∞).



The Shimura Varieties

Lemma ∃ a K-hermitian F -hyperplane (W,ψ)
of (V, φ): for some anisotropic line L of V ,

(V, φ) = (W,Trψ)⊥(L, φ|L).

Moreover, any two such (W,ψ)’s are conju-
gated by an element of SO(V, φ).

Fix an embedding τ : K → C above v0. Put

G = ResF/QSO(V, φ), H = ResF/QU(W,ψ)

and let X (resp. Y) be the set of all oriented
negative R-planes (resp. C-lines) in (V, φ)τ
(resp. (W,ψ)τ).

We obtain a morphism of Shimura data

(H,Y) ↪→ (G,X )

with reflex fields τ(K) ⊃ τ(F ) and dimension
n−1 ≤ 2n−1, which is well-defined up to G(Q).

Remark: (H,Y) is a twist of the classical PEL
type Shimura datum considered by Kottwitz,
Harris-Taylor...



Realisation of M, I

Let L be a compact open subgroup of G(Af)
such that πLf 6= 0. This is an irreducible com-
plex representation of the Hecke algebra HL of
G(Af) relative to L, which also acts on the co-
homology of ShL = ShL(G,X ). Suppose that

Assumption 5: ∀i, v | ∞, ai,v = n+ 1
2 − i.

Then for the Betti realisation of

H?(ShL)[πf ] = HomHL(π
L
F , H

?(ShL))

we find using Matsushima’s formula, Arthur’s
conjecture and the computations of Vogan-
Zuckerman that

H?
B(ShL)[πf ] = ⊕π∞m(πf ⊗ π∞)H?(G,K∞, π∞)

= ⊕nj=1H
?(G,K∞, πj∞)

= ⊕nj=1H
2n−j,j−1 ⊕Hj−1,2n−j

= Mv0(−n)
This suggests that

H?(ShL)[πf ] ' H2n−1(ShL)[πf ] 'M(−n)



Realisation of M, II

If the number field C ⊂ C is large enough, the
representation ρ of HL on πLf is defined over
C. For λ | p of C, we thus obtain a λ-adic
representation H?

λ(ShL)[πf ].

Conjecture (Blasius-Rogawski) Suppose that
L = LvLv with Lv ⊂ G0(Fv) hyperspecial. Let

Hv(T ) ∈ Hv[T ] with Hv = HQ(G0(Fv), Lv)

be the Hecke polynomial with specialisation
Hv(T ) ∈ C[T ] through ρ : Hv → C = EndC(πLvv ).
Then ShL has good reduction at v and

Hv(fv) = 0 on H?
λ(ShL)[πf ].

Fact Hv(T ) = det(T · Id− qnv fv|Mv).

This suggest again that

M = H?(ShL, n)[πf ] = H2n−1(ShL, n)[πf ].



Cycles (Definition)

For g ∈ G(Af), let ZL(g) be the image of

gL× Y ⊂ G(Af)×X
inside

ShL(C) = G(Q)\
(
G(Af)/L×X

)
.

This yields a collection ZL of cycles of codi-
mension n in ShL = ShL(G,X ), and

ZL ' H(Q)\G(Af)/L

' H(Q)H1(Af)\G(Af)/L

where

H1 = ker
(
det : H → T1

)

with T1 = ker (N : T → Z)
for T = ResK/QGm,K

and Z = ResF/QGm,F .



Cycles (Fields of Definition)

Left multiplication by H(Af) on

ZL = H(Q) ·H1(Af)\G(Af)/L

descends to an action of

H(Af)/H
1(Af)

det' T1(Af)

Hilbert 90' T (Af)/Z(Af)
recK' Gal(K[∞]/K)

Proposition: The cycles ZL(g) ⊂ ShL(G,X )

are defined over the abelian extension K[∞] of
K, with the Galois action given as above.



Schwartz space

Let S be the space of locally constant and
compactly supported functions

s : H1(Af)\G(Af) → Z.

The group T1(Af)×G(Af) acts on S.

Definition The field of definition of s ∈ S is
the subfield of K[∞] which is fixed by the im-
age in Gal(K[∞]/K) of the stabilizer of s in
T1(Af).

For a compact open subgroup L of G(Af) and
a finite extension K ⊂f Q ⊂ K[∞], we put

SL(Q) =

{
s ∈ S

∣∣∣∣∣
s is defined over Q and
s ∈ Γ(L,S)

}
.



Distribution

For each g ∈ G(Af), put

cL(g) =

∣∣∣DL(g) ∩ T1(Q)
∣∣∣

∣∣∣CL(g) ∩ T1(Q)
∣∣∣
∈ Zµ−1

K

where µK = |µ(K)| and

DL(g) = det
(
gLg−1 ∩H(Af)

)

CL(g) = gLg−1 ∩ Z(H(Af))

Then cL factors through

cL : H(Af)\G(Af)/NG(Af)
L→ Zµ−1

K .

Lemma The map g 7→ ZL(g) ⊗ cL(g) extends
to an HL[T1(Af)]-equivariant morphism

µL : SL(Q) → CHnL(Q)⊗ Zµ−1
K

where CHnL(Q) = group of cycles of codimen-
sion n on ShL ×Q modulo linear equivalence.



Distribution relations

Theorem For any K ⊂f Q ⊂ K[∞] and s ∈
SL(Q), for all but finitely many `’s such that
` is inert in K, unramified in Q, and L = L`L`
with L` hyperspecial, there exists

s(`) ∈ SL(Q[`]) Q(`) = Q ·K[`]

for which

H`(f`) · s = TrQ[`]/Q(s(`)).

What comes into the proof:

• Computation of H`: computation of Kazhdan-
Luztig polynomials, using a formula of Brylin-
ski.

• Description of the action of a U(n) on the
Bruhat-Tits buldings of a split SO(2n+1).



Etale cohomology

Fix a prime p - µK. The Hochschild-Serre spec-
tral sequence and the cycle map in p-adic (con-
tinuous) etale cohomology together yield the
Abel-Jacobi map:

CHnL(Q)0
AJ−→ H1

(
Q,H2n−1

et

(
ShL,Zp(n)

))

where CHnL(Q)0 is the kernel of the cycle map

cyc : CHnL(Q) → H0
(
Q,H2n

et

(
ShL,Zp(n)

))
.

We would like to obtain classes in

H1
(
Q,H2n−1

et

(
ShL,Zp(n)

))

from our cycles ZL(g), and thus need to trivi-
alize the distribution

µetL : SL → H2n
et (ShL,Zp(n))

obtained as µetL = cyc ◦ µL.



Strategies

(1) Work with S0
L = ker µetL instead of SL. But:

one then needs to construct elements of S0
L.

(2) Apply some functor F that kills H2n
et (ShL),

such as HomHL(π
L
f , •). But: one then needs

to construct elements of F(SL).

(3) Find some HL-equivariant section of

? µetL (SL)
↙ ∩

H2n
et (ShL,Zp(n)) → H2n

et (ShL,Zp(n))

or even of the cycle map

CHn(F ) → H2n
et (ShL,Zp(n))

This works for n = 1, because H2n
et is then very

simple. In general, I don’t know what µetL (SL)
looks like.


