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Abstract

We continue our investigation of the geometry of the Albanese morphism on 0-cycles.
We provide an example of a smooth projective variety with representable CH0-group
but with no universal 0-cycle, which answers a question asked by Colliot-Thélène. Our
construction relies on a counterexample to the integral Hodge conjecture provided by
Benoist and Ottem.

1 Introduction

Let X be a smooth projective complex variety of dimension n. The Albanese morphism

albX : X → Alb(X) (1)

is a morphism of algebraic varieties defined using a base-point in X. The induced morphism

aX : CH0(X)hom → CH0(Alb(X))hom → Alb(X), (2)

where the last map is the sum map, is the Griffiths-Abel-Jacobi map for zero-cycles on
X, and can also be characterized as the universal functorial regular abelian quotient of
CH0(X)hom (see [15], [20]). Indeed, the group morphism aX is surjective and regular, which
means that for any smooth projective variety W with base-point w0 and codimension n
cycle Γ ∈ CHn(W ×X), the map

W → Alb(X),

w 7→ aX ◦ Γ∗(w − w0)

is a morphism of algebraic varieties. In [24], [21], we introduced and studied the notion of
“universal 0-cycle” (parameterized by the Albanese variety), with the following

Definition 1.1. A universal 0-cycle for X is a codimension n cycle Γ ∈ CHn(Alb(X)×X),
where n := dim (X), such that for any t ∈ Alb(X)

aX ◦ Γ∗({t} − {0Alb(X)}) = t in Alb(X).

Example 1.2. A smooth projective curve admits a universal 0-cycle given by the Poincaré
divisor on J(C)× C.

We will review in Section 2 some basic facts concerning this definition. Let us just say
that there always exists a universal 0-cycle with Q-coefficients, and that an X not having a
universal 0-cycle provides a counterexample to the integral Hodge conjecture on Alb(X)×X.
Furthermore, we proved in [21] that there exist smooth projective varieties not admitting a
universal 0-cycle.

Recall that, following Mumford [14] and Roitman [17], X has a representable CH0-group
if the morphism aX of (2) is an isomorphism. The examples provided in [21] are surfaces
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whose Albanese variety is isomorphic to the intermediate Jacobian of a rationally connected
threefold. These surfaces do not have in general a representable CH0-group (like the surface
of lines of a smooth cubic threefold, they rather tend to be of general type). In the paper
[6], Colliot-Thélène asked the following

Question 1.3. Does there exist a smooth complex projective variety X with representable
CH0 group and not having a universal 0-cycle?

The purpose of this paper is to present such an example.

Theorem 1.4. There exists a smooth projective threefold X such that CH0(X) is repre-
sentable and X does not admit a universal 0-cycle.

Our examples have some torsion in their integral Betti cohomology, so one might ask
whether such examples exist without torsion in their integral Betti cohomology. From the
viewpoint of the integral Hodge conjecture, they also provide an example of a curve class
(that is, a Hodge homology class of degree 2) on a fourfold with torsion canonical bundle,
that is not algebraic modulo torsion. Benoist and Ottem construct in [3] examples of non-
algebraic torsion curve classes on a threefold with torsion canonical bundle. Our construction
in fact relies on the results of [3]. In Section 3.1, we will provide a mild generalization and
a short proof of one of their statements (see Proposition 3.5).

The assumptions of Theorem 1.4 are very restrictive geometrically. Indeed, we have

Lemma 1.5. Let X be a smooth projective complex variety with representable CH0 group
and nontrivial Albanese variety. Then there exist a smooth projective curve C such that
J(C) ∼= Alb(X) and a dominant morphism φC : X → C such that the Albanese morphism
of X is the composition of φC and the Albanese morphism of C.

Proof. When CH0(X) is representable, Mumford’s theorem [14] (see also [5] for an alter-
native proof), tells that H0(X,ΩiX) = 0 for i ≥ 2. It follows that the Albanese morphism
albX : X → Alb(X) of (1) has rank ≤ 1 everywhere, hence factors (using the Stein factor-
ization) as the composition of a morphism φC : X → C and a morphism ψ : C → Alb(X).
Using the universal property of the Albanese morphism for X and C, we conclude that ψ
induces an isomorphism Alb(C) ∼= Alb(X).

Remark 1.6. As the proof above shows, the conclusion of Lemma 1.5 holds under the
asssumption that hi,0(X) = 0 for i ≥ 2.

The fact that Alb(X) is isomorphic to the Jacobian of a curve makes a priori easier for
X to have a universal 0-cycle. Indeed, for a Jacobian J(C), or for any abelian variety which
is a direct summand in a Jacobian, we can use the universal Poincaré divisor on J(C)× C
and this reduces the problem of constructing a codimension n cycle in Alb(X) ×X to the
problem of constructing a codimension n cycle in C ×X.

We will discuss in Section 2 various properties of a smooth projective variety X related
to the existence of a universal 0-cycle (see Proposition 2.2). We will relate in particular the
existence of a universal 0-cycle for X with the structure of the Künneth projector δ1 on X.
Proposition 2.2 says that the property of having a universal 0-cycle has a good formulation
in terms of the motive of X when one knows furthermore that the Albanese variety of X is a
direct summand in the Jacobian of a curve, which is the case when X has representable CH0

by Lemma 1.5. Note that, thanks to [2] and the recent work [7], it is now known that an
abelian variety is not always a direct summand in the Jacobian of a curve (equivalently by [2]
and [24], the integral Hodge conjecture can be wrong for curve classes on abelian varieties).
Motivated by Lemma 1.5, we will consider more generally in Section 2.2 smooth projective
varieties X whose Albanese map factors as the composition of a dominant morphism

φX : X → C,

and the Abel map of C, as it is the case when CH0(X) is representable by Lemma 1.5. Recall
that the index of a dominant morphism X → B, where B is irreducible, is the greatest
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common divisor of the degrees deg(Z/B) for all Z ⊂ X closed irreducible dominant over B
and of dimension equal to dimB. In the situation above, we will discuss the relation between
the index of φX being 1 and the existence of a universal 0-cycle for X (see Proposition 2.7).
In one direction, we will prove that, if the Albanese map of X factors through a morphism
φX : X → C as in Lemma 1.5 and φX has index 1, X has a universal 0-cycle. This statement
has no converse, as we will also exhibit an example where the index of φX is not equal to 1,
but X has a universal 0-cycle.

We will prove Theorem 1.4 in Section 3. In Section 4, we will discuss the case of surfaces
with representable CH0 group, where more can be said thanks to the structure of surfaces
with q 6= 0, pg = 0. Such surfaces X are quotients of products of curves by a finite group,
and we prove that the index of φX is 1 in the case of a cyclic group.

Thanks. I thank Jean-Louis Colliot-Thélène for his remarks and careful reading. I also
thank the referee for his/her useful comments and corrections.

2 A discussion of universal 0-cycles

Let X be a smooth projective variety of dimension n over the complex numbers. The
Albanese variety of X is an abelian variety, which as a complex torus is constructed as the
quotient

Alb(X) = Hn(X,Ωn−1
X )/H2n−1(X,Z)tf = H0(X,ΩX)∗/H1(X,Z)tf ,

where in both expressions, “tf” means “modulo torsion”. It follows that the Albanese map
induces by construction an isomorphism of lattices

H1(X,Z)tf
∼= H1(Alb(X),Z). (3)

Here all the cohomology groups are integral Betti cohomology groups of the corresponding
complex manifolds. The isomorphism (3) has an inverse in Hom(H1(Alb(X),Z), H1(X,Z)tf)
which provides an element γX ∈ H1(Alb(X),Z) ⊗H2n−1(X,Z)tf . As the isomorphism (3)
is an isomorphism of Hodge structures, the class γX provides by Künneth decomposition a
Hodge class of degree 2n on Alb(X) × X, also denoted γX . The existence of a universal
0-cycle on X is equivalent to the fact that γX is algebraic, or rather that there exists an
algebraic cycle Γ of codimension n in Alb(X)×X, such that the Künneth component of type
(1, 2n− 1) of [Γ] equals γX . In particular, if a smooth projective variety X has no universal
0-cycle, then the class γX on Alb(X)×X provides a counterexample to the integral Hodge
conjecture. More precisely, it provides a counterexample to the integral Hodge conjecture
modulo torsion, since the class γX is well-defined inH2n(Alb(X)×X,Z)tf and is not algebraic
there when X has no universal 0-cycle.

If X, Y are smooth projective complex varieties, with dimX = n, and Z ∈ CHn(Y ×X),
the morphism of Hodge structures

[Z]∗ : H1(Y,Z)tf → H1(X,Z)tf

induces a morphism of complex tori (which are in fact abelian varieties) that we will also
denote

[Z]∗ : Alb(Y )→ Alb(X).

We will use the following construction.

Lemma 2.1. Let X be a smooth projective variety and C a smooth curve with a morphism
j : C → X inducing

j∗ : J(C)→ Alb(X).

Assume there exists a morphism of abelian varieties s : Alb(X)→ J(C) such that

s ◦ j∗ = kIdAlb(X) (4)
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for some integer k. Then there exists a codimension n cycle

Γ ∈ CHn(Alb(X)×X)

such that
[Γ]∗ = kIdAlb(X) : Alb(Alb(X)) = Alb(X)→ Alb(X).

Proof. The curve C admits a universal 0-cycle ΓC ∈ CH1(J(C) × C) (see Example 1.2).
Then the codimension n-cycle

ΓX := (s, IdX)∗((IdJ(C), j)∗(ΓC)) ∈ CHn(Alb(X)×X)

has by (4) the property that

[ΓX ]∗ = kIdAlb(X) : Alb(Alb(X)) = Alb(X)→ Alb(X).

As a first application, let us prove that any smooth projective variety X has a universal
0-cycle with rational coefficients. Indeed, choosing a smooth curve C which is a complete
intersection of ample hypersurfaces in X, and denoting j : C → X the inclusion map,

j∗ : H1(C,Z)→ H1(X,Z)tf

is a surjective morphism of Hodge structures. By semisimplicity of polarized weight 1 Hodge
structures, there exists a morphism of Hodge structures

s : H1(Alb(X),Z) ∼= H1(X,Z)tf → H1(C,Z)

such that

j∗ ◦ s = kIdH1(X,Z)tf (5)

for some nonzero integer k. The morphism s induces a morphism

s : Alb(X)→ J(C)

of abelian varieties and j∗, s satisfy the assumptions of Lemma 2.1. Hence Lemma 2.1
provides a universal 0-cycle with rational coefficients.

let us now discuss the link between universal 0-cycle and Künneth decomposition of the
Albanese motive. Assume that the smooth projective complex variety X of dimension n
has the property that H∗(X,Z) has no torsion. The Künneth components δi ∈ Hi(X,Z)⊗
H2n−i(X,Z) of the diagonal of X are then well defined, and it is known that δ1 is algebraic
(see [10]), at least with Q-coefficients.

Proposition 2.2. The following statements are equivalent:
(i) The Künneth projector δ1 is algebraic on X ×X and is the class of a cycle supported

on X × C for some curve C ⊂ X.
(ii) X has a universal 0-cycle and the Albanese variety of X is a direct summand in the

Jacobian of a curve.
(iii) The motive of X contains a direct summand M1, with the property that M1 is a

direct summand in the motive of a curve and Alb(X) = Alb(M1).

In the statement above, we allow nonconnected curves, so “Jacobian of a curve” stands
for “product of Jacobians of curves”.

Remark 2.3. If X has representable CH0 group, then it is automatic that the Albanese
variety of X is a direct summand in the Jacobian of a curve by Lemma 1.5, so in this case
we see that X has a universal 0-cycle if and only if the motive of X is the direct sum of a
motive with CH0 = 0 and a motive which is a direct summand in the motive of a curve.
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Proof of Proposition 2.2. Assume there exist a curve C ⊂ X and a codimension 1 cycle
Z ⊂ X × C such that the class of Z in X is δ1. We can replace by desingularization C by
a smooth curve C̃ with a morphism j̃ : C̃ → X, such that Z lifts to a codimension 1 cycle
Z̃ ⊂ X × C. Then, as the class of Z in X is δ1, we have for any α ∈ H1(X,Z)

α = δ1∗(α) = j̃∗([Z̃]∗(α)) in H1(X,Z). (6)

It follows from (6) that, via j̃∗ : J(C̃) → Alb(X), Alb(X) is a direct summand of J(C̃),

with right inverse given by σ := [Z̃]∗ : Alb(X)→ J(C̃), which proves the second statement
in (ii). Next, we apply Lemma 2.1 to j̃ and σ and consider the cycle

Γ1 := (σ, IdC)∗ ◦ (IdJ(C), j̃)∗(PC̃) ∈ CHn(Alb(X)×X).

It has the property that [Γ1]∗ : Alb(Alb(X)) = Alb(X) → Alb(X) is the identity, since
j̃∗ ◦ σ = IdAlb(X). Hence X has a universal 0-cycle. Thus (i) implies (ii).

In the other direction, let Γ ∈ CHn(Alb(X) × X) be a universal 0-cycle for X. This
means that

[Γ]∗ : H1(Alb(X),Z)→ H1(X,Z)

is the natural isomorphism. Let D be a (nonnecessarily connected) smooth projective curve
such that Alb(X) is a direct summand of J(D), and let

σ : Alb(X)→ J(D), π : J(D)→ Alb(X)

be such that π ◦ σ = IdAlb(X). Finally, let iD : D → J(D) be the natural embedding and
consider the cycle

Γ1 := Γ ◦ π ◦ iD ∈ CHn(D ×X).

We have
[Γ1]∗ = [Γ]∗ ◦ π∗ ◦ iD∗ = π : J(D)→ Alb(X).

Next, let PD ∈ CH1(J(D) × D) be a universal 0-cycle (or Poincaré divisor) for D and
consider next the cycle

Γ2 = PD ◦ σ ◦ albX ∈ CHn(X ×D).

We have [Γ2]∗ = σ : Alb(X)→ J(D). It follows that ΓX := Γ1 ◦ Γ2 ∈ CHn(X ×X) has the
property that

[ΓX ]∗ = [Γ1]∗ ◦ [Γ2]∗ = π ◦ σ = IdAlb(X). (7)

Finally ΓX is supported on X×D′ where D′ ⊂ X is the curve in X defined as pr2(Supp(Γ1).
Furthermore one easily checks that [ΓX ]∗ = 0 on Hi(X,Z) for i 6= 1. It follows that
[ΓX ] = δ1. This proves that (ii) implies (i).

The equivalence of (ii) with property (iii) is now clear. If we have a direct summand M1

as in (iii), then M1 has a universal 0-cycle, being a direct summand in the motive of a curve
C, and its Albanese variety is a direct summand of J(C). Hence (ii) holds. Conversely,
if (ii) holds, then we construct Γ1 and Γ2 as above and (7) exactly says that [Γ2] realizes
motivically H1(X,Z) as a direct summand in H1(D,Z).

2.1 Previous examples of smooth projective varieties with no uni-
versal 0-cycle

The first example of a smooth projective surface not admitting a universal 0-cycle is con-
structed in [21]. It builds on the fact that there exist rationally connected 3-folds Y with no
universal codimension 2 cycle parameterized by the intermediate Jacobian J(Y ) (such exam-
ples are constructed in [22]). Here a universal codimension 2 cycle Zuniv ∈ CH2(J(Y )× Y )
is characterized by the condition that the composite map

J(Y )→ CH2(Y )alg → J(Y ),
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t 7→ ψY (Zuniv,t −Zuniv,0J(Y )
)

is the identity, where ψY is the Abel-Jacobi morphism (an isomorphism in this case) of Y .
The second ingredient is the following result proved in [21]:

Theorem 2.4. Given a smooth projective rationally connected threefold Y over C, there
exist a smooth projective surface S and a codimension 2 cycle Z ∈ CH2(S × Y ) such that
the induced Abel-Jacobi map

[Z]∗ : Alb(S)→ J(Y )

is an isomorphism.

The varieties Y and S being as above, if Y does not have a universal codimension 2
cycle, S does not have a universal 0-cycle, since a universal 0-cycle

ZS ∈ CH2(Alb(S)× S) = CH2(J(Y )× S)

would produce a universal codimension 2 cycle

Zuniv = Z ◦ ZS ∈ CH2(J(Y )× Y )

for Y .
A particular case of this construction also solves in the negative the following question

asked by Colliot-Thélène in the original version of [6].

Question 2.5. Given any smooth projective variety X over the complex numbers, and
any function field K = C(C), where C is a curve, is the natural morphism CH0(XK)0 →
Alb(X)(K) surjective?

Indeed, we first observe the following

Proposition 2.6. Assume the smooth projective variety X has the property that Alb(X) is
a direct summand, as an abelian variety, in the Jacobian J(C) of a smooth projective curve
C. Then the following properties are equivalent.

(i) X has a universal 0-cycle.
(ii) For any curve D, the natural morphism aX : CH0(XK)0 → Alb(X)(K) is surjective,

where K = C(D).

We give the proof for completeness, although similar statements and arguments can be
found in [24] and [6].

Proof. (i) implies (ii) in an obvious way, since having a morphism φ : D → Alb(X) and a
universal 0-cycle Γ ∈ CHn(Alb(X)×X) of relative degree 0 over Alb(X), where n := dimX,
we get by restriction to D × X a cycle ΓD ∈ CHn(D × X), of relative degree 0 over D,
which by definition of a universal 0-cycle, has the property that the composed morphism
albX ◦ ΓD∗ : J(D) → Alb(X), equals φ∗ : J(D) → Alb(X). It follows that, denoting by
jD : D → J(D) a chosen inclusion, the two morphisms albX ◦ΓD∗ ◦ jD : D → Alb(X) and φ
differ by a translation. Correcting ΓD by the adequate cycle D×z0, where z0 ∈ CH0(X)hom,
gives a cycle Γ′D ∈ CHn(D ×X) such that

albX ◦ ΓD∗ ◦ jD = φ : D → Alb(X). (8)

Equation (8) exactly tells that the image of Γ′D in CH0(XK)0 maps to φK ∈ Alb(X)(K).
In the other direction, assume that Alb(X) is a direct summand in J(C), that is, for

some abelian variety B,
Alb(X)×B ∼= J(C),

with inclusion i : Alb(X) → J(C) and projection p : J(C) → Alb(X), such that p ◦ i =
IdAlb(X). We observe that the curve C has a universal 0-cycle ΓC (see Example 1.2). Let iC
be the natural inclusion of C in J(C) (it is in fact defined up to translation). The composite
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morphism pC = p ◦ iC : C → Alb(X) gives a K-point in Alb(X)(K), where K = C(C), and
assuming (ii), there is a codimension n cycle ZC ∈ CHn(C ×X), of relative degree 0 over
C, such that

albX ◦ ZC∗ = pC : C → A. (9)

We next consider the composition ZC,Alb(X) := ZC ◦ ΓC ◦ i ∈ CHn(Alb(X) × X) and it
follows from (9) that albX ◦ ZC,Alb(X)∗ = IdAlb(X) : Alb(X)→ Alb(X).

We now get a negative answer to Question 2.5 by considering a smooth projective ra-
tionally connected 3-fold Y which does not admit a universal codimension 2 cycle while the
intermediate Jacobian J(Y ) has dimension 3, so that it is the Jacobian of a curve. Such
examples are constructed in [22]: one can take for Y the desingularization of a very gen-
eral quartic double solid with seven nodes. We then introduce as before a surface S as in
Theorem 2.4, which has Alb(S) ∼= J(Y ), hence has its Albanese variety isomorphic to the
Jacobian of a curve. Furthermore, S has no universal 0-cycle because Y does not have a
universal codimension 2 cycle, hence provides the desired example using Proposition 2.6.

2.2 Varieties fibered over a curve

We now consider smooth projective varieties X such that the Albanese map of X factors
through a curve as in Lemma 1.5. We first prove

Proposition 2.7. If the Albanese map of X factors through a morphism φX : X → C,
where C is a smooth projective curve such that φX∗ : Alb(X) → J(C) is an isomorphism,
and φX has index 1, X has a universal 0-cycle.

Proof. By definition, if X, B are smooth projective and φ : X → B is a dominant morphism
of relative dimension d and index 1, there exists a cycle Γ ∈ CHd(X) such that φ∗Γ = B
in CH0(B). The cycle Γ has a cohomology class [Γ] acting by cup-product on integral
cohomology of X and we have by the projection formula

φ∗([Γ] ∪ φ∗α) = α (10)

for any α ∈ H∗(B,Z).
We now consider the case where B is a curve C and φ = φX induces an isomorphism

Alb(X) ∼= J(C).

If the index of φX is 1, the construction above gives a cycle

Γ′ = (φX , IdX)∗Γ ∈ CH1(C ×X)

satisfying by (10)

φX∗ ◦ [Γ′]∗ = Id : H1(C,Z)→ H1(C,Z). (11)

As before we use a Poincaré divisor ZC ∈ CH1(J(C)× C) such that

ZC∗ : H1(J(C),Z)→ H1(C,Z)

is the natural isomorphism, inverse of albC∗ : H1(C,Z)→ H1(J(C),Z). It follows from (11)
that the cycle

Γ′′ := ZC ◦ Γ′ ∈ CHn(J(C)×X), n = dimX

has the property that
[Γ′′]∗ : H1(J(C),Z)→ H1(X,Z)
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satisfies φX∗ ◦ [Γ′′]∗ = ZC∗. As φX∗ induces by assumption an isomorphism

H1(X,Z)tf
∼= H1(C,Z)

we conclude that [Γ′′]∗ : H1(J(C),Z) = H1(Alb(X),Z) → H1(X,Z)tf is the inverse of the
isomorphism albX∗ : H1(X,Z)tf

∼= H1(Alb(X),Z). Hence Γ′′ is a universal 0-cycle for
X.

A particular case of Proposition 2.7 is the case of rationally connected fibrations over
a curve, which is considered in [6] and [24]. They admit universal 0-cycles by [9] and
Proposition 2.7.

We now show that the implication of Proposition 2.7 is strict by constructing an example
of a smooth projective surface S with a morphism φ : S → C to a curve, inducing an
isomorphism φ∗ : Alb(S) ∼= J(C), such that the index of φ is d > 1 and S admits a universal
0-cycle. We start with any curve C of genus > 0 and choose a smooth curve

Γ ⊂ C × C (12)

such that the second projection p : Γ→ C has degree d and Γ∗ : H1(C,Z)→ H1(C,Z) is the
identity. This exists for d large enough, by taking (for example) Γ to be a smooth member
of the linear system |OC×C((d− 1)(c×C) + d′(C × c′) + ∆C)| for some points c, c′ ∈ C and
integers d, d′ large enough, where ∆C is the diagonal of C. We now choose an embedding i
of C in P3, which gives an embedding (IdC , i) of C × C, hence of Γ, in C × P3. For some
very ample line bundle L on C, we choose the surface S ⊂ C × P3 to be a very general
complete intersection of members of the linear system |L � OP3(d)| containing (IdC , i)(Γ).
The first projection φ : S → C induces by the Lefschetz theorem on hyperplane sections an
isomorphism Alb(S) ∼= J(C). We have by construction C × Γ ⊂ C × S and C × Γ contains
the transpose tΓp′ ∼= Γ of the graph of the morphism p′ : Γ→ C given by the first projection
in (12). Hence tΓp′ is contained in C × S and using the fact that

φ|Γ = p, pr1|tΓp′ = p′,

its image in C × C under (IdC , φ) is the original curve Γ ⊂ C × C. Hence it acts as the
identity on H1(C,Z), so S has a universal 0-cycle. Finally we argue as in [12] for example,
to conclude that for very general S, the Néron-Severi group of S is generated by a fiber of
φ, the line bundle OP3(1) and the class of the curve (IdC , i)(Γ). This immediately implies
that the index of φ is d, since Γ has degree d over C.

3 A 3-dimensional example for Question 1.3

We give in this section an example of a smooth projective 3-fold X with representable CH0

and no universal 0-cycle, thus proving Theorem 1.4. Let S be a projective K3 surface over
the complex numbers equipped with a fixed point free antisymplectic involution g. We
denote by Σ := S/g the corresponding Enriques surface. Let E be an elliptic curve with a
translation tξ by a point ξ of order 2. We denote Eξ := E/tξ.

The variety we will consider is

X := (E × S)/(tξ, g). (13)

It admits two natural morphisms

pEξ : X → Eξ, pΣ : X → Σ. (14)

Lemma 3.1. (i) The morphism pEξ induces an isomorphism

pEξ∗ : CH0(X)→ CH0(Eξ).
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In particular CH0(X) is representable.
(ii) One has Alb(X) ∼= Eξ and the morphism pEξ identifies (up to translation) with the

Albanese map of X.

Proof. The morphism pEξ : X → Eξ = E/tξ has all its fibers isomorphic to the K3 surface
S, which is connected and simply connected. It follows that pE∗ : H1(X,Z)→ H1(Eξ,Z) is
an isomorphism, which proves (ii). As (ii) is proved, in order to prove (i), it suffices to prove
that the kernel CH0(X)alb of the Albanese morphism CH0(X)hom → Alb(X) is trivial. As
this kernel has no torsion by [18], it injects by pull-back in the invariant part under (tξ, g)
of the group CH0(E × S)alb. It thus suffices to show that the involution (tξ, g) acts by −Id
on the group CH0(E × S)alb ⊗ Q. The involution tξ acts as the identity on CH0(E) ⊗ Q.
The involution g acts by −Id on the group CH0(S)hom by [4]. With rational coefficients,
choosing a 0-cycle oS of degree 1 which is g-invariant, we have a decomposition

CH0(E × S)⊗Q = CH0(E)Q ⊗ oS ⊕ (15)

Im (CH0(E)Q ⊗ CH0(S)hom → CH0(E × S)Q),

and the group CH0(E×S)alb⊗Q is contained in the second summand of the decomposition
(15), on which (tξ, g) acts by −Id, which concludes the proof.

We now prove the main result.

Theorem 3.2. For a fixed K3 surface S with involution g over an Enriques surface Σ,
there exists an elliptic curve E with a translation tξ of order 2, such that the variety X
constructed above does not admit a universal 0-cycle.

Proof. Given S, E and ξ, let us assume that X has a universal 0-cycle. By Lemma 3.1, a
universal 0-cycle for X is given by a 1-cycle

Γ ∈ CH1(Eξ ×X)

which has the property that [Γ]∗ : H1(Eξ,Z) → H1(X,Z)tf is inverse to the isomorphism
pEξ∗ : H1(X,Z)tf → H1(Eξ,Z), that is

pEξ∗ ◦ [Γ]∗ = Id : H1(Eξ,Z)→ H1(Eξ,Z). (16)

Dualizing (16) and passing to Z/2-coefficients, we get that

[Γ]∗ ◦ p∗Eξ = Id : H1(Eξ,Z/2)→ H1(Eξ,Z/2). (17)

The étale double covers S → Σ, E → Eξ, q = (pEξ , pΣ) : X → Eξ × Σ are given by
elements

σΣ ∈ H1(Σ,Z/2), σEξ ∈ H1(Eξ,Z/2), σX ∈ H1(Eξ × Σ,Z/2)

that are characterized by the fact that they are nonzero and they are annihilated respectively
by the pull-backs maps

H1(Σ,Z/2)→ H1(S,Z/2), H1(Eξ,Z/2)→ H1(E,Z/2), q∗ : H1(Eξ×Σ,Z/2)→ H1(X,Z/2).

Recalling the notation of (14), we claim that

σX = pr∗Eξ(σEξ) + pr∗Σ(σΣ) in H1(Eξ × Σ,Z/2), (18)

where prEξ , prΣ are the projections from Eξ × Σ to its factors, so that

pEξ = prEξ ◦ q, pΣ = prΣ ◦ q. (19)

In order to prove (18), we write

σX = pr∗Eξ(α) + pr∗Σ(β) in H1(Eξ × Σ,Z/2)
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for some classes α ∈ H1(Eξ,Z/2), β ∈ H1(Σ,Z/2). It follows that for any e ∈ Eξ, s ∈ Σ,

σX|{e}×Σ = β, σX|Eξ×{s} = α.

Finally we observe that the fiber of pEξ over e is the double cover of Σ isomorphic to S and
the fiber of pΣ over s is the double cover of Eξ isomorphic to E, so that

β = σΣ, α = σEξ ,

which proves the claim.
The meaning of (18) is that

q∗(pr∗Eξ(σEξ) + pr∗Σ(σΣ)) = 0 in H1(X,Z/2), (20)

which thanks to (19) rewrites as

p∗Eξ(σEξ) + p∗Σ(σΣ) = 0 in H1(X,Z/2). (21)

Let

ΓE := (IdEξ , pEξ)∗(Γ) ∈ CH1(Eξ × Eξ), ΓΣ := (IdEξ , pΣ)∗(Γ) ∈ CH1(Eξ × Σ).

It follows from (21) that

Γ∗(p∗Eξ(σEξ)) + Γ∗(p∗Σ(σΣ)) = 0 in H1(Eξ,Z/2),

which can be written as

Γ∗E(σEξ) + Γ∗Σ(σΣ) = 0 in H1(Eξ,Z/2). (22)

By equation (17), Γ∗E acts as the identity on H1(Eξ,Z/2), hence we finally get from (22)

σEξ = Γ∗Σ(σΣ) in H1(Eξ,Z/2). (23)

The results of [3, Propositions 1.1 and 2.1] tell now that there exist Eξ, σEξ such that
(23) holds for no 1-cycle ΓΣ ∈ CH1(Eξ × Σ), (see also Proposition 3.5 for an alternative
proof and generalization of this statement). The analysis above thus shows that for this
choice of S and of pair (Eξ, σEξ) (determining a double cover E with translation tξ), X
does not have a universal 0-cycle.

Corollary 3.3. For S fixed and E very general, the index of pEξ : X → Eξ is 2.

Proof. The index of pEξ is either 1 or 2, since the image of a curve E × s in X for some
s ∈ S has degree 2 over Eη. However, the index cannot be 1, as otherwise Proposition 2.7
would provide a contradiction with Theorem 3.2.

We finish with the following statement, which combined with Corollary 3.3 shows that
the index of pEξ is not dictated by topological or Hodge-theoretic reasons.

Lemma 3.4. There exists an integral Hodge class α ∈ H4(X,Z) of degree 4 on X such that
pEξ∗α = 1Eξ in H0(Eξ,Z).

Proof. We note that, because H2(X,OX) = 0, any integral Betti cohomology class α ∈
H4(X,Z) is Hodge. So it suffices to prove the existence of an integral Betti cohomology
class α ∈ H4(X,Z) such that pEξ∗α = 1Eξ in H0(Eξ,Z). This statement is topological, so
it suffices to prove the result for a specific elliptic curve E with involution tξ. We choose a
K3 surface with involution g over an Enriques surface satisfying the property that NS(S)
is g-invariant. We now observe that S has elliptic pencils, which must be globally invariant
under g. The action of g on the base P1 of the pencil has two fixed points, and each one
produces a possibly singular elliptic curve E ⊂ S, invariant under g. As g acts without fixed
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point on E, E must be smooth and g acts as an order 2 translation tξ on it. Indeed, the only
possibility for a singular fixed fiber E would be that E is the union of two smooth rational
curves meeting in two points, where g exchanges the two components. This however would
contradict the fact that NS(S) is g-invariant. We now consider the diagonal inclusion of E
in E × S. It is invariant under (tξ, g) and we get a curve E/(tξ, g) ⊂ (E × S)/(tξ, g) = X,
which is isomorphic to Eξ := E/tξ via pEξ . The class α := [E/(tξ, g)] ∈ H4(X,Z) is the
desired one.

3.1 On a result of Benoist and Ottem

Our proof of Theorem 1.4 relied on the results of Benoist and Ottem in [3]. We give in this
section a short proof and a mild generalization of the statement in [3] that we have been
using.

Proposition 3.5. Let W be a smooth projective complex variety of dimension d, and let
0 6= β ∈ H1(W,Z/k) for some prime integer k > 1. Then there exist only countably many
elliptic curves E, such that there exists a correspondence Γ ∈ CHd(E × Σ) with

[Γ]∗β 6= 0 in H1(E,Z/k).

Proof. We argue by contradiction and, using standard spreading arguments, we get that
there exist a smooth projective curve B, a smooth nonisotrivial elliptically fibered surface
f : T → B and a correspondence Γ ∈ CHd(T × W ), such that the class β′ := [Γ]∗β ∈
H1(T,Z/k) does not vanish on the smooth fibers Tb of f . We can furthermore assume that
f has a section, by performing an extra base-change B′ → B if necessary. The class β′

induces an étale cyclic cover e : T ′ → T of degree k, and the map f ′ := f ◦ e : T ′ → B has
connected elliptic general fiber T ′b, obtained as the étale degree k cyclic cover of the fiber Tb
induced by the class β′|Tb (which is nontrivial by assumption). The two surfaces satisfy

Hi(T,OT ) ∼= Hi(T ′,OT ′), i = 0, 1, 2. (24)

This follows indeed from the fact that the order k automorphism i of T ′ over T acts by a
finite order translation of the smooth fibers T ′b. It thus acts as the identity on CH0(T ′b)Q for
a general b, hence also on CH0(T ′)Q, which implies by [14] that it acts as the identity on
Hi(T ′,OT ′). Formula (24) gives that

χ(T ′,OT ′) = χ(T,OT ),

while we also have

χ(T ′,OT ′) = kχ(T,OT )

since e : T ′ → T is étale of degree k. We thus conclude that χ(T,OT ) = 0. However the
Kodaira canonical bundle formula [11], [19] shows that a surface T admitting a nonisotrivial
elliptic fibration with a section cannot have χ(T,OT ) = 0.

Proposition 3.5 applies for example to quintic Godeaux surfaces, quotients of quintic
surfaces S in P3 by the action of a certain order 5 automorphism g acting freely. It is
proved in [25] that such a surface Σ has trivial CH0 group, hence the whole argument
described previously would work as well, thanks to Proposition 3.5, for a general quotient
X = (E × S)/(tξ, g), where E is very general and tξ is a translation by a point of order 5.
Such an X has representable CH0 group and has no universal 0-cycle.

4 The case of surfaces

A ruled surface, and more generally a rationally connected fibration over a curve, admits a
universal 0-cycle, thanks to Lemma 2.7 (see also [6], [24]). We also have the following.
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Proposition 4.1. Let S be a smooth projective surface with pg(S) = 0 and q(S) 6= 0.
Assume the morphism

φS : S → C, J(C) = Alb(S)

given by Lemma 1.5 has the property that the class [Sc] ∈ H2(S,Z)tf of the fiber Sc = φ−1
S (c)

is primitive. Then the index of φS is 1 and S admits a universal 0-cycle.

Proof. By Proposition 2.7, the first statement implies the second one. Let us now prove
that under our assumptions, the index of φS is 1. As the class [Sc] is primitive, Poincaré
duality on H2(S,Z) tells that there exists a class γ ∈ H2(S,Z) such that 〈γ, [Sc]〉 = 1. As
pg(S) = 0, the theorem on (1, 1)-classes tells that H2(S,Z) ∼= NS(S), hence γ = [D] for
some divisor class D ∈ NS(S). Thus D has degree 1 along the fibers of φS .

We now consider the non-uniruled case and first recall the following result due to
Beauville [1].

Theorem 4.2. [1, Proposition 11] Let S be a non-uniruled smooth projective surface such
that pg(S) = 0, q(S) 6= 0. Then S is birational to a quotient (C1 × C2)/G, where G is a
finite group acting by automorphisms of both C1 and C2, without fixed points on C1 × C2.
Furthermore, at least one of the two curves is elliptic, and we have (up to exchanging C1

and C2)
C1/G ∼= E, C2/G ∼= P1,

where E is elliptic and Alb(S) = J(E) ∼= E.

Remark 4.3. We can assume that G acts faithfully on both C1 and C2, because otherwise,
denoting by H the kernel of morphism G → Aut(C1), we can replace C2 by C2/H and
G := G/H acts on C1 and C ′2 with (C1×C2)/G ∼= (C1×C2/H)/G. Assuming the faithfulness
condition, if C2 is not elliptic, then the group G is commutative, because C1 is elliptic and
C1/G is also elliptic.

We now have

Proposition 4.4. Assume S is as above and the group G is cyclic. Then the index of φS
is equal to 1, hence S has a universal 0-cycle.

Proof. Again the second statement follows from the first. Let G be cyclic generated by g,
and assume the order of g is d. Using the notation of Theorem 4.2, we know that C2/G ∼= P1.
An irreducible degree d cyclic cover of P1 has an affine version with equation

ud = (t− t1)a1 . . . (t− tk)ak ,

where the gcd of {d, ai, i = 1, . . . , k} is 1 since otherwise the curve is not irreducible. Let
ri := gcd(d, ai). After normalization, the ramification order of C2 → P1 over ti is d/ri and
d/ri is the order of the subgroup Gi ⊂ G fixing any point ci ∈ C2 over ti ∈ P1. The surface
S contains the quotient (C1 × {ci})/Gi, which has degree ri over C1/G. As the gcd of the
set {ri} is 1, we conclude that the index of φS is 1.
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