Varieties with representable CHyp-group and a question of
Colliot-Thélene
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Abstract

‘We continue our investigation of the geometry of the Albanese morphism on 0-cycles.
We provide an example of a smooth projective variety with representable CHp-group
but with no universal 0-cycle, which answers a question asked by Colliot-Théléne. Our
construction relies on a counterexample to the integral Hodge conjecture provided by
Benoist and Ottem.

1 Introduction
Let X be a smooth projective complex variety of dimension n. The Albanese morphism
albx : X — Alb(X) (1)
is a morphism of algebraic varieties defined using a base-point in X. The induced morphism
ax : CHo(X)hom — CHo(AIb(X))hom — Alb(X), (2)

where the last map is the sum map, is the Griffiths-Abel-Jacobi map for zero-cycles on
X, and can also be characterized as the universal functorial regular abelian quotient of
CHo(X )nom (see [15], [20]). Indeed, the group morphism ax is surjective and regular, which
means that for any smooth projective variety W with base-point wy and codimension n
cycle I' € CH" (W x X), the map

W — Alb(X),

w i+ ax o Ly(w —wp)

is a morphism of algebraic varieties. In [24], [21], we introduced and studied the notion of
“universal 0-cycle” (parameterized by the Albanese variety), with the following

Definition 1.1. A universal 0-cycle for X is a codimension n cycle ' € CH"(Alb(X) x X),
where n ;= dim (X)), such that for any t € Alb(X)

ax o F*({t} - {OAlb(X)}) =tin Alb(X)

Example 1.2. A smooth projective curve admits a universal 0-cycle given by the Poincaré
divisor on J(C) x C.

We will review in Section 2 some basic facts concerning this definition. Let us just say
that there always exists a universal 0-cycle with Q-coefficients, and that an X not having a
universal 0-cycle provides a counterexample to the integral Hodge conjecture on Alb(X) x X.
Furthermore, we proved in [21] that there exist smooth projective varieties not admitting a
universal 0-cycle.

Recall that, following Mumford [14] and Roitman [17], X has a representable CHg-group
if the morphism ax of (2) is an isomorphism. The examples provided in [21] are surfaces
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whose Albanese variety is isomorphic to the intermediate Jacobian of a rationally connected
threefold. These surfaces do not have in general a representable CHy-group (like the surface
of lines of a smooth cubic threefold, they rather tend to be of general type). In the paper
[6], Colliot-Thélene asked the following

Question 1.3. Does there exist a smooth complex projective variety X with representable
CHy group and not having a universal 0-cycle?

The purpose of this paper is to present such an example.

Theorem 1.4. There exists a smooth projective threefold X such that CHo(X) is repre-
sentable and X does not admit a universal 0-cycle.

Our examples have some torsion in their integral Betti cohomology, so one might ask
whether such examples exist without torsion in their integral Betti cohomology. From the
viewpoint of the integral Hodge conjecture, they also provide an example of a curve class
(that is, a Hodge homology class of degree 2) on a fourfold with torsion canonical bundle,
that is not algebraic modulo torsion. Benoist and Ottem construct in [3] examples of non-
algebraic torsion curve classes on a threefold with torsion canonical bundle. Our construction
in fact relies on the results of [3]. In Section 3.1, we will provide a mild generalization and
a short proof of one of their statements (see Proposition 3.5).

The assumptions of Theorem 1.4 are very restrictive geometrically. Indeed, we have

Lemma 1.5. Let X be a smooth projective complex variety with representable CHy group
and nontrivial Albanese variety. Then there exist a smooth projective curve C such that
J(C) = Alb(X) and a dominant morphism ¢c : X — C such that the Albanese morphism
of X 1is the composition of ¢¢c and the Albanese morphism of C.

Proof. When CHy(X) is representable, Mumford’s theorem [14] (see also [5] for an alter-
native proof), tells that H°(X, Q%) = 0 for i > 2. It follows that the Albanese morphism
albx : X — Alb(X) of (1) has rank < 1 everywhere, hence factors (using the Stein factor-
ization) as the composition of a morphism ¢¢ : X — C and a morphism ¢ : C — Alb(X).
Using the universal property of the Albanese morphism for X and C, we conclude that 1
induces an isomorphism Alb(C') = Alb(X). O

Remark 1.6. As the proof above shows, the conclusion of Lemma 1.5 holds under the
asssumption that h*%(X) = 0 for i > 2.

The fact that Alb(X) is isomorphic to the Jacobian of a curve makes a priori easier for
X to have a universal 0-cycle. Indeed, for a Jacobian J(C), or for any abelian variety which
is a direct summand in a Jacobian, we can use the universal Poincaré divisor on J(C) x C
and this reduces the problem of constructing a codimension n cycle in Alb(X) x X to the
problem of constructing a codimension n cycle in C' x X.

We will discuss in Section 2 various properties of a smooth projective variety X related
to the existence of a universal 0-cycle (see Proposition 2.2). We will relate in particular the
existence of a universal 0-cycle for X with the structure of the Kiinneth projector 4; on X.
Proposition 2.2 says that the property of having a universal 0-cycle has a good formulation
in terms of the motive of X when one knows furthermore that the Albanese variety of X is a
direct summand in the Jacobian of a curve, which is the case when X has representable CH
by Lemma 1.5. Note that, thanks to [2] and the recent work [7], it is now known that an
abelian variety is not always a direct summand in the Jacobian of a curve (equivalently by [2]
and [24], the integral Hodge conjecture can be wrong for curve classes on abelian varieties).
Motivated by Lemma 1.5, we will consider more generally in Section 2.2 smooth projective
varieties X whose Albanese map factors as the composition of a dominant morphism

¢X2X—>C,

and the Abel map of C, as it is the case when CHy(X) is representable by Lemma 1.5. Recall
that the index of a dominant morphism X — B, where B is irreducible, is the greatest



common divisor of the degrees deg(Z/B) for all Z C X closed irreducible dominant over B
and of dimension equal to dim B. In the situation above, we will discuss the relation between
the index of ¢x being 1 and the existence of a universal 0-cycle for X (see Proposition 2.7).
In one direction, we will prove that, if the Albanese map of X factors through a morphism
¢x : X — C asin Lemma 1.5 and ¢x has index 1, X has a universal 0-cycle. This statement
has no converse, as we will also exhibit an example where the index of ¢x is not equal to 1,
but X has a universal O-cycle.

We will prove Theorem 1.4 in Section 3. In Section 4, we will discuss the case of surfaces
with representable CH, group, where more can be said thanks to the structure of surfaces
with ¢ # 0, pg = 0. Such surfaces X are quotients of products of curves by a finite group,
and we prove that the index of ¢x is 1 in the case of a cyclic group.

Thanks. I thank Jean-Louis Colliot-Théléne for his remarks and careful reading. I also
thank the referee for his/her useful comments and corrections.

2 A discussion of universal 0-cycles

Let X be a smooth projective variety of dimension n over the complex numbers. The
Albanese variety of X is an abelian variety, which as a complex torus is constructed as the
quotient

Ab(X) = H"(X, Q% 1/H* " NX,Z)y = H*(X,Qx)*/H1 (X, L),

where in both expressions, “tf” means “modulo torsion”. It follows that the Albanese map
induces by construction an isomorphism of lattices

Hy(X, Z)ys = Hi(AIb(X), Z). (3)

Here all the cohomology groups are integral Betti cohomology groups of the corresponding
complex manifolds. The isomorphism (3) has an inverse in Hom(H; (Alb(X),Z), Hi (X, Z))
which provides an element vx € H'(Alb(X),Z) @ H*"~Y(X,Z)t. As the isomorphism (3)
is an isomorphism of Hodge structures, the class vx provides by Kiinneth decomposition a
Hodge class of degree 2n on Alb(X) x X, also denoted yx. The existence of a universal
0-cycle on X is equivalent to the fact that vx is algebraic, or rather that there exists an
algebraic cycle I' of codimension n in Alb(X) x X, such that the Kiinneth component of type
(1,2n —1) of [I'] equals yx. In particular, if a smooth projective variety X has no universal
O-cycle, then the class vx on Alb(X) x X provides a counterexample to the integral Hodge
conjecture. More precisely, it provides a counterexample to the integral Hodge conjecture
modulo torsion, since the class vx is well-defined in H?"(Alb(X)x X, Z) and is not algebraic
there when X has no universal 0-cycle.

If X, Y are smooth projective complex varieties, with dim X = n, and Z € CH" (Y x X),
the morphism of Hodge structures

[Z]« : HL(Y, Z)ts — H1(X,Z)s

induces a morphism of complex tori (which are in fact abelian varieties) that we will also
denote
[Z]. : Alb(Y) — Alb(X).

We will use the following construction.

Lemma 2.1. Let X be a smooth projective variety and C a smooth curve with a morphism
j:C — X inducing
Jx 2 J(C) = Alb(X).

Assume there exists a morphism of abelian varieties s : Alb(X) — J(C) such that

50 jx = kldam(x) (4)



for some integer k. Then there exists a codimension n cycle
I' e CH"(AIb(X) x X)

such that
T[], = kldamm(x) : Alb(Alb(X)) = Alb(X) — Alb(X).

Proof. The curve C' admits a universal O-cycle I'c € CH'(J(C) x C) (see Example 1.2).
Then the codimension n-cycle

I'x := (5,1dx)*((Id s(¢), 7)«(Tc)) € CH"(AIb(X) x X)
has by (4) the property that
O

As a first application, let us prove that any smooth projective variety X has a universal
0-cycle with rational coefficients. Indeed, choosing a smooth curve C' which is a complete
intersection of ample hypersurfaces in X, and denoting 5 : C' — X the inclusion map,

Je : Hi(C,Z) — H (X, Z)s

is a surjective morphism of Hodge structures. By semisimplicity of polarized weight 1 Hodge
structures, there exists a morphism of Hodge structures

s: Hi(AIb(X),Z2) =2 Hi(X,Z)yy — H1(C,Z)
such that
Jx 05 =kldy, (x2),; (5)
for some nonzero integer k. The morphism s induces a morphism
5: Alb(X) — J(C)

of abelian varieties and j., 5 satisfy the assumptions of Lemma 2.1. Hence Lemma 2.1
provides a universal 0-cycle with rational coefficients.

let us now discuss the link between universal 0-cycle and Kiinneth decomposition of the
Albanese motive. Assume that the smooth projective complex variety X of dimension n
has the property that H*(X,Z) has no torsion. The Kiinneth components §; € H (X, Z) ®
H?"~%(X,Z) of the diagonal of X are then well defined, and it is known that d; is algebraic
(see [10]), at least with Q-coefficients.

Proposition 2.2. The following statements are equivalent:

(i) The Kiinneth projector 41 is algebraic on X x X and is the class of a cycle supported
on X x C for some curve C C X.

(i) X has a universal 0-cycle and the Albanese variety of X is a direct summand in the
Jacobian of a curve.

(i) The motive of X contains a direct summand M, with the property that My is a
direct summand in the motive of a curve and Alb(X) = Alb(M;).

In the statement above, we allow nonconnected curves, so “Jacobian of a curve” stands
for “product of Jacobians of curves”.

Remark 2.3. If X has representable CHy group, then it is automatic that the Albanese
variety of X is a direct summand in the Jacobian of a curve by Lemma 1.5, so in this case
we see that X has a universal O-cycle if and only if the motive of X is the direct sum of a
motive with CHg = 0 and a motive which is a direct summand in the motive of a curve.



Proof of Proposition 2.2. Assume there exist a curve C' C X and a codimension 1 cycle
Z C X x C such that the class of Z in X is §;. We can replace by desingularization C' by
a smooth curve C with a morphism j:C — X, such that Z lifts to a codimension 1 cycle
Z C X x C. Then, as the class of Z in X is d;, we have for any a € Hy(X,Z)

a = 61.(a) = ju([Z].(a)) in Hi(X,2). (6)

It follows from (6) that, via 7, :7(5’) — Alb(X), Alb(X) is a direct summand of J(O),

with right inverse given by o := [Z]. : Alb(X) — J(C), which proves the second statement
in (ii). Next, we apply Lemma 2.1 to j and o and consider the cycle

Iy = (0,1dc)* o (Id(cy, )+ (P5) € CH"(AIb(X) x X).

It has the property that [['1]. : Alb(Alb(X)) = Alb(X) — Alb(X) is the identity, since
js 00 =Idm(x). Hence X has a universal O-cycle. Thus (i) implies (ii).
In the other direction, let I' € CH"(Alb(X) x X) be a universal O-cycle for X. This
means that
[[]. : Hi(AIb(X),Z) — H (X, Z)

is the natural isomorphism. Let D be a (nonnecessarily connected) smooth projective curve
such that Alb(X) is a direct summand of J(D), and let

o:Alb(X) — J(D), m: J(D) — Alb(X)

be such that 7o ¢ = Idap(x). Finally, let ip : D — J(D) be the natural embedding and
consider the cycle
I'h:=Tomoip € CH"(D x X).

We have
[1]« = [[)s oms 0ips =7 : J(D) = Alb(X).

Next, let Pp € CH'(J(D) x D) be a universal O-cycle (or Poincaré divisor) for D and
consider next the cycle
Iy = Ppogoalby € CH,(X x D).

We have [['3]. = o : Alb(X) — J(D). It follows that I'y :=T'; o'y € CH"(X x X) has the
property that

[Cxle = 1)« 0 o) = w00 = Idam (X). (7)

Finally I'x is supported on X x D’ where D' C X is the curve in X defined as pry(Supp(T'y).
Furthermore one easily checks that [['x|* = 0 on HY(X,Z) for i # 1. It follows that
[['x] = 61. This proves that (ii) implies (i).

The equivalence of (ii) with property (iii) is now clear. If we have a direct summand M;
as in (iii), then M; has a universal 0-cycle, being a direct summand in the motive of a curve
C, and its Albanese variety is a direct summand of J(C). Hence (ii) holds. Conversely,
if (ii) holds, then we construct I'; and T’y as above and (7) exactly says that [['s] realizes
motivically Hy(X,Z) as a direct summand in Hq(D,Z). O

2.1 Previous examples of smooth projective varieties with no uni-
versal (-cycle

The first example of a smooth projective surface not admitting a universal 0-cycle is con-
structed in [21]. It builds on the fact that there exist rationally connected 3-folds Y with no
universal codimension 2 cycle parameterized by the intermediate Jacobian J(Y') (such exam-
ples are constructed in [22]). Here a universal codimension 2 cycle Zyuiy € CH?*(J(Y) x V)
is characterized by the condition that the composite map

J(Y) = CH*(Y )ag — J(Y),



i wY (Zuniv,t - Zuniv,OJ(y))

is the identity, where 1y is the Abel-Jacobi morphism (an isomorphism in this case) of Y.
The second ingredient is the following result proved in [21]:

Theorem 2.4. Given a smooth projective rationally connected threefold Y over C, there
exist a smooth projective surface S and a codimension 2 cycle Z € CH2(S x Y) such that
the induced Abel-Jacobi map

[Z]. : Alb(S) — J(Y)

18 an tsomorphism.

The varieties Y and S being as above, if Y does not have a universal codimension 2
cycle, S does not have a universal 0-cycle, since a universal 0-cycle

Zg € CH?(AIb(S) x §) = CH*(J(Y) x S)
would produce a universal codimension 2 cycle
Zuniv=2025 € CH*(J(Y) xY)

for Y.
A particular case of this construction also solves in the negative the following question
asked by Colliot-Théléne in the original version of [6].

Question 2.5. Given any smooth projective variety X over the complex numbers, and
any function field K = C(C), where C is a curve, is the natural morphism CHo(Xg)o —
Alb(X)(K) surjective?

Indeed, we first observe the following

Proposition 2.6. Assume the smooth projective variety X has the property that Alb(X) is
a direct summand, as an abelian variety, in the Jacobian J(C) of a smooth projective curve
C. Then the following properties are equivalent.

(i) X has a universal 0-cycle.

(ii) For any curve D, the natural morphism ax : CHo(Xk)o — Alb(X)(K) is surjective,
where K = C(D).

We give the proof for completeness, although similar statements and arguments can be
found in [24] and [6].

Proof. (i) implies (ii) in an obvious way, since having a morphism ¢ : D — Alb(X) and a
universal O-cycle I' € CH" (Alb(X) x X) of relative degree 0 over Alb(X), where n := dim X,
we get by restriction to D x X a cycle I'p € CH"(D x X), of relative degree 0 over D,
which by definition of a universal O-cycle, has the property that the composed morphism
albx o'p, : J(D) — Alb(X), equals ¢, : J(D) — Alb(X). It follows that, denoting by
Jjp : D — J(D) a chosen inclusion, the two morphisms albx oI'p.ojp : D — Alb(X) and ¢
differ by a translation. Correcting I'p by the adequate cycle D x zg, where zp € CHo(X )hom,
gives a cycle I, € CH"(D x X) such that

alby oT'p, 0jp = ¢ : D — Alb(X). (8)

Equation (8) exactly tells that the image of I, in CHy(X g )o maps to ¢x € Alb(X)(K).
In the other direction, assume that Alb(X) is a direct summand in J(C), that is, for

some abelian variety B,
Alb(X) x B J(C),

with inclusion ¢ : Alb(X) — J(C) and projection p : J(C) — Alb(X), such that poi =
Ida(x). We observe that the curve C has a universal O-cycle I'c (see Example 1.2). Let ic
be the natural inclusion of C in J(C) (it is in fact defined up to translation). The composite



morphism pc = poic : C — Alb(X) gives a K-point in Alb(X)(K), where K = C(C), and
assuming (ii), there is a codimension n cycle Zo € CH"(C x X), of relative degree 0 over
C, such that

alby o Zg, =pc : C — A. (9)

We next consider the composition Zgo am(x) := Zc o 'c oi € CH"(AlIb(X) x X) and it
follows from (9) that ale o ZC’,AIb(X)* = IdAIb(X) : Alb(X) — Alb(X) O

We now get a negative answer to Question 2.5 by considering a smooth projective ra-
tionally connected 3-fold Y which does not admit a universal codimension 2 cycle while the
intermediate Jacobian J(Y) has dimension 3, so that it is the Jacobian of a curve. Such
examples are constructed in [22]: one can take for Y the desingularization of a very gen-
eral quartic double solid with seven nodes. We then introduce as before a surface S as in
Theorem 2.4, which has Alb(S) = J(Y'), hence has its Albanese variety isomorphic to the
Jacobian of a curve. Furthermore, S has no universal 0-cycle because Y does not have a
universal codimension 2 cycle, hence provides the desired example using Proposition 2.6.

2.2 Varieties fibered over a curve

We now consider smooth projective varieties X such that the Albanese map of X factors
through a curve as in Lemma 1.5. We first prove

Proposition 2.7. If the Albanese map of X factors through a morphism ¢x : X — C,
where C' is a smooth projective curve such that ¢px. : Alb(X) — J(C) is an isomorphism,
and ¢x has index 1, X has a universal 0-cycle.

Proof. By definition, if X, B are smooth projective and ¢ : X — B is a dominant morphism
of relative dimension d and index 1, there exists a cycle I' € CHd(X ) such that ¢,I' = B
in CHO(B). The cycle T' has a cohomology class [I'] acting by cup-product on integral
cohomology of X and we have by the projection formula

¢(MJU¢ ) = a (10)

for any o € H*(B,Z).
We now consider the case where B is a curve C and ¢ = ¢x induces an isomorphism

Alb(X) = J(O).
If the index of ¢x is 1, the construction above gives a cycle
I = (¢x,1dx).I € CH (C x X)

satisfying by (10)

bxso[l']. =1d: HY(C,Z) — H*(C, 7). (11)
As before we use a Poincaré divisor Zo € CH'(J(C) x C) such that

Zow : Hi(J(C),Z) — Hy(C, Z)

is the natural isomorphism, inverse of albey : H1(C,Z) — H1(J(C),Z). Tt follows from (11)

that the cycle
I":=Zcol" € CH"(J(C) x X), n =dim X

has the property that
[["]s « Hi(J(C),Z) — H\(X,Z)



satisfies @ x. o [I"]x = Zox. As ¢x. induces by assumption an isomorphism
H(X,Z) = H(C,Z)

we conclude that [I']. : H1(J(C),Z) = H1(Alb(X),Z) — H1(X,Z) is the inverse of the
isomorphism alby, : H1(X,Z) = Hi(Alb(X),Z). Hence I' is a universal 0-cycle for
X. O

A particular case of Proposition 2.7 is the case of rationally connected fibrations over
a curve, which is considered in [6] and [24]. They admit universal 0-cycles by [9] and
Proposition 2.7.

We now show that the implication of Proposition 2.7 is strict by constructing an example
of a smooth projective surface S with a morphism ¢ : S — C to a curve, inducing an
isomorphism ¢, : Alb(S) = J(C), such that the index of ¢ is d > 1 and S admits a universal
0-cycle. We start with any curve C of genus > 0 and choose a smooth curve

rccxc (12)

such that the second projection p : T' — C has degree d and I'* : H'(C,Z) — H'(C,Z) is the
identity. This exists for d large enough, by taking (for example) I' to be a smooth member
of the linear system |Ocxc((d—1)(ex C)+d (C x ') + A¢)| for some points ¢, ¢ € C' and
integers d, d’ large enough, where A¢ is the diagonal of C. We now choose an embedding 4
of C in P3, which gives an embedding (Idc,i) of C' x C, hence of T, in C' x P3. For some
very ample line bundle L on C, we choose the surface S C C' x P3 to be a very general
complete intersection of members of the linear system |L X Ops(d)| containing (Idc,)(T).
The first projection ¢ : S — C induces by the Lefschetz theorem on hyperplane sections an
isomorphism Alb(S) = J(C). We have by construction C x I' C C' x S and C x I" contains
the transpose 'T')y = I of the graph of the morphism p’ : I' — C given by the first projection
n (12). Hence Ty is contained in C' x S and using the fact that

<mlﬂ =D, pr1|tl—‘p/ = p/7

its image in C' x C under (Id¢, ¢) is the original curve I' C C' x C. Hence it acts as the
identity on H'(C,Z), so S has a universal 0-cycle. Finally we argue as in [12] for example,
to conclude that for very general S, the Néron-Severi group of S is generated by a fiber of
@, the line bundle Ops (1) and the class of the curve (Idc,4)(T"). This immediately implies
that the index of ¢ is d, since I' has degree d over C.

3 A 3-dimensional example for Question 1.3

We give in this section an example of a smooth projective 3-fold X with representable CHy
and no universal 0-cycle, thus proving Theorem 1.4. Let S be a projective K3 surface over
the complex numbers equipped with a fixed point free antisymplectic involution g. We
denote by X := S/g the corresponding Enriques surface. Let E be an elliptic curve with a
translation t¢ by a point £ of order 2. We denote E¢ := E /t.

The variety we will consider is

X = (E x 8)/(t, 9)- (13)
It admits two natural morphisms
pEsZX%ES,pEZX%Z. (14)

Lemma 3.1. (i) The morphism pg, induces an isomorphism

PE:+ - CH()(X) — CH()(Eg)



In particular CHo(X) is representable.
(ii) One has Alb(X) = E¢ and the morphism pg, identifies (up to translation) with the
Albanese map of X.

Proof. The morphism pg, : X — E¢ = E/t¢ has all its fibers isomorphic to the K3 surface
S, which is connected and simply connected. It follows that pg. : H1(X,Z) — H1(E¢,Z) is
an isomorphism, which proves (ii). As (ii) is proved, in order to prove (i), it suffices to prove
that the kernel CHg(X)ap of the Albanese morphism CHg(X )nhom — Alb(X) is trivial. As
this kernel has no torsion by [18], it injects by pull-back in the invariant part under (¢, g)
of the group CHo(E X S)ab. It thus suffices to show that the involution (¢, g) acts by —Id
on the group CHo(E X S)a, ® Q. The involution t¢ acts as the identity on CHy(E) ® Q.
The involution g acts by —Id on the group CHg(S)nom by [4]. With rational coefficients,
choosing a 0-cycle og of degree 1 which is g-invariant, we have a decomposition

CHo(E x 8) ®Q = CHy(E)g ® 05 @ (15)
Im (CH()(E)Q ® CHO(S)hom — CHO(E X S)Q)a

and the group CHg(E X S)ap ® Q is contained in the second summand of the decomposition
(15), on which (t¢, g) acts by —Id, which concludes the proof. O

We now prove the main result.

Theorem 3.2. For a fired K3 surface S with involution g over an Enriques surface X,
there exists an elliptic curve E with a translation te of order 2, such that the variety X
constructed above does not admit a universal 0-cycle.

Proof. Given S, E and &, let us assume that X has a universal 0-cycle. By Lemma 3.1, a
universal 0-cycle for X is given by a 1-cycle

I'e CHl(Eg X X)

which has the property that [I']. : Hi(E¢,Z) — H1(X,Z)y is inverse to the isomorphism
pEg* : Hl(X, Z)tf — Hl(EE,Z), that is

Piee o [T, = 1d : Hy(Ee, Z) — Hy(Ee,Z). (16)

Dualizing (16) and passing to Z/2-coefficients, we get that

[T o pl, =1d : H'(Eg, Z/2) — H'(E¢, Z/2). (17)

The étale double covers S — X, £ — E¢, ¢ = (pg,,ps) : X — E¢ x X are given by
elements
os € H((X,Z/2), op, € H'(E¢,Z/2), ox € H' (B¢ x £,Z/2)

that are characterized by the fact that they are nonzero and they are annihilated respectively
by the pull-backs maps

HY(%,7/2) — H'(S,Z/2), H'(E¢,Z/2) — H'(E,Z/2), ¢* : H'(E¢x%,7/2) — HY(X,7/2).
Recalling the notation of (14), we claim that
ox =prg, (o) + pr3;(os) in HY(Ee x £,7./2), (18)
where pr B¢ Pr'y are the projections from E¢ x X to its factors, so that
PEe = PIg, ©¢, Ps = Pry og. (19)
In order to prove (18), we write

ox = pri, (@) + pr5(B) in HY(Ee x £,7./2)



for some classes a € H'(E¢,Z/2), B € H'(X,Z/2). 1t follows that for any e € E¢, s € &,

Ox|{e}xs = By OX|Eex{s} = Q.

Finally we observe that the fiber of pg, over e is the double cover of 3 isomorphic to S and
the fiber of px; over s is the double cover of E¢ isomorphic to E, so that

B=o0s, a=0g,

which proves the claim.
The meaning of (18) is that

0" (prg, (95 +pri(ox)) = 0 in H'(X,Z/2), (20)
which thanks to (19) rewrites as
Pi (05 +p5(os) =0 in H'(X,Z/2). (21)
Let
Ty = (Idp,, p,)«(T) € CHy(Ee x Ee), Ty := (Idg, , ps)+(T) € CHy (B¢ x %),
It follows from (21) that
I (P (08:)) + T* (P (0%)) = 0 in H' (E¢, Z/2),
which can be written as
I'5(0p) +5(ox) =0in H' (Ee,Z/2). (22)
By equation (17), I'j; acts as the identity on H'(Eg,Z/2), hence we finally get from (22)
op. =T%(os) in H' (B¢, Z/2). (23)

The results of [3, Propositions 1.1 and 2.1] tell now that there exist F¢, og, such that
(23) holds for no l-cycle I's € CH;(E¢ x ), (see also Proposition 3.5 for an alternative
proof and generalization of this statement). The analysis above thus shows that for this
choice of S and of pair (E¢, og,) (determining a double cover E with translation t¢), X
does not have a universal 0-cycle. O

Corollary 3.3. For S fired and E very general, the index of pp, : X — F¢ is 2.

Proof. The index of pg, is either 1 or 2, since the image of a curve £ x s in X for some
s € S has degree 2 over E,. However, the index cannot be 1, as otherwise Proposition 2.7
would provide a contradiction with Theorem 3.2. O

We finish with the following statement, which combined with Corollary 3.3 shows that
the index of pg, is not dictated by topological or Hodge-theoretic reasons.

Lemma 3.4. There exists an integral Hodge class o € H*(X,Z) of degree 4 on X such that
pEc«a = 1p, in H(Ee, 7).

Proof. We note that, because H?(X,Ox) = 0, any integral Betti cohomology class a €
H*(X,Z) is Hodge. So it suffices to prove the existence of an integral Betti cohomology
class a € H*(X,Z) such that pg,.a = 1, in H°(E¢,Z). This statement is topological, so
it suffices to prove the result for a specific elliptic curve E with involution ;. We choose a
K3 surface with involution g over an Enriques surface satisfying the property that NS(S)
is g-invariant. We now observe that S has elliptic pencils, which must be globally invariant
under ¢g. The action of ¢ on the base P! of the pencil has two fixed points, and each one
produces a possibly singular elliptic curve E C S, invariant under g. As g acts without fixed
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point on E, F must be smooth and g acts as an order 2 translation t¢ on it. Indeed, the only
possibility for a singular fixed fiber E would be that E is the union of two smooth rational
curves meeting in two points, where g exchanges the two components. This however would
contradict the fact that NS(S) is g-invariant. We now consider the diagonal inclusion of E
in E' x S. It is invariant under (t¢,g) and we get a curve E/(te,9) C (E x S)/(te,9) = X,
which is isomorphic to E¢ := E/t¢ via pg,. The class o := [E/(t¢,9)] € HY(X,Z) is the
desired one. O

3.1 On a result of Benoist and Ottem

Our proof of Theorem 1.4 relied on the results of Benoist and Ottem in [3]. We give in this
section a short proof and a mild generalization of the statement in [3] that we have been
using.

Proposition 3.5. Let W be a smooth projective complex variety of dimension d, and let
0+# B € H (W,Z/k) for some prime integer k > 1. Then there exist only countably many
elliptic curves E, such that there exists a correspondence I' € CHd(E x ) with

[T)*B8 #0in H'(E,Z/k).

Proof. We argue by contradiction and, using standard spreading arguments, we get that
there exist a smooth projective curve B, a smooth nonisotrivial elliptically fibered surface
f:T — B and a correspondence I' € CHY(T x W), such that the class § = [[]*j €
HY(T,Z/k) does not vanish on the smooth fibers T, of f. We can furthermore assume that
f has a section, by performing an extra base-change B’ — B if necessary. The class 3’
induces an étale cyclic cover e : T" — T of degree k, and the map f' := foe: T’ — B has
connected elliptic general fiber T}, obtained as the étale degree k cyclic cover of the fiber T
induced by the class B"Tb (which is nontrivial by assumption). The two surfaces satisfy

HYT,O0r) = H(T',Op),i=0, 1, 2. (24)

This follows indeed from the fact that the order k automorphism i of 77 over T acts by a
finite order translation of the smooth fibers Tj. It thus acts as the identity on CHy(T})q for
a general b, hence also on CHy(T")g, which implies by [14] that it acts as the identity on
HY(T',Or). Formula (24) gives that

X(T/7 OT’) = X(T7 OT))

while we also have

X(T/7 OT/) = kX(Tv OT)

since e : T" — T is étale of degree k. We thus conclude that x (7, Or) = 0. However the
Kodaira canonical bundle formula [11], [19] shows that a surface T admitting a nonisotrivial
elliptic fibration with a section cannot have x(T,Or) = 0. O

Proposition 3.5 applies for example to quintic Godeaux surfaces, quotients of quintic
surfaces S in P? by the action of a certain order 5 automorphism g acting freely. It is
proved in [25] that such a surface ¥ has trivial CHy group, hence the whole argument
described previously would work as well, thanks to Proposition 3.5, for a general quotient
X = (E x S5)/(te, g), where E is very general and t¢ is a translation by a point of order 5.
Such an X has representable CHy group and has no universal 0-cycle.

4 The case of surfaces

A ruled surface, and more generally a rationally connected fibration over a curve, admits a
universal 0-cycle, thanks to Lemma 2.7 (see also [6], [24]). We also have the following.
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Proposition 4.1. Let S be a smooth projective surface with py(S) = 0 and ¢(S) # 0.
Assume the morphism
ps: S — C, J(C) = Alb(S)

given by Lemma 1.5 has the property that the class [S.] € H?(S,Z) of the fiber S. = ¢ (c)
s primitive. Then the index of ¢g is 1 and S admits a universal 0-cycle.

Proof. By Proposition 2.7, the first statement implies the second one. Let us now prove
that under our assumptions, the index of ¢g is 1. As the class [S.] is primitive, Poincaré
duality on H?(S,Z) tells that there exists a class v € H2(S,Z) such that (v,[S.]) = 1. As
pg(S) = 0, the theorem on (1,1)-classes tells that H?(S,Z) = NS(S), hence v = [D] for
some divisor class D € NS(S). Thus D has degree 1 along the fibers of ¢g. O

We now consider the non-uniruled case and first recall the following result due to
Beauville [1].

Theorem 4.2. [1, Proposition 11] Let S be a non-uniruled smooth projective surface such
that py(S) = 0, ¢(S) # 0. Then S is birational to a quotient (Cy x C3)/G, where G is a
finite group acting by automorphisms of both C1 and Cs, without fized points on C1 x Cs.
Furthermore, at least one of the two curves is elliptic, and we have (up to exchanging Cy
and C3)

Cl/GgEv CQ/Gg]P)la

where E is elliptic and Alb(S) = J(E) =2 E.

Remark 4.3. We can assume that G acts faithfully on both C; and C5, because otherwise,
denoting by H the kernel of morphism G — Aut(C;), we can replace Co by Cy/H and
G := G/H acts on C; and C} with (C; xC3)/G = (CyxCy/H)/G. Assuming the faithfulness
condition, if Cy is not elliptic, then the group G is commutative, because C is elliptic and
C4/G is also elliptic.

We now have

Proposition 4.4. Assume S is as above and the group G is cyclic. Then the index of ¢g
is equal to 1, hence S has a universal 0-cycle.

Proof. Again the second statement follows from the first. Let G be cyclic generated by g,
and assume the order of g is d. Using the notation of Theorem 4.2, we know that Cy /G = P!,
An irreducible degree d cyclic cover of P! has an affine version with equation

ud = (t — tl)al e (t — tk)ak,

where the ged of {d, a;, i =1,..., k} is 1 since otherwise the curve is not irreducible. Let
r; := ged(d, a;). After normalization, the ramification order of Cy — P! over t; is d/r; and
d/r; is the order of the subgroup G; C G fixing any point ¢; € Cy over t; € PL. The surface
S contains the quotient (Cy x {¢;})/G;, which has degree r; over C1/G. As the ged of the
set {r;} is 1, we conclude that the index of ¢g is 1. O
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