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Hodge and generalized Hodge conjectures,
coniveau and algebraic cycles
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Abstract:
This is a survey of the Hodge conjecture, with emphasis on its companion, the generalized

Hodge conjecture, which involves the theory of Hodge structures, algebraic cycles and
motives.
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1 Introduction

We present in this paper the Hodge conjecture and its much more general version, “the generalized
Hodge conjecture" due to Grothendieck [Gro69]. The Hodge conjecture involves two distinct objects
associated with a smooth projective algebraic variety X defined over the complex numbers. On one
side, we have the algebraic variety X and its algebraic subvarieties. On the other side, we have the
associated complex manifold Xan, and we associate to it the Betti cohomology with rational coefficients of
its underlying topological space, which is related to the study of differentiable submanifolds of Xan. The
data coming from algebraic geometry and topology are not disjoint, thanks to the beautiful comparison
theorems due to Serre and Grothendieck for cohomology with complex coefficients (see Section 3.4). One
geometric bridge between the two sets of data is given by the cycle class, that associates to an algebraic
subvariety Z ⊂ X the cohomology class [Zan] of the corresponding closed analytic subset of Xan. The
Hodge conjecture stated in Section 3 proposes a characterization of the subspace of H2k(Xan,Q) generated
over Q by the classes [Zan] above with codimZ = k : it should be the space of Hodge classes. This
conjectural characterization involves the complex geometry of Xan and the notion of type of differential
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HODGE AND GENERALIZED HODGE CONJECTURES, CONIVEAU AND ALGEBRAIC CYCLES

forms on a complex manifold X : one can speak of differential forms of type (p,q), hence degree p+q,
and the space H p,q(X) of classes of type (p,q) is defined as the set of de Rham cohomology classes of
closed (p,q)-forms. Hodge classes are the rational Betti cohomology classes of even degree 2k on Xan,
which are of type (k,k).

The Hodge conjecture is elegant and fascinating but what makes it deep is the general theory of Hodge
structures associated to smooth projective varieties, that we will present in Section 2.1. As we will see,
the Hodge conjecture is part of the theory of cohomological motives, and is particularly interesting when
applied to products X ×Y of two algebraic varieties, having in mind to understand how their motives are
related. In the theory of motives, one considers as morphisms between two algebraic varieties X and
Y the correspondences between X and Y , which are cycles in the product X ×Y , that is, combinations
with rational coefficients of closed algebraic subsets of the product X ×Y . We have to divide out the
space of cycles by an adequate equivalence relation in order to be able to compose correspondences. In
the theory of cohomological motives (over the complex numbers), the cycles will be considered modulo
homological equivalence, namely via their cycle class. The importance of the Hodge conjecture appears
in the following fact: The Hodge classes on the product X ×Y are naturally identified with the morphisms
of Hodge structures from the cohomology of X to the cohomology of Y . We refer to Section 2.1 for an
introduction to Hodge structures, their construction and their functoriality properties in the geometric
context.

The original Hodge conjecture, corrected by Grothendieck in [Gro69], proposed more generally
to characterize rational cohomology classes α on Xan that are “of geometric coniveau c”, that is, are
supported on a closed subset Y ⊂ X (equivalently, their Poincaré dual is in the image of the natural
morphism H∗(Y,Q)→ H∗(X ,Q), see Section 4.1), where Y is closed algebraic of codimension at least c.
There is an obvious restriction satisfied by such classes, namely that they are “of Hodge coniveau c”, that
is, the components α p,q of the Hodge decomposition of α vanish for p < c or q < c. Hodge believed that
this would be a sufficient condition, but Grothendieck exhibited a counterexample in [Gro69], and there
is indeed a stronger condition coming from the following (highly nontrivial) fact (see Corollary 4.5): the
set of degree k cohomology classes on X supported on Y is a Hodge substructure of Hk(X ,Q), that is,
a rational vector subspace stable under the Hodge decomposition, which consists of classes of Hodge
coniveau ≥ c. The generalized Hodge conjecture presented in Section 4 corrects the original Hodge
conjecture by adding this condition. We will discuss in Section 4 the precise relation between the Hodge
and generalized Hodge conjectures (see Proposition 4.8). According to this conjecture, the vanishing of
the spaces H p,q(X) for p+q = k, p < c or q < c should imply that the Betti cohomology Hk(Xan,Q) is
supported on a codimension c closed algebraic subset Y of X . It is very interesting to note that, for this
particular instance of the generalized Hodge conjecture, the assumption on X is purely algebraic, as the
spaces H p,q(X) can be computed without any transcendental arguments, thanks to GAGA and the theory
of algebraic differential forms (see Section 3.4).

One difficulty with the Hodge conjecture is that, apart from the formalism of Künneth components
and Lefschetz operators described in Section 3.2, which produces by formal arguments Hodge classes
on powers X2, it is very difficult to exhibit smooth complex projective varieties with a Hodge class
which is not trivially algebraic. Typically, Noether-Lefschetz type statements (see [Voi03, 6.3.1]) will
say that a very general hypersurface of dimension 2 and degree ≥ 4, or dimension ≥ 3 and degree ≥ 3,
has no other Hodge classes than the multiples of the restrictions hi

|X , where h is the class of a hyperplane

JOURNAL OF OPEN MATHEMATICAL PROBLEMS, 1(1):16–51, 2025 17

https://jomprob.org


CLAIRE VOISIN

in projective space, so for the most natural algebraic varieties, like general hypersurfaces, the Hodge
conjecture says nothing. To the contrary, the generalized Hodge conjecture predicts the existence of
“interesting” suvarieties of a general hypersurface of degree d and dimension n, especially when the
dimension is large compared to the degree, and this prediction remains almost completely open (see
Section 6.1). Typically it is unsolved for general hypersurfaces of degree d in P2d , except for small d.

In Section 5, we will describe another set of conjectures, mostly due to Bloch and Bloch-Beilinson,
relating the shape of Hodge structures of X to the size of Chow groups of cycles modulo rational
equivalence on X . They basically say that the Hodge structures of a complex projective variety govern its
“Chow motive”. Thanks to the work of Bloch and Srinivas [BS83], these conjectures strengthen in a deep
way the particular instance mentioned above of the generalized Hodge conjecture.

2 Hodge structures, Hodge classes and coniveau

2.1 The Hodge decomposition theorem

Let X be a complex manifold of dimension n, that is, a differentiable manifold equipped with the data of
holomorphic coordinates z1, . . . , zn on local charts, with the condition that the change of coordinates maps

z′i = φi(z1, . . . , zn)

on the overlap of two charts, are given by holomorphic functions φi. On such a manifold, the de Rham
complex d : A∗

X → A∗+1
X of C∞ differential forms with complex coefficients splits as follows. Using local

holomorphic coordinates, 1-forms with complex coefficients split as

α = α
1,0 +α

0,1, (1)

with
α

1,0 = ∑
i

αidzi, α
0,1 = ∑

i
αidzi,

for some C∞ functions αi, αi. We will denote by A1,0
X the space of forms α1,0 of type (1,0) as above, and

similarly for A0,1
X . We thus have

A1
X = A1,0

X

⊕
A0,1

X , (2)

which in turn induces a decomposition

Ak
X = ∑

p+q=k
Ap,q

X (3)

for any k, where forms in Ap,q
X are said to be of type (p,q) and are locally of the form ∑|I|=p,|J|=q αIJdzI ∧

dzJ .
Coming back to (2), we see that for each C∞ function f , we have an induced decomposition

d f = ∂ f +∂ f ,
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which defines the first order differential operators

∂ : C∞
X → A1,0

X , ∂ : C∞
X → A0,1

X .

For any differential form α of type (p,q), we write locally α = ∑|I|=p,|J|=q αIJdzI ∧dzJ , hence we get

dα = ∑
|I|=p,|J|=q

dαIJ ∧dzI ∧dzJ = ∑
|I|=p,|J|=q

∂αIJ ∧dzI ∧dzJ + ∑
|I|=p,|J|=q

∂αIJ ∧dzI ∧dzJ,

from which we deduce that the operator d does not respect the decomposition (3) but decomposes as

d = ∂ +∂ ,

for some first order differential operators

∂ : Ap,q
X → Ap+1,q

X , ∂ : Ap,q
X → Ap,q+1

X .

The complex conjugate operators ∂ and ∂ acting on A∗
X satisfy the relations

∂
2 = 0, ∂

2
= 0, ∂∂ =−∂∂ .

The comparison of the ∂ -cohomology (known as Dolbeault cohomology) and the d-cohomology of
complex differential forms on X (i.e. de Rham cohomology of X) gives rise to the Frölicher spectral
sequence, which for general complex manifolds of dimension > 2 can be extremely complicated (see
e.g. [Rol08]). However for projective complex manifolds, namely closed complex submanifolds of some
projective space, or more generally compact Kähler manifolds (see Section 2.2), a miracle happens, which
is called the Hodge decomposition theorem.

Theorem 2.1. (Hodge [Hod41], see also [GH78, p116] or [Voi02b, 6.1.3]) Let X be a compact Kähler
manifold. Then the de Rham complex cohomology groups Hk(X ,C) = Ker(d:Ak(X)→Ak+1(X))

Im(d:Ak−1(X)→Ak(X))
decompose as

Hk(X ,C) =
⊕

p+q=k

H p,q(X), (4)

where H p,q(X)⊂ Hk(X ,C) is the set of cohomology classes of d-closed (p,q)-forms.
Furthermore, via the map which sends a closed (p,q)-form to its class as a ∂ -closed form, the space

H p,q(X) is naturally isomorphic to the Dolbeault cohomology group Hq(X ,Ωp
X).

The proof of this fundamental theorem relies on the representation of cohomology classes by harmonic
forms and the comparison of the Laplacians for d and ∂ .

An important feature of the decomposition (4) is the Hodge symmetry property. It is clear that the
complex conjugate of a closed (p,q)-form is a closed (q, p)-form. It follows that complex conjugacy
acting on

Hk(X ,C) = Hk(X ,R)⊗C
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satisfies

H p,q(X) = Hq,p(X). (5)

Note that the de Rham cohomology Hk(X ,C) used above is also isomorphic to Betti cohomology with
complex coefficients. Betti cohomology Hk(X ,A) can be defined with integral or rational coefficients A
and we have the change of coefficients theorem

Hk(X ,C) = Hk(X ,Z)⊗C.

Definition 2.2. An integral Hodge structure of weight k is the data of a lattice L, and a decomposition
into complex subspaces

LC =⊕p+q=kLp,q

of LC := L⊗C, satisfying the Hodge symmetry condition

Lp,q = Lq,p.

Remark 2.3. Having the Hodge decomposition on LC allows to introduce the Hodge filtration F pLC :=
⊕r≥pLr,k−r. This filtration has to satisfy the “opposite condition", namely, by Hodge symmetry, one has
for any p

LC = F pLC⊕Fk−p+1LC. (6)

Conversely, if a decreasing filtration F iLC satisfies (6) for all p, it gives a Hodge decomposition by the
formula

Lp,q = F pLC∩Fk−pLC.

By Theorem 2.1, the Betti cohomology Hk(X ,Z) modulo torsion of a compact Kähler manifold is
equiped with a Hodge structure of weight k, which is furthermore effective in the sense that H p,q = 0 if
p < 0 or q < 0. In this paper, we will mainly use the rational Hodge structures, whose definition is the
same with “lattice" replaced by “finite dimensional Q-vector space".

When looking at a Hodge structure (L,Lp,q), the first information one gets is its “coniveau”, with the
following

Definition 2.4. The coniveau of a Hodge structure (L,Lp,q) with L ̸= 0 is defined as the largest integer c,
such that Lp,q = 0 for p < c or q < c.

If the coniveau of a weight k Hodge structure L is c, then 2c ≤ k and its Hodge decomposition takes
the form

LC = Lk−c,c
⊕

. . .
⊕

Lc,k−c.

In particular we can shift the bidegrees of L to get an effective Hodge structure L′ of weight k−2c

L′
C = L′k−2c,0⊕

. . .
⊕

L′0,k−2c
,

where L′ = L and L′p,q = Lp+c,q+c. The generalized Hodge conjecture formulated by Grothendieck and
discussed in Section 4 investigates the geometric meaning of the Hodge coniveau of Hk(X ,Q).

Another information associated with a Hodge structure (L,Lp,q) of even weight 2k is its subgroup of
Hodge classes Hdg(L), with the following
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Definition 2.5. The group Hdg(L) is defined as the set of elements of L which belong to Lk,k in the Hodge
decomposition of LC. If L = H2k(X ,Q), where X is a compact Kähler manifold, then we will use the
notation Hdg2k(X).

Remark 2.6. We also have Hdg(L) = L∩FkLC, where the Hodge filtration F on LC is defined in Remark
2.3. Indeed, L∩FkLC ⊂ FkLC∩FkLC = Lk,k.

The Hodge conjecture discussed in Section 3 investigates the meaning of Hodge classes in the
cohomology of a complex projective manifold and relates them to objects from complex geometry like
closed analytic subsets, or Chern classes of holomorphic vector bundles. The same definition can be
made for compact Kähler manifolds, but the results in [Voi02a], [Zuc77] indicate that no version of the
Hodge conjecture can be true for compact Kähler manifolds.

2.2 Lefschetz decomposition and Hodge index theorem

A complex projective manifold, being embedded in some projective space CPN , admits a holomorphic
line bundle L which is the restriction to X of the dual of the Hopf line bundle on CPN (such a line bundle
is said to be very ample). The Chern class l := c1(L) then belongs to H2(X ,Z) and at the same time it is
represented in de Rham cohomology by a positive closed (1,1)-form on X , namely the restriction of the
Fubini-Study Kähler form on CPN . This is thus a degree 2 Hodge class (see Definition 2.5). A general
compact Kähler manifold admits a Kähler form (i.e. a positive closed (1,1)-form) ω but its class cannot
in general be chosen rational. The celebrated Kodaira embedding theorem [Kod54] says that a compact
Kähler manifold is projective if and only if it admits a Kähler form whose de Rham cohomology class is
rational.

A technical but fundamental complement to the Hodge decomposition theorem is the following

Theorem 2.7. (Hodge, see [GH78, p122] or [Voi02b, Sections 6.2.3 and 6.3.2]) Let X be a compact
Kähler manifold of dimension n and ω be a kähler form on X. Then

(i) (hard Lefschetz theorem) For any k ≤ n, the cup-product map

⌣ [ω]n−k : Hk(X ,R)→ H2n−k(X ,R)

is an isomorphism.
(ii) (Hodge-Riemann bilinear relations) For k ≤ n, let Hk(X ,R)prim ⊂ Hk(X ,R) be defined as the

kernel of the cup-product map

⌣ [ω]n−k+1 : Hk(X ,R)→ H2n−k+2(X ,R).

As ω is of type (1,1), Hk(X ,C)prim has an induced Hodge decomposition into components H p,q(X)prim
and the sesquilinear form hω on Hk(X ,C) defined by

hω(α,β ) = ik
∫

X
[ω]n−k ⌣ α ⌣ β

has the property that
(a) the Hodge decomposition is orthogonal for hω and
(b) the restriction of hω to H p,q(X)prim is definite of sign (−1)p (up to a global sign depending on k).
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When X is projective, we can choose the class [ω] to be rational, and denote it by l. The results above
then produce a lot of extra structure on Hk(X ,Q), namely one deduces from the hard Lefschetz theorem
(now with rational coefficients) the Lefschetz decomposition

Hk(X ,Q) =
⊕

k−2r≥0

lr ⌣ Hk−2r(X ,Q)prim, (7)

where each Hk−2r(X ,Q)prim ⊂ Hk−2r(X ,Q) is a Hodge substructure, that is, a rational vector subspace
which has an induced Hodge decomposition. Furthermore, the Lefschetz intersection pairing ⟨ , ⟩l on
Hk(X ,Q) defined by

⟨α,β ⟩l =
∫

X
ln−k ⌣ α ⌣ β

has the property that
(i) The Lefschetz decomposition is orthogonal for ⟨ , ⟩l .
(ii) Furthermore, on each piece lr ⌣ Hk−2r(X ,Q)prim, the associated sesquilinear form hl satisfies the

Hodge-Riemann bilinear relations (a) and (b) described in Theorem 2.7.
A Hodge structure (L,Lp,q) of weight k equiped with a nondegenerate pairing q which is rational,

symmetric if k is even, skew-symmetric if k is odd, and such that the associated sesquilinear pairing

hq(α,β ) = ikq(α,β )

on LC satisfies the Hodge-Riemann bilinear relations, is called a polarized Hodge structure.

2.3 The category of (polarized) Hodge structures

The Hodge structures on the cohomology of compact Kähler manifolds have some functoriality properties
that we now describe. If φ : X →Y is a morphism (holomorphic map) between compact Kähler manifolds,
then the pull-back φ ∗α of a closed form of type (p,q) on Y is a closed form of type (p,q) on X . It follows
that

φ
∗H p,q(Y )⊂ H p,q(X).

In other words, the morphism φ ∗ : Hk(Y,Q)→ Hk(X ,Q) is a morphism of Hodge structures, with the
following

Definition 2.8. A morphism of Hodge structures (L,Lp,q), (L′,L′p′,q′) of respective weights k and k+2r
is a morphism φ : L → L′ of Q-vector spaces, such that

φC : LC → L′
C

maps Lp,q to L′p+r,q+r.

We note that there is the obvious notion of duality for Hodge structures, namely the dual of a Hodge
structure (L,Lp,q) of weight k is the Hodge structure of weight −k given by L∗ equiped with the dual
Hodge decomposition on L∗

C. Observing that for a compact Kähler manifold X of dimension n, the
(perfect) Poincaré pairing ⟨ , ⟩X between Hk(X ,Q) and H2n−k(X ,Q) has the property that

⟨α p,q,β p′,q′⟩= 0if (p′,q′) ̸= (n− p,n−q),
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we get that (up to a shift of bidegrees by (n,n) that is called a Tate twist) the Hodge structures on Hk(X ,Q)
and H2n−k(X ,Q) are dual.

This gives the covariant functoriality of Hodge structures, namely, if X , Y, φ are as above, the Gysin
morphism

φ∗ : Hk(X ,Q)→ Hk−2d(Y,Q), d := dimX −dimY,

is a morphism of Hodge structures. Indeed, one has

φ∗ = PD−1
Y ◦ t(φ ∗)◦PDX ,

where the Poincaré duality isomorphisms considered here are

PDX : Hk(X ,Q)∼= H2n−k(X ,Q)∗, PDY : Hk−2d(Y,Q)∼= H2n−k(Y,Q)∗.

A third example of a morphism of Hodge structures that can be constructed on the cohomology of a
compact Kähler manifold comes from Hodge classes on X . If α ∈ Hdg2l(X), the cup-product map

⌣ α : Hk(X ,Q)→ Hk+2l(X ,Q)

is a morphism of Hodge structures, because the wedge product of a closed form of type (p,q) and a
closed form of type (l, l) is a closed form of type (p+ l,q+ l).

A more general link between Hodge classes and morphisms of Hodge structures is given by the
following

Lemma 2.9. Let X , Y be compact Kähler manifolds. Let α ∈ H2k(X ×Y,Q) and, for each integer l ≥ 0,
let

α∗,l : H l(X ,Q)→ H l+2k−2n(Y,Q), n := dimX

be defined by

α∗,l(γ) = prY∗(α ⌣ pr∗X γ). (8)

Then α is a Hodge class on X ×Y if and only if the morphisms α∗,l are morphisms of Hodge structures
for all l.

Remark 2.10. The collection of the morphisms α∗,l is equivalent, using Poincaré duality, to the data of
the so-called Künneth components of α , obtained using the direct sum decomposition

H2k(X ×Y,Q) =⊕r+s=2kHr(X ,Q)⊗Hs(Y,Q).

We end this section with the following important result.

Proposition 2.11. The category of polarizable rational Hodge structures is semi-simple.

Proof. We have to show that if H ′ ⊂ H is a Hodge substructure, where H is polarizable, then there exists
a Hodge substructure H ′′ ⊂ H ′ such that H = H ′⊕H ′′ as Hodge structures. This is done by proving that
the pairing q giving a polarization on H remains nondegenerate on H ′, which allows to set H ′′ := H ′⊥q.
The nondegeneracy of q|H ′ is proved using the Hodge-Riemann bilinear relations (Theorem 2.7 (a) and
(b)), which also imply that H ′′ is a Hodge substructure.
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Proposition 2.11 is completely wrong in the unpolarized setting. For example, it is not true for weight
1 unpolarized Hodge structures, that are associated to complex tori (see [Voi02b, 7.2.2]). In that case, the
geometric meaning of Proposition 2.11 is the following: If T is a complex compact torus and T ′ ⊂ T is a
complex subtorus, then in general T is not isogenous to a product T ′×T ′′ of complex tori. However, this
statement is true if T is a projective complex torus, that is, an abelian variety.

One consequence of Proposition 2.11 is

Corollary 2.12. Let H, H ′ be Hodge structures of weight 2k, with H ′ polarized, and let φ : H ′ → H be a
surjective morphism of Hodge structures. Then

φ : Hdg(H ′)→ Hdg(H)

is surjective.

Indeed, this follows from the fact that, thanks to Proposition 2.11, φ has a left inverse as morphism of
Hodge structures.

3 The Hodge conjecture and standard conjectures

3.1 Cycle classes and Chern classes

Let X be a compact complex manifold, and let j : Z ↪→ X be a closed irreducible complex analytic subset
of dimension d, that is, Z is closed, locally defined by holomorphic equations, and, away from a closed
analytic subset Z′ ⊂ Z which is nowhere dense in Z, Z is a connected complex submanifold of dimension
d of X . The cycle class [Z] ∈ H2c(X ,Z), c := dimX −d, has been constructed first in [BH61] (see also
[GH78, p61] for a version with real coefficients). An easy construction using Hironaka’s resolution of
singularities [Hir64] goes as follows: there exists a resolution of singularities τ : Z̃ → Z of Z, that is, Z̃
is a complex manifold and τ is a proper holomorphic map which is an isomorphism above Z \SingZ.
Denoting j̃ := j ◦ τ : Z̃ → X , we thus have a Gysin morphism

j̃∗ : H0(Z̃,Z)→ H2c(X ,Z),

which provides and defines a class
[Z] := j̃∗(1Z̃),

which is easily shown to be independent of the chosen resolution. If X is now a compact Kähler manifold,
the morphism j̃∗ is a morphism of Hodge structures, hence the class [Z] is an integral Hodge class on X .
The subgroup of H2c(X ,Z) generated by these classes is called the group of codimension c analytic cycle
classes.

Another method to construct Hodge classes is due to Chern and uses Chern classes of holomorphic
vector bundles E on X . The topological Chern classes ci(E) ∈ H2i(X ,Z) depend only on the underlying
topological complex vector bundle. Following [BT82], the Chern classes (in real de Rham cohomology)
can be represented by choosing a complex connection ∇ on E, with curvature operator

R∇ ∈ Γ(X ,A2
X ⊗End E).
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Then the closed differential forms αi := σi(
R∇

2ιπ
) represent the classes ci(E), where σi is the polynomial

functions on matrices of size (r,r) which to a matrix associates the i-th symmetric function of its
eigenvalues. The holomorphic structure of E and the data of a Hermitian metric h on E determine a
complex connection ∇ on E (the Chern connection) having the property that the curvature operator R∇ is
of type (1,1), that is, belongs to Γ(X ,A1,1

X ⊗End E). It then follows that the corresponding representative
αi is a (real) closed form of type (i, i), hence the classes ci(E) are Hodge classes.

When X is a projective complex manifold, passing to Q-coefficients, the Q-vector spaces generated
by classes ci(E) and by cycle classes [Z] are equal. To see that cycle classes are combinations of Chern
classes, one first constructs the extension of the theory of Chern classes to analytic coherent sheaves (see
[BS58]). The existence (in the projective setting) of a finite locally free resolution

0 → En → . . .→ E0 → F→ 0

for any coherent sheaf F, provides by the Whitney formula the equality

c(F) = ∏
i

c(Ei)εi , εi := (−1)i, (9)

where c(E) := 1+ c1(E)+ . . .+ cn(E) ∈ H∗(X ,Q) is the total Chern class of any coherent sheaf E. We
use finally the Grothendieck-Riemann-Roch formula

cc(OZ) = (−1)c−1(c−1)![Z] in H2c(X ,Z), (10)

valid for any codimension c closed analytic subset Z. Formula (10) expresses cycle classes with rational
coefficients as Chern classes of coherent sheaves, and formula (9) shows that Chern classes of coherent
sheaves do not provide more classes than Chern classes of algebraic vector bundles.

In the other direction, Chern classes of vector bundles can be expressed as combinations of cycle
classes using the fact that for any holomorphic vector bundle E on X , an adequate twist E ⊗L, where L is
a very ample line bundle on X , is generated by global sections, hence is the pull-back of a tautological
vector bundle on a Grassmannian via a holomorphic morphism φ : X → G(k,n). Finally, one uses the
fact that the whole integral cohomology of any Grassmannian is generated by cycle classes, as shows the
theory of Schubert varieties.

These comparisons and arguments do not work in the general compact Kähler setting, as shown
in [Voi02a], where examples of coherent sheaves without locally free resolutions on compact Kähler
manifolds are exhibited. The Q-vector space generated by Chern classes of coherent sheaves can be
strictly larger than the one generated by Chern classes of vector bundles, and also than the one generated
by analytic cycles classes as in the example of [Zuc77].

The statement of the Hodge conjecture is the following

Conjecture 3.1. (Hodge conjecture) let X be a smooth projective complex manifold. Then for any c, the
Q-vector space H2c(X ,Q)alg ⊂ H2c(X ,Q) of codimension c cycle classes of X is equal to the Q-vector
space Hdg2c(X)⊂ H2c(X ,Q) of degree 2c Hodge classes of X.

Remark 3.2. By Chow’s theorem [Cho49], closed analytic subsets of a projective complex variety X are
also closed algebraic. The cycle classes will thus be called “algebraic classes”.
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It was known since Atiyah-Hirzebruch [AH62] that the similar statement with integral coefficients
fails, and quite different examples have been exhibited by Kollár in [Kol90]. In [Voi02a], it is shown that
the extension of the Hodge conjecture to compact Kähler manifolds, replacing “cycles classes” by “Chern
classes of coherent sheaves”, is wrong.

The Hodge conjecture is obvious for Hodge classes of degree 0 (the class of a point) and degree 2n,
n = dimX , (the class of a point). The only other cases where it is known in general follow from

Theorem 3.3. (Lefschetz theorem on (1,1)-classes) Let X be a compact Kähler manifold and α ∈
H2(X ,Z) be an integral Hodge class, that is, its image αC in H2(X ,C) is of type (1,1). Then

(i) there exists a holomorphic line bundle L on X such that c1(L) = α .
(ii) If X is projective, there exists a divisor D, namely an integral combination ∑i niDi with Di ⊂ X

analytic hypersurfaces, such that α = [D] := ∑i ni[Di].

Proof. Statement (ii) follows from (i), as discussed above. The proof of (i) follows from a sheaf
cohomology argument. Let OX and O∗

X be respectively the sheaves of holomorphic functions and
invertible holomorphic functions on X . Then one has the exponential exact sequence

0 → Z→ OX → O∗
X → 1,

a short exact sequence of sheaves that says that an invertible holomorphic function is locally the exponen-
tial of a holomorphic function. This induces a long exact sequence of sheaf cohomology groups

. . .H1(X ,O∗
X)

δ→ H2(X ,Z)→ H2(X ,OX) . . . (11)

One notes that the group of (isomorphism classes of) holomorphic line bundles on X (where the group
structure is given by the tensor product) is isomorphic to H1(X ,O∗

X). Indeed, this follows from local
trivializations of holomorphic line bundles, with transition matrices given by invertible holomorphic
functions. Then one shows that the connecting map δ is nothing but the first Chern class (in fact this can
be taken as a definition of the first Chern class). Finally, the last map in (11) can be identified to the map

H2(X ,Z) ∋ α 7→ α
0,2
C ∈ H0,2(X) = H2(X ,OX).

This concludes the proof since by assumption αC is of type (1,1), hence its (0,2)-component is 0.

Remark 3.4. The argument given above also shows that on any affine complex variety X0, namely
the complement of a hyperplane section H in a projective complex manifold X , any integral degree 2
cohomology class can be written as c1(M0) for some holomorphic line bundle M0 on X0, (and a similar
result is true for higher even degree rational cohomology, see [CG75]). Indeed, on the affine variety X0,
the cohomology groups H i(X0,OX0) vanish for i > 0, hence in particular H2(X0,OX0) = 0. A strategy
for an analytic approach to the Hodge conjecture would be to start from holomorphic vector bundles on
X0 and to describe which of them extend, at least as coherent sheaves, to X , with the hope that the Hodge
condition on Chern classes is the only obstruction. This strategy is described in [CG75].

Remark 3.5. It is to be noted that the proof of Theorem 3.3 is of a transcendental nature, since it uses the
exponential exact sequence that has no analogue in algebraic geometry. However, when X is projective,
we get at the end algebraic vector bundles and algebraic cycles since holomorphic vector bundles on X
are algebraic by [Ser56] and closed analytic subsets of X are algebraic by [Cho49].
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Theorem 3.3 implies now the following other and last case where the Hodge conjecture is known.

Corollary 3.6. Let X be a projective complex manifold of dimension n and let α ∈ Hdg2n−2(X ,Q). Then
there exists a 1-cycle Z = ∑i niZi with Q-coefficients ni, such that

α = [Z] := ∑
i

ni[Zi] in H2n−2(X ,Q).

Proof. We choose an ample line bundle L on X , set l := c1(L), and use the Lefschetz isomorphism

⌣ ln−2 : H2(X ,Q)→ H2n−2(X ,Q).

This isomorphism is an isomorphism of Hodge structures, so there exists a Hodge class β ∈ Hdg2(X)
such that

α = ln−2 ⌣ β .

By Theorem 3.3, (ii), β = [D] = ∑i niDi for some divisor of X with rational coefficients. As L is very
ample, the class l is the class of any hyperplane section Hi of X . Then for general choices of Hi

α = ∑
i

ni[H1 ∩ . . .∩Hn−2 ∩Di] ∈ H2n−2(X ,Q),

and each Zi = H1 ∩ . . .∩Hn−2 ∩Di is a closed algebraic curve in X .

Remark 3.7. A big difference with the divisor case is that Corollary 3.6 is not true in general with
integral coefficients, as show examples constructed by Kollár [Kol90].

3.2 Standard conjectures and some consequences

The natural question concerning the Hodge conjecture is: are there so many examples of Hodge classes
that are not trivially algebraic? The answer is yes and no. We refer to [BKU24], [KO21] for results
concerning the sparsity of Hodge classes, except in the divisor case. In the opposite direction, we will
spell-out in this section many examples of Hodge classes on powers of any given projective variety, all
formally constructed by application of Lemma 2.9, and for which the Hodge conjecture is still open. The
Hodge conjecture applied to these Hodge classes gives rise to the so-called standard conjectures (see
[Kle68]) and have strong consequences on the theory of cohomological versus numerical motives. In
Section 3.4, we will exhibit an arithmetic property satisfied by these standard Hodge classes, and that is
conjecturally satisfied by all Hodge classes, as a consequence of the Hodge conjecture.

3.2.1 Künneth components of the diagonal

Let X be a smooth projective variety of dimension n. The cohomology class

δX = [∆X ] ∈ H2n(X ×X ,Q)
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of the diagonal ∆X ⊂ X ×X of X acts as the identity on Hk(X ,Q) for any k, via the formalism described
in (8). The Künneth decomposition theorem combined with Poincaré duality says that

H∗(X ×X ,Q)∼= End(H∗(X ,Q)) (12)

H2n(X ×X ,Q)∼= End0(H∗(X ,Q)), (13)

where in (13), the subscript 0 means “degree preserving endomorphisms". Using (13), we can write

δX = δ0 +δ1 + . . .+δ2n in H2n(X ×X ,Q), (14)

where δi ∈ End0(H∗(X ,Q)) acts as the identity on H i(X ,Q) and as 0 on H j(X ,Q) for j ̸= i. By Lemma
2.9, each δi provides a rational Hodge class on X ×X . By definition the class δX = ∑i δi = [∆X ] is
algebraic but it is not known in general if each δi is algebraic. This problem is the Künneth standard
conjecture and is stated in [Kle68]. The only general results are

Proposition 3.8. (See [Kle72]) Let X be smooth projective of dimension n. Then the Künneth components
δi of X are algebraic when i = 0, 1, 2n−1, 2n.

Proof. For δ0, δ2n, this is obvious since they are respectively the classes of pt×X and X ×pt, where pt is
any point in X . For δ1, by the Lefschetz theorem on hyperplane sections, if we consider a smooth curve
j :C ↪→X which is a complete intersection of hyperplane sections of X , then j∗ : H1(C,Q)→H2n−1(X ,Q)
is surjective, and the class δ1 ∈ H2n−1(X ,Q)⊗H1(X ,Q) belongs to

Im( j∗⊗ Id : H1(C,Q)⊗H1(X ,Q)→ H2n−1(X ,Q)⊗H1(X ,Q)).

The morphism j∗ ⊗ Id = ( j, Id)∗ is a morphism of polarized Hodge structures, hence we can apply
Corollary 2.12 to conclude that

δ1 = ( j, Id)∗(β )

for some degree 2 Hodge class

β ∈ H1(C,Q)⊗H1(X ,Q)⊂ H2(C×X ,Q).

The Hodge conjecture being known for degree 2 Hodge classes, we conclude that β is algebraic, hence
δ1 is algebraic. Similarly for δ2n−1.

Corollary 3.9. The Künneth standard conjecture is true for smooth complex projective surfaces.

Indeed, for a surface, the only Künneth components of the diagonal are δ0, δ1, δ2, δ3, δ4. We know
that δ0, δ1, δ3, δ4 are algebraic by Proposition 3.8, and that ∑i δi is algebraic, so δ2 is also algebraic.

Remark 3.10. The arguments above are given a sophisticated version in [Mur90], where a Chow-Künneth
decomposition of the diagonal is given.
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3.2.2 Lefschetz inverse isomorphisms

Let X be a smooth projective variety over C (or complex projective manifold) and let L be a very
ample line bundle on X . Recalling the hard Lefschetz isomorphism of Theorem 2.7(i), that we apply to
[ω] = l := c1(L), we get inverse isomorphisms

γk := (ln−k)−1 : H2n−k(X ,Q)→ Hk(X ,Q) (15)

for k ≤ n = dimX . Note that γk is a morphism of Hodge structures, hence provides by Lemma 2.9 a
Hodge class of degree 2k on X ×X . The Lefschetz standard conjecture for degree k cohomology is the
following statement.

Conjecture 3.11. For each k ≤ n, there exists a codimension k cycle Z in X ×X, such that the class
[Z] ∈ Hdg2k(X ×X) satisfies

[Z]∗ = (ln−k)−1 : H2n−k(X ,Q)→ Hk(X ,Q). (16)

Conjecture 3.11 and the Künneth standard conjecture are known for abelian varieties, that is, projective
complex tori (see [Lie68]). To prove the Künneth standard conjecture, we observe that there are plenty of
interesting cycles in A×A, where A is a projective complex torus. Namely, A being also an abelian group,
the multiplication by i maps

µi : A → A

a 7→ ia

are holomorphic. One has

µ
∗
i = ikId : Hk(A,Q)→ Hk(A,Q). (17)

Formula (17) and the definition of the Künneth projectors δk of (14) provide the following formula

[Γi] = ∑
k

ikδk in H2g(A×A,Q) (18)

where g = dimA and Γi ⊂ A×A is the graph of µi. Using (18) for several values of i, a Vandermonde
determinant argument tells us that the Künneth components of the diagonal can be computed as combina-
tions with rational coefficients of classes [Γi] for various i’s, hence they are cycle classes on A×A. Note
that this argument works as well for any complex torus and does not use the algebraicity of A. Finally we
can construct algebraic cycles first in A by taking successive powers θ i of an ample divisor class θ , and
then on A×A using the pull-back under the sum map

µ : A×A → A,

(a,b) 7→ a+b.

It is not hard to prove the Lefschetz standard conjecture for A using the classes µ∗θ i.
Conjecture 3.11 has been proved only recently in [CM13] for a more general class of smooth

projective varieties, namely projective hyper-Kähler manifolds of K3[n] deformation type (see [Bea83]).
The Lefschetz standard conjecture has very important consequences and thus deserves to be formu-

lated independently of the Hodge conjecture. We start with
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Proposition 3.12. Assume the Lefschetz standard conjecture is true for X. Then the intersection pairing

H2k(X ,Q)alg ×H2n−2k(X ,Q)alg →Q

obtained by restricting the Poincaré pairing of X to the Q-vector subspaces

H2k(X ,Q)alg ⊂ H2k(X ,Q), H2n−2k(X ,Q)alg ⊂ H2n−2k(X ,Q)

generated by cycle classes, is perfect.

Remark 3.13. Proposition 3.12 illustrates the importance of the Lefschetz standard conjecture for the
theory of motives. Indeed, it says that, assuming the Lefschetz standard conjecture, numerical equivalence
of cycles (where a cycle is said numerically equivalent to zero if it has trivial intersection number with
cycles of the complementary dimension) is the same as cohomological equivalence of cycles. Numerical
equivalence is a purely algebraic notion, while cohomological equivalence needs a cohomology theory
with a cycle class in order to be defined.

Proof of Proposition 3.12. We can assume 2k ≤ n. We choose an ample class l = c1(L) and consider
the hard Lefschetz isomorphism ln−2k ⌣: H2k(X ,Q)∼= H2n−2k(X ,Q). Being an isomorphism of Hodge
structures, it induces an isomorphism ln−2k ⌣: Hdg2k(X ,Q)∼= Hdg2n−2k(X ,Q). Furthermore it preserves
the spaces of algebraic classes, since ln−2k ⌣ [Z] = [D1 ∩ . . .Dn−2k ∩Z] for general hypersurfaces Di of
X with [Di] = c1(L).

If we now assume the Lefschetz standard conjecture, we can even conclude that

ln−2k ⌣: H2k(X ,Q)alg → H2n−2k(X ,Q)alg (19)

is an isomorphism, with left inverse given by [Z]∗, where Z ⊂ X ×X is a Lefschetz cycle for degree 2k
cohomology.

Once one has this statement for all even degrees ≤ 2k, one concludes that the Lefschetz pairing

⟨α,β ⟩lef =
∫

X
ln−2k ⌣ α ⌣ β

is a perfect pairing on H2k(X ,Q)alg, (which, thanks to the isomorphism (19), implies the desired statement
that H2k(X ,Q)alg and H2n−2k(X ,Q)alg are dual,) by the following argument. Having the Lefschetz
isomorphisms on the subalgebra H2∗(X ,Q)alg ⊂ Hdg2∗(X), we conclude that each H2k(X ,Q)alg is stable
under the Lefschetz decomposition, hence can be decomposed as

H2k(X ,Q)alg =
⊕

2r≤2k

lrH2k−2r(X ,Q)alg,prim. (20)

Looking at the Hodge-Riemann relations (Theorem 2.7(ii)), we get that ⟨ , ⟩lef is definite on each
lrHk−r,k−r(X ,R)prim, hence remains nondegenerate on each subspace lrH2k−2r(X ,R)alg,prim. We then
conclude using the fact that the decomposition (20) is orthogonal for ⟨ , ⟩lef.
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Remark 3.14. As the same proof as above shows, it is always true (that is, without assuming the Lefschetz
standard conjecture) that the intersection pairing

Hdg2k(X)×Hdg2n−2k(X)→Q

obtained by restricting the Poincaré pairing of X to the Q-vector subspaces

Hdg2k(X)⊂ H2k(X ,Q), Hdg2n−2k(X)⊂ H2n−2k(X ,Q)

of Hodge classes, is perfect.

Let us give two formal but important corollaries.

Corollary 3.15. Let φ : X → Y be a morphism between smooth complex projective manifolds, and let
d := dimX −dimY . Assume X and Y satisfy the Lefschetz standard conjecture.

(i) If α ∈ H2k(X ,Q)alg can be written as α = φ ∗β , for some β ∈ H2k(Y,Q), then there exists
β ′ ∈ H2k(Y,Q)alg such that α = φ ∗β ′.

(ii) If α ∈ H2k(Y,Q)alg can be written as α = φ∗β , for some β ∈ H2k+2d(X ,Q), then there exists
β ′ ∈ H2k+2d(X ,Q)alg such that α = φ∗β ′.

Proof. We prove only (i), and in fact the more general statement concerns any correspondences between
X and Y . Let m := dimY . The class β produces an element of H2m−2k(Y,Q)∗, hence by restriction an
element β ∗ of H2m−2k(Y,Q)∗alg. By Proposition 3.12 applied to Y , there is an element β ′ ∈ H2k(Y,Q)alg
such that

β
∗ = (β ′)∗.

We finally prove that α = φ ∗β ′ using Proposition 3.12 applied to X .

The following corollary of Corollary 3.15(i) appears in [And06].

Corollary 3.16. Assume the Lefschetz standard conjecture. Let X be a smooth projective variety and
φ : X→ B be a dominant morphism, where B is a connected projective variety, everything being defined
over C. Let α ∈ Hdg2k(X) be a Hodge class. Then, if there exists a point b ∈ B such that the fiber Xb is
smooth and the restriction α|Xb is algebraic, the restriction α|Xb′

is algebraic for all smooth fibers Xb′ .

Indeed, we apply Corollary 3.15(i) to X= Y and Xb = X . Note that, in Corollary 3.16, we only need
that X and Xb satisfy the Lefschetz standard conjecture.

3.3 Weil Hodge classes on Weil abelian varieties

One dissatisfactory point concerning the Hodge conjecture is the fact that, apart from the formal manip-
ulations explained above, it is very hard to produce interesting Hodge classes which are not obviously
algebraic. In this section, we will describe a rather explicit construction of Hodge classes on certain
abelian varieties. We refer to [vG94] for more detail. An abelian variety over the complex numbers can
be seen as a complex torus which is projective. A compact complex torus is a quotient T = Cn/Γ, where
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Γ ⊂ Cn is a discrete lattice of rank 2n. The dual lattice Γ∗ is canonically isomorphic to H1(T,Z). The
inclusion Γ ⊂ Cn gives rise to a surjective morphism of complex vector spaces

ΓC → Cn

with kernel K ⊂ ΓC. Dually, we get an exact sequence

0 → K⊥ → Γ
∗
C → K∗ → 0

and it is not hard to see that the n-dimensional subspace K⊥ ⊂ Γ∗
C identifies to H1,0(T )⊂ H1(T,C) (this

corresponds to the space of holomorphic 1-forms on T ). Furthermore K⊥ determines T and all the Hodge
structures on H∗(T,Z) since Hk(T,Z)∼=

∧k H1(T,Z) as Hodge structures.
We assume now that T admits an endomorphism φ that satisfies φ 2 = −dIdT for some positive

integer d. The endomorphism φ induces a morphism φ ∗ : H1(T,Z)→ H1(T,Z) which satisfies the same
quadratic equation and is a morphism of Hodge structures, giving

φ
∗(H1,0(T ))⊂ H1,0(T ), φ

∗(H0,1(T ))⊂ H0,1(T ).

Conversely, such a morphism of Hodge structures induces an endomorphism of T .
A Weil complex torus (see [Wei]) is a complex torus of even dimension n = 2m, equipped with a

quadratic endomorphism φ as above, with the property that φ ∗ acting on H1,0(T ) has m eigenvalues
equal to i

√
d and thus m eigenvalues equal to −i

√
d. For example, if we start from a complex torus T+ of

dimension m, admitting an endomorphism φ+ satisfying φ 2
+ =−dIdT+ and acting by i

√
d on H1,0(T+),

then
T = T+×T+, φ = (φ+,−φ+)

provides a Weil complex torus. Being non-simple, it is of course non-generic.
Given an endomorphism φ ∗ acting on H1(T,Z), with eigenspaces W+,W− ⊂ H1(T,C) associated

respectively with the eigenvalues i
√

d,−i
√

d, a Weil complex torus with these given topological data is
determined by the data of the two m-dimensional vector spaces

H1,0+ ⊂W+, H1,0− ⊂W−,

such that
H1,0(T ) = H1,0+

⊕
H1,0−, H0,1(T ) = H1,0+

⊕
H1,0−,

and thus

W+ = H1,0+
⊕

H1,0−. (21)

Consider now the 1-dimensional vector subspace

2m∧
W+ ⊂

2m∧
H1(T,C) = H2m(T,C).

Using (21), we get
∧2mW+ ⊂ Hm,m(T ), hence also

∧2mW+ ⊂ Hm,m(T ). Finally we have
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Lemma 3.17. There exists a Q-vector subspace M ⊂ H2m(T,Q) such that

MC =
2m∧

W+
⊕ 2m∧

W+ ⊂ H2m(T,C).

Proof. Indeed, let L :=Q(
√
−d). Then H1(T,Q) is a n-dimensional L-vector space and we construct M

as the trace of the 1-dimensional L-vector space
∧n

L H1(T,Q).

Lemma 3.17 shows that T has a 2-dimensional space of Hodge classes, called Weil classes. It is
proved in [Voi02a] that for a very general Weil complex torus T as above, with m ≥ 2, any coherent sheaf
F on T has trivial Chern classes, so the Weil classes are not Chern classes of coherent sheaves on T . We
turn now to the projective case, where the Hodge conjecture predicts that the Weil classes are algebraic.

In order to make a Weil complex torus T algebraic, it suffices by the Kodaira embedding theorem
to have an integral Hodge class of degree 2 on T whose (1,1)-representative by a constant 2-form
on the universal cover of T is a positive (1,1)-form (this is called a polarization on T ). As φ ∗

T acts
on H2(T,Z) preserving integral Hodge classes and positive (1,1)-classes, and furthermore satisfies
(φ ∗

T )
2 = d2IdH2(T,Z), φ ∗

T has the eigenvalues d and −d on H2(T,Z) and we can always find, when T is
algebraic, a polarization λ such that φ ∗

T λ = dλ . The very general projective Weil torus has in fact Picard
number 1, and the polarization is unique, assuming it is nondivisible. We thus get another numerical
invariant, which is related to the degree of the polarization and is called the discriminant of the polarized
Weil abelian variety.

The known results on the Hodge conjecture for abelian varieties are as follows. First of all, Moonen
and Zharhin [MZ95] proved that, in the case of abelian fourfolds, the Hodge conjecture reduces to the
Hodge conjecture on Weil abelian fourfolds. More precisely, their algebra of Hodge classes is generated
by degree 2 Hodge classes and Weil type Hodge classes. Next, after a first work by Schoen [Sch88] (see
also [Sch07]), Markman proved in [Mar23] the Hodge conjecture for Weil abelian 4-folds of discriminant
1, using a long detour through hyper-Kähler manifolds of generalized Kummer type and some work of
O’Grady [O’G21]. Finally, Markman [Mar25] proved recently by a completely different method the
Hodge conjecture for Weil abelian 6-folds of discriminant 1. By a specialization argument, this implies
the Hodge conjecture for Weil abelian 4-folds of any discriminant, and thus the Hodge conjecture for all
abelian fourfolds by [MZ95], which is a remarkable achievement.

3.4 Hodge loci and absolute Hodge classes

We discuss in this section the variational theory of Hodge classes, and more precisely the structure of
Hodge loci. We first discuss the Grothendieck-Serre isomorphism, which is a crucial bridge between
algebraic geometry over C and topology. Let X be a smooth algebraic variety defined over a field
K. Then one can define the locally free sheaves ΩX/K of Kähler differentials, their exterior powers
Ωl

X/K :=
∧l

ΩX/K , and the exterior differential d : Ωl
X/K → Ω

l+1
X/K , which satisfies as usual d ◦d = 0. If

K = C, and X ⊂ PN
C is projective, X is covered by affine open sets Xi = Ui ∩X , where Ui ⊂ PN

C is the
complement of a hyperplane, so Ui ∼= AN . The algebraic differential forms on X , restricted to the Zariski
open sets Xi, can then be described as restrictions to Xi of algebraic differential forms ∑I αIdzI on the
ambient space Ui ∼= AN with linear coordinates zi, i = 1, . . . , N, where the αI are polynomials on AN .
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We can thus define algebraic de Rham cohomology (see [Gro66], [Har75]) of X as

H l
dR(X/K) :=Hl(X ,Ω•

X/K). (22)

The right hand side is hypercohomology of the complex Ω•
X/K on the algebraic variety X (see [Voi03,

8.1]). This is a K-vector space, and if we extend the definition field K ⊂ K′, we get

H l
dR(XK′/K′) = H l

dR(X/K)⊗K K′.

Assume now that K =C. Then we observe that the analytization Ωl
X/C,an, that is, the sheaf of holomorphic

sections of the algebraic vector bundle Ωl
X/C, is naturally isomorphic to the analytic coherent sheaf Ωl

Xan
of

holomorphic l-forms on the associated complex manifold Xan. When X is projective, GAGA comparison
theorem [Ser56] thus gives an isomorphism

H l
dR(X/C)∼=Hl(Xan,Ω

•
Xan

). (23)

Finally, by the holomorphic Poincaré lemma, the complex Ω•
Xan

of holomorphic differential forms on Xan
is locally exact in degree > 0 in the Euclidean topology, hence is a resolution of the constant sheaf C on
Xan. We thus conclude that

Hl(Xan,Ω
•
Xan

)∼= H l(Xan,C)

which, combined with (23), gives the Grothendieck-Serre isomorphism

H l
dR(X/C)∼= H l(Xan,C). (24)

It is a remarkable fact that this also holds true when X is only quasiprojective (see [Gro66]). The
isomorphism (24) is obviously compatible with the Hodge filtrations

F pH l
dR(X/C) := Im(Hl(X ,Ω•≥p

X/K)→Hl(X ,Ω•
X/K)), (25)

F pH l(Xan,C) := Im(Hl(Xan,Ω
•≥p
Xan

))→Hl(Xan,Ω
•
Xan

)). (26)

Finally, thanks to the Hodge decomposition theorem, the filtration (26) is nothing but the Hodge filtration
that we defined in Remark 2.3.

For a smooth algebraic variety X defined over K and an algebraic subvariety Z ⊂ X of codimension k
also defined over K, there is an algebraic cycle class

[Z]dR ∈ FkH2k
dR(X/K)

which is compatible with field extensions and, when K = C, the following comparison holds between the
algebraic and topological cycle classes:

Proposition 3.18. Let X be a smooth quasiprojective variety over C and Z ⊂ X be a subvariety of
codimension k. Then, under the (filtered) isomorphism (24), one has

[Z]dR = (2iπ)k[Zan]. (27)
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A similar comparison holds for Chern classes of vector bundles, and it is even easier to see in this
context the reason for the coefficient (2iπ)k. Indeed the Chern classes are determined by the first Chern
class using the standard axiomatic formalism (see [Gro58]) so it suffices to check that for an algebraic
line bundle L on X , we have the comparison

c1(L)dR = (2iπ)c1(Lan) (28)

between its algebraic de Rham Chern class and the first Chern class of the holomorphic line bundle Lan
on Xan. The algebraic line bundle L is an element of the algebraic Picard group PicX , hence corresponds
to a cocycle αL ∈ H1(X ,O∗

X), with analytic counterpart αL,an ∈ H1(Xan,O
∗
Xan

) defining the holomorphic
line bundle Lan. On the left hand side of (28), c1(L)dR is by construction the image of αL in

H1(X ,Ωclosed
X/C )⊂H1(X ,Ω≥1

X/C)

via the map dlog : O∗
X → Ωclosed

X/C which sends f to d f
f . On the right hand side of (28), looking at the

construction of c1(Lan) via the exponential exact sequence, one checks that c1(Lan) is the image of αL,an
in

H1(Xan,Ω
closed
Xan

)⊂H1(Xan,Ω
≥1
Xan

)

via the dlog
2iπ map which sends f to 1

2iπ
d f
f (see [Voi02b, 7.1.3]). This proves (28).

Let us explain the consequences of these constructions on the structure of “Hodge loci” predicted by
the Hodge conjecture. Let π : X→ B be a smooth projective morphism of complex algebraic varieties,
with B smooth. We can even assume that X, B and π are defined over a number field K, since by the
theory of the Hilbert scheme (or just by spreading the coefficients of the defining equations), every smooth
complex projective variety is a fiber of a family of smooth projective varieties defined over a number
field. The associated morphism

πan : Xan → Ban

of complex manifolds is smooth and proper, hence is a topological fibration by Ehresmann’s theorem.
There is thus for each integer k a local system H2k := R2kπan,∗Q of Q-vector spaces, and using the
relative version of the various comparison theorems we have been discussing above, we can compute the
holomorphic vector bundle H2k :=H2k ⊗OBan as

H2k = R2k
πan,∗(Ω

•
Xan/Ban

),

with Hodge subbundle
FkH2k = R2k

πan,∗(Ω
•≥k
Xan/Ban

).

The fibers of these bundles over b ∈ B are respectively H2k(Xt ,C), FkH2k(Xt ,C). By a slight abuse of
notations, we use the same notation for the total space of the holomorphic vector bundles above, and,
following [CDK95], we make the following

Definition 3.19. The locus of Hodge classes for the family π : X→ B is the subset of FkH2k consisting
of classes αt ∈ FkH2k(Xt)∩H2k(Xt ,Q), t ∈ B.
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As Hdg2k(Xt) = FkH2k ∩H2k(Xt ,Q) by Remark 2.6, the locus of Hodge classes is the set of all
Hodge classes of degree 2k in fibers of π . The locus of Hodge classes can be locally written as a countable
union of closed analytic subsets of FkH2k, determined locally by the choice of a section α of the local
system R2kπ∗Q, determining a closed analytic subset of H2k made of points t ∈ B where αt belongs to
FkH2k

t . The Hodge conjecture predicts a more algebraic structure, as we now explain. Indeed, it predicts
that the locus of Hodge classes is also the locus of cycle classes [Zt ] ∈ FkH2k(Xt) for all codimension k
algebraic cycles in some fiber of π . Next, the holomorphic vector bundle FkH2k has the structure of an
algebraic vector bundle on B, defined over K. Indeed, there is the relative algebraic de Rham complex
Ω•

X/B whose analytisation is the holomorphic relative de Rham complex, which provides algebraic vector
bundles H2k

alg, FkH2k
alg on B, defined over K, and given by the formulas

H2k
alg = R2k

π∗(Ω
•
X/B), FkH2k

alg = R2k
π∗(Ω

•≥k
X/B).

The relative version of the comparison theorem (24) says that H2k is the analytization of H2k
alg and FkH2k

is the analytization of FkH2k
alg.

Finally there are the so-called relative Chow varieties parameterizing all pairs (t,Zt) consisting of
a point t ∈ B and a codimension k cycle Zt ⊂ Xt . There are countably many such varieties fi : Mi → B,
where Mi is algebraic, fi is an algebraic morphism, (Mi, fi) is defined over a finite extension of K′, and
there exists a codimension k cycle Zi ⊂ Mi×BX, with the property that any pair (t,Zt) as above is the fiber
Zi,s ⊂ Xt , for some point s ∈ Mi such that t = fi(s). By resolution of singularities, we can assume that Mi

is smooth, and the cycle Zi then has an algebraic cycle class [Zi]dR ∈ H2k(Mi ×B X), whose restriction to
Xs is [Zi,s]dR = (2iπ)k[Zi,s], and in particular is locally constant along the fibers of fi. The image of the
morphism

Mi → FkH2k
alg, s 7→ [Zi,s]dR

is thus an algebraic subvariety of FkH2k
alg which is defined over a finite extension K′ of K. To summarize

this discussion, the vector bundle FkH2k over B contains the locus HL of Hodge classes of degree 2k
in the fibers, and the locus CL of codimension k cycle classes in the fibers. The locus HL is locally a
countable union of closed analytic subsets. The locus CL has more structure, namely (2iπ)kCL is the
image of the algebraic de Rham cycle class, hence is a countable union of closed algebraic subvarieties of
FkH2k

alg defined over a finite extension of K, namely those constructed above. Taking into account the
comparison (27), the Hodge conjecture thus predicts that (2iπ)k times the locus of Hodge classes is a
countable union of closed algebraic subvarieties of FkH2k

alg defined over finite extensions of K. Part of
this prediction is a theorem, which is the best known evidence for the Hodge conjecture.

Theorem 3.20. [CDK95] The locus of Hodge classes is a countable union of closed algebraic subvarieties
of FkH2k

alg.

What is missing is the statement concerning the definition field of these loci, despite some results (see
eg [KOU23]). For example, a completely open problem is whether, given a family π : X→ B as above,
that is, everything is defined over a number field, the image in B of the locus of Hodge classes could have
isolated points not defined over a number field. This would disprove the Hodge conjecture...

The question of the field of definition of Hodge loci is almost equivalent to the following
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Conjecture 3.21. Any Hodge class on an algebraic variety is absolute Hodge.

Here the notion of “absolute Hodge class” has been introduced by Deligne in [Del82], who proved
that Hodge classes on abelian varieties are absolute Hodge. let X be a smooth projective variety defined
over a field K of characteristic 0. For any field embedding τ : K ↪→ C, we get a complex manifold Xτ

an,
and for a de Rham cohomology class α ∈ FkH2k

dR(X/K) we get using (23) a Betti cohomology class
ατ ∈ FkH2k(Xτ

an,C). If Z ⊂ X is a codimension k cycle on X , and α = [Z]dR, then (27) shows that
1

(2iπ)k ατ ∈ H2k(Xτ
an,Q). The class 1

(2iπ)k ατ ∈ H2k(Xτ
an,Q) is thus a Hodge class, but it also satisfies the

property that for any field embedding σ : K ↪→ C, the class 1
(2iπ)k ασ belongs to H2k(Xσ

an,Q), hence is
again a Hodge class. This property (independence of the field embedding) characterizes the absolute
Hodge classes.

Cycle classes are absolute Hodge, which motivates Conjecture 3.21. The Hodge classes that appear
in the standard conjectures are absolute Hodge. If we have a family π : X→ B with B irreducible and a
rational cohomology class α ∈ H2k(Xan,Q) which has the property that α|Xb is a Hodge class for every
b ∈ B, then α|Xb is an absolute Hodge class for every b ∈ B if and only if α|Xb is an absolute Hodge class
for some b ∈ B (hence in particular if α|Xb is algebraic for some b ∈ B).

4 The generalized Hodge conjecture

We discuss in this section a conjecture stated in [Gro69], and called the “generalized Hodge conjecture”.
Technically, it is a mild generalization of the Hodge conjecture (see Proposition 4.8).

4.1 Coniveau

Recall the definition of the (Hodge) coniveau of a Hodge structure (Definition 2.4). Given a smooth
projective variety X , a natural geometric way to construct Hodge substructures L ⊂ Hk(X ,Q) of Hodge
coniveau c is as follows. Let Y be a smooth complex projective variety, with dimY = dimX − c, and let

φ : Y → X (29)

be a morphism (i.e. a holomorphic map). Then

φ∗ : Hk−2c(Y,Q)→ Hk(X ,Q)

is a morphism of Hodge structures, that maps H p,q(Y ) to H p+c,q+c(X). It follows that L := Imφ∗ ⊂
Hk(X ,Q) is a Hodge substructure with Lp′,q′ = 0 if p′ < c or q′ < c. Hence L has Hodge coniveau ≥ c.

Definition 4.1. A cohomology class α ∈ Hk(X ,Q) has geometric coniveau ≥ c, if there is a closed
algebraic (equivalently, analytic) subset Z ⊂ X, of codimension c, such that

α|X\Z = 0 in Hk(X \Z,Q). (30)

By considering the cohomology of the pair (X ,X \Z), a class α satisfying (30) has to come from a
class in Hk(X ,X \Z,Q), and by Poincaré duality, this also says that α comes from H2n−k(Z,Q) via the
composite map

H2n−k(Z,Q)→ H2n−k(X ,Q)
PDX∼= Hk(X ,Q).
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Example 4.2. The class [Z] ∈ H2c(X ,Q) of a cycle Z = ∑i niZi of codimension c vanishes away from
the support SuppZ := ∪iZi of Z, hence has geometric coniveau c. More generally, if [Z] is a cycle class
as above, and β ∈ H∗(X ,Q) is any cohomology class, then β ⌣ [Z] vanishes in H∗+2c(X \SuppZ,Q),
hence has geometric coniveau ≥ c.

Example 4.3. Here is an example that does not fit in the above category. Let X ⊂ Pn be a generic
hypersurface of degree d ≤ n. The Fano variety of lines F1(X) of X is smooth of dimension 2n−d −3.
Choose a smooth complete intersection of ample hypersurfaces W ⊂ F1(X) of dimension n− 3, and
consider the restriction PW →W to W of the universal P1-bundle over the Grassmannian G(2,n+1) of
lines in Pn. There is an incidence diagram

p : PW →W, q : PW → X

and it is known (see for example [Shi90]) that

q∗ ◦ p∗ : Hn−3(W,Q)→ Hn−1(X ,Q)

is surjective. Thus the cohomology Hn−1(X ,Q) has geometric coniveau ≥ 1, as it vanishes away from
X \q(PW ), with dimq(PW ) = n−2.

Obviously, if α = φ∗β for some morphism φ : Y → X as in (29), then α has geometric coniveau ≥ c,
because α vanishes away from the closed algebraic subset φ(Y ) ⊂ X , which has codimension ≥ c. It
turns out that there is a converse to this statement, which follows from the following

Theorem 4.4. (Deligne [Del71]) Let j : Z ↪→ X be the inclusion of a closed algebraic subset of codi-
mension c, and let τ : Z′ → Z be a desingularization of Z, j′ := τ ◦ j : Z′ → X. Then for any integer
l ≥ 0

Im( j∗ : Hl(Z,Q)→ Hl(X ,Q)) = Im( j′∗ : Hl(Z′,Q)→ Hl(X ,Q)). (31)

This highly nontrivial equality follows from the theory of mixed Hodge structures, and the fact that a
morphism j∗ as above is a morphism of mixed Hodge structures (see [Del71], [Voi03, 4.3.2]).

Corollary 4.5. Let X be a smooth projective complex variety. Then
(i) Classes of geometric coniveau ≥ c on X are the classes of the form φ∗β , for some morphism

φ : Y → X, with Y smooth projective and dimY = dimX − c.
(ii) The set of degree k cohomology classes of geometric coniveau ≥ c is a Hodge substructure of

Hk(X ,Q) of Hodge coniveau ≥ c.

An example of a smooth complex projective variety X , together with a nonzero rational cohomology
class α ∈ H3(X ,Q) which is of Hodge coniveau 1, that is, αC = α2,1 +α1,2, while H3(X ,Q) does not
contain any Hodge substructure of coniveau 1 is described in [Voi03, Exercise 1, p 184]. Such a class α

is of Hodge coniveau 1 but not of geometric coniveau 1.
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4.2 Grothendieck’s generalized Hodge conjecture

The generalized Hodge conjecture is the converse of Corollary 4.5(ii).

Conjecture 4.6. [Gro69] Let X be a smooth complex projective variety, and let L ⊂ Hk(X ,Q) be a
Hodge substructure of coniveau c. Then L is of geometric coniveau ≥ c, that is, there exists a closed
algebraic subset Z ⊂ X of codimension ≥ c such that

L ⊂ Ker(Hk(X ,Q)→ Hk(X \Z,Q)).

Equivalently (by Corollary 4.5(ii)), there exist a smooth projective variety Y of dimension n− c and a
morphism j : Y → X, such that

L ⊂ Im( j∗ : Hk−2c(Y,Q)→ Hk(X ,Q)).

The Hodge conjecture (Conjecture 3.1) is a particular case of the generalized Hodge conjecture
because the data of a Hodge class α ∈ H2k(X ,Q) is the same as the data of a Hodge substructure
Qα ⊂ H2k(X ,Q) of Hodge coniveau k (and of rank 1). The generalized Hodge conjecture then predicts
that α vanishes on X \Z for some codimension k closed algebraic subset. As explained in the previous
section, this says that α is supported on Z and must be a rational combination of homology classes of
irreducible components of Z.

The Hodge conjecture itself does not imply the generalized Hodge conjecture, but we observe that the
generalized Hodge conjecture, together with Corollary 4.5 and the semisimplicity property (Proposition
2.11), implies the following

Conjecture 4.7. Let X be a smooth complex projective variety and let L ⊂ Hk(X ,Q) be a Hodge
substructure of Hodge coniveau c. Then there exist a smooth projective variety Y and a Hodge substructure
L′ ⊂ Hk−2c(Y,Q) such that there exists an isomorphism of Hodge structures L′ ∼= L (of bidegree (c,c)).

We have the following implication

Proposition 4.8. Conjecture 4.7 and the Hodge conjecture together imply the generalized Hodge conjec-
ture.

Proof. Let X be a smooth complex projective variety and let L ⊂ Hk(X ,Q) be a Hodge substructure of
Hodge coniveau c. Assuming Conjecture 4.7, there exist a smooth projective variety Y and a Hodge
substructure L′ ⊂ Hk−2c(Y,Q) such that there exists an isomorphism of Hodge structures L′ ∼= L (of
bidegree (c,c)). By semi-simplicity, the Hodge substructure L′ ⊂ Hk−2c(Y,Q) is a direct summand, as
a Hodge structure, of Hk−2c(Y,Q). By Lemma 2.9, the isomorphism of Hodge structures η∗ : L′ ∼= L
is induced by a Hodge class η of degree 2n on Y ×X , where n = dimX . The Hodge conjecture then
predicts that there exists a codimension n cycle Z = ∑i niZi in Y ×X with rational coefficients, such that
[Z] = η . Hence we have [Z]∗ = η∗ and for any class α ∈ Hk−2c(Y,Q) we have

η∗α = [Z]∗α = ∑
i

niprX∗(pr∗Y α ⌣ [Zi]),

where prX , prY are the respective projections from Y ×X to X , Y . It follows that η∗α vanishes away from
∪iprX(Zi), which is a closed algebraic subset of the codimension ≥ c of X , so L = η∗(L′) has geometric
coniveau ≥ c.
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4.3 The generalized Hodge conjecture as a construction problem

Let X be a smooth projective complex variety. The Hodge conjecture for Hodge classes of degree 2k on
X rises a construction problem for codimension k subvarieties of X . We want to show in this paragraph
that the generalized Hodge conjecture (Conjecture 4.6) is also a construction problem. Let L ⊂ Hk(X ,Q)
and c be its coniveau. In order to solve the generalized Hodge conjecture for L, we can assume that
k ≤ n = dimX , by the hard Lefschetz isomorphism. Indeed, if k = n+ r, with r > 0, then we have the
Lefschetz isomorphism

lr : Hn−r(X ,Q)→ Hn+r(X ,Q)

determined by an ample class l = c1(L). This isomorphism of Hodge structures provides a Hodge
substructure

L′ ⊂ Hn−r(X ,Q)

which is isomorphic to L, and has coniveau c− r. If we solve the generalized Hodge conjecture for L′,
then L′ is supported on a subvariety of codimension ≥ c− r so L = lr ⌣ L′ is supported on a subvariety
of codimension ≥ c.

Next, the generalized Hodge conjecture predicts the existence of a smooth projective variety Y of
dimension n− c and a morphism j : Y → X such that

L ⊂ Im( j∗ : Hk−2c(Y,Q)→ Hk(X ,Q)). (32)

The Lefschetz standard conjecture applied to Y implies the existence of a cycle Z⊂Y ×Y of codimension
k−2c with rational coefficients, such that

[Z]∗ : Hk−2c(Y,Q)→ Hk−2c(Y,Q) (33)

is surjective. Combining (32) and (33), we conclude that the cycle Z′ := (Id, j)∗Z ⊂ Y ×X has the
property that

L ⊂ Im([Z′]∗ : Hk−2c(Y,Q)→ Hk(X ,Q)). (34)

We now observe that, as dimY = n− c, and dimZ= 2dimY − k+2c = 2n− k, Z has relative dimension
n− k+ c over Y , hence the cycle Z′ can be seen as a family of cycles of dimension n− k+ c on X ,
parameterized by Y . The generalized Hodge conjecture for degree k cohomology and coniveau c on X
of dimension n thus predicts the existence of “interesting” (families of) subvarieties of X of dimension
n− k+ c. Conversely, if there exist a smooth projective variety Y and a cycle W in Y ×X of relative
dimension n−k+c over Y , such that (34) holds, we observe that, by the Lefschetz theorem on hyperplane
sections, we may assume that dimY ≤ k−2c, so dimW ≤ n− c. Then Im [W ]∗ has geometric coniveau
≥ c, as it vanishes away from ∪iprX(Wi), where W = ∑i niWi. So L has geometric coniveau ≥ c.

5 Chow groups and coniveau

We discuss in this section an algebrogeometric approach to the coniveau of a variety via its Chow groups.

JOURNAL OF OPEN MATHEMATICAL PROBLEMS, 1(1):16–51, 2025 40

https://jomprob.org


HODGE AND GENERALIZED HODGE CONJECTURES, CONIVEAU AND ALGEBRAIC CYCLES

5.1 Chow groups and Mumford’s theorem

let X be an algebraic variety over a field K. We define the group Zd(X) of d-cycles as the free abelian
group generated by closed irreducible subsets Z ⊂ X of dimension d defined over K.

Definition 5.1. The Chow group CHd(X) is the quotient of Zd(X) by the subgroup of cycles rationally
equivalent to 0, namely the subgroup generated by d-cycles of the form j∗divφ , for any projective
morphism j : W → X, where W is a normal variety and φ ∈ K(W ) is a nonzero rational function on W,
everything being defined over K.

Here we use the push-forward j∗ on d-cycles under proper maps j: if Z is closed irreducible
in W , j∗Z ∈ Zd(X) is 0 if dim j(Z) < dimZ, and otherwise it is deg(Z/ j(Z)) j(Z), where the degree
deg(Z/ j(Z)) is the degree of the field extension K( j(Z))⊂ K(Z). We denote also CHd(X) = CHn−d(X)
when X is irreducible of dimension n. The Chow groups have excellent functoriality properties. The
push-forward φ∗ : CHd(X)→ CHd(Y ) under a projective morphism is induced by the push-forward on
cycles as defined above. In a much more subtle way, if φ : X → Y is a morphism and Y is smooth, then
there is a pull-back morphism

φ
∗ : CHc(Y )→ CHc(X),

that needs intersection theory in order to be rigorously defined (see [Ful84], which defines more generally
the intersection product of cycles modulo rational equivalence on a smooth variety). When K = C and X
is smooth, the cycle class introduced in Section 3.1 induces a group morphism

[ ] : CHk(X)→ H2k(Xan,Z),

which is compatible with the pull-back and push-forward morphisms when defined, and is also compatible
with the intersection product.

That there is a strong relationship between the Chow groups of a smooth projective complex algebraic
variety and the coniveau of its cohomology was first observed by Mumford [Mum68] (see also [Roj72]).
A generalized formulation is

Theorem 5.2. Let X be a smooth projective variety over C such that CH0(X) = Z (or equivalently by
[Roj80], CH0(X)Q =Q). Then H i,0(X) = 0 for any i > 0. It follows that H i(X ,Q) has Hodge coniveau
≥ 1 for i > 0.

Let us comment on the assumption. It means that any two points of X are rationally equivalent in
X . This is clearly satisfied if any two points are contained in a rational curve in X , namely a projective
curve that is dominated by P1. (Indeed, if x, y are two points on P1, the difference x− y is the divisor of
a rational function on P1.) This property, that is now called “rational connectedness", directly implies
that H i,0(X) = H0(X ,Ωi

X) = 0 for any i > 0 (see [KMM92]). However, there are examples of smooth
projective varieties over C such that CH0(X) = Z and that are far from being rationally connected. For
example, smooth quintic Godeaux surfaces satisfy CH0(X) = Z (see [Voi92]), while the general one can
be proved to contain no rational curve.
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5.2 Decomposition of the diagonal and the generalized Bloch conjecture

We discuss in this section a notion and method proposed by Bloch and Srinivas [BS83], who give an
elegant proof of Mumford’s Theorem 5.2 and more importantly prove a stronger statement, namely that,
under the same assumptions, the geometric coniveau of H i(X ,Q) is ≥ 1 for i > 0. This method has been
since generalized by many authors (see eg [Lat98], [Par94]) to relate Chow groups of small dimension
and geometric coniveau.

Definition 5.3. A smooth projective variety of dimension n is said to have a cohomological decomposition
of the diagonal (in codimension 1), if there exist a divisor D ⊂ X, and a cycle Γ ∈ Zn(X ×X)Q supported
on D×X, such that

[∆X ] = [X × x]+ [Γ] in H2n(X ×X ,Q) (35)

In the definition above, x is any point of X . The right generalization of this notion to higher
codimension is

Definition 5.4. A smooth projective variety of dimension n is said to have a cohomological decomposition
of the diagonal in codimension c, if there exist a closed algebraic subset Dc ⊂ X of codimension c, and a
cycle Γ ∈ Zn(X ×X)Q supported on Dc ×X, such that

[∆X ] = [W ]+ [Γ] in H2n(X ×X ,Q), (36)

where the cycle W is decomposable, namely W = ∑i niWi ×W ′
n−i for some closed algebraic subsets Wi,

W ′
n−i of X such that dimWi +dimW ′

n−i = n.

The relevance of this notion for the study of the generalized Hodge conjecture is illustrated by the
following statement

Proposition 5.5. If X has a cohomological decomposition of the diagonal in codimension c, then

H∗(X ,Q) = H∗(X ,Q)alg +NcH∗(X ,Q), (37)

where NcH∗(X ,Q) denotes cohomology of geometric coniveau ≥ c.
If c = 1, H∗>0(X ,Q) has geometric coniveau ≥ 1.

Proof. The second statement follows from the first since cycle classes of codimension > 0 are of coniveau
≥ 1. To prove (37), we use the action γ∗ of a correspondence γ ∈ H2n(X ×X ,Q)alg on cohomology, given
by

γ
∗(α) = pr1∗(pr∗2α ⌣ γ).

From (36), we get for any α ∈ H∗(X ,Q), by letting both sides acting on H∗(X ,Q)

α = [W ]∗α +[Γ]∗α in H∗(X ,Q). (38)

As W is decomposable, we get
[W ]∗α = ∑

i
ni[Wi]⟨α, [W ′

n−i]⟩,

hence [W ]∗α ∈ H∗(X ,Q)alg. Finally the last term [Γ]∗α in (38) vanishes on X \Dc, since Γ is supported
on Dc ×X , hence [Γ]∗α has geometric coniveau ≥ c for any α ∈ H∗(X ,Q).
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The cohomological version of Bloch-Srinivas decomposition of the diagonal is the following state-
ment.

Theorem 5.6. Let X be a smooth projective complex variety. Assume that CH0(X) = Z. Then X admits a
cohomological decomposition of the diagonal in codimension 1.

Combining Theorem 5.6 with Proposition 5.5, one gets the following strengthening of Mumford’s
theorem 5.2:

Corollary 5.7. The assumptions on X being as in Theorem 5.6, H∗>0(X ,Q) has geometric coniveau ≥ 1.

For completeness, we note also the following application of the decomposition of the diagonal to the
Hodge conjecture itself.

Theorem 5.8. [BS83] The assumptions on X being as in Theorem 5.6, X satisfies the Hodge conjecture
for Hodge classes of degree 4.

Proof. We write the decomposition of the diagonal

N[∆X −X × x] = [Γ] in H2n(X ×X ,Q) (39)

with Γ supported on D×X , for some divisor D of X . Let j̃ : D̃ → X be a desingularization of D. We can
lift Γ to a cycle Γ̃ supported on D̃×X , at least with rational coefficients. Then for a Hodge class α of
degree 4 on X , we have, by letting both sides of (39) act on α

α = j̃∗([Γ̃]∗α) in Hdg4(X ,Q).

As [Γ̃]∗α is a Hodge class of degree 2 on D̃, it is algebraic on D̃ by Theorem 3.3, hence α is algebraic on
X .

Remark 5.9. This theorem has a more general version (see [BS83]), where the assumption on X is that
CH0(X) is supported on a closed algebraic subset of dimension at most 3. In this form, it generalizes a
result due to Conte and Murre, see [CM78].

Theorem 5.6 has been generalized with a very similar proof in [Lat98], [Par94] (see also [Voi03,
10.2] or [Voi14]).

Theorem 5.10. Let X be a smooth projective complex variety of dimension n. Assume that the cycle
class map [ ] : CHi(X)Q → H2n−2i(X ,Q) is injective for i ≤ c− 1. Then X admits a cohomological
decomposition of the diagonal in codimension c.

Combining this statement with Proposition 5.5, one gets

Corollary 5.11. The assumptions on X being as in Theorem 5.10,

H∗(X ,Q) = H∗(X ,Q)alg +NcH∗(X ,Q).
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This suggests that the generalized Hodge conjecture could possibly be attacked in certain cases through
the computation of Chow groups. In fact, Bloch [Blo80], and later Bloch and Beilinson, conjectured a
converse to the statements above. One version of the generalized Bloch conjecture is

Conjecture 5.12. Let X be a smooth complex projective variety. Assume that H i,0(X) = 0 for i > 0. Then
CH0(X) = Z.

More generally, assume

H∗(X ,Q) = Hdg∗/2(X ,Q)+L∗
c , (40)

where each Li
c ⊂ H i(X ,Q) is a Hodge substructure of coniveau ≥ c. Then the cycle class map [ ] :

CHi(X)Q → H2n−2i(X ,Q) is injective for i ≤ c−1.

Remark 5.13. Even if we make the stronger assumption that L∗
c has geometric coniveau ≥ c, Conjecture

5.12 is still open (despite promising work by Ayoub, see [Ayo17]). For example, it is open for surfaces X
with pg = q = 0, while this condition is equivalent, thanks to the Lefschetz (1,1)-theorem (cf. Theorem
3.3) to the fact that the whole cohomology H∗(X ,Q) is algebraic.

5.3 Generalized Hodge conjecture and cohomological decomposition of the diagonal

We will say that a smooth projective complex variety X has geometric coniveau ≥ c if (37) holds.

Remark 5.14. Assuming furthermore the Hodge conjecture on X , the Poincaré pairing is nondegenerate
on H∗(X ,Q)alg, so replacing NcH∗(X ,Q) by

NcH∗(X ,Q)tr := NcH∗(X ,Q)∩H2∗(X ,Q)⊥alg,

where H2∗(X ,Q)⊥alg denotes the orthogonal complement of H2∗(X ,Q)alg with respect to the Poincaré
pairing, we can replace the decomposition (37) by a direct sum decomposition

H∗(X ,Q) = H2∗(X ,Q)alg
⊕

NcH∗(X ,Q)tr. (41)

For X as above, we have the following partial converse to Proposition 5.5.

Proposition 5.15. Let X be a smooth projective of dimension n. Assume the Hodge conjecture holds
for varieties of dimension ≤ 2n− 2. Then if X has geometric coniveau ≥ c, it has a cohomological
decomposition of the diagonal in codimension c.

Proof. We use (41), where NcH∗(X ,Q)tr has geometric coniveau ≥ c, hence comes from the cohomology
of Y via a morphism j : Y → X , where Y is a smooth projective variety of dimension n− c (see Corollary
4.5). Using (41) and the Künneth decomposition, the class [∆X ] ∈ H2n(X ×X ,Q) of the diagonal writes
as

[∆X ] = δalg +δ≥c (42)

where δalg ∈ H2∗(X ,Q)alg ⊗H2∗(X ,Q)alg and δ≥c ∈ NcH∗(X ,Q)tr ⊗NcH∗(X ,Q)tr. The fact that there
is no term in H2∗(X ,Q)alg ⊗NcH∗(X ,Q)tr follows from the fact that there is no nonzero Hodge class in
NcH∗(X ,Q)tr, hence no nonzero Hodge class in H2∗(X ,Q)alg ⊗NcH∗(X ,Q)tr.
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We now observe that δalg ∈H2∗(X ,Q)alg⊗H2∗(X ,Q)alg is the class of a decomposable cycle ∑i niWi×
W ′

i , while the Hodge class δc on X ×X comes from a Hodge class on Y ×Y via the morphism ( j, j) :
Y ×Y → X ×X by Corollary 2.12. The Hodge conjecture applied to Y ×Y says that

δc = ( j, j)∗[Z′]

for some cycle Z′ with rational coefficients supported on Y ×Y . Putting things together, we get

[∆X ] = [∑
i

niWi ×W ′
i ]+ [( j, j)∗Z′] in H2n(X ×X ,Q),

which provides a cohomological decomposition of the diagonal in codimension c since the cycle ( j, j)∗Z′

is supported on j(Y )×X and j(Y )⊂ X has codimension ≥ c.

6 The case of complete intersections

6.1 Computing the Hodge coniveau

Let X ⊂ Pn be a smooth complete intersection of r hypersurfaces of degree d1 ≤ . . . ≤ dr. Thus X is
smooth of dimension n− r and of degree d1 · . . . ·dr. The Lefschetz theorem on hyperplane sections says
that the restriction map

H i(Pn,Z)→ H i(X ,Z) (43)

is an isomorphism if i < n−r and is injective for i = n−r. Thus for i < n−r, we have H i(X ,Z) = 0 if i is
odd and H i(X ,Z) = Z if i is even. This implies by Poincaré duality on X that, for 2n−2r ≥ i > n− r, the
groups H i(X ,Z) are cyclic if i is even and vanish if i is odd. Here all the generators with Q-coefficients
are known, namely, they are powers h j, i = 2 j, where h is the class of a hyperplane section. In particular
the Hodge structures on H i(X ,Q) are uninteresting for i ̸= n− r.

The Hodge structures on the middle cohomology Hn−r(X ,Q), and better, when n− r is even, the
subgroup Hn−r(X ,Q)prim of classes orthogonal for the Poincaré pairing to the image of the restriction
map (43), are however very interesting. To start with, we know how to compute their Hodge coniveau,
thanks to the work of Griffiths [Gri69] and later generalization in the case of complete intersections (see
[Pet75]).

Theorem 6.1. Let X ⊂ Pn be a smooth hypersurface of degree d. Then H p,q(X ,Q)prim vanishes for any
q ≤ c if and only if n ≥ cd. Equivalently the Hodge coniveau of Hn−1(X ,Q)prim is greater than or equal
to c if and only if n ≥ cd.

More generally, if X ⊂ Pn is a smooth complete intersection of hypersurfaces of degrees d1 ≤ . . .≤ dr,
the Hodge coniveau of Hn−r(X ,Q)prim is greater than or equal to c if and only if

n ≥ ∑
i

di +(c−1)dr. (44)

As discussed in Section 4.3, the generalized Hodge conjecture predicts the following:
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Conjecture 6.2. Let X ⊂ Pn be a smooth complete intersection of hypersurfaces of degrees d1 ≤ . . .≤ dr.
Then, if n ≥ ∑i di + (c− 1)dr as in (44), X has a cohomological decomposition of the diagonal in
codimension c.

If the complete intersection X is very general, an equivalent statement is that there exist a smooth
projective variety Y of dimension n− r−2c and a family Z⊂ Y ×X of cycles of dimension c of X such
that

[Z]∗ : Hn−r(X ,Q)prim → Hn−r−2c(Y,Q)

is injective. So the geometric question is to construct “interesting” subvarieties of dimension c in these
complete intersections.

By Theorem 5.10, one way to prove Conjecture 6.2 is to solve the following Bloch type conjecture

Conjecture 6.3. Let X ⊂ Pn be a smooth complete intersection of hypersurfaces of degrees d1 ≤ . . .≤ dr.
Then, if n ≥ ∑i di +(c−1)dr, the cycle class map

CHi(X)Q → H2i(X ,Q)

is injective for i ≤ c−1.

In the case c = 1, Theorem 6.1 is immediate, since we have

Hn−r,0(X) = H0(X ,KX)

where the canonical bundle KX =
∧n−r

ΩX is by the adjunction formula isomorphic to OX(−n−1+∑i di).
So for c = 1, the numerical condition (44) just says that KX is negative, that is, X is Fano. This implies
both conjectures 6.2 and 6.3 in this case. Indeed, if X is Fano, then it is rationally connected by [KMM92],
that is, through any two points of X , there is a rational curve. Then obviously any two points are rationally
equivalent which proves Conjecture 6.3 in this case. By Theorem 5.10, this in turn implies Conjecture 6.2.
Historically, Conjecture 6.2 for c = 1 was proved directly using the family of lines in X (as in Example
4.3). Also a direct proof of the isomorphism CH0(X) = Z was given in [Roj72] for Fano hypersurfaces
X .

6.2 Further examples where the generalized Hodge conjecture is known and further
results

We discuss in this section what is known about Conjectures 6.2 and 6.3 for coniveau c > 1. We restrict
for simplicity to the hypersurface case. First of all, thanks to work of Esnault-Levine-Viehweg [ELV97],
[Par94], improved later on by Otwinovska [Otw99], Conjecture 6.3 is true for c given and n >> d
depending on c and by Theorem 5.10, this implies 6.2 for the same values of n, d. The best known general
statement is the following:

Theorem 6.4. Let n, d, c be integers such that

(c+1)(n− c)−
(

c+d
d

)
≥ n−1− c. (45)

Then for a smooth hypersurface of degree d in Pn, the group CHi(X)Q,hom of i-cycles cohomologous to 0
is zero for i ≤ c−1.
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The inequality (45) corresponds to the condition that the family of linear spaces Pc ⊂ Pn contained in
X sweeps-out a subvariety of X of codimension ≤ c.

Unfortunately, except for very small values of d, inequality (45) is very different from inequality
(44) which tells that the conclusion of Theorem 6.4 should hold once n ≥ dc. For example, Theorem 6.4
implies Conjectures 6.3 and 6.2 for cubic hypersurfaces of dimension n−1 ≤ 16. This also works for
quartic hypersurfaces of dimension ≤ 10: they have trivial CH1(X)Q,hom once n ≥ 8.

We have been discussing above the case of a general hypersurface of degree d in Pn. In [Voi96], it
is proved that for any value of d and n, there exist smooth hypersurfaces of degree d in Pn satisfying
Conjecture 6.3, hence also Conjecture 6.2. More precisely, hypersurfaces whose equation takes the form

f (X0, . . . , Xn) = f1(X0, . . . , Xd)+ f2(Xc+1, . . . ,X2c)+ . . .+ fc(Xd(c−1)+1, . . . ,Xdc+r),

with n = dc+ r, r < c, satisfy the two conjectures.
We finish with a result showing that for general hypersurfaces, the two conjectures 6.3 and 6.2, where

Conjecture 6.3 is a priori stronger by Theorem 5.10, are in fact equivalent (that is, equally difficult and
possibly wrong!).

Theorem 6.5. [Voi15] Assume that a general hypersurface X of degree d in Pn has a cohomological
decomposition of the diagonal in codimension c. Then, for any smooth hypersurface X of degree d in Pn,
the cycle class map

CHi(X)Q → H2i(X ,Q)

is injective for i ≤ c−1.

This theorem works as well for complete intersections of very ample hypersurfaces in homogeneous
varieties and has a more general version for motives of complete intersections admitting a finite group
action.
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