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Abstract
In this report, we will give a brief introduction to abelian categories, injective objects, injective

resolutions, acylic resolutions and hypercohomology.

1 Introduction

Definition 1. [Abelian Category] An abelian category C is a category with additional information:

1. For all objects A and B, Hom(A,B) is an abelian group.

2. The following map:
Hom(A,B)×Hom(B,C)→ Hom(A,C)

via (f, g) 7→ g ◦ f is Z-bilinear.

Remark: In this special category setting, we require functor between objects to respect direct sum. For
example, for a functor F : A → B, we have for every U and V in A, F (U ⊕ V ) = F (U)⊕ F (V ).

Example 2. [Example of an Abelian Category] A category of modules over a ring.

2 Injective Objects and Resolution

Definition 3. [Injective Object] A object in an abelian category C is injective if for every injective morphisms
A→ B and a morphism A→ C, there exists a morphism B → C that makes the following diagram commute

0 // A

f

��

// B

∃g��~~~~~~~

C
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Example 4. In an abelian category, the object {0} is injective.

Example 5. In modules over Z, an abelian group D is divisible if and only if D is an injective Z module.
In particular, Q is an injective Z module.

Definition 6. [Complex] A complex M · is a set of objects {Mi}i∈Z, and a set of morphisms {di : Mi →
M+1}i∈Z such that di ◦ di−1 = 0.

From now on, we will consider only left-bounded complexes.

Definition 7. [Morphisms of Complexes] A morphism of complexes φ· : (M ·, dM )→ (N ·, dN ) is a collection
of morphisms {φk : Mk → Nk}k∈Z that makes the following diagram commute:

. . . // M i
diM //

φi

��

M i+1 //

φi+1

��

. . .

. . . // N i

diN

// N i+1 // . . .

In other words, φi+1 ◦ diM = diN ◦ φi

Definition 8. [The i-th degree cohomology] The i-th degree cohomology of the complex (M ·, dM ) is an
object given by

Hi(M) :=
ker di : M i →M i+1

im di−1 : M i−1 →M i

A morphism of complexes φ· : M · → N ·, induces a morphism of cohomologies. In other words, we may
define Hi(φ) : Hi(M)→ Hi(N) via the association [m] 7→ [φ(m)].

Definition 9. [Homotopy] Let φ : (M,dM ) → (N, dN ) and ψ : (M,dM ) → (N, dN ) be morphisms of two
complexes. A homotopy between φ and ψ is a collection of morphisms {Di : M i → N i−1}i∈N such that in
the following diagram

. . . // M i−1

��

// M i

��Di
{{xxxxxxxx

diM // M i+1

��Di+1
{{xxxxxxxx

// . . .

. . . // N i−1
di−1
N

// N i // N i+1 // . . .

We have Di+1 ◦ diM − d
i−1
N ◦Di = φi − ψi.

This algebraic definition of homotopy in fact may be seen in texts on differential topology or simplicial
homology. We shall see why the two homotopic maps φ and ψ induces the same mappings Hi(φ) and Hi(ψ).
Suppose we have [ω] ∈ Hi(M ·), then φi − ψi(ω) is exact because

[(φi − ψi)(ω)] = [(Di+1 ◦ diM − di−1N ◦Di)(ω)] = [−di−1N ◦Diω] (1)

which is 0 in cohomology. In other words, the cohomology functor is homotopy invariant.

Definition 10. [Resolution] A complex {M i}i≥0 is a resolution of an object A in a category C if the complex
(M ·, dM ) is exact and there exists an injective morphism j : A→M0 such that ker(d0 : M0 →M1) = j(A).
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3 Sufficiently Many Injective Objects

Definition 11. [Sufficiently many injective objects] An abelian category C has sufficiently many injective
objects if for each A an object in C, there exists an injective object I and a morphism j : A → I which is
injective.

Example 12. Every module over a ring R with identity can be embedded into an injective R-module.

Lemma 13. If C has sufficiently many injective objects, then every object of C has an injective resolution.

The trick to finding an exact sequence I · is by passing through the cokernel and the application of the
property of an injective object.

Proof. First we start with an object A. Since C has sufficiently many injective objects, there exists an
injective morphism j : A→ I0 for some injective object I0. Suppose we have a sequence as follows:

0 // A
j // I0

d0 // I1 // . . . dk−1
// Ik

Then there exists an injective object Ik+1 such that coker dk−1 may be embedded into Ik+1 as follows

0 // A
d−1

// I0
d0 // I1

d1 // . . . dk−1
// Ik // coker dk−1 // Ik+1

and therefore the kernel of this map Ik → Ik+1 is indeed the image Ik−1 → Ik.

This lemma shows us that every object has an injective resolution. In the next part, we will show that
such resolution is unique up to homotopy equivalence.

Proposition 14. Let I ·, A ↪→ I0, and J ·, B ↪→ J0 be the respective resolutions. If J · is an injective
resolution of B, then a morphism φ : A → B induces a morphism of complexes φ· : I · → J · such that
φ0 ◦ i = j ◦ φ.

Proof. We want to construct a series of φk’s from Ik to Jk and suppose that we have constructed morphisms
from φ1 to φk. The main point is that we want the property φk+1 ◦ diI = diJ ◦ φi. We will use the universal
property of an injective object to construct a morphism from Ik+1 to Jk+1. Therefore, we consider

0 // coker dk−1 //

dkJ◦φ
k

��

Ik+1

∃φk+1
yyssssssssss

Jk+1

Hence we have by commutativity φk+1 ◦ dkI = dkJ ◦ φk.

Proposition 15. Let I ·, i : A ↪→ I0 be a resolution of A and J ·, j : B ↪→ J0 be an injective resolution
of B. Given a morphism φ : A → B, and suppose we have two ways to extend to morphism of complexes
φ· : I · → J ·, ψ· : I · → J · such that φ0 ◦ i = j ◦ φ (and same for ψ), then φ· and ψ· are homotopic.

Proof. Define H1 : I1 → J0 by the injective property of J0 via

0 // coker i

φ0−ψ0

��

d0I // I1

H1
||xxxxxxxxx

J0

3



Suppose we have morphisms H1, . . .Hk. Then we define Hk+1 by

0 // cokerdk−1
dkI //

φk−ψk−dk−1
J ◦Hk

��

Ik+1

Hk+1

yyssssssssss

Jk

4 Derived Functors

Let C and C′ be two abelian categories and F : C → C′ be a left exact functor. Suppose that C has sufficiently
many injective objects. We will define RiF , the derived functor. Before we proceed, we start off with a few
lemmas:

Lemma 16. Let 0 → I → J → K → 0 be an exact sequence. If I is injective, then the exact sequence
splits.

Proof. Since I is injective, we may have a map φ : J → I such that the following diagram commutes

0 // I //

id

��

J //

∃φ���������
K // 0

I

Lemma 17. If J = I ⊕K and J is injective, so is K.

Proof. For every embedding A ↪→ B and a map A → K, we have a map B → K by following the diagram
below:

0 // A //

��

B

{{

K

ι

��
I ⊕K

prK

OO

Lemma 18. Given an exact sequence in C

0 // A
φ // B

ψ // C // 0

there exists injective resolutions A ↪→ I ·, B ↪→ J · and C ↪→ K · such that the following sequence

0 // I ·
φ·

// J ·
ψ·

// K · // 0.

is exact and φ0 ◦ i = j ◦ φ and ψ0 ◦ j = k ◦ ψ.
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Proof. First we construct the first batch (I0, J0,K0). Given that we have sufficiently injective objects,
we may have the following embedding i : A → I0 for some injective object. We consider the following
commutative diagram

0 // A
(i,−φ) // I0 ⊕B //// coker(i,−φ) //

� _

��

0

I0
- 


<<xxxxxxxxx
B
?�

OO

j // J0

And we define j : B → J0 and φ0 : I0 → J0 by following the arrows. Then j is injective because i is, and φ0

is injective because φ is. We may thus have the following diagram

0 // A
φ //

i

��

B
ψ //

j

��

C //

k=?

��

0

0 // I0 // J0
π

// cokerφ0 // 0

To define k, let c ∈ C. By surjectivity of ψ, there exists b such that ψ(b) = c. Therefore, we define
k(c) = π ◦ j(b). This is well-defined, independant of the choice of b because of exactness at B. The mapping
k turns out to be injective (i.e. 5-lemma). Then we proceed to construct the next set.

0 // A //
� _

��

B //
� _

��

C //
� _

��

0

0 // I0
φ0

//

��

J0
ψ0

//

��

K0 //

r=?

��

0

0 // cokeri
l0 // cokerj // cokerl0 // 0

We need to define l. We define l([i0] ∈ cokeri) = [φ0(i0)] ∈ cokerj, which is well-defined and injective. Also,
we define r in a similar manner as before. From the above diagram, we may embed cokeri into I1, and
similar methods give J1 and K1. It remains to show that the last vertical line starting from C is a complex.
We may continue on with

0 // A //
� _

��

B //
� _

��

C //
� _

��

0

0 // I0
φ0

//

��

J0
ψ0

//

��

K0 //

r=?

��

0

0 // cokeri
l0 //

� _

α

��

cokerj //
� _

β

��

cokerl0 //
� _

γ

��

0

0 // I1 //

��

J1 //

��

K1 //

r1=?

��

0

0 // cokerα
l1 // cokerβ // cokerl1 // 0

The importance of taking an injective resolution is that it gives rise to long exact sequences which helps
to compute cohomology.
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Theorem 19. [Existence] Let F : C → C′ be a left exact functor. For every object M of C, there exists
objects RiF (M) in C′ such that

1. R0F (M) = F (M),

2. Every short exact sequence

0 // A
φ // B

ψ // C // 0

Induces a long exact sequence

0 // F (A)
F (φ) // F (B)

F (ψ) // F (C) // R1F (A) // R1F (B) // R1F (C) // . . .

Proof. Let A be an object in C, choose an injective resolution A ↪→ I · and define RiF (M) = Hi(F (I ·)) of
the complex:

0 // F (I0) // F (I1) // F (I2) // . . .

To show property 2, given any exact sequence 0 → A → B → C → 0 in C, by the lemma 18, there exists a
sequence of complexes 0→ I · → J · → K · → 0 with the properties in the lemma. Since short exact sequence
of injective objects

0 // I l // J l // Kl // 0

splits, applying the functor to the sequence obtains another split exact sequence

0 // F (I l) // F (J l) // F (Kl) // 0.

It is a property that split exact sequences gives rise to long exact sequence in cohomology.

Theorem 20. [Uniqueness] The object RiF (M) is determined up to isomorphism.

Proof. Suppose we have two choices of injective resolutions for A, such as I · and J ·, by a previous proposition,
there exists homomorphisms φ : I · → J · and ψ : J · → I · and homotopies D·I : I · → I ·−1, D·J : J · → J ·−1

between ψ· ◦ φ· and id, and φ· ◦ ψ· and id. Applying the functor gives morphisms F (φ), F (ψ) and the
corresponding homotopies F (D·I), F (D·J). Hence the morphisms Hi(F (φ)) and Hi(F (ψ)) are inverses of
each other.

Corollary 21. If I is injective, RiF (I) is 0.

Proof. For the injective object, choose an injective resolution 0 → I → I → 0. Then RiF (I) is zero by
uniqueness.

5 Acyclic Objects

In practice, injective objects are difficult to work with, and one would like to work with acyclic objects
instead.

Definition 22. M is acyclic for the functor F if RiF (M) = 0 for all i > 0.

Proposition 23. Let M · be an acyclic resolution of A with M i’s all F -acyclic. Then RiF (A) = HiF (M ·).

Remark: This means that acyclic objects work just as well as injective objects.
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Proof. The proof is by induction on i. We have the exact sequence

0 // A
d0 // M0 // B // 0 (2)

where B is the cokernel of the map A→M0. Moreover, we have the following resolution

0 // B // M1 // M2 // M3 // . . . .

Since (2) is exact, previous theorem gives us a long exact sequence of derived objects such as this:

0 // F (A) // F (M0) // F (B) // R1F (A) // R1F (M0) // R1F (B) // . . .

Since M0 is acyclic, therefore RiF (M) = 0 for all i ≥ 1. Hence for all i ≥ 1 we have Ri+1F (A) = RiF (B))
and R1F (A) = coker(F (M0) → F (B). By induction hypothesis, suppose RkF (A) = Hk(F (M ·)) for all
k = 1, . . . i (and any object A), therefore, Ri+1F (A) = RiF (B) = Hi(F (M ·+1)) = Hi+1(F (M ·)).

6 Hypercohomology

In this section we will only give a brief exposition of hypercohomology. The full treatment can be found in
[Voi]. We will use the setting for our discussion. Let A and B be two abelian categories, and F : A → B be
a left exact functor. We assume that A has sufficiently many injective objects. We will define for every left
bounded complex M ·, a derived functor RiF (M ·).

Proposition 24. For each left bounded complex M · in A, there is a complex I · in A such that

1. I · is left bounded.

2. Ik is injective in A.

3. φ : M · → I · is a quasi-isomorhism.

4. For each k, φk : Mk → Ik is injective.

We will prove this proposition later. First we need a result:

Proposition 25. For each left bounded complex M · in A, there exists a double complex (Ik,l, (D1, D2))
with

1. Ik,l is injective.

2. (Ik,·, D2) is a resolution of Mk.

3. The inclusion (Mk, dM ) ↪→ (I ·,0, D1)

Proof of proposition 24. Given the double complex (Ik,l, (D1, D2)), we may let (I ·, D) to be

Ik =
⊕
p+q=k

Ip,q, D = D1 + (−1)pD2.

Proof of proposition 25. We will construct the first line (I ·,0, D1). Already, we have the following injection
M0 ↪→ I0,0. We will construct I1,0. In the following diagram:

0 // M0
(i0,−dm)// I0,0 ⊕M1 π // coker(i,−dm) //

� _

η

��

0

I0,0
, �

ιI0,0
99ttttttttt
M1

?�

j

OO

ι1 // I1,0
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Where η is the inclusion by the condition that A has sufficiently many injective objects. We thus let
ι1 : M1 → I1,0 by ι1 = η ◦ π ◦ j and D1 : I0,0 → I1,0 by D1 = η ◦ π ◦ ιI0,0 . Suppose we have constructed the
sequence up till Ik,0 as follows:

Mk−1 //

ιk−1

��

Mk //

ιk

��

Mk+1 // . . .

Ik−1,0
D1 // Ik,0

We construct Ik+1,0 by the following injection coker((ιk,−dM ) : Mk → cokerD1⊕Mk+1) ↪→ Ik+1,0 and note
that ik : Mk → Ik,0 is an injection. For the last assertion, we refer the readers to [Voi]. It uses the following
result:

Lemma 26. Let (I ·, D) be the simple complex associated to the double complex (Ip,q, D1, D2) and suppose
for each p, the complex (Ip,·, D2) is a resolution of Mp via the injection ιp : Mp ↪→ Ip,0. Then the morphism
of complexes ι· : M · → I · induces isomorphism of cohomologies Hp(M ·, dM ) ∼= Hp(I ·, D).
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