Derived Functors, Cohomology and Hypercohomology #### Wei Guo FOO #### March 25, 2013 ### Contents | 1 | Introduction | 1 | |---|-------------------------------------|---| | 2 | Injective Objects and Resolution | 1 | | 3 | Sufficiently Many Injective Objects | 3 | | 4 | Derived Functors | 4 | | 5 | Acyclic Objects | 6 | | 6 | Hypercohomology | 7 | | 7 | Bibliography | 8 | #### Abstract In this report, we will give a brief introduction to abelian categories, injective objects, injective resolutions, acylic resolutions and hypercohomology. ### 1 Introduction **Definition 1.** [Abelian Category] An abelian category \mathcal{C} is a category with additional information: - 1. For all objects A and B, Hom(A, B) is an abelian group. - 2. The following map: $$\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$$ via $$(f,g) \mapsto g \circ f$$ is \mathbb{Z} -bilinear. Remark: In this special category setting, we require functor between objects to respect direct sum. For example, for a functor $F: \mathcal{A} \to \mathcal{B}$, we have for every U and V in \mathcal{A} , $F(U \oplus V) = F(U) \oplus F(V)$. **Example 2.** [Example of an Abelian Category] A category of modules over a ring. # 2 Injective Objects and Resolution **Definition 3.** [Injective Object] A object in an abelian category C is injective if for every injective morphisms $A \to B$ and a morphism $A \to C$, there exists a morphism $B \to C$ that makes the following diagram commute **Example 4.** In an abelian category, the object $\{0\}$ is injective. **Example 5.** In modules over \mathbb{Z} , an abelian group D is divisible if and only if D is an injective \mathbb{Z} module. In particular, \mathbb{Q} is an injective \mathbb{Z} module. **Definition 6.** [Complex] A complex M is a set of objects $\{M_i\}_{i\in\mathbb{Z}}$, and a set of morphisms $\{d^i:M_i\to M_{+1}\}_{i\in\mathbb{Z}}$ such that $d^i\circ d^{i-1}=0$. From now on, we will consider only left-bounded complexes. **Definition 7.** [Morphisms of Complexes] A morphism of complexes $\phi^{\cdot}: (M^{\cdot}, d_M) \to (N^{\cdot}, d_N)$ is a collection of morphisms $\{\phi^k: M^k \to N^k\}_{k \in \mathbb{Z}}$ that makes the following diagram commute: $$\cdots \longrightarrow M^{i} \xrightarrow{d_{M}^{i}} M^{i+1} \longrightarrow \cdots$$ $$\downarrow \phi_{i} \downarrow \qquad \qquad \downarrow \phi_{i+1}$$ $$\cdots \longrightarrow N^{i} \xrightarrow{d_{N}^{i}} N^{i+1} \longrightarrow \cdots$$ In other words, $\phi_{i+1} \circ d_M^i = d_N^i \circ \phi_i$ **Definition 8.** [The i-th degree cohomology] The i-th degree cohomology of the complex (M^{\cdot}, d_M) is an object given by $$H^{i}(M) := \frac{\ker d^{i} : M^{i} \to M^{i+1}}{\operatorname{im} \ d^{i-1} : M^{i-1} \to M^{i}}$$ A morphism of complexes $\phi^{\cdot}: M^{\cdot} \to N^{\cdot}$, induces a morphism of cohomologies. In other words, we may define $H^{i}(\phi): H^{i}(M) \to H^{i}(N)$ via the association $[m] \mapsto [\phi(m)]$. **Definition 9.** [Homotopy] Let $\phi:(M,d_M)\to (N,d_N)$ and $\psi:(M,d_M)\to (N,d_N)$ be morphisms of two complexes. A homotopy between ϕ and ψ is a collection of morphisms $\{D^i:M^i\to N^{i-1}\}_{i\in\mathbb{N}}$ such that in the following diagram $$\cdots \longrightarrow M^{i-1} \longrightarrow M^{i} \xrightarrow{d^{i}_{M}} M^{i+1} \longrightarrow \cdots$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ We have $D^{i+1} \circ d_M^i - d_N^{i-1} \circ D^i = \phi^i - \psi^i$. This algebraic definition of homotopy in fact may be seen in texts on differential topology or simplicial homology. We shall see why the two homotopic maps ϕ and ψ induces the same mappings $H^i(\phi)$ and $H^i(\psi)$. Suppose we have $[\omega] \in H^i(M^{\cdot})$, then $\phi^i - \psi^i(\omega)$ is exact because $$[(\phi^{i} - \psi^{i})(\omega)] = [(D^{i+1} \circ d_{M}^{i} - d_{N}^{i-1} \circ D^{i})(\omega)] = [-d_{N}^{i-1} \circ D^{i}\omega]$$ (1) which is 0 in cohomology. In other words, the cohomology functor is homotopy invariant. **Definition 10.** [Resolution] A complex $\{M^i\}_{i\geq 0}$ is a resolution of an object A in a category C if the complex (M^i, d_M) is exact and there exists an injective morphism $j: A \to M^0$ such that $\ker(d^0: M^0 \to M^1) = j(A)$. ### 3 Sufficiently Many Injective Objects **Definition 11.** [Sufficiently many injective objects] An abelian category \mathcal{C} has sufficiently many injective objects if for each A an object in \mathcal{C} , there exists an injective object I and a morphism $j:A\to I$ which is injective. **Example 12.** Every module over a ring R with identity can be embedded into an injective R-module. **Lemma 13.** If \mathcal{C} has sufficiently many injective objects, then every object of \mathcal{C} has an injective resolution. The trick to finding an exact sequence I is by passing through the cokernel and the application of the property of an injective object. *Proof.* First we start with an object A. Since C has sufficiently many injective objects, there exists an injective morphism $j: A \to I^0$ for some injective object I^0 . Suppose we have a sequence as follows: $$0 \longrightarrow A \stackrel{j}{\longrightarrow} I^0 \stackrel{d^0}{\longrightarrow} I^1 \longrightarrow \cdots \stackrel{d^{k-1}}{\longrightarrow} I^k$$ Then there exists an injective object I^{k+1} such that coker d^{k-1} may be embedded into I^{k+1} as follows $$0 \longrightarrow A \xrightarrow{d^{-1}} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{k-1}} I^k \longrightarrow \operatorname{coker} d^{k-1} \longrightarrow I^{k+1}$$ and therefore the kernel of this map $I^k \to I^{k+1}$ is indeed the image $I^{k-1} \to I^k$. This lemma shows us that every object has an injective resolution. In the next part, we will show that such resolution is unique up to homotopy equivalence. **Proposition 14.** Let I', $A \hookrightarrow I^0$, and J', $B \hookrightarrow J^0$ be the respective resolutions. If J' is an injective resolution of B, then a morphism $\phi: A \to B$ induces a morphism of complexes $\phi': I' \to J'$ such that $\phi^0 \circ i = j \circ \phi$. *Proof.* We want to construct a series of ϕ^k 's from I^k to J^k and suppose that we have constructed morphisms from ϕ^1 to ϕ^k . The main point is that we want the property $\phi^{k+1} \circ d^i_I = d^i_J \circ \phi^i$. We will use the universal property of an injective object to construct a morphism from I^{k+1} to J^{k+1} . Therefore, we consider Hence we have by commutativity $\phi^{k+1} \circ d_I^k = d_I^k \circ \phi^k$. **Proposition 15.** Let I', $i:A\hookrightarrow I^0$ be a resolution of A and J', $j:B\hookrightarrow J^0$ be an injective resolution of B. Given a morphism $\phi:A\to B$, and suppose we have two ways to extend to morphism of complexes $\phi:I'\to J'$, $\psi':I'\to J'$ such that $\phi^0\circ i=j\circ\phi$ (and same for ψ), then ϕ' and ψ' are homotopic. *Proof.* Define $H^1: I^1 \to J^0$ by the injective property of J^0 via Suppose we have morphisms $H^1, \dots H^k$. Then we define H^{k+1} by ### 4 Derived Functors Let \mathcal{C} and \mathcal{C}' be two abelian categories and $F:\mathcal{C}\to\mathcal{C}'$ be a left exact functor. Suppose that \mathcal{C} has sufficiently many injective objects. We will define R^iF , the derived functor. Before we proceed, we start off with a few lemmas: **Lemma 16.** Let $0 \to I \to J \to K \to 0$ be an exact sequence. If I is injective, then the exact sequence splits. *Proof.* Since I is injective, we may have a map $\phi: J \to I$ such that the following diagram commutes **Lemma 17.** If $J = I \oplus K$ and J is injective, so is K. *Proof.* For every embedding $A \hookrightarrow B$ and a map $A \to K$, we have a map $B \to K$ by following the diagram below: Lemma 18. Given an exact sequence in $\mathcal C$ $$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$ there exists injective resolutions $A \hookrightarrow I^{\cdot}$, $B \hookrightarrow J^{\cdot}$ and $C \hookrightarrow K^{\cdot}$ such that the following sequence $$0 \longrightarrow I^{\cdot} \xrightarrow{\phi^{\cdot}} J^{\cdot} \xrightarrow{\psi^{\cdot}} K^{\cdot} \longrightarrow 0.$$ is exact and $\phi^0 \circ i = j \circ \phi$ and $\psi^0 \circ j = k \circ \psi$. *Proof.* First we construct the first batch (I^0, J^0, K^0) . Given that we have sufficiently injective objects, we may have the following embedding $i: A \to I^0$ for some injective object. We consider the following commutative diagram $$0 \longrightarrow A \xrightarrow{(i,-\phi)} I^0 \oplus B \longrightarrow \operatorname{coker}(i,-\phi) \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$ And we define $j: B \to J^0$ and $\phi^0: I^0 \to J^0$ by following the arrows. Then j is injective because i is, and ϕ^0 is injective because ϕ is. We may thus have the following diagram $$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$ $$\downarrow \downarrow \qquad \qquad \downarrow k=?$$ $$0 \longrightarrow I^0 \longrightarrow J^0 \xrightarrow{\pi} \operatorname{coker} \phi^0 \longrightarrow 0$$ To define k, let $c \in C$. By surjectivity of ψ , there exists b such that $\psi(b) = c$. Therefore, we define $k(c) = \pi \circ j(b)$. This is well-defined, independent of the choice of b because of exactness at b. The mapping b turns out to be injective (i.e. 5-lemma). Then we proceed to construct the next set. We need to define l. We define $l([i^0] \in \text{coker}i) = [\phi^0(i^0)] \in \text{coker}j$, which is well-defined and injective. Also, we define r in a similar manner as before. From the above diagram, we may embed cokeri into I^1 , and similar methods give J^1 and K^1 . It remains to show that the last vertical line starting from C is a complex. We may continue on with The importance of taking an injective resolution is that it gives rise to long exact sequences which helps to compute cohomology. **Theorem 19.** [Existence] Let $F: \mathcal{C} \to \mathcal{C}'$ be a left exact functor. For every object M of \mathcal{C} , there exists objects $R^iF(M)$ in \mathcal{C}' such that - 1. $R^0 F(M) = F(M)$, - 2. Every short exact sequence $$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$ Induces a long exact sequence $$0 \longrightarrow F(A) \xrightarrow{F(\phi)} F(B) \xrightarrow{F(\psi)} F(C) \longrightarrow R^1 F(A) \longrightarrow R^1 F(B) \longrightarrow R^1 F(C) \longrightarrow \cdots$$ *Proof.* Let A be an object in C, choose an injective resolution $A \hookrightarrow I^{\cdot}$ and define $R^{i}F(M) = H^{i}(F(I^{\cdot}))$ of the complex: $$0 \longrightarrow F(I^0) \longrightarrow F(I^1) \longrightarrow F(I^2) \longrightarrow \cdots$$ To show property 2, given any exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{C} , by the lemma 18, there exists a sequence of complexes $0 \to I^- \to J^- \to K^- \to 0$ with the properties in the lemma. Since short exact sequence of injective objects $$0 \longrightarrow I^l \longrightarrow J^l \longrightarrow K^l \longrightarrow 0$$ splits, applying the functor to the sequence obtains another split exact sequence $$0 \longrightarrow F(I^l) \longrightarrow F(J^l) \longrightarrow F(K^l) \longrightarrow 0.$$ It is a property that split exact sequences gives rise to long exact sequence in cohomology. **Theorem 20.** [Uniqueness] The object $R^i F(M)$ is determined up to isomorphism. Proof. Suppose we have two choices of injective resolutions for A, such as I and J, by a previous proposition, there exists homomorphisms $\phi: I \to J$ and $\psi: J \to I$ and homotopies $D_I : I \to I^{-1}$, $D_J : J \to J^{-1}$ between $\psi \circ \phi$ and id, and $\phi \circ \psi$ and id. Applying the functor gives morphisms $F(\phi)$, $F(\psi)$ and the corresponding homotopies $F(D_I)$, $F(D_J)$. Hence the morphisms $H^i(F(\phi))$ and $H^i(F(\psi))$ are inverses of each other. Corollary 21. If I is injective, $R^i F(I)$ is 0. *Proof.* For the injective object, choose an injective resolution $0 \to I \to I \to 0$. Then $R^i F(I)$ is zero by uniqueness. # 5 Acyclic Objects In practice, injective objects are difficult to work with, and one would like to work with acyclic objects instead. **Definition 22.** M is acyclic for the functor F if $R^i F(M) = 0$ for all i > 0. **Proposition 23.** Let M be an acyclic resolution of A with M^i 's all F-acyclic. Then $R^iF(A)=H^iF(M^i)$. Remark: This means that acyclic objects work just as well as injective objects. *Proof.* The proof is by induction on i. We have the exact sequence $$0 \longrightarrow A \xrightarrow{d^0} M^0 \longrightarrow B \longrightarrow 0 \tag{2}$$ where B is the cokernel of the map $A \to M^0$. Moreover, we have the following resolution $$0 \longrightarrow B \longrightarrow M^1 \longrightarrow M^2 \longrightarrow M^3 \longrightarrow \cdots$$ Since (2) is exact, previous theorem gives us a long exact sequence of derived objects such as this: $$0 \longrightarrow F(A) \longrightarrow F(M^0) \longrightarrow F(B) \longrightarrow R^1F(A) \longrightarrow R^1F(M^0) \longrightarrow R^1F(B) \longrightarrow \cdots$$ Since M^0 is acyclic, therefore $R^iF(M)=0$ for all $i\geq 1$. Hence for all $i\geq 1$ we have $R^{i+1}F(A)=R^iF(B)$ and $R^1F(A)=\operatorname{coker}(F(M^0)\to F(B))$. By induction hypothesis, suppose $R^kF(A)=H^k(F(M^{\cdot}))$ for all $k=1,\ldots i$ (and any object A), therefore, $R^{i+1}F(A)=R^iF(B)=H^i(F(M^{\cdot+1}))=H^{i+1}(F(M^{\cdot}))$. ### 6 Hypercohomology In this section we will only give a brief exposition of hypercohomology. The full treatment can be found in [Voi]. We will use the setting for our discussion. Let \mathcal{A} and \mathcal{B} be two abelian categories, and $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ be a left exact functor. We assume that \mathcal{A} has sufficiently many injective objects. We will define for every left bounded complex M, a derived functor $R^iF(M)$. **Proposition 24.** For each left bounded complex M in A, there is a complex I in A such that - 1. I is left bounded. - 2. I^k is injective in \mathcal{A} . - 3. $\phi: M^{\cdot} \to I^{\cdot}$ is a quasi-isomorhism. - 4. For each $k, \phi^k : M^k \to I^k$ is injective. We will prove this proposition later. First we need a result: **Proposition 25.** For each left bounded complex M in A, there exists a double complex $(I^{k,l}, (D_1, D_2))$ with - 1. $I^{k,l}$ is injective. - 2. $(I^{k,\cdot}, D_2)$ is a resolution of M^k . - 3. The inclusion $(M^k, d_M) \hookrightarrow (I^{\cdot,0}, D_1)$ Proof of proposition 24. Given the double complex $(I^{k,l},(D_1,D_2))$, we may let (I^{\cdot},D) to be $$I^k = \bigoplus_{p+q=k} I^{p,q}, \qquad D = D_1 + (-1)^p D_2.$$ Proof of proposition 25. We will construct the first line $(I^{\cdot,0}, D_1)$. Already, we have the following injection $M^0 \hookrightarrow I^{0,0}$. We will construct $I^{1,0}$. In the following diagram: Where η is the inclusion by the condition that \mathcal{A} has sufficiently many injective objects. We thus let $\iota^1: M^1 \to I^{1,0}$ by $\iota^1 = \eta \circ \pi \circ j$ and $D_1: I^{0,0} \to I^{1,0}$ by $D_1 = \eta \circ \pi \circ \iota_{I^{0,0}}$. Suppose we have constructed the sequence up till $I^{k,0}$ as follows: $$M^{k-1} \longrightarrow M^k \longrightarrow M^{k+1} \longrightarrow \cdots$$ $$\downarrow^{\iota^{k-1}} \qquad \downarrow^{\iota^k}$$ $$I^{k-1,0} \stackrel{D_1}{\longrightarrow} I^{k,0}$$ We construct $I^{k+1,0}$ by the following injection $\operatorname{coker}((\iota^k, -d_M): M^k \to \operatorname{coker} D_1 \oplus M^{k+1}) \hookrightarrow I^{k+1,0}$ and note that $i^k: M^k \to I^{k,0}$ is an injection. For the last assertion, we refer the readers to [Voi]. It uses the following result: **Lemma 26.** Let (I^{\cdot}, D) be the simple complex associated to the double complex $(I^{p,q}, D_1, D_2)$ and suppose for each p, the complex $(I^{p,\cdot}, D_2)$ is a resolution of M^p via the injection $\iota^p: M^p \hookrightarrow I^{p,0}$. Then the morphism of complexes $\iota^{\cdot}: M^{\cdot} \to I^{\cdot}$ induces isomorphism of cohomologies $H^p(M^{\cdot}, d_M) \cong H^p(I^{\cdot}, D)$. ### 7 Bibliography [Voi] Claire Voisin, Hodge Theory and Complex Algebraic Geometry 1 [Hun] Thomas Hungerford, Algebra