Géométrie algébrique/Algebraic Geometry

Contrexemple à une conjecture de J. Harris

Claire Voisin

Résumé – On montre l'existence d'une infinité de composantes exceptionnelles du lieu de Noether-Lefschetz en degré d=4s assez grand, en contradiction avec la conjecture 0.3, proposée par J. Harris.

A counterexample to a conjecture of J. Harris

Abstract — We show the existence of infinitely many exceptional components of the Noether-Lefschetz locus in degree $d=4s \gg 0$, in contradiction with conjecture 0.3, due to J. Harris.

0. Introduction. - 0.1. Le lieu de Noether-Lefschetz S^d en degré d est défini comme l'ensemble des polynômes F de degré d sur P^3 définissant une surface lisse Σ satisfaisant la condition : rang (Pic Σ) \geq 2. Dès que $d \geq 4$, ce lieu est une union dénombrable de sous-ensembles algébriques propres de l'ensemble des polynômes réguliers de degré d, et ses composantes locales S^d_{λ} sont, par le théorème de Lefschetz sur les classes (1,1), définies par la condition : « la classe entière $\lambda \in H^2(\Sigma, \mathbb{Z})$ est de type (1,1) dans la décomposition de Hodge de $H^2(\Sigma, \mathbb{C})$ », ou encore par l'annulation de la composante $\lambda^{0,2} \in H^2(\mathcal{O}_{\Sigma})$ de la classe λ . Ces composantes sont donc définies localement par

$$h^{2,0}:=h^0(K_{\Sigma})=h^0(\mathcal{O}_{\mathbf{P}^3}(d-4))$$

équations holomorphes sur Σ .

- 0.2. On connaît par [2] l'existence de composantes de S^d qui sont « générales », c'està-dire de la codimension $h^{2,0}$ prédite par la théorie de Hodge. Les autres composantes sont dites « exceptionnelles ». Les composantes de faible codimension ont été classifiées dans [3], [5], et il est montré dans [4] qu'en degré $d \le 7$ les composantes exceptionnelles réduites sont en nombre fini. Ces travaux étaient motivés par la conjecture suivante, due à Harris :
- 0.3. Conjecture (cf. [3]). Pour d fixé il existe un nombre fini de composantes exceptionnelles de S^d .
- 0.4. On montre ici l'existence d'une infinité de composantes exceptionnelles de S^d , pour d=4s suffisamment grand. La construction peut se faire aussi pour les entiers d=ks avec k fixé ≥ 4 et s suffisamment grand. Il semble cependant que la réunion des composantes exceptionnelles obtenues de cette manière soit contenue dans un sous-ensemble algébrique propre de l'espace des polynômes réguliers de degré d. Il n'est donc pas exclu que l'énoncé suivant reste valide :
- 0.5. La réunion des composantes exceptionnelles de S^d n'est pas dense au sens de Zariski dans l'ensemble des polynômes réguliers de degré d.

Cet exemple m'est venu à l'esprit à la suite d'échanges intéressants, que j'ai eus avec M. Green et C. Peskine, et dont je les remerciè.

1. 1.0. Soit d=4s; considérons les polynômes F de degré d sur \mathbf{P}^3 de la forme $F=P(F_0,\ldots,F_3)$ où $P=P(Y_0,\ldots,Y_3)\in H^0(\mathcal{O}_{\mathbf{P}^3}(4))$ et pour $i=0,\ldots,3$ $F_i\in H^0(\mathcal{O}_{\mathbf{P}^3}(s))$. Lorsque les F_i sont choisis sans zéro commun, pour P générique, F définit une surface lisse de degré d dans \mathbf{P}^3 , par le théorème de Bertini.

Note présentée par Jean-Pierre SERRE.

Soit $W \subset Grass(4, H^0(\mathcal{O}_{\mathbb{P}^3}(s)))$ l'ouvert paramétrant les sous-espaces de dimension quatre de $H^0(\mathcal{O}_{\mathbf{P}^3}(s))$ sans point fixe sur \mathbf{P}^3 . Soit $\mathscr{E} \to W$ le sous-fibré tautologique. On a une application naturelle $\varphi: \mathbf{P}(S^4 \mathscr{E}) \to \mathbf{P}(H^0(\mathcal{O}_{\mathbf{P}^3}(d)))$ et l'intersection U de l'image de φ avec l'ensemble des polynômes réguliers paramètre les polynômes considérés ci-dessus. On a le lemme suivant :

1.1. Lemme. – φ est génériquement de rang maximal.

Démonstration. – Soient (X_0, \ldots, X_3) des coordonnées sur P^3 et pour $i=0, \ldots, 3$, soit $F_i = X_i^s$; soit $P = \sum_{i=0}^{\infty} Y_i^4$. Alors $F = \sum_{i=0}^{\infty} X_i^{4s}$. Pour une déformation du premier ordre P+tQ de P et F_i+tG_i de F_i on a :

$$d/dt (P + t Q (F_0 + t G_0, ..., F_3 + t G_3))$$

$$= Q(F_0, ..., F_3) + \sum_{i=0}^{3} G_i \partial P / \partial Y_i (F_0, ..., F_3) = Q(X_0^s, ..., X_3^s) + 4 \sum_{i=0}^{3} G_i X_i^{3s}.$$

On voit facilement que ceci ne peut s'annuler que si les G_i sont dans $\langle X_0^s, \ldots, X_3^s \rangle$, soit $G_i = \sum_{j=0}^{\infty} \alpha_{ij} X_j^s$, et $Q = -4 \sum_{ij} \alpha_{ij} Y_j Y_i^3$. Il est évident qu'un tel vecteur est nul dans l'espace tangent à $P(S^4 \mathcal{E})$ au point considéré, ce qui prouve le lemme.

- 1.2. On déduit de ce lemme que la dimension de U est égale à $4(h^0(\mathcal{O}_{\mathbf{P}^3}(s))-4)+34$, qui est un équivalent de 2/3 s^3 pour s grand. D'autre part, le lieu de Noether-Lefschetz dans U contient une infinité dénombrable d'hypersurfaces, dont l'union est dense dans U. En effet, la surface Σ définie par $F = P(F_0, \ldots, F_3) = 0$ est envoyée de façon finie sur la surface K3 S de degré 4 dans P^3 définie par $P(Y_0, ..., Y_3) = 0$, par l'application $\psi: \mathbf{P}^3 \to \mathbf{P}^3$ définie par $\psi(x) = (F_0(x), \dots, F_3(x))$, et l'assertion résulte de l'énoncé analogue pour les surfaces lisses de degré 4 dans P^3 , et de l'injection $Pic S \subset Pic \Sigma$.
- 1.3. Comme expliqué en 0.1, 0.2, la dimension des composantes générales de S^d est égale à

$$h^{0}(\mathcal{O}_{\mathbf{P}^{3}}(d)) - h^{0}(\mathcal{O}_{\mathbf{P}^{3}}(d-4)) - 1 = 1 + 2d^{2}$$

ce qui est inférieur à $4(h^0(\mathcal{O}_{\mathbf{P}^3}(s))-4)+33$ pour s assez grand et d=4s.

Chacune des hypersurfaces de U considérées en 1.2 est donc contenue dans une composante exceptionnelle de S^d , pour s assez grand, et 0.4 sera prouvé si l'on montre que la réunion de ces hypersurfaces n'est pas contenue dans une union finie de composantes de S^d. Mais comme la réunion de ces hypersurfaces est dense dans U et qu'une union finie de composantes de S^d est un ensemble algébrique, cela entraînerait que U est inclus dans S^d , et donc on conclut par le lemme suivant.

1.4. Lemme. – Pour un élément F général de U, la surface Σ définie par F = 0 satisfait : Pic $\Sigma = \mathbf{Z}$.

Démonstration. - On utilise l'argument infinitésimal décrit dans [1]. Prenons, comme en 1.1, $F = \sum_{i=0}^{\infty} X_i^{4s}$. Soit T l'espace tangent à U en F. D'après la preuve de 1.1, T est

engendré par les polynômes R de la forme : $Q(X_0^s, \ldots, X_3^s) + \sum_{i=0}^3 G_i X_i^{3s}$, avec $d^0 Q = 4$ et $d^0 G_i = s$. D'après [1], il suffit de prouver que pour tout $\lambda \neq 0 \in H^1(\Omega_{\Sigma})^{\text{prim}}$ l'application $m_{\lambda}: T \to H^{2}(\mathcal{O}_{\Sigma})$, définie comme la composée du produit par $\lambda \in H^{1}(\Omega_{\Sigma}): H^{1}(T_{\Sigma}) \to H^{2}(\mathcal{O}_{\Sigma})$ et de l'application de Kodaïra-Spencer $\rho: T \to H^{1}(T_{\Sigma})$, est non nulle. Par la description polynomiale de la variation infinitésimale de structure de Hodge de Σ , ceci est équivalent à l'énoncé suivant :

1.5. Soit M un polynôme de degré 2d-4, tel que pour tout $R \in T$ on ait : RM appartient à l'idéal $J(\Sigma)$ engendré par les X_i^{4s-1} , $i=0,\ldots,3$; alors M appartient à $J(\Sigma)$.

La preuve de 1.5 est élémentaire du fait que T est engendré par des monômes, ce qui entraîne immédiatement que l'on peut supposer également que M est un monôme.

Note remise le 30 août 1991, acceptée le 18 septembre 1991.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] J. CARLSON, M. GREEN, P. GRIFFITHS et J. HARRIS, Infinitesimal variations of Hodge structure (I), Compositio Mathematica, 50, 1983, p. 109-205.
- [2] C. CILIBERTO, J. HARRIS et R. MIRANDA, General components of the Noether-Lefschetz Locus and their density in the space of all surfaces, *Math. Ann.*, 282, 1988, p. 667-680.
- [3] M. Green, Components of maximal dimension in the Noether-Lefschetz Locus, J. Diff. Geom., 29, 1989, p. 295-302.
 - [4] C. Voisin, Sur le lieu de Noether-Lefschetz en degré 6 et 7, Compositio Mathematica, 75, 1990, p. 47-68.
- [5] C. Voisin, Composantes de petite codimension du lieu de Noether-Lefschetz, Comment. Math. Helvetici, 64, 1989, p. 515-526.

Université Paris-Sud, Mathématique, Bât. n° 425, 91405 Orsay Cedex.