What is an Euler System?

It's a collection of cohomology classes

$$
x_{Q} \in H^{1}(Q, T)
$$

satisfying certain (1) distribution relations and (2) congruence relations.

Here: K is a number field, T is a geometric p-adic representation of Gal_{K} and the classes are indexed by $K \subset_{f} Q \subset K[\infty]$ for some fixed infinite abelian extension $K[\infty]$ of K.

Such Euler systems are used to bound the Selmer groups of $T^{\star}(1)$. In the self-dual case $T=T^{\star}(1)$, one gets

$$
x_{K} \neq \text { tors. } \Rightarrow \text { it spans } H_{f}^{1}(K, T)
$$

Example: Heegner Points.

- K is a totally imaginary quadratic extension of a totally real number field F,
- $T=T_{p} A$ for a quotient $\pi: \operatorname{Pic}^{0} X \rightarrow A$, where X is a Shimura curve X over F,
- $K[\infty]$ is the fixed field of the image of the transfert Ver : Gal ${ }_{F}^{a b} \rightarrow$ Gal $_{K}^{a b}$, so that

$$
K[\infty]=\cup_{c} K[c]
$$

where $K[c]$ is the ring class field with

$$
\operatorname{Gal}(K[c]) / K)=\widehat{K}^{\times} / \widehat{F}^{\times} \widehat{\mathcal{O}}_{c}^{\times}
$$

where $\mathcal{O}_{c}=\mathcal{O}_{F}+c \mathcal{O}_{K}$.

- The x_{Q} 's are the images by an Abel-Jacobi map of certain divisors supported on special points with CM by K.

Distribution and congruence relations.

For $\ell \nmid c$, the distribution relations compare

$$
P_{\ell}\left(f_{\ell}\right) \cdot x_{K[c]} \quad \text { and } \quad \operatorname{Cores}_{K[c \ell] / K[c]} \cdot x_{K[c \ell]}
$$

in $H^{1}(K[c], T)$, where

$$
\begin{aligned}
P_{\ell} & =\operatorname{det}\left(f_{\ell}-X \cdot \operatorname{Id} \mid T^{\star}(1)\right) \\
f_{\ell} & =\text { geometric Frobenius }
\end{aligned}
$$

In the classical Heegner points example,

$$
P_{\ell}=X^{2}-T_{\ell} X+\ell
$$

and for the x_{Q} 's that are usually used,

$$
\begin{aligned}
& P_{\ell}\left(f_{\ell}\right) \cdot f_{\ell}^{-1} x_{K[c]} \\
& \quad=\operatorname{Cores}_{K[c \ell] / K[c]}\left(f_{\ell}^{-1} x_{K[c]}-x_{K[c \ell]}\right)
\end{aligned}
$$

The congruence relations compare the localisations of x_{c} and $x_{c \ell}$ at some place $\lambda \mid \ell$ of $K[c \ell]$ above ℓ. They can often be deduced from the distribution relations.

The general setting

We keep the CM extension K / F, the infinite abelian extension $K[\infty] / K$, but we want to consider more general T 's:

- $T=$ lattice in the p-adic etale realisation of
- $M=$ an irreducible motive over F, pure of weight -1 , with coefficients in a number field $C \subset \mathbf{C}$, with a perfect symplectic pairing $M \otimes M \rightarrow C(1)$.

We want to

- find out when we expect an Euler system to exist in this situation, and
- try to construct such an Euler system in some cases.

L-functions and ϵ-factors

For a place v of F, let M_{v} be the complex symplectic repr. of the Weil-Deligne group

$$
W_{v}^{\prime}= \begin{cases}W_{v} & \text { if } v \mid \infty \\ W_{v} \times S U_{2}(\mathbf{R}) & \text { if } v \nmid \infty\end{cases}
$$

conjecturally attached to M. They should come from a representation of a motivic Galois group.

Each continuous character

$$
\chi: \operatorname{Gal}(K[\infty] / K) \rightarrow \mathbf{C}^{\times}
$$

yields a character of W_{K} (global Weil group) which induces to an orthogonal 2-dimensional representation Ind χ of W_{F}. Write $\operatorname{Ind}_{v} \chi$ for its restriction to W_{v} or W_{v}^{\prime}.

Then $M_{v} \otimes \operatorname{Ind}_{v} \chi$ is a symplectic Weil-Deligne representation. Define

$$
\begin{aligned}
L(M, \chi, s) & =\prod L_{v}\left(M_{v} \otimes \operatorname{Ind}_{v \chi, s)},\right. \\
\epsilon(M, \chi, s) & =\prod \epsilon_{v}\left(M_{v} \otimes \operatorname{Ind}_{v \chi}, s, \psi_{v}\right),
\end{aligned}
$$

with $\psi: F \backslash \mathbf{A}_{F} \rightarrow \mathbf{C}^{\times}$as usual.

Signs as hint for Euler Systems

- The L-function $L(M, \chi, s)$ should have a meromorphic extension to C and a functional equation $s \leftrightarrow-s$ with root number

$$
\epsilon(M, \chi)=\epsilon(M, \chi, 0) \in\{ \pm 1\} .
$$

Fact: $\epsilon(M, \chi)=\epsilon(M, K)$ does not depend upon χ, provided χ does not ramify where M does.

- If $\epsilon(M, K)$ equals -1 , then the order of vanishing of $L(M, \chi, s)$ at $s=0$ should be 1 for almost all χ. Accordingly, the rank of the χ component of $H_{f}^{1}(K(\chi), M)$ should be 1 for almost all χ 's.
- So if $\epsilon(M, K)=-1$, there should be enough room for a non-trivial Euler system to exist, it should essentially be unique, and account (by Kolyvagin's method) for the fact that most of the $H_{f}^{1}(K(\chi), M)$'s have rank one. Thus:

Assumption 1: $\epsilon(M, K)=-1$.

Automorphicity

Assumption 2: M is automorphic.

There exists an admissible global parameter

$$
\phi: \mathcal{L}_{F} \rightarrow \mathrm{Sp}_{2 n}(\mathrm{C})
$$

such that for all v, the local parameter

$$
\phi_{v}: W_{v}^{\prime} \rightarrow \mathrm{Sp}_{2 n}(\mathrm{C})
$$

is isomorphic to $M_{v}\left(\frac{-1}{2}\right)$. Then:

- M pure of weight $-1 \Rightarrow \phi$ is tempered,
- M irreducible $\Rightarrow Z(\phi)=\{ \pm 1\}$
where

$$
\{ \pm 1\} \subset Z(\phi) \subset Z\left(\phi_{v}\right) \subset \mathrm{Sp}_{2 n}(\mathrm{C})
$$

are the centralizer of ϕ and ϕ_{v}.

Conjectures of Langlands, Arthur, Vogan...

Let $\Pi(\phi)$ be the set of isomorphism classes of pairs (G, π) where G is an (inner) form of $S O(2 n+1)$ over F, and π belongs to the global L-paquet $\Pi(G, \phi)$, i.e. (1) π is an irreducible unitary representation of $G\left(\mathbf{A}_{F}\right)$ which occurs with multiplicity $m(\pi)>0$ in $L_{d}^{2}\left(G(F) \backslash G\left(\mathbf{A}_{F}\right)\right)$ and (2) $\pi=\otimes^{\prime} \pi_{v}$ where for each v, the representation π_{v} of $G_{v}=G\left(F_{v}\right)$ belongs to the local Langlands L-paquet $\Pi\left(G_{v}, \phi_{v}\right)$.

The inclusion $Z(\phi) \hookrightarrow Z\left(\phi_{v}\right)$ induces a map from $A=\pi_{0}(Z(\phi))$ to $A_{v}=\pi_{0}\left(Z\left(\phi_{v}\right)\right)$. Let $\Delta: A \rightarrow \prod_{v} A_{v}$ be the diagonal.

Conjecture There are natural bijections

$$
\Pi\left(\phi_{v}\right) \simeq A_{v}^{\vee} \quad \text { and } \quad \Pi(\phi) \simeq\left(\prod_{v} A_{v} / \Delta(A)\right)^{\vee}
$$

Moreover, $m(\pi)=1$ for all $(G, \pi) \in \Pi(\phi)$.

Local Signs and characters

Let X be the space of $\phi: \mathcal{L}_{F} \rightarrow \operatorname{Sp}(X)$. For $s \in Z\left(\phi_{v}\right)[2]$, put $X(s)=\{x \in X \mid s x=-x\}$ and

$$
c_{v}(\chi, s)=\epsilon_{v}\left(X(s) \otimes \operatorname{Ind}_{v} \chi\right) \cdot \eta_{v}(-1)^{\frac{\operatorname{dim} X(s)}{2}}
$$

where $\eta=\otimes \eta_{v}: \mathbf{A}_{F}^{\times} \rightarrow \operatorname{Gal}(K / F)=\{ \pm 1\}$ is the reciprocity map.

Lemma This yields a character

$$
c_{v}(\chi): A_{v} \rightarrow\{ \pm 1\}
$$

which is $\equiv 1$ if K_{v} splits or ϕ_{v} is unramified.

By construction, the root number

$$
\epsilon(M, \chi)=\prod_{v} c_{v}(\chi,-1)=(-1)^{\# S(\chi)}
$$

where $S(\chi)=\left\{v \mid c_{v}(\chi,-1)=-1\right\}$.

Modification of the c_{v} 's at ∞, I

For χ 's which do not ramify where M does,

$$
c_{v}(\chi)=c_{v} \quad \text { and } \quad S(\chi)=S
$$

with

$$
\left(\prod c_{v}\right)(-1)=(-1)^{\# S}=\epsilon(M, K)=-1
$$

so we need to modify some c_{v}.
Assumption 3: for $v \mid \infty, \phi_{v}$ is discrete.
Which means that

$$
\phi_{v}=\oplus_{i=1}^{n} \operatorname{Ind}(z / \bar{z})^{a_{i, v}}
$$

with $a_{i, v} \in \frac{1}{2} \mathbf{Z}-\mathbf{Z}$ and $a_{1, v}>\cdots>a_{n, v}>0$.
Then $A_{v}=Z\left(\phi_{v}\right)=\oplus \mathbf{Z} / 2 \mathbf{Z} \cdot \epsilon_{i}$ and $c_{v}\left(\epsilon_{i}\right)=-1$ corresponds to a representation of

$$
\begin{cases}S O(n+1, n) & \text { if } n \equiv 0 \bmod 2 \\ S O(n+2, n-1) & \text { if } n \equiv 1 \bmod 2\end{cases}
$$

Modification of the c_{v} 's at ∞, II

For $j=0, \cdots, n$ define

$$
c_{v}(j)\left(\epsilon_{i}\right)=(-1)^{i+1+n+\delta(i, j)}
$$

which corresponds to

$$
\begin{aligned}
\left\{\pi_{v}^{0}\right\} & =\Pi\left(S O(2 n+1), \phi_{v}\right) \\
\left\{\pi_{v}^{1}, \cdots, \pi_{v}^{n}\right\} & =\Pi\left(S O(2 n-1,2), \phi_{v}\right)
\end{aligned}
$$

Fix $v_{0} \mid \infty$ and define

$$
c_{v}^{j}= \begin{cases}c_{v} & \text { if } v \nmid \infty \\ c_{v}(j) & \text { if } v=v_{0} \\ c_{v}(0) & \text { if } v \mid \infty, v \neq v_{0}\end{cases}
$$

so that

$$
\left(\prod c_{v}^{j}\right)(-1)=(-1)^{\delta_{0, j}+\frac{[F: Q] \cdot n(3 n+5)}{2}}
$$

Assumption 4: $2 \mid[F: \mathbf{Q}]$ if $n \equiv 2,3 \bmod 4$.
Then $\left(\Pi c_{v}^{j}\right)(-1)=1$ for $j=1, \cdots, n$.

The Automorphic Representations

These characters (for $j=1, \cdots, n$)

$$
\left(\prod_{v} c_{v}^{j}\right) \in\left(\prod_{v} A_{v} / \Delta A\right)^{\vee} \simeq \Pi(\phi)
$$

correspond to automorphic representations

$$
\pi^{j}=\otimes_{v}^{\prime} \pi_{v}^{j}=\pi_{f} \otimes \pi_{\infty}^{j}
$$

- on the same group $G_{0}=S O(V, \phi)$, where (V, ϕ) is a quadratic space of dimension $2 n+1$ with Witt invariants

$$
\operatorname{Witt}_{v}(V, \phi)=c_{v}^{j}(-1)
$$

and signature at $v \mid \infty$

$$
\operatorname{sign}_{v}(V, \phi)= \begin{cases}(2 n-1,2) & \text { if } v=v_{0} \\ (2 n+1,0) & \text { if } v \neq v_{0}\end{cases}
$$

- with the same finite part π_{f},
- with infinite parts running through a single L-paquet for $G_{0, \infty}=S O(V \otimes \mathbf{R}, \phi \otimes \mathbf{R})$.

$$
\left\{\pi_{\infty}^{j} \mid j=1, \cdots, n\right\}=\Pi\left(\phi_{\infty}, G_{0, \infty}\right)
$$

The Shimura Varieties

Lemma \exists a K-hermitian F-hyperplane (W, ψ) of (V, ϕ) : for some anisotropic line L of V,

$$
(V, \phi)=(W, \operatorname{Tr} \psi) \perp(L, \phi \mid L) .
$$

Moreover, any two such (W, ψ) 's are conjugated by an element of $S O(V, \phi)$.

Fix an embedding $\tau: K \rightarrow \mathbf{C}$ above v_{0}. Put

$$
G=\operatorname{Res}_{F / \mathbf{Q}} S O(V, \phi), \quad H=\operatorname{Res}_{F / \mathbf{Q}} U(W, \psi)
$$

and let \mathcal{X} (resp. \mathcal{Y}) be the set of all oriented negative R-planes (resp. C-lines) in $(V, \phi)_{\tau}$ (resp. $\left.(W, \psi)_{\tau}\right)$.

We obtain a morphism of Shimura data

$$
(H, \mathcal{Y}) \hookrightarrow(G, \mathcal{X})
$$

with reflex fields $\tau(K) \supset \tau(F)$ and dimension $n-1 \leq 2 n-1$, which is well-defined up to $G(\mathbf{Q})$.

Remark: (H, \mathcal{Y}) is a twist of the classical PEL type Shimura datum considered by Kottwitz, Harris-Taylor...

Realisation of M, \mathbf{I}

Let L be a compact open subgroup of $G\left(\mathbf{A}_{f}\right)$ such that $\pi_{f}^{L} \neq 0$. This is an irreducible complex representation of the Hecke algebra \mathcal{H}_{L} of $G\left(\mathbf{A}_{f}\right)$ relative to L, which also acts on the cohomology of $\mathrm{Sh}_{L}=\mathrm{Sh}_{L}(G, \mathcal{X})$. Suppose that

Assumption 5: $\forall i, v \mid \infty, a_{i, v}=n+\frac{1}{2}-i$.
Then for the Betti realisation of

$$
H^{\star}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right]=\operatorname{Hom}_{\mathcal{H}_{L}}\left(\pi_{F}^{L}, H^{\star}\left(\mathrm{Sh}_{L}\right)\right)
$$

we find using Matsushima's formula, Arthur's conjecture and the computations of VoganZuckerman that

$$
\begin{aligned}
H_{B}^{\star}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right] & =\oplus_{\infty} m\left(\pi_{f} \otimes \pi_{\infty}\right) H^{\star}\left(\mathcal{G}, K_{\infty}, \pi_{\infty}\right) \\
& =\oplus_{j=1}^{n} H^{\star}\left(\mathcal{G}, K_{\infty}, \pi_{\infty}^{j}\right) \\
& =\oplus_{j=1}^{n} H^{2 n-j, j-1} \oplus H^{j-1,2 n-j} \\
& =M_{v_{0}}(-n)
\end{aligned}
$$

This suggests that

$$
H^{\star}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right] \simeq H^{2 n-1}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right] \simeq M(-n)
$$

Realisation of M, II

If the number field $C \subset \mathbf{C}$ is large enough, the representation ρ of \mathcal{H}_{L} on π_{f}^{L} is defined over C. For $\lambda \mid p$ of C, we thus obtain a λ-adic representation $H_{\lambda}^{\star}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right]$.

Conjecture (Blasius-Rogawski) Suppose that $L=L^{v} L_{v}$ with $L_{v} \subset G_{0}\left(F_{v}\right)$ hyperspecial. Let $\mathbf{H}_{v}(T) \in \mathcal{H}_{v}[T]$ with $\mathcal{H}_{v}=\mathcal{H}_{\mathbf{Q}}\left(G_{0}\left(F_{v}\right), L_{v}\right)$
be the Hecke polynomial with specialisation $H_{v}(T) \in C[T]$ through $\rho: \mathcal{H}_{v} \rightarrow C=$ End $_{C}\left(\pi_{v}^{L v}\right)$. Then Sh_{L} has good reduction at v and

$$
H_{v}\left(f_{v}\right)=0 \quad \text { on } \quad H_{\lambda}^{\star}\left(\mathrm{Sh}_{L}\right)\left[\pi_{f}\right] .
$$

Fact $H_{v}(T)=\operatorname{det}\left(T \cdot I d-q_{v}^{n} f_{v} \mid M_{v}\right)$.

This suggest again that

$$
M=H^{\star}\left(\mathrm{Sh}_{L}, n\right)\left[\pi_{f}\right]=H^{2 n-1}\left(\mathrm{Sh}_{L}, n\right)\left[\pi_{f}\right] .
$$

Cycles (Definition)

For $g \in G\left(\mathbf{A}_{f}\right)$, let $\mathcal{Z}_{L}(g)$ be the image of

$$
g L \times \mathcal{Y} \subset G\left(\mathbf{A}_{f}\right) \times \mathcal{X}
$$

inside

$$
\mathrm{Sh}_{L}(\mathbf{C})=G(\mathbf{Q}) \backslash\left(G\left(\mathbf{A}_{f}\right) / L \times \mathcal{X}\right)
$$

This yields a collection \mathcal{Z}_{L} of cycles of codimention n in $\operatorname{Sh}_{L}=\operatorname{Sh}_{L}(G, \mathcal{X})$, and

$$
\begin{aligned}
\mathcal{Z}_{L} & \simeq H(\mathbf{Q}) \backslash G\left(\mathbf{A}_{f}\right) / L \\
& \simeq H(\mathbf{Q}) H^{1}\left(\mathbf{A}_{f}\right) \backslash G\left(\mathbf{A}_{f}\right) / L
\end{aligned}
$$

where

$$
H^{1}=\operatorname{ker}\left(\operatorname{det}: H \rightarrow T^{1}\right)
$$

with $T^{1}=\operatorname{ker}(N: T \rightarrow Z)$
for $\quad T=\operatorname{Res}_{K / Q} \mathbf{G}_{m, K}$
and $\quad Z=\operatorname{Res}_{F / \mathbf{Q}} \mathbf{G}_{m, F}$.

Cycles (Fields of Definition)

Left multiplication by $H\left(\mathbf{A}_{f}\right)$ on

$$
\mathcal{Z}_{L}=H(\mathbf{Q}) \cdot H^{1}\left(\mathbf{A}_{f}\right) \backslash G\left(\mathbf{A}_{f}\right) / L
$$

descends to an action of

$$
H\left(\mathbf{A}_{f}\right) / H^{1}\left(\mathbf{A}_{f}\right) \quad \stackrel{\text { det }}{=} \quad T^{1}\left(\mathbf{A}_{f}\right)
$$

Hilbert 90
$T\left(\mathbf{A}_{f}\right) / Z\left(\mathbf{A}_{f}\right)$
$\operatorname{Gal}(K[\infty] / K)$

Proposition: The cycles $\mathcal{Z}_{L}(g) \subset \operatorname{Sh}_{L}(G, \mathcal{X})$ are defined over the abelian extension $K[\infty]$ of K, with the Galois action given as above.

Schwartz space

Let \mathcal{S} be the space of locally constant and compactly supported functions

$$
s: H^{1}\left(\mathbf{A}_{f}\right) \backslash G\left(\mathbf{A}_{f}\right) \rightarrow \mathbf{Z} .
$$

The group $T^{1}\left(\mathbf{A}_{f}\right) \times G\left(\mathbf{A}_{f}\right)$ acts on \mathcal{S}.

Definition The field of definition of $s \in \mathcal{S}$ is the subfield of $K[\infty]$ which is fixed by the image in $\operatorname{Gal}(K[\infty] / K)$ of the stabilizer of s in $T^{1}\left(\mathbf{A}_{f}\right)$.

For a compact open subgroup L of $G\left(\mathbf{A}_{f}\right)$ and a finite extension $K \subset_{f} Q \subset K[\infty]$, we put

$$
\mathcal{S}_{L}(Q)=\left\{\begin{array}{ll}
s \in \mathcal{S} & \begin{array}{l}
s \text { is defined over } Q \text { and } \\
s \in \Gamma(L, \mathcal{S})
\end{array}
\end{array}\right\} .
$$

Distribution

For each $g \in G\left(\mathbf{A}_{f}\right)$, put

$$
c_{L}(g)=\frac{\left|\mathcal{D}_{L}(g) \cap T^{1}(\mathbf{Q})\right|}{\left|\mathcal{C}_{L}(g) \cap T^{1}(\mathbf{Q})\right|} \in \mathbf{Z} \mu_{K}^{-1}
$$

where $\mu_{K}=|\mu(K)|$ and

$$
\begin{aligned}
& \mathcal{D}_{L}(g)=\operatorname{det}\left(g L g^{-1} \cap H\left(\mathbf{A}_{f}\right)\right) \\
& \mathcal{C}_{L}(g)=g L g^{-1} \cap Z\left(H\left(\mathbf{A}_{f}\right)\right)
\end{aligned}
$$

Then c_{L} factors through

$$
c_{L}: H\left(\mathbf{A}_{f}\right) \backslash G\left(\mathbf{A}_{f}\right) / \mathcal{N}_{G\left(\mathbf{A}_{f}\right)} L \rightarrow \mathbf{Z} \mu_{K}^{-1} .
$$

Lemma The map $g \mapsto \mathcal{Z}_{L}(g) \otimes c_{L}(g)$ extends to an $\mathcal{H}_{L}\left[T^{1}\left(\mathbf{A}_{f}\right)\right]$-equivariant morphism

$$
\mu_{L}: \mathcal{S}_{L}(Q) \rightarrow \mathrm{CH}_{L}^{n}(Q) \otimes \mathbf{Z} \mu_{K}^{-1}
$$

where $\mathrm{CH}_{L}^{n}(Q)=$ group of cycles of codimension n on $\mathrm{Sh}_{L} \times Q$ modulo linear equivalence.

Distribution relations

Theorem For any $K \subset_{f} Q \subset K[\infty]$ and $s \in$ $\mathcal{S}_{L}(Q)$, for all but finitely many ℓ 's such that ℓ is inert in K, unramified in Q, and $L=L^{\ell} L_{\ell}$ with L_{ℓ} hyperspecial, there exists

$$
s(\ell) \in \mathcal{S}_{L}(Q[\ell]) \quad Q(\ell)=Q \cdot K[\ell]
$$

for which

$$
\mathbf{H}_{\ell}\left(f_{\ell}\right) \cdot s=\operatorname{Tr}_{Q[\ell] / Q}(s(\ell)) .
$$

What comes into the proof:

- Computation of \mathbf{H}_{ℓ} : computation of KazhdanLuztig polynomials, using a formula of Brylinski.
- Description of the action of a $U(n)$ on the Bruhat-Tits buldings of a split $S O(2 n+1)$.

Etale cohomology

Fix a prime $p \nmid \mu_{K}$. The Hochschild-Serre spectral sequence and the cycle map in p-adic (continuous) etale cohomology together yield the Abel-Jacobi map:

$$
\mathrm{CH}_{L}^{n}(Q)_{0} \xrightarrow{A J} H^{1}\left(Q, H_{e t}^{2 n-1}\left(\overline{\mathrm{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)\right)
$$

where $\mathrm{CH}_{L}^{n}(Q)_{0}$ is the kernel of the cycle map

$$
\operatorname{cyc}: \mathrm{CH}_{L}^{n}(Q) \rightarrow H^{0}\left(Q, H_{e t}^{2 n}\left(\overline{\operatorname{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)\right)
$$

We would like to obtain classes in

$$
H^{1}\left(Q, H_{e t}^{2 n-1}\left(\overline{\operatorname{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)\right)
$$

from our cycles $\mathcal{Z}_{L}(g)$, and thus need to trivialize the distribution

$$
\mu_{L}^{e t}: \mathcal{S}_{L} \rightarrow H_{e t}^{2 n}\left(\overline{\operatorname{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)
$$

obtained as $\mu_{L}^{e t}=\operatorname{cyc} \circ \mu_{L}$.

Strategies

(1) Work with $\mathcal{S}_{L}^{0}=\operatorname{ker} \mu_{L}^{e t}$ instead of \mathcal{S}_{L}. But: one then needs to construct elements of \mathcal{S}_{L}^{0}.
(2) Apply some functor \mathcal{F} that kills $H_{e t}^{2 n}\left(\overline{\operatorname{Sh}}_{L}\right)$, such as $\operatorname{Hom}_{\mathcal{H}_{L}}\left(\pi_{f}^{L}, \bullet\right)$. But: one then needs to construct elements of $\mathcal{F}\left(\mathcal{S}_{L}\right)$.
(3) Find some \mathcal{H}_{L}-equivariant section of

$$
\begin{aligned}
? & \mu_{L}^{e t}\left(\mathcal{S}_{L}\right) \\
& \swarrow \cap \\
H_{e t}^{2 n}\left(\mathrm{Sh}_{L}, \mathrm{Z}_{p}(n)\right) & \rightarrow H_{e t}^{2 n}\left(\overline{\mathrm{Sh}}_{L}, \mathrm{Z}_{p}(n)\right)
\end{aligned}
$$

or even of the cycle map

$$
\mathrm{CH}^{n}(F) \rightarrow H_{e t}^{2 n}\left(\overline{\mathrm{Sh}}_{L}, \mathrm{Z}_{p}(n)\right)
$$

This works for $n=1$, because $H_{e t}^{2 n}$ is then very simple. In general, I don't know what $\mu_{L}^{e t}\left(\mathcal{S}_{L}\right)$ looks like.

