Derived Functors, Cohomology and Hypercohomology

Wei Guo FOO

March 25, 2013

Contents

1	Introduction	1
2	Injective Objects and Resolution	1
3	Sufficiently Many Injective Objects	3
4	Derived Functors	4
5	Acyclic Objects	6
6	Hypercohomology	7
7	Bibliography	8

Abstract

In this report, we will give a brief introduction to abelian categories, injective objects, injective resolutions, acylic resolutions and hypercohomology.

1 Introduction

Definition 1. [Abelian Category] An abelian category \mathcal{C} is a category with additional information:

- 1. For all objects A and B, Hom(A, B) is an abelian group.
- 2. The following map:

$$\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$$

via
$$(f,g) \mapsto g \circ f$$
 is \mathbb{Z} -bilinear.

Remark: In this special category setting, we require functor between objects to respect direct sum. For example, for a functor $F: \mathcal{A} \to \mathcal{B}$, we have for every U and V in \mathcal{A} , $F(U \oplus V) = F(U) \oplus F(V)$.

Example 2. [Example of an Abelian Category] A category of modules over a ring.

2 Injective Objects and Resolution

Definition 3. [Injective Object] A object in an abelian category C is injective if for every injective morphisms $A \to B$ and a morphism $A \to C$, there exists a morphism $B \to C$ that makes the following diagram commute

Example 4. In an abelian category, the object $\{0\}$ is injective.

Example 5. In modules over \mathbb{Z} , an abelian group D is divisible if and only if D is an injective \mathbb{Z} module. In particular, \mathbb{Q} is an injective \mathbb{Z} module.

Definition 6. [Complex] A complex M is a set of objects $\{M_i\}_{i\in\mathbb{Z}}$, and a set of morphisms $\{d^i:M_i\to M_{+1}\}_{i\in\mathbb{Z}}$ such that $d^i\circ d^{i-1}=0$.

From now on, we will consider only left-bounded complexes.

Definition 7. [Morphisms of Complexes] A morphism of complexes $\phi^{\cdot}: (M^{\cdot}, d_M) \to (N^{\cdot}, d_N)$ is a collection of morphisms $\{\phi^k: M^k \to N^k\}_{k \in \mathbb{Z}}$ that makes the following diagram commute:

$$\cdots \longrightarrow M^{i} \xrightarrow{d_{M}^{i}} M^{i+1} \longrightarrow \cdots$$

$$\downarrow \phi_{i} \downarrow \qquad \qquad \downarrow \phi_{i+1}$$

$$\cdots \longrightarrow N^{i} \xrightarrow{d_{N}^{i}} N^{i+1} \longrightarrow \cdots$$

In other words, $\phi_{i+1} \circ d_M^i = d_N^i \circ \phi_i$

Definition 8. [The i-th degree cohomology] The i-th degree cohomology of the complex (M^{\cdot}, d_M) is an object given by

$$H^{i}(M) := \frac{\ker d^{i} : M^{i} \to M^{i+1}}{\operatorname{im} \ d^{i-1} : M^{i-1} \to M^{i}}$$

A morphism of complexes $\phi^{\cdot}: M^{\cdot} \to N^{\cdot}$, induces a morphism of cohomologies. In other words, we may define $H^{i}(\phi): H^{i}(M) \to H^{i}(N)$ via the association $[m] \mapsto [\phi(m)]$.

Definition 9. [Homotopy] Let $\phi:(M,d_M)\to (N,d_N)$ and $\psi:(M,d_M)\to (N,d_N)$ be morphisms of two complexes. A homotopy between ϕ and ψ is a collection of morphisms $\{D^i:M^i\to N^{i-1}\}_{i\in\mathbb{N}}$ such that in the following diagram

$$\cdots \longrightarrow M^{i-1} \longrightarrow M^{i} \xrightarrow{d^{i}_{M}} M^{i+1} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

We have $D^{i+1} \circ d_M^i - d_N^{i-1} \circ D^i = \phi^i - \psi^i$.

This algebraic definition of homotopy in fact may be seen in texts on differential topology or simplicial homology. We shall see why the two homotopic maps ϕ and ψ induces the same mappings $H^i(\phi)$ and $H^i(\psi)$. Suppose we have $[\omega] \in H^i(M^{\cdot})$, then $\phi^i - \psi^i(\omega)$ is exact because

$$[(\phi^{i} - \psi^{i})(\omega)] = [(D^{i+1} \circ d_{M}^{i} - d_{N}^{i-1} \circ D^{i})(\omega)] = [-d_{N}^{i-1} \circ D^{i}\omega]$$
(1)

which is 0 in cohomology. In other words, the cohomology functor is homotopy invariant.

Definition 10. [Resolution] A complex $\{M^i\}_{i\geq 0}$ is a resolution of an object A in a category C if the complex (M^i, d_M) is exact and there exists an injective morphism $j: A \to M^0$ such that $\ker(d^0: M^0 \to M^1) = j(A)$.

3 Sufficiently Many Injective Objects

Definition 11. [Sufficiently many injective objects] An abelian category \mathcal{C} has sufficiently many injective objects if for each A an object in \mathcal{C} , there exists an injective object I and a morphism $j:A\to I$ which is injective.

Example 12. Every module over a ring R with identity can be embedded into an injective R-module.

Lemma 13. If \mathcal{C} has sufficiently many injective objects, then every object of \mathcal{C} has an injective resolution.

The trick to finding an exact sequence I is by passing through the cokernel and the application of the property of an injective object.

Proof. First we start with an object A. Since C has sufficiently many injective objects, there exists an injective morphism $j: A \to I^0$ for some injective object I^0 . Suppose we have a sequence as follows:

$$0 \longrightarrow A \stackrel{j}{\longrightarrow} I^0 \stackrel{d^0}{\longrightarrow} I^1 \longrightarrow \cdots \stackrel{d^{k-1}}{\longrightarrow} I^k$$

Then there exists an injective object I^{k+1} such that coker d^{k-1} may be embedded into I^{k+1} as follows

$$0 \longrightarrow A \xrightarrow{d^{-1}} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{k-1}} I^k \longrightarrow \operatorname{coker} d^{k-1} \longrightarrow I^{k+1}$$

and therefore the kernel of this map $I^k \to I^{k+1}$ is indeed the image $I^{k-1} \to I^k$.

This lemma shows us that every object has an injective resolution. In the next part, we will show that such resolution is unique up to homotopy equivalence.

Proposition 14. Let I', $A \hookrightarrow I^0$, and J', $B \hookrightarrow J^0$ be the respective resolutions. If J' is an injective resolution of B, then a morphism $\phi: A \to B$ induces a morphism of complexes $\phi': I' \to J'$ such that $\phi^0 \circ i = j \circ \phi$.

Proof. We want to construct a series of ϕ^k 's from I^k to J^k and suppose that we have constructed morphisms from ϕ^1 to ϕ^k . The main point is that we want the property $\phi^{k+1} \circ d^i_I = d^i_J \circ \phi^i$. We will use the universal property of an injective object to construct a morphism from I^{k+1} to J^{k+1} . Therefore, we consider

Hence we have by commutativity $\phi^{k+1} \circ d_I^k = d_I^k \circ \phi^k$.

Proposition 15. Let I', $i:A\hookrightarrow I^0$ be a resolution of A and J', $j:B\hookrightarrow J^0$ be an injective resolution of B. Given a morphism $\phi:A\to B$, and suppose we have two ways to extend to morphism of complexes $\phi:I'\to J'$, $\psi':I'\to J'$ such that $\phi^0\circ i=j\circ\phi$ (and same for ψ), then ϕ' and ψ' are homotopic.

Proof. Define $H^1: I^1 \to J^0$ by the injective property of J^0 via

Suppose we have morphisms $H^1, \dots H^k$. Then we define H^{k+1} by

4 Derived Functors

Let \mathcal{C} and \mathcal{C}' be two abelian categories and $F:\mathcal{C}\to\mathcal{C}'$ be a left exact functor. Suppose that \mathcal{C} has sufficiently many injective objects. We will define R^iF , the derived functor. Before we proceed, we start off with a few lemmas:

Lemma 16. Let $0 \to I \to J \to K \to 0$ be an exact sequence. If I is injective, then the exact sequence splits.

Proof. Since I is injective, we may have a map $\phi: J \to I$ such that the following diagram commutes

Lemma 17. If $J = I \oplus K$ and J is injective, so is K.

Proof. For every embedding $A \hookrightarrow B$ and a map $A \to K$, we have a map $B \to K$ by following the diagram below:

Lemma 18. Given an exact sequence in $\mathcal C$

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

there exists injective resolutions $A \hookrightarrow I^{\cdot}$, $B \hookrightarrow J^{\cdot}$ and $C \hookrightarrow K^{\cdot}$ such that the following sequence

$$0 \longrightarrow I^{\cdot} \xrightarrow{\phi^{\cdot}} J^{\cdot} \xrightarrow{\psi^{\cdot}} K^{\cdot} \longrightarrow 0.$$

is exact and $\phi^0 \circ i = j \circ \phi$ and $\psi^0 \circ j = k \circ \psi$.

Proof. First we construct the first batch (I^0, J^0, K^0) . Given that we have sufficiently injective objects, we may have the following embedding $i: A \to I^0$ for some injective object. We consider the following commutative diagram

$$0 \longrightarrow A \xrightarrow{(i,-\phi)} I^0 \oplus B \longrightarrow \operatorname{coker}(i,-\phi) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

And we define $j: B \to J^0$ and $\phi^0: I^0 \to J^0$ by following the arrows. Then j is injective because i is, and ϕ^0 is injective because ϕ is. We may thus have the following diagram

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

$$\downarrow \downarrow \qquad \qquad \downarrow k=?$$

$$0 \longrightarrow I^0 \longrightarrow J^0 \xrightarrow{\pi} \operatorname{coker} \phi^0 \longrightarrow 0$$

To define k, let $c \in C$. By surjectivity of ψ , there exists b such that $\psi(b) = c$. Therefore, we define $k(c) = \pi \circ j(b)$. This is well-defined, independent of the choice of b because of exactness at b. The mapping b turns out to be injective (i.e. 5-lemma). Then we proceed to construct the next set.

We need to define l. We define $l([i^0] \in \text{coker}i) = [\phi^0(i^0)] \in \text{coker}j$, which is well-defined and injective. Also, we define r in a similar manner as before. From the above diagram, we may embed cokeri into I^1 , and similar methods give J^1 and K^1 . It remains to show that the last vertical line starting from C is a complex. We may continue on with

The importance of taking an injective resolution is that it gives rise to long exact sequences which helps to compute cohomology.

Theorem 19. [Existence] Let $F: \mathcal{C} \to \mathcal{C}'$ be a left exact functor. For every object M of \mathcal{C} , there exists objects $R^iF(M)$ in \mathcal{C}' such that

- 1. $R^0 F(M) = F(M)$,
- 2. Every short exact sequence

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

Induces a long exact sequence

$$0 \longrightarrow F(A) \xrightarrow{F(\phi)} F(B) \xrightarrow{F(\psi)} F(C) \longrightarrow R^1 F(A) \longrightarrow R^1 F(B) \longrightarrow R^1 F(C) \longrightarrow \cdots$$

Proof. Let A be an object in C, choose an injective resolution $A \hookrightarrow I^{\cdot}$ and define $R^{i}F(M) = H^{i}(F(I^{\cdot}))$ of the complex:

$$0 \longrightarrow F(I^0) \longrightarrow F(I^1) \longrightarrow F(I^2) \longrightarrow \cdots$$

To show property 2, given any exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{C} , by the lemma 18, there exists a sequence of complexes $0 \to I^- \to J^- \to K^- \to 0$ with the properties in the lemma. Since short exact sequence of injective objects

$$0 \longrightarrow I^l \longrightarrow J^l \longrightarrow K^l \longrightarrow 0$$

splits, applying the functor to the sequence obtains another split exact sequence

$$0 \longrightarrow F(I^l) \longrightarrow F(J^l) \longrightarrow F(K^l) \longrightarrow 0.$$

It is a property that split exact sequences gives rise to long exact sequence in cohomology.

Theorem 20. [Uniqueness] The object $R^i F(M)$ is determined up to isomorphism.

Proof. Suppose we have two choices of injective resolutions for A, such as I and J, by a previous proposition, there exists homomorphisms $\phi: I \to J$ and $\psi: J \to I$ and homotopies $D_I : I \to I^{-1}$, $D_J : J \to J^{-1}$ between $\psi \circ \phi$ and id, and $\phi \circ \psi$ and id. Applying the functor gives morphisms $F(\phi)$, $F(\psi)$ and the corresponding homotopies $F(D_I)$, $F(D_J)$. Hence the morphisms $H^i(F(\phi))$ and $H^i(F(\psi))$ are inverses of each other.

Corollary 21. If I is injective, $R^i F(I)$ is 0.

Proof. For the injective object, choose an injective resolution $0 \to I \to I \to 0$. Then $R^i F(I)$ is zero by uniqueness.

5 Acyclic Objects

In practice, injective objects are difficult to work with, and one would like to work with acyclic objects instead.

Definition 22. M is acyclic for the functor F if $R^i F(M) = 0$ for all i > 0.

Proposition 23. Let M be an acyclic resolution of A with M^i 's all F-acyclic. Then $R^iF(A)=H^iF(M^i)$.

Remark: This means that acyclic objects work just as well as injective objects.

Proof. The proof is by induction on i. We have the exact sequence

$$0 \longrightarrow A \xrightarrow{d^0} M^0 \longrightarrow B \longrightarrow 0 \tag{2}$$

where B is the cokernel of the map $A \to M^0$. Moreover, we have the following resolution

$$0 \longrightarrow B \longrightarrow M^1 \longrightarrow M^2 \longrightarrow M^3 \longrightarrow \cdots$$

Since (2) is exact, previous theorem gives us a long exact sequence of derived objects such as this:

$$0 \longrightarrow F(A) \longrightarrow F(M^0) \longrightarrow F(B) \longrightarrow R^1F(A) \longrightarrow R^1F(M^0) \longrightarrow R^1F(B) \longrightarrow \cdots$$

Since M^0 is acyclic, therefore $R^iF(M)=0$ for all $i\geq 1$. Hence for all $i\geq 1$ we have $R^{i+1}F(A)=R^iF(B)$ and $R^1F(A)=\operatorname{coker}(F(M^0)\to F(B))$. By induction hypothesis, suppose $R^kF(A)=H^k(F(M^{\cdot}))$ for all $k=1,\ldots i$ (and any object A), therefore, $R^{i+1}F(A)=R^iF(B)=H^i(F(M^{\cdot+1}))=H^{i+1}(F(M^{\cdot}))$.

6 Hypercohomology

In this section we will only give a brief exposition of hypercohomology. The full treatment can be found in [Voi]. We will use the setting for our discussion. Let \mathcal{A} and \mathcal{B} be two abelian categories, and $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ be a left exact functor. We assume that \mathcal{A} has sufficiently many injective objects. We will define for every left bounded complex M, a derived functor $R^iF(M)$.

Proposition 24. For each left bounded complex M in A, there is a complex I in A such that

- 1. I is left bounded.
- 2. I^k is injective in \mathcal{A} .
- 3. $\phi: M^{\cdot} \to I^{\cdot}$ is a quasi-isomorhism.
- 4. For each $k, \phi^k : M^k \to I^k$ is injective.

We will prove this proposition later. First we need a result:

Proposition 25. For each left bounded complex M in A, there exists a double complex $(I^{k,l}, (D_1, D_2))$ with

- 1. $I^{k,l}$ is injective.
- 2. $(I^{k,\cdot}, D_2)$ is a resolution of M^k .
- 3. The inclusion $(M^k, d_M) \hookrightarrow (I^{\cdot,0}, D_1)$

Proof of proposition 24. Given the double complex $(I^{k,l},(D_1,D_2))$, we may let (I^{\cdot},D) to be

$$I^k = \bigoplus_{p+q=k} I^{p,q}, \qquad D = D_1 + (-1)^p D_2.$$

Proof of proposition 25. We will construct the first line $(I^{\cdot,0}, D_1)$. Already, we have the following injection $M^0 \hookrightarrow I^{0,0}$. We will construct $I^{1,0}$. In the following diagram:

Where η is the inclusion by the condition that \mathcal{A} has sufficiently many injective objects. We thus let $\iota^1: M^1 \to I^{1,0}$ by $\iota^1 = \eta \circ \pi \circ j$ and $D_1: I^{0,0} \to I^{1,0}$ by $D_1 = \eta \circ \pi \circ \iota_{I^{0,0}}$. Suppose we have constructed the sequence up till $I^{k,0}$ as follows:

$$M^{k-1} \longrightarrow M^k \longrightarrow M^{k+1} \longrightarrow \cdots$$

$$\downarrow^{\iota^{k-1}} \qquad \downarrow^{\iota^k}$$

$$I^{k-1,0} \stackrel{D_1}{\longrightarrow} I^{k,0}$$

We construct $I^{k+1,0}$ by the following injection $\operatorname{coker}((\iota^k, -d_M): M^k \to \operatorname{coker} D_1 \oplus M^{k+1}) \hookrightarrow I^{k+1,0}$ and note that $i^k: M^k \to I^{k,0}$ is an injection. For the last assertion, we refer the readers to [Voi]. It uses the following result:

Lemma 26. Let (I^{\cdot}, D) be the simple complex associated to the double complex $(I^{p,q}, D_1, D_2)$ and suppose for each p, the complex $(I^{p,\cdot}, D_2)$ is a resolution of M^p via the injection $\iota^p: M^p \hookrightarrow I^{p,0}$. Then the morphism of complexes $\iota^{\cdot}: M^{\cdot} \to I^{\cdot}$ induces isomorphism of cohomologies $H^p(M^{\cdot}, d_M) \cong H^p(I^{\cdot}, D)$.

7 Bibliography

[Voi] Claire Voisin, Hodge Theory and Complex Algebraic Geometry 1 [Hun] Thomas Hungerford, Algebra