Sur les groupes de Chow de certaines hypersurfaces

Claire VOISIN

CNRS, URA 1169, Bât. n° 425, Université d'Orsay, 91405 Orsay, France.

Résumé.

On construit pour tout (n, d) des hypersurfaces lisses de degré d dans \mathbb{P}^n , satisfaisant l'égalité prédite par Bloch et Beilinson $CH_l(X)_{\mathbb{Q}} = \mathbb{Q}, \ l < k,$ où k est défini par $kd < n+1 \le (k+1)d$.

On Chow groups for certain hypersurfaces

Abstract.

We construct, for any (n, d), examples of smooth hypersurfaces of degreed in \mathbb{P}^n , satisfying the equality predicted by Bloch and Beilinson $CH_l(X)_{\mathbb{Q}} = \mathbb{Q}$, l < k, where k is defined by $kd < n + 1 \leq (k + 1) d$.

1. Introduction

Dans [4], [6] Mumford (pour les surfaces) et Roitman en général ont montré le résultat suivant :

Théorème 1.1. – Soit X une variété projective lisse, telle que $CH_0(X) \stackrel{\text{deg}}{\simeq} \mathbb{Z}$. Alors $H^0(\Omega_X^p) = \{0\}$ pour p > 0.

Bloch a conjecturé la réciproque à ce théorème dans [1]. Pour les hypersurfaces X de l'espace projectif, la condition d'annulation équivaut au fait que K_X est négatif et on sait alors par [6] que $CH_0(X)$ est égal à \mathbb{Z} . Plus généralement, Paranjape [5] et Schoen [7] ont montré

Théorème 1.2. – Sous les mêmes hypothèses, si $CH_l(X)_{\mathbb{Q}} \hookrightarrow H^{2n-2l}(X,\mathbb{Q})$, pour $l \leq k$, où $n = \dim X$ et l'inclusion est donnée par l'application « classe », on a $H^{p,q}(X) := H^q(\Omega_X^p) = \{0\}$ pour $p > q, q \leq k$.

La réciproque à ce théorème est une conséquence de certaines conjectures de Beilinson (cf. [3]) et est un problème essentiellement ouvert, même pour les variétés les plus simples, comme les hypersurfaces de bas degré dans l'espace projectif \mathbb{P}^n . Paranjape [5] a montré que pour un degré d fixé et un entier k fixé, pour n suffisamment grand on a $CH_l(X)_{\mathbb{Q}} = \mathbb{Q}$, pour tout $l \leq k$, mais

Note présentée par Jean-Pierre Serre.

sa borne est loin de correspondre à la prédiction de Bloch-Beilinson (cf. [2]). Le but de cette Note est de construire pour tout (d, n) une famille d'hypersurfaces lisses de degré d et de dimension n qui satisfont exactement ces prédictions.

2. Niveau de Hodge des hypersurfaces

Soit $X\subset \mathbb{P}^n$ une hypersurface lisse de degré d, définie par un polynôme homogène G. Soit $\Omega=\sum_i (-1)^i dX_0\wedge\ldots\widehat{dX_i}\ldots\wedge dX_n$ la section partout non nulle de $K_{\mathbb{P}^n}$ (n+1). Si P est un polynôme homogène de degré kd-n-1, $P\Omega/G^k$ est une forme méromorphe de degré n sur \mathbb{P}^n , holomorphe sur $U:=\mathbb{P}^n-X$. $P\Omega/G^k$ admet donc une classe dans $H^n(U,\mathbb{C})$, qui par le résidu est isomorphe à $H^{n-1}(X,\mathbb{C})_{\text{prim}}:=\operatorname{Ker}(H^{n-1}(X,\mathbb{C})\to H^{n+1}(\mathbb{P}^n,\mathbb{C}))$; le résultat suivant est dû à Griffiths [2].

Théorème 2.1. – Les résidus $\operatorname{Res} P\Omega/G^k \in H^{n-1}(X,\mathbb{C})_{\text{prim}},\ d^0P = kd-n-1$ engendrent $F^{n-k}H^{n-1}(X,\mathbb{C})_{\text{prim}},\ où F$ est la filtration de Hodge sur $H^{n-1}(X,\mathbb{C})_{\text{prim}}.$ On sait d'autre part par les théorèmes de Lefschetz que

(1)
$$\begin{cases} H^k(X, \mathbb{Q}) = \{0\}, & k \text{ impair}, \quad k \neq n-1 \\ H^{2k}(X, \mathbb{Q}) = \mathbb{Q}, & 2k \neq n-1 \end{cases}$$

Il résulte de (1) et du théorème 2.1 que pour n+1>kd, on a $H^{p,\,q}(X)=\{0\},\,p>q,\,q< k$, et $H^{2\,k}(X,\,\mathbb{Q})=\mathbb{Q}$, dès que $d\geq 3$. D'autre part, si $kd< n+1\leq (k+1)\,d,\,d\neq 2$, on peut montrer que $H^{n-1-k,\,k}(X)\neq \{0\}$, en utilisant le fait $(cf.\,[2])$ que le noyau de l'application résidu :

$$H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}\left(\left(k+1\right)d-n-1\right)\right)\to F^{n-1-k}H^{n-1}\left(X\right)=H^{n-k-1,\,k}\left(X\right)$$

a pour noyau la composante de degré (k+1)d-n-1 < d de l'idéal jacobien de G, qui est différente de $H^0\left(\mathcal{O}_{\mathbb{P}^n}\left((k+1)d-n-1\right)\right)$ si d>2.

On voit donc que la conjecture mentionnée dans l'introduction prédit l'énoncé suivant pour les hypersurfaces lisses de \mathbb{P}^n de degré d>2.

Conjecture 2.2. – On a $CH_l(X)_{\mathbb{Q}} \stackrel{\text{deg}}{=} \mathbb{Q}$ pour l < k si et seulement si kd < n+1.

L'implication \Rightarrow résulte du théorème 1.2 et de la non-annulation de $H^{n-k-1,k}(X)$ pour $kd < n+1 \le (k+1)d$ montrée ci-dessus. La conjecture est vraie pour k=1 d'après Roitman [6]. On se propose de montrer pour tout (d,n) l'existence d'hypersurfaces lisses de degré d dans \mathbb{P}^n satisfaisant la conjecture 2.2 : supposons $kd < n+1, k \ge 1$; soit $X_0, ..., X_n$ des coordonnées sur \mathbb{P}^n et soit G un polynôme de degré d de la forme

(2)
$$G = G_1(X_0, ..., X_{d-1}) + ... + G_{k-1}(X_{(k-2)d}, ..., X_{(k-1)d-1}) + G_k(X_{(k-1)d}, ..., X_n)$$

où les G_i sont de degré d et définissent des hypersurfaces lisses dans \mathbb{P}^{d-1} pour i < k, $\mathbb{P}^{n-(k-1)d}$ pour i = k. L'hypersurface X définie par G est alors lisse et on se propose de montrer

Théorème 2.3. – On a $CH_l(X)_{\mathbb{Q}}=\mathbb{Q}$ pour X définie comme ci-dessus et l< k.

3. Preuve du théorème 2.3

La démonstration se fait par récurrence sur k, d étant fixé. Pour k=1 l'énoncé est dû à Roitman [6]. Supposons donc que l'énoncé est vrai pour k' < k, et définissons les hypersurfaces suivantes de degré d associées à X (l'indice inférieur donne la dimension)

(3)
$$\begin{cases} X_{d-1} = \{U^d = G_1(X_0, ..., X_{d-1}) = 0\} \subset \mathbb{P}(U, X_0, ..., X_{d-1}), \\ X_{n-d} = \{V^d = -(G_2(X_d, ..., X_{2d-1}) + ... \\ +G_k(X_{(k-1)d}, ..., X_n)) = 0\} \subset \mathbb{P}(V, X_d, ..., X_n), \\ X_{d-2} = \{U = 0\} \subset X_{d-1}, \qquad X_{n-d-1} = \{V = 0\} \subset X_{n-d} \end{cases}$$

On vérifie aisément que l'application rationnelle

(4)
$$\begin{cases} \phi: & X_{d-1} \times X_{n-d} \to X \\ ((u, x_0, ..., x_{d-1}), (v, x_d, ..., x_n)) \mapsto (vx_0, ..., vx_{d-1}, ux_d, ..., ux_n) \end{cases}$$

est bien définie après éclatement de $X_{d-2} \times X_{n-d-1}$ dans $X_{d-1} \times X_{n-d}$ et est invariante sous l'action diagonale de $\mathbb{Z}/d\mathbb{Z}$, où $\mathbb{Z}/d\mathbb{Z}$ agit sur X_{d-1} (resp. X_{n-d}) par multiplication de la coordonnée U (resp. V) par les racines d-ièmes de l'unité. On a donc une surjection induite par la désingularisation $\tilde{\phi}$ de ϕ

(5)
$$\tilde{\phi}_*: CH_l(X_{d-1} \times X_{n-d})_{\mathbb{Q}} \oplus CH_{l-1}(X_{d-2} \times X_{n-d-1})_{\mathbb{Q}} \to CH_l(X)_{\mathbb{Q}}.$$

Considérons le premier facteur de (5): on peut appliquer l'hypothèse de récurrence à X_{n-d} , c'est-à-dire supposer que $CH_l(X_{n-d})_{\mathbb{Q}} = \mathbb{Q}$, l < k-1. Un générateur de $CH_l(X_{n-d})_{\mathbb{Q}}$ est alors donné par la classe $[P_l]$ d'une section linéaire P_l de dimension l de X_{n-d} . On a alors

Lemme 3.1. – Si $CH_l(X_{n-d})_{\mathbb{Q}}$ est supporté par P_l , l < k-1, on a pour l < k

(6)
$$CH_l(X_{d-1} \times X_{n-d})_{\mathbb{Q}} = \sum_{s>0} CH_s(X_{d-1})_{\mathbb{Q}} \otimes [P_{l-s}] + \operatorname{Im} CH_0(X_{d-1})_{\mathbb{Q}} \otimes CH_l(X_{n-d})_{\mathbb{Q}},$$

où l'on utilise l'application naturelle $CH_r(Z)_{\mathbb{Q}} \otimes CH_s(T)_{\mathbb{Q}} \to CH_{r+s}(Z \times T)_{\mathbb{Q}}$ qui envoie $[z] \otimes [t]$ sur $[z \times t]$ pour des sous-variétés z (resp. t) de Z (resp. T).

En effet soit $Z = \sum n_i Z_i$ un cycle de dimension l < k dans $X_{d-1} \times X_{n-d}$, où les Z_i sont

irréductibles, et supposons d'abord que $\dim \operatorname{pr}_1(Z_i) = 0$, pour tout i, alors clairement $[Z] \in \operatorname{Im} CH_0(X_{d-1})_{\mathbb{Q}} \otimes CH_l(X_{n-d})_{\mathbb{Q}}$. Supposons maintenant que $\dim \operatorname{pr}_1(Z_i) = s_i$ avec $1 \leq s_i \leq l$; la fibre générique géométrique de $\operatorname{pr}_{1|Z_i}$ est un cycle de dimension $l-s_i$ dans X_{n-d} et un multiple de ce cycle est supporté modulo équivalence rationnelle sur P_{l-s_i} . Il en résulte immédiatement que Z_i est \mathbb{Q} -rationnellement équivalent à un multiple rationnel de $[\operatorname{pr}_1(Z_i) \times P_{l-s_i}]$ modulo un cycle $Z_i' \subset X_{d-1} \times X_{n-d}$ tel que l'image par pr_1 du support de Z_i' est contenu dans un fermé propre de $\operatorname{pr}_1(Z_i)$. On en déduit immédiatement par récurrence sur s que les cycles satisfaisant la propriété ci-dessus avec $s_i \leq s$ sont bien dans le sous-espace de droite de (6).

Maintenant, on sait que $CH_0(X_{d-1})_{\mathbb{Q}} = \mathbb{Q}$, et est engendré par la classe d'un point, que l'on peut choisir $\mathbb{Z}/d\mathbb{Z}$ -invariant. L'application $\phi_*:\langle [x]\rangle\otimes CH_l(X_{n-d})_{\mathbb{Q}}\to CH_l(X)_{\mathbb{Q}}$ se factorise alors à travers la projection de $CH_l(X_{n-d})_{\mathbb{Q}}$ sur l'espace de ses invariants sous $\mathbb{Z}/d\mathbb{Z}$, qui est de rang un sur \mathbb{Q} , engendré par la classe d'une section linéaire P_l . De même, pour $1\leq s$, $[P_{l-s}]$ est invariant sous $\mathbb{Z}/d\mathbb{Z}$, et $\phi_*: CH_s(X_{d-1})_{\mathbb{Q}}\otimes [P_{l-s}]\to CH_l(X)_{\mathbb{Q}}$ se factorise à travers la projection sur l'espace des cycles $\mathbb{Z}/d\mathbb{Z}$ -invariants dans $CH_s(X_{d-1})_{\mathbb{Q}}$, qui est engendré par la classe d'une section linéaire de dimension s de X_{d-1} .

On a donc montré que le premier facteur de (5) a pour image par ϕ_* les mutiples de la classe d'une section linéaire de X.

Il reste à étudier l'image du second facteur de (5) dans $CH_l(X)_{\mathbb{Q}}$. Mais on peut appliquer l'hypothèse de récurrence à X_{n-1-d} , ce qui fournit : $CH_l(X_{n-1-d})_{\mathbb{Q}} = \mathbb{Q}$, l < k-1. Le lemme 3.1 montre alors que

(7)
$$CH_{l-1}(X_{d-2} \times X_{n-d-1})_{\mathbb{Q}} = \sum_{s \le l-1} CH_s(X_{d-2})_{\mathbb{Q}} \otimes [P_{l-1-s}].$$

Or soit Z un cycle (effectif pour simplifier) de dimension s dans X_{d-2} ; $\widetilde{\phi}_*([Z\times P_{l-1-s}])$ est simplement la classe du cycle $Z\times \widetilde{P_{l-1-s}}\subset X$ défini par

(8)
$$Z \times \widetilde{P_{l-1-s}} = \{(x, u) \in \mathbb{P}^n | x \in Z, u \in P_{l-1-s} \}.$$

Soit H_{l-s} le sous-espace linéaire de \mathbb{P}^{n-d} tel que $P_{l-1-s}=H_{l-s}\cap X_{n-d-1}$ et soit $Z\times H_{l-s}\subset \mathbb{P}^n$ défini par

(9)
$$Z \times H_{l-s} = \{(x, u) \in \mathbb{P}^n \mid x \in Z, u \in H_{l-s}\}.$$

L'équation $G_1 + ... + G_k$ de X a la même restriction que $G_2 + ... + G_k$ sur $Z \times H_{l-s}$, puisque G_1 s'annule sur Z, et l'on a donc $X \cap Z \times H_{l-s} = Z \times P_{l-1-s}$.

Donc ϕ_* $(CH_{l-1}(X_{d-2} \times X_{n-d-1})_{\mathbb{Q}})$ est également contenu dans l'espace engendré par la classe d'une section linéaire de X, pour l < k et l'énoncé est vrai également pour k.

L'auteur dispose d'un soutien partiel du projet Algebraic Geometry in Europe.

Remerciements. Ce travail a été effectué à l'Institut Max Planck de Bonn, que je remercie pour son hospitalité et pour les excellentes conditions de travail dont j'y ai bénéficié.

Note remise et acceptée le 10 novembre 1995.

Références bibliographiques

- [1] S. Bloch, 1980. Lectures on algebraic cycles, Duke Univ. Math. Ser. IV, Durham.
- [2] P. Griffiths, 1969. On the periods of certain rational integrals I, II, Ann. of Math., 90, p. 460-541.
- [3] U. Jannsen, 1990. Mixed Motives and Algebraic K-theory, Lectures Notes in Math., no 1400, Springer-Verlag.
- [4] D. Mumford, 1968. Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ., 9, p. 195-204.
- [5] K. Paranjape, 1994. Cohomological and cycle theoretic connectivity, Ann. of Math., 140, p. 641-660.
- [6] A. A. Roitman, 1972. Rational equivalence of zero-cycles, Math. USSR Sbornik, 18, p. 571-588.
- [7] C. Schoen, 1993. On Hodge structures and non representability of Chow groups, Compositio Math., 88, p. 285-316.