What is an Euler System?

It's a collection of cohomology classes

$$x_Q \in H^1(Q,T)$$

satisfying certain (1) **distribution relations** and (2) **congruence relations**.

Here: K is a number field, T is a geometric p-adic representation of Gal_K and the classes are indexed by $K \subset_f Q \subset K[\infty]$ for some **fixed** infinite abelian extension $K[\infty]$ of K.

Such Euler systems are used to bound the Selmer groups of $T^*(1)$. In the **self-dual case** $T = T^*(1)$, one gets

 $x_K \neq \text{tors.} \Rightarrow \text{it spans } H^1_f(K,T).$

Example: Heegner Points.

- K is a totally imaginary quadratic extension of a totally real number field F,
- $T = T_p A$ for a quotient π : $Pic^0 X \to A$, where X is a Shimura curve X over F,
- $K[\infty]$ is the fixed field of the image of the transfert Ver : $\operatorname{Gal}_F^{ab} \to \operatorname{Gal}_K^{ab}$, so that

$$K[\infty] = \cup_c K[c]$$

where K[c] is the ring class field with

$$\operatorname{Gal}(K[c])/K) = \widehat{K}^{\times}/\widehat{F}^{\times}\widehat{\mathcal{O}}_c^{\times}$$

where $\mathcal{O}_c = \mathcal{O}_F + c\mathcal{O}_K$.

The x_Q's are the images by an Abel-Jacobi map of certain divisors supported on special points with CM by K.

Distribution and congruence relations.

For $\ell \nmid c$, the **distribution relations** compare

 $P_{\ell}(f_{\ell}) \cdot x_{K[c]}$ and $\text{Cores}_{K[c\ell]/K[c]} \cdot x_{K[c\ell]}$ in $H^1(K[c], T)$, where

$$P_{\ell} = \det(f_{\ell} - X \cdot \operatorname{Id}|T^{\star}(1)),$$

 f_{ℓ} = geometric Frobenius.

In the classical Heegner points example,

$$P_{\ell} = X^2 - T_{\ell}X + \ell$$

and for the x_Q 's that are usually used,

$$P_{\ell}(f_{\ell}) \cdot f_{\ell}^{-1} x_{K[c]} = \text{Cores}_{K[c\ell]/K[c]} (f_{\ell}^{-1} x_{K[c]} - x_{K[c\ell]}).$$

The congruence relations compare the localisations of x_c and $x_{c\ell}$ at some place $\lambda \mid \ell$ of $K[c\ell]$ above ℓ . They can often be deduced from the distribution relations.

The general setting

We keep the CM extension K/F, the infinite abelian extension $K[\infty]/K$, but we want to consider more general T's:

- T = lattice in the *p*-adic etale realisation of
- M= an irreducible motive over F, pure of weight -1, with coefficients in a number field C ⊂ C, with a perfect symplectic pairing M ⊗ M → C(1).

We want to

- find out when we expect an Euler system to exist in this situation, and
- try to construct such an Euler system in some cases.

L-functions and ϵ -factors

For a place v of F, let M_v be the complex symplectic repr. of the Weil-Deligne group

$$W'_{v} = \begin{cases} W_{v} & \text{if } v \mid \infty \\ W_{v} \times SU_{2}(\mathbf{R}) & \text{if } v \nmid \infty \end{cases}$$

conjecturally attached to M. They should come from a representation of a motivic Galois group.

Each continuous character

$$\chi : \operatorname{Gal}(K[\infty]/K) \to \mathbf{C}^{\times}$$

yields a character of W_K (global Weil group) which induces to an *orthogonal* 2-*dimensional* representation $\operatorname{Ind}_{\chi}$ of W_F . Write $\operatorname{Ind}_v \chi$ for its restriction to W_v or W'_v .

Then $M_v \otimes \operatorname{Ind}_v \chi$ is a *symplectic* Weil-Deligne representation. Define

$$L(M,\chi,s) = \prod_{\epsilon \in V} L_v(M_v \otimes \operatorname{Ind}_v \chi, s),$$

$$\epsilon(M,\chi,s) = \prod_{\epsilon \in V} \epsilon_v(M_v \otimes \operatorname{Ind}_v \chi, s, \psi_v),$$

with $\psi : F \setminus \mathbf{A}_F \to \mathbf{C}^{\times}$ as usual.

Signs as hint for Euler Systems

• The *L*-function $L(M, \chi, s)$ should have a meromorphic extension to C and a functional equation $s \leftrightarrow -s$ with root number

 $\epsilon(M,\chi) = \epsilon(M,\chi,0) \in \{\pm 1\}.$

Fact: $\epsilon(M, \chi) = \epsilon(M, K)$ does not depend upon χ , provided χ does not ramify where M does.

• If $\epsilon(M, K)$ equals -1, then the order of vanishing of $L(M, \chi, s)$ at s = 0 should be 1 for almost all χ . Accordingly, the rank of the χ component of $H^1_f(K(\chi), M)$ should be 1 for almost all χ 's.

• So if $\epsilon(M, K) = -1$, there should be enough room for a non-trivial Euler system to exist, it should essentially be unique, and account (by Kolyvagin's method) for the fact that most of the $H_f^1(K(\chi), M)$'s have rank one. Thus:

Assumption 1: $\epsilon(M, K) = -1$.

Automorphicity

Assumption 2: *M* is automorphic.

There exists an admissible global parameter

$$\phi : \mathcal{L}_F \to \mathsf{Sp}_{2n}(\mathbf{C})$$

such that for all v, the local parameter

$$\phi_v: W'_v \to \operatorname{Sp}_{2n}(\mathbf{C})$$

is isomorphic to $M_v(\frac{-1}{2})$. Then:

- M pure of weight $-1 \Rightarrow \phi$ is tempered,
- *M* irreducible $\Rightarrow Z(\phi) = \{\pm 1\}$

where

 $\{\pm 1\} \subset Z(\phi) \subset Z(\phi_v) \subset Sp_{2n}(C)$ are the centralizer of ϕ and ϕ_v .

Conjectures of Langlands, Arthur, Vogan...

Let $\Pi(\phi)$ be the set of isomorphism classes of pairs (G,π) where G is an (inner) form of SO(2n+1) over F, and π belongs to the global L-paquet $\Pi(G,\phi)$, i.e. **(1)** π is an irreducible unitary representation of $G(\mathbf{A}_F)$ which occurs with multiplicity $m(\pi) > 0$ in $L^2_d(G(F) \setminus G(\mathbf{A}_F))$ and **(2)** $\pi = \otimes' \pi_v$ where for each v, the representation π_v of $G_v = G(F_v)$ belongs to the local Langlands L-paquet $\Pi(G_v, \phi_v)$.

The inclusion $Z(\phi) \hookrightarrow Z(\phi_v)$ induces a map from $A = \pi_0(Z(\phi))$ to $A_v = \pi_0(Z(\phi_v))$. Let $\Delta : A \to \prod_v A_v$ be the diagonal.

Conjecture There are natural bijections

 $\Pi(\phi_v) \simeq A_v^{\vee}$ and $\Pi(\phi) \simeq \left(\prod_v A_v / \Delta(A)\right)^{\vee}$. Moreover, $m(\pi) = 1$ for all $(G, \pi) \in \Pi(\phi)$.

Local Signs and characters

Let X be the space of $\phi : \mathcal{L}_F \to \mathsf{Sp}(X)$. For $s \in Z(\phi_v)[2]$, put $X(s) = \{x \in X | sx = -x\}$ and dim Y(s)

 $c_v(\chi,s) = \epsilon_v(X(s) \otimes \operatorname{Ind}_v \chi) \cdot \eta_v(-1)^{\frac{\dim X(s)}{2}}$

where $\eta = \otimes \eta_v : \mathbf{A}_F^{\times} \to \operatorname{Gal}(K/F) = \{\pm 1\}$ is the reciprocity map.

Lemma This yields a character

 $c_v(\chi) : A_v \to \{\pm 1\}$ which is $\equiv 1$ if K_v splits or ϕ_v is unramified.

By construction, the root number

$$\epsilon(M,\chi) = \prod_{v} c_{v}(\chi,-1) = (-1)^{\#S(\chi)}$$

where $S(\chi) = \{v | c_{v}(\chi,-1) = -1\}.$

Modification of the c_v 's at ∞ , I

For χ 's which do not ramify where M does,

$$c_v(\chi) = c_v$$
 and $S(\chi) = S$

with

$$(\prod c_v)(-1) = (-1)^{\#S} = \epsilon(M, K) = -1$$

so we need to modify some c_v .

Assumption 3: for $v \mid \infty$, ϕ_v is discrete.

Which means that

$$\phi_v = \bigoplus_{i=1}^n \operatorname{Ind}(z/\overline{z})^{a_{i,v}}$$

with $a_{i,v} \in \frac{1}{2}\mathbf{Z} - \mathbf{Z}$ and $a_{1,v} > \cdots > a_{n,v} > 0$.

Then $A_v = Z(\phi_v) = \oplus \mathbb{Z}/2\mathbb{Z} \cdot \epsilon_i$ and $c_v(\epsilon_i) = -1$ corresponds to a representation of

$$\begin{cases} SO(n+1,n) & \text{if } n \equiv 0 \mod 2, \\ SO(n+2,n-1) & \text{if } n \equiv 1 \mod 2. \end{cases}$$

Modification of the c_v 's at ∞ , II

For $j = 0, \cdots, n$ define

$$c_v(j)(\epsilon_i) = (-1)^{i+1+n+\delta(i,j)}$$

which corresponds to

$$\{\pi_v^0\} = \Pi(SO(2n+1), \phi_v) \\ \{\pi_v^1, \cdots, \pi_v^n\} = \Pi(SO(2n-1, 2), \phi_v)$$

Fix $v_0 \mid \infty$ and define

$$c_v^j = \begin{cases} c_v & \text{if } v \nmid \infty \\ c_v(j) & \text{if } v = v_0 \\ c_v(0) & \text{if } v \mid \infty, v \neq v_0 \end{cases}$$

so that

$$(\prod c_v^j)(-1) = (-1)^{\delta_{0,j} + \frac{[F:Q] \cdot n(3n+5)}{2}}$$

Assumption 4: 2 | [F : Q] *if* $n \equiv 2, 3 \mod 4$.

Then $(\prod c_v^j)(-1) = 1$ for $j = 1, \dots, n$.

The Automorphic Representations

These characters (for $j = 1, \dots, n$)

$$(\prod_{v} c_{v}^{j}) \in (\prod_{v} A_{v} / \Delta A)^{\vee} \simeq \Pi(\phi)$$

correspond to automorphic representations

$$\pi^j = \otimes'_v \pi^j_v = \pi_f \otimes \pi^j_\infty$$

• on the same group $G_0 = SO(V, \phi)$, where (V, ϕ) is a quadratic space of dimension 2n + 1 with Witt invariants

$$\operatorname{Witt}_v(V,\phi) = c_v^j(-1)$$

and signature at $v\mid\infty$

sign_v(V,
$$\phi$$
) =

$$\begin{cases}
(2n - 1, 2) & \text{if } v = v_0, \\
(2n + 1, 0) & \text{if } v \neq v_0;
\end{cases}$$

- with the same finite part π_f ,
- with infinite parts running through a single *L*-paquet for $G_{0,\infty} = SO(V \otimes \mathbf{R}, \phi \otimes \mathbf{R})$.

$$\{\pi_{\infty}^{j}|j=1,\cdots,n\}=\Pi(\phi_{\infty},G_{0,\infty}).$$

The Shimura Varieties

Lemma \exists a K-hermitian F-hyperplane (W, ψ) of (V, ϕ) : for some anisotropic line L of V,

 $(V,\phi) = (W, \operatorname{Tr}\psi) \bot (L,\phi|L).$

Moreover, any two such (W, ψ) 's are conjugated by an element of $SO(V, \phi)$.

Fix an embedding $\tau: K \to \mathbf{C}$ above v_0 . Put

 $G = \operatorname{Res}_{F/\mathbf{Q}}SO(V,\phi), \quad H = \operatorname{Res}_{F/\mathbf{Q}}U(W,\psi)$ and let \mathcal{X} (resp. \mathcal{Y}) be the set of all oriented negative **R**-planes (resp. **C**-lines) in $(V,\phi)_{\tau}$ (resp. $(W,\psi)_{\tau}$).

We obtain a morphism of Shimura data

 $(H,\mathcal{Y}) \hookrightarrow (G,\mathcal{X})$

with reflex fields $\tau(K) \supset \tau(F)$ and dimension $n-1 \leq 2n-1$, which is well-defined up to $G(\mathbf{Q})$.

Remark: (H, \mathcal{Y}) is a *twist* of the classical PEL type Shimura datum considered by Kottwitz, Harris-Taylor...

Realisation of $M,\ \mathbf{I}$

Let L be a compact open subgroup of $G(\mathbf{A}_f)$ such that $\pi_f^L \neq 0$. This is an irreducible complex representation of the Hecke algebra \mathcal{H}_L of $G(\mathbf{A}_f)$ relative to L, which also acts on the cohomology of $\mathrm{Sh}_L = \mathrm{Sh}_L(G, \mathcal{X})$. Suppose that

Assumption 5: $\forall i, v \mid \infty$, $a_{i,v} = n + \frac{1}{2} - i$.

Then for the Betti realisation of

$$H^{\star}(\mathsf{Sh}_L)[\pi_f] = \mathsf{Hom}_{\mathcal{H}_L}(\pi_F^L, H^{\star}(\mathsf{Sh}_L))$$

we find using Matsushima's formula, Arthur's conjecture and the computations of Vogan-Zuckerman that

$$H_B^{\star}(\mathsf{Sh}_L)[\pi_f] = \bigoplus_{\pi_{\infty}} m(\pi_f \otimes \pi_{\infty}) H^{\star}(\mathcal{G}, K_{\infty}, \pi_{\infty})$$

$$= \bigoplus_{j=1}^n H^{\star}(\mathcal{G}, K_{\infty}, \pi_{\infty}^j)$$

$$= \bigoplus_{j=1}^n H^{2n-j,j-1} \oplus H^{j-1,2n-j}$$

$$= M_{v_0}(-n)$$

This suggests that

$$H^{\star}(\mathsf{Sh}_L)[\pi_f] \simeq H^{2n-1}(\mathsf{Sh}_L)[\pi_f] \simeq M(-n)$$

Realisation of M, II

If the number field $C \subset \mathbf{C}$ is large enough, the representation ρ of \mathcal{H}_L on π_f^L is defined over C. For $\lambda \mid p$ of C, we thus obtain a λ -adic representation $H^*_{\lambda}(\mathrm{Sh}_L)[\pi_f]$.

Conjecture (Blasius-Rogawski) Suppose that $L = L^{v}L_{v}$ with $L_{v} \subset G_{0}(F_{v})$ hyperspecial. Let

 $\mathbf{H}_{v}(T) \in \mathcal{H}_{v}[T]$ with $\mathcal{H}_{v} = \mathcal{H}_{\mathbf{Q}}(G_{0}(F_{v}), L_{v})$ be the Hecke polynomial with specialisation $H_{v}(T) \in C[T]$ through $\rho : \mathcal{H}_{v} \to C = \operatorname{End}_{C}(\pi_{v}^{L_{v}}).$ Then Sh_{L} has good reduction at v and

$$H_v(f_v) = 0$$
 on $H_\lambda^{\star}(\operatorname{Sh}_L)[\pi_f].$

Fact $H_v(T) = \det(T \cdot Id - q_v^n f_v | M_v).$

This suggest again that

$$M = H^{\star}(\mathsf{Sh}_L, n)[\pi_f] = H^{2n-1}(\mathsf{Sh}_L, n)[\pi_f].$$

Cycles (Definition)

For $g \in G(\mathbf{A}_f)$, let $\mathcal{Z}_L(g)$ be the image of

$$gL \times \mathcal{Y} \subset G(\mathbf{A}_f) \times \mathcal{X}$$

inside

$$\operatorname{Sh}_{L}(\mathbf{C}) = G(\mathbf{Q}) \setminus \left(G(\mathbf{A}_{f}) / L \times \mathcal{X} \right).$$

This yields a collection \mathcal{Z}_L of cycles of codimension n in $Sh_L = Sh_L(G, \mathcal{X})$, and

$$\begin{aligned} \mathcal{Z}_L &\simeq H(\mathbf{Q}) \backslash G(\mathbf{A}_f) / L \\ &\simeq H(\mathbf{Q}) H^1(\mathbf{A}_f) \backslash G(\mathbf{A}_f) / L \end{aligned}$$

where

$$H^1 = \ker \left(\det : H \to T^1 \right)$$

with $T^1 = \ker \left(N : T \to Z \right)$
for $T = \operatorname{Res}_{K/\mathbf{Q}} \mathbf{G}_{m,K}$
and $Z = \operatorname{Res}_{F/\mathbf{Q}} \mathbf{G}_{m,F}.$

Cycles (Fields of Definition)

Left multiplication by $H(\mathbf{A}_f)$ on

$$\mathcal{Z}_L = H(\mathbf{Q}) \cdot H^1(\mathbf{A}_f) \backslash G(\mathbf{A}_f) / L$$

descends to an action of

$$\begin{array}{ccc} H(\mathbf{A}_f)/H^1(\mathbf{A}_f) & \stackrel{\text{det}}{\simeq} & T^1(\mathbf{A}_f) \\ & & \text{Hilbert 90} \\ & \stackrel{\text{rec}_K}{\simeq} & T(\mathbf{A}_f)/Z(\mathbf{A}_f) \\ & & \stackrel{\text{rec}_K}{\simeq} & \text{Gal}(K[\infty]/K) \end{array}$$

Proposition: The cycles $\mathcal{Z}_L(g) \subset Sh_L(G, \mathcal{X})$ are defined over the abelian extension $K[\infty]$ of K, with the Galois action given as above.

Schwartz space

Let ${\mathcal S}$ be the space of locally constant and compactly supported functions

$$s: H^1(\mathbf{A}_f) \setminus G(\mathbf{A}_f) \to \mathbf{Z}.$$

The group $T^1(\mathbf{A}_f) \times G(\mathbf{A}_f)$ acts on \mathcal{S} .

Definition The field of definition of $s \in S$ is the subfield of $K[\infty]$ which is fixed by the image in $Gal(K[\infty]/K)$ of the stabilizer of s in $T^1(\mathbf{A}_f)$.

For a compact open subgroup L of $G(\mathbf{A}_f)$ and a finite extension $K \subset_f Q \subset K[\infty]$, we put

$$\mathcal{S}_L(Q) = \left\{ s \in \mathcal{S} \middle| \begin{array}{c} s \text{ is defined over } Q \text{ and} \\ s \in \Gamma(L, \mathcal{S}) \end{array} \right\}$$

Distribution

For each $g \in G(\mathbf{A}_f)$, put

$$c_L(g) = \frac{\left| \mathcal{D}_L(g) \cap T^1(\mathbf{Q}) \right|}{\left| \mathcal{C}_L(g) \cap T^1(\mathbf{Q}) \right|} \in \mathbf{Z}\mu_K^{-1}$$

where $\mu_K = |\mu(K)|$ and

$$\mathcal{D}_L(g) = \det \left(gLg^{-1} \cap H(\mathbf{A}_f) \right)$$
$$\mathcal{C}_L(g) = gLg^{-1} \cap Z(H(\mathbf{A}_f))$$

Then c_L factors through

$$c_L : H(\mathbf{A}_f) \setminus G(\mathbf{A}_f) / \mathcal{N}_{G(\mathbf{A}_f)} L \to \mathbf{Z} \mu_K^{-1}.$$

Lemma The map $g \mapsto \mathcal{Z}_L(g) \otimes c_L(g)$ extends to an $\mathcal{H}_L[T^1(\mathbf{A}_f)]$ -equivariant morphism

$$\mu_L : \mathcal{S}_L(Q) \to \mathsf{CH}_L^n(Q) \otimes \mathbf{Z}\mu_K^{-1}$$

where $CH_L^n(Q) = group \text{ of cycles of codimen-}$ sion n on $Sh_L \times Q$ modulo linear equivalence.

Distribution relations

Theorem For any $K \subset_f Q \subset K[\infty]$ and $s \in S_L(Q)$, for all but finitely many ℓ 's such that ℓ is inert in K, unramified in Q, and $L = L^{\ell}L_{\ell}$ with L_{ℓ} hyperspecial, there exists

 $s(\ell) \in \mathcal{S}_L(Q[\ell]) \quad Q(\ell) = Q \cdot K[\ell]$

for which

$$\mathbf{H}_{\ell}(f_{\ell}) \cdot s = \mathsf{Tr}_{Q[\ell]/Q}(s(\ell)).$$

What comes into the proof:

- Computation of \mathbf{H}_{ℓ} : computation of Kazhdan-Luztig polynomials, using a formula of Brylinski.
- Description of the action of a U(n) on the Bruhat-Tits buildings of a split SO(2n+1).

Etale cohomology

Fix a prime $p \nmid \mu_K$. The Hochschild-Serre spectral sequence and the cycle map in *p*-adic (continuous) etale cohomology together yield the Abel-Jacobi map:

$$\mathsf{CH}_{L}^{n}(Q)_{0} \xrightarrow{AJ} H^{1}\left(Q, H_{et}^{2n-1}\left(\overline{\mathsf{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)\right)$$

where $CH_L^n(Q)_0$ is the kernel of the cycle map

$$\operatorname{cyc}: \operatorname{CH}_{L}^{n}(Q) \to H^{0}\left(Q, H^{2n}_{et}\left(\overline{\operatorname{Sh}}_{L}, \mathbf{Z}_{p}(n)\right)\right).$$

We would like to obtain classes in

$$H^1\left(Q, H_{et}^{2n-1}\left(\overline{\mathsf{Sh}}_L, \mathbf{Z}_p(n)\right)\right)$$

from our cycles $\mathcal{Z}_L(g)$, and thus need to trivialize the distribution

$$\mu_L^{et} : \mathcal{S}_L \to H^{2n}_{et}(\overline{\mathsf{Sh}}_L, \mathbf{Z}_p(n))$$

obtained as $\mu_L^{et} = \operatorname{cyc} \circ \mu_L$.

Strategies

(1) Work with $S_L^0 = \ker \mu_L^{et}$ instead of S_L . But: one then needs to construct elements of S_L^0 .

(2) Apply some functor \mathcal{F} that kills $H_{et}^{2n}(\overline{Sh}_L)$, such as $\operatorname{Hom}_{\mathcal{H}_L}(\pi_f^L, \bullet)$. But: one then needs to construct elements of $\mathcal{F}(\mathcal{S}_L)$.

(3) Find some \mathcal{H}_L -equivariant section of

?
$$\mu_L^{et}(\mathcal{S}_L)$$

 $\swarrow \cap$
 $H_{et}^{2n}(\operatorname{Sh}_L, \mathbf{Z}_p(n)) \to H_{et}^{2n}(\overline{\operatorname{Sh}}_L, \mathbf{Z}_p(n))$

or even of the cycle map

$$\mathsf{CH}^n(F) \to H^{2n}_{et}(\overline{\mathsf{Sh}}_L, \mathbf{Z}_p(n))$$

This works for n = 1, because H_{et}^{2n} is then very simple. In general, I don't know what $\mu_L^{et}(\mathcal{S}_L)$ looks like.