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Hodge and generalized Hodge conjectures,
coniveau and algebraic cycles
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Abstract:

This is a survey of the Hodge conjecture, with emphasis on its companion, the generalized
Hodge conjecture, which involves the theory of Hodge structures, algebraic cycles and
motives.
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1 Introduction

We present in this paper the Hodge conjecture and its much more general version, “the generalized
Hodge conjecture” due to Grothendieck [Gro69]. The Hodge conjecture involves two distinct objects
associated with a smooth projective algebraic variety X defined over the complex numbers. On one
side, we have the algebraic variety X and its algebraic subvarieties. On the other side, we have the
associated complex manifold X,,, and we associate to it the Betti cohomology with rational coefficients of
its underlying topological space, which is related to the study of differentiable submanifolds of X,,. The
data coming from algebraic geometry and topology are not disjoint, thanks to the beautiful comparison
theorems due to Serre and Grothendieck for cohomology with complex coefficients (see Section 3.4). One
geometric bridge between the two sets of data is given by the cycle class, that associates to an algebraic
subvariety Z C X the cohomology class [Z,,] of the corresponding closed analytic subset of X,,. The
Hodge conjecture stated in Section 3 proposes a characterization of the subspace of H*(X,,, Q) generated
over QQ by the classes [Z,,] above with codimZ = k : it should be the space of Hodge classes. This
conjectural characterization involves the complex geometry of X,, and the notion of type of differential
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HODGE AND GENERALIZED HODGE CONJECTURES, CONIVEAU AND ALGEBRAIC CYCLES

forms on a complex manifold X: one can speak of differential forms of type (p,q), hence degree p + ¢,
and the space H”4(X) of classes of type (p,q) is defined as the set of de Rham cohomology classes of
closed (p,q)-forms. Hodge classes are the rational Betti cohomology classes of even degree 2k on Xy,
which are of type (k,k).

The Hodge conjecture is elegant and fascinating but what makes it deep is the general theory of Hodge
structures associated to smooth projective varieties, that we will present in Section 2.1. As we will see,
the Hodge conjecture is part of the theory of cohomological motives, and is particularly interesting when
applied to products X x Y of two algebraic varieties, having in mind to understand how their motives are
related. In the theory of motives, one considers as morphisms between two algebraic varieties X and
Y the correspondences between X and Y, which are cycles in the product X x Y, that is, combinations
with rational coefficients of closed algebraic subsets of the product X x Y. We have to divide out the
space of cycles by an adequate equivalence relation in order to be able to compose correspondences. In
the theory of cohomological motives (over the complex numbers), the cycles will be considered modulo
homological equivalence, namely via their cycle class. The importance of the Hodge conjecture appears
in the following fact: The Hodge classes on the product X X Y are naturally identified with the morphisms
of Hodge structures from the cohomology of X to the cohomology of Y. We refer to Section 2.1 for an
introduction to Hodge structures, their construction and their functoriality properties in the geometric
context.

The original Hodge conjecture, corrected by Grothendieck in [Gro69], proposed more generally
to characterize rational cohomology classes & on Xy, that are “of geometric coniveau c”, that is, are
supported on a closed subset Y C X (equivalently, their Poincaré dual is in the image of the natural
morphism H,(Y,Q) — H.(X,Q), see Section 4.1), where Y is closed algebraic of codimension at least c.
There is an obvious restriction satisfied by such classes, namely that they are “of Hodge coniveau ¢”, that
is, the components ”*¢ of the Hodge decomposition of & vanish for p < ¢ or g < ¢. Hodge believed that
this would be a sufficient condition, but Grothendieck exhibited a counterexample in [Gro69], and there
is indeed a stronger condition coming from the following (highly nontrivial) fact (see Corollary 4.5): the
set of degree k cohomology classes on X supported on Y is a Hodge substructure of H*(X,Q), that is,
a rational vector subspace stable under the Hodge decomposition, which consists of classes of Hodge
coniveau > c. The generalized Hodge conjecture presented in Section 4 corrects the original Hodge
conjecture by adding this condition. We will discuss in Section 4 the precise relation between the Hodge
and generalized Hodge conjectures (see Proposition 4.8). According to this conjecture, the vanishing of
the spaces H”4(X) for p+q =k, p < c or ¢ < ¢ should imply that the Betti cohomology H*(X,,,Q) is
supported on a codimension ¢ closed algebraic subset Y of X. It is very interesting to note that, for this
particular instance of the generalized Hodge conjecture, the assumption on X is purely algebraic, as the
spaces HP4(X) can be computed without any transcendental arguments, thanks to GAGA and the theory
of algebraic differential forms (see Section 3.4).

One difficulty with the Hodge conjecture is that, apart from the formalism of Kiinneth components
and Lefschetz operators described in Section 3.2, which produces by formal arguments Hodge classes
on powers X2, it is very difficult to exhibit smooth complex projective varieties with a Hodge class
which is not trivially algebraic. Typically, Noether-Lefschetz type statements (see [Voi03, 6.3.1]) will
say that a very general hypersurface of dimension 2 and degree > 4, or dimension > 3 and degree > 3,

has no other Hodge classes than the multiples of the restrictions th, where £ is the class of a hyperplane
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in projective space, so for the most natural algebraic varieties, like general hypersurfaces, the Hodge
conjecture says nothing. To the contrary, the generalized Hodge conjecture predicts the existence of
“interesting” suvarieties of a general hypersurface of degree d and dimension n, especially when the
dimension is large compared to the degree, and this prediction remains almost completely open (see
Section 6.1). Typically it is unsolved for general hypersurfaces of degree d in P>, except for small d.

In Section 5, we will describe another set of conjectures, mostly due to Bloch and Bloch-Beilinson,
relating the shape of Hodge structures of X to the size of Chow groups of cycles modulo rational
equivalence on X. They basically say that the Hodge structures of a complex projective variety govern its
“Chow motive”. Thanks to the work of Bloch and Srinivas [BS83], these conjectures strengthen in a deep
way the particular instance mentioned above of the generalized Hodge conjecture.

2 Hodge structures, Hodge classes and coniveau

2.1 The Hodge decomposition theorem

Let X be a complex manifold of dimension n, that is, a differentiable manifold equipped with the data of
holomorphic coordinates z;, ..., z, on local charts, with the condition that the change of coordinates maps

Z;: ¢i(zla"'7zn)

on the overlap of two charts, are given by holomorphic functions ¢;. On such a manifold, the de Rham
complex d : Ay — A}H of C* differential forms with complex coefficients splits as follows. Using local
holomorphic coordinates, 1-forms with complex coefficients split as

a=a¥+a!, (1)
with

o' =Y odz, a”' =Y oz,
7 0

for some C* functions o;, &;. We will denote by A)l(’0 the space of forms a'? of type (1,0) as above, and
similarly for A?(’l. We thus have

1 1,0 0,1
Al =AY DAY, @
which in turn induces a decomposition

A=) Ap? 3)
p+q=k

for any k, where forms in AR? are said to be of type (p,q) and are locally of the form L i1|=p,|J|=q C1sdz1 N
dzy.
Coming back to (2), we see that for each C* function f, we have an induced decomposition

df =df+9df,
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which defines the first order differential operators
d:C% —>A)1(’0,§: Cx —>A§)(’1.
For any differential form o of type (p,q), we write locally & = Y|, 7|—¢ ®sdz1 A\ dZ}, hence we get

do= Y doynduyndz= Y dayAduyAdz+ Y, dayy AdzyAdz,
[11=p:|J1=q [1l=p,|/1=q [1=p,|/1=q

from which we deduce that the operator d does not respect the decomposition (3) but decomposes as
d=0+9,
for some first order differential operators
9 ART — ARTH 9 ART — AR

The complex conjugate operators d and @ acting on Ay satisfy the relations

92=0,9"=0,00 = —30.

The comparison of the d-cohomology (known as Dolbeault cohomology) and the d-cohomology of
complex differential forms on X (i.e. de Rham cohomology of X) gives rise to the Frolicher spectral
sequence, which for general complex manifolds of dimension > 2 can be extremely complicated (see
e.g. [Rol08]). However for projective complex manifolds, namely closed complex submanifolds of some
projective space, or more generally compact Kéhler manifolds (see Section 2.2), a miracle happens, which
is called the Hodge decomposition theorem.

Theorem 2.1. (Hodge [Hod41], see also [GH7S, p116] or [Voi02b, 6.1.3]) Let X be a compact Kdhler

manifold. Then the de Rham complex cohomology groups H*(X,C) = ‘fg&‘{jﬂf‘(}gﬁﬁ (g))))

decompose as

HYX,C)= P HM(X), 4)

p+q=k

where HP4(X) C H*(X,C) is the set of cohomology classes of d-closed ( p,q)-forms.
Furthermore, via the map which sends a closed (p,q)-form to its class as a d-closed form, the space
HP4(X) is naturally isomorphic to the Dolbeault cohomology group H?(X,QF).

The proof of this fundamental theorem relies on the representation of cohomology classes by harmonic
forms and the comparison of the Laplacians for d and .

An important feature of the decomposition (4) is the Hodge symmetry property. It is clear that the
complex conjugate of a closed (p,¢)-form is a closed (g, p)-form. It follows that complex conjugacy
acting on

HYX,C)=H"(X,R)®C
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satisfies

HP4(X) = HPP(X). (%)
Note that the de Rham cohomology H¥(X,C) used above is also isomorphic to Betti cohomology with
complex coefficients. Betti cohomology H*(X,A) can be defined with integral or rational coefficients A
and we have the change of coefficients theorem

H*(X,C)=H*(X,Z)®C.

Definition 2.2. An integral Hodge structure of weight k is the data of a lattice L, and a decomposition
into complex subspaces
Lc= 69p-&-q:kLpﬂ

of Lc := L®C, satisfying the Hodge symmetry condition
Ird = 197
Remark 2.3. Having the Hodge decomposition on L¢ allows to introduce the Hodge filtration F?L¢ :=
D> pL”k_’. This filtration has to satisfy the “opposite condition", namely, by Hodge symmetry, one has
for any p
Lc =FPLc @ Fk—PH . (6)

Conversely, if a decreasing filtration F'L¢ satisfies (6) for all p, it gives a Hodge decomposition by the
formula
[P =FPLcNFFPLc.

By Theorem 2.1, the Betti cohomology H*(X,Z) modulo torsion of a compact Kihler manifold is
equiped with a Hodge structure of weight k, which is furthermore effective in the sense that H”Y = 0 if
p <0 or g < 0. In this paper, we will mainly use the rational Hodge structures, whose definition is the
same with “lattice" replaced by “finite dimensional Q-vector space".

When looking at a Hodge structure (L, LP*9), the first information one gets is its “coniveau”, with the
following

Definition 2.4. The coniveau of a Hodge structure (L,LP?) with L # 0 is defined as the largest integer c,
such that LP1 =0 for p < corqg <c.

If the coniveau of a weight k Hodge structure L is ¢, then 2¢ < k and its Hodge decomposition takes

the form
Le=1"..PL*=

In particular we can shift the bidegrees of L to get an effective Hodge structure L’ of weight k —2¢

L(/C _ L/k—ZC,O @ o @L/OJ(—ZC7

where L' = L and L'?? = LPT¢9%¢_ The generalized Hodge conjecture formulated by Grothendieck and
discussed in Section 4 investigates the geometric meaning of the Hodge coniveau of H*(X, Q).

Another information associated with a Hodge structure (L, L") of even weight 2k is its subgroup of
Hodge classes Hdg(L), with the following
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Definition 2.5. The group Hdg(L) is defined as the set of elements of L which belong to L** in the Hodge
decomposition of Lc. If L= H*(X,Q), where X is a compact Kéhler manifold, then we will use the
notation Hdg* (X).

Remark 2.6. We also have Hdg(L) = LN F*L¢, where the Hodge filtration F on L is defined in Remark
2.3. Indeed, LNF*Le C F*Le NFFLe = LM,

The Hodge conjecture discussed in Section 3 investigates the meaning of Hodge classes in the
cohomology of a complex projective manifold and relates them to objects from complex geometry like
closed analytic subsets, or Chern classes of holomorphic vector bundles. The same definition can be
made for compact Kihler manifolds, but the results in [Voi0O2a], [Zuc77] indicate that no version of the
Hodge conjecture can be true for compact Kdhler manifolds.

2.2 Lefschetz decomposition and Hodge index theorem

A complex projective manifold, being embedded in some projective space CP", admits a holomorphic
line bundle L which is the restriction to X of the dual of the Hopf line bundle on CP" (such a line bundle
is said to be very ample). The Chern class [ := ¢ (L) then belongs to H*(X,Z) and at the same time it is
represented in de Rham cohomology by a positive closed (1, 1)-form on X, namely the restriction of the
Fubini-Study Kihler form on CP". This is thus a degree 2 Hodge class (see Definition 2.5). A general
compact Kéhler manifold admits a Kéhler form (i.e. a positive closed (1,1)-form) @ but its class cannot
in general be chosen rational. The celebrated Kodaira embedding theorem [Kod54] says that a compact
Kéhler manifold is projective if and only if it admits a Kihler form whose de Rham cohomology class is
rational.
A technical but fundamental complement to the Hodge decomposition theorem is the following

Theorem 2.7. (Hodge, see [GH7S, p122] or [Voi0O2b, Sections 6.2.3 and 6.3.2]) Let X be a compact
Kdhler manifold of dimension n and ® be a kdhler form on X. Then
(i) (hard Lefschetz theorem) For any k < n, the cup-product map

— (@] *: H*(X,R) = H*" % (X,R)

is an isomorphism.
(ii) (Hodge-Riemann bilinear relations) For k < n, let Hk(X,R)prim C H*(X,R) be defined as the
kernel of the cup-product map

— [a)]n—k-i-l ZHk(X,R) —>H2n_k+2(X,R).

As o is of type (1,1), H*(X,C)prim has an induced Hodge decomposition into components H?(X ) prim
and the sesquilinear form hgy on H*(X,C) defined by

ho(o,B) = [ [0 * — o —B
Jx
has the property that

(a) the Hodge decomposition is orthogonal for hg and
(b) the restriction of he to HP9(X )prim is definite of sign (—1)? (up to a global sign depending on k).
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When X is projective, we can choose the class [@] to be rational, and denote it by /. The results above
then produce a lot of extra structure on H*(X,Q), namely one deduces from the hard Lefschetz theorem
(now with rational coefficients) the Lefschetz decomposition

= P ' — H (X, Q)prim; ©)

k—2r>0

where each H*"2"(X, Q) prim C H*""(X,Q) is a Hodge substructure, that is, a rational vector subspace
which has an induced Hodge decomposition. Furthermore, the Lefschetz intersection pairing (, ); on
H*(X,Q) defined by

(@ B)= [ —a—p

has the property that

(i) The Lefschetz decomposition is orthogonal for (, ;.

(i1) Furthermore, on each piece /" — H k*Z’(X , Q)prim, the associated sesquilinear form #; satisfies the
Hodge-Riemann bilinear relations (a) and (b) described in Theorem 2.7.

A Hodge structure (L,LP7) of weight k equiped with a nondegenerate pairing ¢ which is rational,
symmetric if k is even, skew-symmetric if k is odd, and such that the associated sesquilinear pairing

hq(avﬁ) = ik‘l(‘%ﬁ)

on L¢ satisfies the Hodge-Riemann bilinear relations, is called a polarized Hodge structure.

2.3 The category of (polarized) Hodge structures

The Hodge structures on the cohomology of compact Kéhler manifolds have some functoriality properties
that we now describe. If ¢ : X — Y is a morphism (holomorphic map) between compact Kihler manifolds,
then the pull-back ¢*a of a closed form of type (p,q) on Y is a closed form of type (p,q) on X. It follows
that

¢*HPI(Y) C HP4(X).
In other words, the morphism ¢* : H*(Y,Q) — H*(X,Q) is a morphism of Hodge structures, with the
following

Definition 2.8. A morphism of Hodge structures (L,LP9), (L',L'" /’q/) of respective weights k and k + 2r
is a morphism ¢ : L — L' of Q-vector spaces, such that

/
oOc:Lc — L¢
maps L4 to L'PTH9Y,

We note that there is the obvious notion of duality for Hodge structures, namely the dual of a Hodge
structure (L, L") of weight k is the Hodge structure of weight —k given by L* equiped with the dual
Hodge decomposition on Lg. Observing that for a compact Kéhler manifold X of dimension n, the
(perfect) Poincaré pairing (, )x between H*(X,Q) and H*"*(X,Q) has the property that

(aP4,BP7y = 0if (p,q) # (n— p,n—q),
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we get that (up to a shift of bidegrees by (n,n) that is called a Tate twist) the Hodge structures on H*(X, Q)
and H*" (X, Q) are dual.
This gives the covariant functoriality of Hodge structures, namely, if X, Y, ¢ are as above, the Gysin
morphism
0, : HY(X,Q) — H* (¥, Q), d := dimX — dim?Y,

is a morphism of Hodge structures. Indeed, one has
¢. = PDy ' o'(9*) o PDx,
where the Poincaré duality isomorphisms considered here are
PDy : H*(X,Q) =2 H*" *(X,Q)*, PDy : H* *(v,Q) 2 H* *(v,Q)*.

A third example of a morphism of Hodge structures that can be constructed on the cohomology of a
compact Kiihler manifold comes from Hodge classes on X. If @ € Hdg? (X ), the cup-product map

— a: H4(X,Q) —» H¥2(X,Q)

is a morphism of Hodge structures, because the wedge product of a closed form of type (p,q) and a
closed form of type (/,1) is a closed form of type (p+1,q+1).

A more general link between Hodge classes and morphisms of Hodge structures is given by the
following

Lemma 2.9. Let X, Y be compact Kéhler manifolds. Let oo € H**(X x Y,Q) and, for each integer 1 > 0,
let
o H (X,Q) — HT*2"(y,Q), n:= dimX

be defined by
0. 1(Y) = pry. (& — prx?). ®)

Then o is a Hodge class on X x Y if and only if the morphisms o, ; are morphisms of Hodge structures
forall l.

Remark 2.10. The collection of the morphisms @, ; is equivalent, using Poincaré duality, to the data of
the so-called Kiinneth components of ¢, obtained using the direct sum decomposition

H* (X xY,Q) = @pps—H' (X, Q) @ H' (Y, Q).
We end this section with the following important result.
Proposition 2.11. The category of polarizable rational Hodge structures is semi-simple.

Proof. We have to show that if H' C H is a Hodge substructure, where H is polarizable, then there exists
a Hodge substructure H” C H' such that H = H' @ H" as Hodge structures. This is done by proving that

the pairing g giving a polarization on H remains nondegenerate on H’, which allows to set H” := H'*4.
The nondegeneracy of gy is proved using the Hodge-Riemann bilinear relations (Theorem 2.7 (a) and
(b)), which also imply that H” is a Hodge substructure. O
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Proposition 2.11 is completely wrong in the unpolarized setting. For example, it is not true for weight
1 unpolarized Hodge structures, that are associated to complex tori (see [Voi02b, 7.2.2]). In that case, the
geometric meaning of Proposition 2.11 is the following: If T is a complex compact torus and 7/ C T is a
complex subtorus, then in general T is not isogenous to a product 77 x T” of complex tori. However, this
statement is true if 7" is a projective complex torus, that is, an abelian variety.

One consequence of Proposition 2.11 is

Corollary 2.12. Let H, H' be Hodge structures of weight 2k, with H' polarized, and let ¢ : H' — H be a
surjective morphism of Hodge structures. Then

¢ : Hdg(H') — Hdg(H)
is surjective.

Indeed, this follows from the fact that, thanks to Proposition 2.11, ¢ has a left inverse as morphism of
Hodge structures.

3 The Hodge conjecture and standard conjectures

3.1 Cycle classes and Chern classes

Let X be a compact complex manifold, and let j : Z < X be a closed irreducible complex analytic subset
of dimension d, that is, Z is closed, locally defined by holomorphic equations, and, away from a closed
analytic subset Z' C Z which is nowhere dense in Z, Z is a connected complex submanifold of dimension
d of X. The cycle class [Z] € H**(X,Z), ¢ := dimX — d, has been constructed first in [BH61] (see also
[GH78, p61] for a version with real coefficients). An easy construction using Hironaka’s resolution of
singularities [Hir64] goes as follows: there exists a resolution of singularities 7 : Z—Zof Z, that is, VA
is a complex manifold and 7 is a proper holomorphic map which is an isomorphism above Z \ Sing Z.
Denoting j:= joT: Z — X, we thus have a Gysin morphism

J. :HY(Z,7) - H*(X,Z),

which provides and defines a class

which is easily shown to be independent of the chosen resolution. If X is now a compact Kihler manifold,
the morphism J, is a morphism of Hodge structures, hence the class [Z] is an integral Hodge class on X.
The subgroup of H?(X,7) generated by these classes is called the group of codimension ¢ analytic cycle
classes.

Another method to construct Hodge classes is due to Chern and uses Chern classes of holomorphic
vector bundles E on X. The topological Chern classes c;(E) € H*(X,Z) depend only on the underlying
topological complex vector bundle. Following [BT82], the Chern classes (in real de Rham cohomology)
can be represented by choosing a complex connection V on E, with curvature operator

Ry € (X, A% ® EndE).
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Then the closed differential forms o; := 6;( 71 ) represent the classes ¢;(E), where o; is the polynomial
functions on matrices of size (r,r) which to a matrix associates the i-th symmetric function of its
eigenvalues. The holomorphic structure of E and the data of a Hermitian metric 4 on E determine a
complex connection V on E (the Chern connection) having the property that the curvature operator Ry is
of type (1,1), that is, belongs to I'(X ,.A)lgl ® End E). It then follows that the corresponding representative
o is a (real) closed form of type (i,i), hence the classes ¢;(E) are Hodge classes.

When X is a projective complex manifold, passing to (Q-coefficients, the Q-vector spaces generated
by classes ¢;(E) and by cycle classes [Z] are equal. To see that cycle classes are combinations of Chern
classes, one first constructs the extension of the theory of Chern classes to analytic coherent sheaves (see
[BS58]). The existence (in the projective setting) of a finite locally free resolution

0s&"—= ... =& 35550

for any coherent sheaf J, provides by the Whitney formula the equality
Hc Ve g = (—1), )

where ¢(€) :=14c¢1(E)+...+c,(€) € H*(X,Q) is the total Chern class of any coherent sheaf £. We
use finally the Grothendieck-Riemann-Roch formula

ce(0z) = (=) Ye—1)![Z] in H*(X,Z), (10)

valid for any codimension c¢ closed analytic subset Z. Formula (10) expresses cycle classes with rational
coefficients as Chern classes of coherent sheaves, and formula (9) shows that Chern classes of coherent
sheaves do not provide more classes than Chern classes of algebraic vector bundles.

In the other direction, Chern classes of vector bundles can be expressed as combinations of cycle
classes using the fact that for any holomorphic vector bundle E on X, an adequate twist £ ® L, where L is
a very ample line bundle on X, is generated by global sections, hence is the pull-back of a tautological
vector bundle on a Grassmannian via a holomorphic morphism ¢ : X — G(k,n). Finally, one uses the
fact that the whole integral cohomology of any Grassmannian is generated by cycle classes, as shows the
theory of Schubert varieties.

These comparisons and arguments do not work in the general compact Kéhler setting, as shown
in [Voi02a], where examples of coherent sheaves without locally free resolutions on compact Kéhler
manifolds are exhibited. The Q-vector space generated by Chern classes of coherent sheaves can be
strictly larger than the one generated by Chern classes of vector bundles, and also than the one generated
by analytic cycles classes as in the example of [Zuc77].

The statement of the Hodge conjecture is the following

Conjecture 3.1. (Hodge conjecture) let X be a smooth projective complex manifold. Then for any c, the
Q-vector space H* (X ,Q)ag CH 2¢(X,Q) of codimension c cycle classes of X is equal to the Q-vector
space Hdg* (X) C H*(X,Q) of degree 2c Hodge classes of X.

Remark 3.2. By Chow’s theorem [Cho49], closed analytic subsets of a projective complex variety X are
also closed algebraic. The cycle classes will thus be called “algebraic classes”.
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It was known since Atiyah-Hirzebruch [AH62] that the similar statement with integral coefficients
fails, and quite different examples have been exhibited by Kollar in [Kol90]. In [Voi02a], it is shown that
the extension of the Hodge conjecture to compact Kéhler manifolds, replacing “cycles classes” by “Chern
classes of coherent sheaves”, is wrong.

The Hodge conjecture is obvious for Hodge classes of degree O (the class of a point) and degree 2n,
n = dimX, (the class of a point). The only other cases where it is known in general follow from

Theorem 3.3. (Lefschetz theorem on (1,1)-classes) Let X be a compact Kiihler manifold and o €
H?(X,7) be an integral Hodge class, that is, its image oc in H*(X,C) is of type (1,1). Then

(i) there exists a holomorphic line bundle L on X such that c¢i(L) = a.

(ii) If X is projective, there exists a divisor D, namely an integral combination Y ;n;D; with D; C X
analytic hypersurfaces, such that oo = [D] :=Y;n;|D;].

Proof. Statement (ii) follows from (i), as discussed above. The proof of (i) follows from a sheaf
cohomology argument. Let Oy and Oy be respectively the sheaves of holomorphic functions and
invertible holomorphic functions on X. Then one has the exponential exact sequence

0—7Z—0x — 0y —1,

a short exact sequence of sheaves that says that an invertible holomorphic function is locally the exponen-
tial of a holomorphic function. This induces a long exact sequence of sheaf cohomology groups

LLHU(X,00) S HA(X,Z) — H2(X,0x)... (11)

One notes that the group of (isomorphism classes of) holomorphic line bundles on X (where the group
structure is given by the tensor product) is isomorphic to H!(X,0%). Indeed, this follows from local
trivializations of holomorphic line bundles, with transition matrices given by invertible holomorphic
functions. Then one shows that the connecting map 0 is nothing but the first Chern class (in fact this can
be taken as a definition of the first Chern class). Finally, the last map in (11) can be identified to the map

H2(X,Z) 3 o —~ o € H**(X) = H?(X, Ox).
This concludes the proof since by assumption o is of type (1, 1), hence its (0,2)-component is 0. [

Remark 3.4. The argument given above also shows that on any affine complex variety X, namely
the complement of a hyperplane section H in a projective complex manifold X, any integral degree 2
cohomology class can be written as c¢;(M°) for some holomorphic line bundle M° on X°, (and a similar
result is true for higher even degree rational cohomology, see [CG75]). Indeed, on the affine variety X°,
the cohomology groups H'(X?, Oy ) vanish for i > 0, hence in particular H>(X°,Oy0) = 0. A strategy
for an analytic approach to the Hodge conjecture would be to start from holomorphic vector bundles on
X° and to describe which of them extend, at least as coherent sheaves, to X, with the hope that the Hodge
condition on Chern classes is the only obstruction. This strategy is described in [CG75].

Remark 3.5. It is to be noted that the proof of Theorem 3.3 is of a transcendental nature, since it uses the
exponential exact sequence that has no analogue in algebraic geometry. However, when X is projective,
we get at the end algebraic vector bundles and algebraic cycles since holomorphic vector bundles on X
are algebraic by [Ser56] and closed analytic subsets of X are algebraic by [Cho49].
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Theorem 3.3 implies now the following other and last case where the Hodge conjecture is known.

Corollary 3.6. Let X be a projective complex manifold of dimension n and let o € Hdg*" > (X,Q). Then
there exists a 1-cycle Z =Y ;n;Z; with Q-coefficients n;, such that

a=[7Z]:= Zn,-[Zi] in H"2(X,Q).

Proof. We choose an ample line bundle L on X, set [ := ¢;(L), and use the Lefschetz isomorphism
— " H*(X,Q) —» H" (X, Q).

This isomorphism is an isomorphism of Hodge structures, so there exists a Hodge class f € Hdg? (X)
such that

a=1"2_8.

By Theorem 3.3, (ii), B = [D] = Y;n;D; for some divisor of X with rational coefficients. As L is very
ample, the class [ is the class of any hyperplane section H; of X. Then for general choices of H;

a=Y m[HiN...NH,2ND;) € H" *(X,Q),
i

andeach Z; = H,N...NH,_»ND; is a closed algebraic curve in X. O

Remark 3.7. A big difference with the divisor case is that Corollary 3.6 is not true in general with
integral coefficients, as show examples constructed by Kollar [Kol90].

3.2 Standard conjectures and some consequences

The natural question concerning the Hodge conjecture is: are there so many examples of Hodge classes
that are not trivially algebraic? The answer is yes and no. We refer to [BKU24], [KO21] for results
concerning the sparsity of Hodge classes, except in the divisor case. In the opposite direction, we will
spell-out in this section many examples of Hodge classes on powers of any given projective variety, all
formally constructed by application of Lemma 2.9, and for which the Hodge conjecture is still open. The
Hodge conjecture applied to these Hodge classes gives rise to the so-called standard conjectures (see
[Kle68]) and have strong consequences on the theory of cohomological versus numerical motives. In
Section 3.4, we will exhibit an arithmetic property satisfied by these standard Hodge classes, and that is
conjecturally satisfied by all Hodge classes, as a consequence of the Hodge conjecture.

3.2.1 Kiinneth components of the diagonal

Let X be a smooth projective variety of dimension n. The cohomology class

8x = [Ax] € H'(X x X, Q)
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of the diagonal Ay C X x X of X acts as the identity on H*(X,Q) for any k, via the formalism described
in (8). The Kiinneth decomposition theorem combined with Poincaré duality says that

H*(X x X,Q) = End(H*(X,Q)) (12)
H*(X xX,Q) = Endy(H*(X,Q)), (13)

where in (13), the subscript 0 means “degree preserving endomorphisms". Using (13), we can write
8x =80+ 81+ ...+ &y in H"(X x X,Q), (14)

where &; € Endy(H*(X,Q)) acts as the identity on H'(X,Q) and as 0 on H/(X,Q) for j # i. By Lemma
2.9, each §; provides a rational Hodge class on X x X. By definition the class oy = }; §; = [Ax] is
algebraic but it is not known in general if each &; is algebraic. This problem is the Kiinneth standard
conjecture and is stated in [Kle68]. The only general results are

Proposition 3.8. (See [Kle72]) Let X be smooth projective of dimension n. Then the Kiinneth components
0; of X are algebraic wheni=0,1,2n—1,2n.

Proof. For &, 0., this is obvious since they are respectively the classes of pt x X and X X pt, where pt is
any point in X. For J;, by the Lefschetz theorem on hyperplane sections, if we consider a smooth curve
j: C = X which is a complete intersection of hyperplane sections of X, then j, : H'(C,Q) — H*'~'(X,Q)
is surjective, and the class §; € H*'~!(X,Q) ® H' (X, Q) belongs to

Im(j.®Id: H'(C,Q)@H'(X,Q) — H* '(X,Q) ® H'(X,Q)).

The morphism j, ® Id = (j,Id), is a morphism of polarized Hodge structures, hence we can apply
Corollary 2.12 to conclude that

61 = (j,1d)(B)

for some degree 2 Hodge class
BeH'(C.Q®H(X,Q) CH(CxX,Q).

The Hodge conjecture being known for degree 2 Hodge classes, we conclude that f3 is algebraic, hence
0y is algebraic. Similarly for &,_. O

Corollary 3.9. The Kiinneth standard conjecture is true for smooth complex projective surfaces.

Indeed, for a surface, the only Kiinneth components of the diagonal are &, 8;, &, 83, &4. We know
that &y, 8;, 83, 04 are algebraic by Proposition 3.8, and that }; §; is algebraic, so &, is also algebraic.

Remark 3.10. The arguments above are given a sophisticated version in [Mur90], where a Chow-Kiinneth
decomposition of the diagonal is given.
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3.2.2 Lefschetz inverse isomorphisms

Let X be a smooth projective variety over C (or complex projective manifold) and let L be a very
ample line bundle on X. Recalling the hard Lefschetz isomorphism of Theorem 2.7(i), that we apply to
[@] =1:=c;(L), we get inverse isomorphisms

W= ("7 HP X, Q) = HE(X,Q) (15)

for k < n=dimX. Note that ¥ is a morphism of Hodge structures, hence provides by Lemma 2.9 a
Hodge class of degree 2k on X x X. The Lefschetz standard conjecture for degree k cohomology is the
following statement.

Conjecture 3.11. For each k < n, there exists a codimension k cycle Z in X x X, such that the class
[Z] € Hdg?* (X x X) satisfies

2] = (") HHX,Q) — HY(X, Q). (16)

Conjecture 3.11 and the Kiinneth standard conjecture are known for abelian varieties, that is, projective
complex tori (see [Lie68]). To prove the Kiinneth standard conjecture, we observe that there are plenty of
interesting cycles in A X A, where A is a projective complex torus. Namely, A being also an abelian group,
the multiplication by i maps

Ui:A—A

av—ia
are holomorphic. One has
w' =i*"1d : H*(A,Q) — H*(A4,Q). (17)
Formula (17) and the definition of the Kiinneth projectors & of (14) provide the following formula

[} =Y & in H*(A x A,Q) (18)
k

where g = dimA and I'; C A X A is the graph of u;. Using (18) for several values of i, a Vandermonde
determinant argument tells us that the Kiinneth components of the diagonal can be computed as combina-
tions with rational coefficients of classes [I';] for various i’s, hence they are cycle classes on A x A. Note
that this argument works as well for any complex torus and does not use the algebraicity of A. Finally we
can construct algebraic cycles first in A by taking successive powers 8 of an ample divisor class 8, and
then on A X A using the pull-back under the sum map

U:AXA—A,

(a,b) — a+b.

It is not hard to prove the Lefschetz standard conjecture for A using the classes (*9'.
Conjecture 3.11 has been proved only recently in [CM13] for a more general class of smooth
projective varieties, namely projective hyper-Kéhler manifolds of K3 "l deformation type (see [Bea83]).
The Lefschetz standard conjecture has very important consequences and thus deserves to be formu-
lated independently of the Hodge conjecture. We start with
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Proposition 3.12. Assume the Lefschetz standard conjecture is true for X. Then the intersection pairing
H* (X, Q)aig x H*" (X, Q)ag — Q
obtained by restricting the Poincaré pairing of X to the Q-vector subspaces
HZk(XaQ)alg C HZk(X,@), H2n72k(X7@)alg - H2n72k(X’Q)
generated by cycle classes, is perfect.

Remark 3.13. Proposition 3.12 illustrates the importance of the Lefschetz standard conjecture for the
theory of motives. Indeed, it says that, assuming the Lefschetz standard conjecture, numerical equivalence
of cycles (where a cycle is said numerically equivalent to zero if it has trivial intersection number with
cycles of the complementary dimension) is the same as cohomological equivalence of cycles. Numerical
equivalence is a purely algebraic notion, while cohomological equivalence needs a cohomology theory
with a cycle class in order to be defined.

Proof of Proposition 3.12. We can assume 2k < n. We choose an ample class [ = ¢ (L) and consider
the hard Lefschetz isomorphism /"~ % —: H?*(X, Q) = H?>"~2¥(X,Q). Being an isomorphism of Hodge
structures, it induces an isomorphism /*~2 —: Hdg* (X, Q) = Hdg?*~2*(X, Q). Furthermore it preserves
the spaces of algebraic classes, since "% — [Z] = [D;N...D,_» NZ] for general hypersurfaces D; of
X with [D;] = ¢ (L).

If we now assume the Lefschetz standard conjecture, we can even conclude that

"% (X, Q) g — H” (X, Q) uig (19)

is an isomorphism, with left inverse given by [Z],, where Z C X x X is a Lefschetz cycle for degree 2k
cohomology.
Once one has this statement for all even degrees < 2k, one concludes that the Lefschetz pairing

(0, Bt = /X % g B

is a perfect pairing on H?*(X Q)alg, (Which, thanks to the isomorphism (19), implies the desired statement
that H*(X,Q)a, and H**2(X,Q)a, are dual,) by the following argument. Having the Lefschetz
isomorphisms on the subalgebra H*(X,Q), C Hdg* (X), we conclude that each H?*(X,Q),q is stable
under the Lefschetz decomposition, hence can be decomposed as

H*(X,Q)ae = P I"H* (X, Q)atg prim- (20)
2r<2k

Looking at the Hodge-Riemann relations (Theorem 2.7(ii)), we get that (, )i is definite on each
Z’Hk*’v"*’(X ,R)prim, hence remains nondegenerate on each subspace l’HZk*Z’(X ,R)alg,prim. We then
conclude using the fact that the decomposition (20) is orthogonal for (, )jef. ]
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Remark 3.14. As the same proof as above shows, it is always true (that is, without assuming the Lefschetz
standard conjecture) that the intersection pairing

Hdg* (X) x Hdg” % (X) —» Q
obtained by restricting the Poincaré pairing of X to the Q-vector subspaces
Hdg? (X) ¢ H?(X,Q), Hdg?2¢(X) c H*"*(X,Q)
of Hodge classes, is perfect.

Let us give two formal but important corollaries.

Corollary 3.15. Let ¢ : X — Y be a morphism between smooth complex projective manifolds, and let
d:=dimX —dimY. Assume X and Y satisfy the Lefschetz standard conjecture.

(i) If @ € H*(X,Q)aq can be written as a = ¢*B, for some B € H*(Y,Q), then there exists
B’ € H*(Y,Q)ag such that o = ¢*3'.

(ii) If o« € H?X(Y, Q)alg can be written as & = ¢.3, for some B € H?+2d(X Q), then there exists
B’ € H**24(X,Q)a such that a = ¢.f8'.

Proof. We prove only (i), and in fact the more general statement concerns any correspondences between
X and Y. Let m := dimY. The class 8 produces an element of H>"~2*(¥,Q)*, hence by restriction an
element B* of H*"~2(Y, Q);lg. By Proposition 3.12 applied to Y, there is an element ' € H*(Y,Q),1q
such that

Br=(B)"
We finally prove that @ = ¢*’ using Proposition 3.12 applied to X. U
The following corollary of Corollary 3.15(i) appears in [And06].

Corollary 3.16. Assume the Lefschetz standard conjecture. Let X be a smooth projective variety and
¢ : X — B be a dominant morphism, where B is a connected projective variety, everything being defined
over C. Let a € Hdg2k(f)C) be a Hodge class. Then, if there exists a point b € B such that the fiber X}, is
smooth and the restriction oy, is algebraic, the restriction oy, is algebraic for all smooth fibers X;y.

Indeed, we apply Corollary 3.15(@1) to X =Y and X;, = X. Note that, in Corollary 3.16, we only need
that X and X;, satisty the Lefschetz standard conjecture.

3.3 Weil Hodge classes on Weil abelian varieties

One dissatisfactory point concerning the Hodge conjecture is the fact that, apart from the formal manip-
ulations explained above, it is very hard to produce interesting Hodge classes which are not obviously
algebraic. In this section, we will describe a rather explicit construction of Hodge classes on certain
abelian varieties. We refer to [v(G94] for more detail. An abelian variety over the complex numbers can
be seen as a complex torus which is projective. A compact complex torus is a quotient 7 = C"/I", where
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[ C C" is a discrete lattice of rank 2n. The dual lattice I™* is canonically isomorphic to H'(T,Z). The
inclusion I' C C" gives rise to a surjective morphism of complex vector spaces

F(c —C"
with kernel K C I'c. Dually, we get an exact sequence
0K —TE K —0

and it is not hard to see that the n-dimensional subspace K* C I'%. identifies to H'*(T") ¢ H!(T,C) (this
corresponds to the space of holomorphic 1-forms on T'). Furthermore K determines T and all the Hodge
structures on H*(T,7Z) since H*(T,Z) = N*H' (T, Z) as Hodge structures.

We assume now that 7 admits an endomorphism ¢ that satisfies ¢> = —dIdy for some positive
integer d. The endomorphism ¢ induces a morphism ¢* : H!(T,Z) — H'(T,Z) which satisfies the same
quadratic equation and is a morphism of Hodge structures, giving

0" (H'O(T) € H'O(T), ¢* (HON(T)) © HO\(T).

Conversely, such a morphism of Hodge structures induces an endomorphism of 7.

A Weil complex torus (see [Wei]) is a complex torus of even dimension n = 2m, equipped with a
quadratic endomorphism ¢ as above, with the property that ¢* acting on H':*(T) has m eigenvalues
equal to iv/d and thus m eigenvalues equal to —iv/d. For example, if we start from a complex torus T’y of
dimension m, admitting an endomorphism ¢, satisfying quzr = —dldr, and acting by ivd on H'O(T,),
then

T=TxT:,¢=(9+,—95)

provides a Weil complex torus. Being non-simple, it is of course non-generic.

Given an endomorphism ¢* acting on H'(T,Z), with eigenspaces W, W~ C H!(T,C) associated
respectively with the eigenvalues iv/d, —iv/d, a Weil complex torus with these given topological data is
determined by the data of the two m-dimensional vector spaces

HOY cwt HY cw,

such that -
Hl,o(T) :H1,0+ @H170_, HO*I(T) — g1ot @H1,0*7

and thus
Wt =H"" PH". 1)

Consider now the 1-dimensional vector subspace

2m 2m

AWt c AH'(T,C)=H*"(T,C).
Using (21), we get A*"W* C H""(T), hence also A*" W+ C H™"(T). Finally we have
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Lemma 3.17. There exists a Q-vector subspace M C H*"(T,Q) such that

2m

2m
Me = \W @ AW c H™(T,C).

Proof. Indeed, let L := Q(v/—d). Then H'(T,Q) is a n-dimensional L-vector space and we construct M
as the trace of the 1-dimensional L-vector space A} H' (T, Q). O

Lemma 3.17 shows that T has a 2-dimensional space of Hodge classes, called Weil classes. It is
proved in [Voi02a] that for a very general Weil complex torus 7" as above, with m > 2, any coherent sheaf
F on T has trivial Chern classes, so the Weil classes are not Chern classes of coherent sheaves on 7. We
turn now to the projective case, where the Hodge conjecture predicts that the Weil classes are algebraic.

In order to make a Weil complex torus 7" algebraic, it suffices by the Kodaira embedding theorem
to have an integral Hodge class of degree 2 on T whose (1, 1)-representative by a constant 2-form
on the universal cover of 7T is a positive (1, 1)-form (this is called a polarization on T). As ¢; acts
on H*(T,Z) preserving integral Hodge classes and positive (1,1)-classes, and furthermore satisfies
(907)? = dZIde(TZ), 07 has the eigenvalues d and —d on H?(T,Z) and we can always find, when T is
algebraic, a polarization A such that ¢;A = dA. The very general projective Weil torus has in fact Picard
number 1, and the polarization is unique, assuming it is nondivisible. We thus get another numerical
invariant, which is related to the degree of the polarization and is called the discriminant of the polarized
Weil abelian variety.

The known results on the Hodge conjecture for abelian varieties are as follows. First of all, Moonen
and Zharhin [MZ95] proved that, in the case of abelian fourfolds, the Hodge conjecture reduces to the
Hodge conjecture on Weil abelian fourfolds. More precisely, their algebra of Hodge classes is generated
by degree 2 Hodge classes and Weil type Hodge classes. Next, after a first work by Schoen [Sch88] (see
also [Sch07]), Markman proved in [Mar23] the Hodge conjecture for Weil abelian 4-folds of discriminant
1, using a long detour through hyper-Kéhler manifolds of generalized Kummer type and some work of
O’Grady [O’G21]. Finally, Markman [Mar25] proved recently by a completely different method the
Hodge conjecture for Weil abelian 6-folds of discriminant 1. By a specialization argument, this implies
the Hodge conjecture for Weil abelian 4-folds of any discriminant, and thus the Hodge conjecture for all
abelian fourfolds by [MZ95], which is a remarkable achievement.

3.4 Hodge loci and absolute Hodge classes

We discuss in this section the variational theory of Hodge classes, and more precisely the structure of
Hodge loci. We first discuss the Grothendieck-Serre isomorphism, which is a crucial bridge between
algebraic geometry over C and topology. Let X be a smooth algebraic variety defined over a field
K. Then one can define the locally free sheaves Qy x of Kéhler differentials, their exterior powers

QY = N Qx /. and the exterior differential d : Q) — Q). which satisfies as usual d od = 0. If
K=C,and X C IP)%’ is projective, X is covered by affine open sets X; = U; N X, where U; C IP’%’ is the
complement of a hyperplane, so U; = A", The algebraic differential forms on X, restricted to the Zariski
open sets X;, can then be described as restrictions to X; of algebraic differential forms Y ; a;dz; on the

ambient space U; =2 AN with linear coordinates z;,i = 1,..., N, where the ¢ are polynomials on AV,
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We can thus define algebraic de Rham cohomology (see [Gro66], [Har75]) of X as

Hig(X/K) :=H'(X,Q% x)- (22)

The right hand side is hypercohomology of the complex QF /k ON the algebraic variety X (see [Voi03,
8.1]). This is a K-vector space, and if we extend the definition field K C K’, we get

Hig(Xx'/K') = Hyr (X /K) @k K.

Assume now that K = C. Then we observe that the analytization Qé( JCan’ that is, the sheaf of holomorphic

sections of the algebraic vector bundle Qé( e is naturally isomorphic to the analytic coherent sheaf Q&m of

holomorphic /-forms on the associated complex manifold X,,. When X is projective, GAGA comparison
theorem [Ser56] thus gives an isomorphism

Hip(X/C) 2 H' (Xan, Q%) (23)

Finally, by the holomorphic Poincaré lemma, the complex QF% of holomorphic differential forms on Xa,
is locally exact in degree > 0 in the Euclidean topology, hence is a resolution of the constant sheaf C on
Xan. We thus conclude that

H' (Xan, Q%) = H' (Xan, C)

which, combined with (23), gives the Grothendieck-Serre isomorphism
Hig(X/C) = H' (Xan, C). (24)

It is a remarkable fact that this also holds true when X is only quasiprojective (see [Gro66]). The
isomorphism (24) is obviously compatible with the Hodge filtrations

FPHap(X /C) :=Tm (H' (X, Q377) = H' (X, Q% x)), (25)
FPH! (X3, C) = Im (H' (X, Q}i”)) — H' (Xan, Q5 ))- (26)

Finally, thanks to the Hodge decomposition theorem, the filtration (26) is nothing but the Hodge filtration
that we defined in Remark 2.3.

For a smooth algebraic variety X defined over K and an algebraic subvariety Z C X of codimension k
also defined over K, there is an algebraic cycle class

[Z)ar € F*HiR (X /K)

which is compatible with field extensions and, when K = C, the following comparison holds between the
algebraic and topological cycle classes:

Proposition 3.18. Let X be a smooth quasiprojective variety over C and Z C X be a subvariety of
codimension k. Then, under the (filtered) isomorphism (24), one has

[Z]ar = (2i7)"[Zan]. 27)
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A similar comparison holds for Chern classes of vector bundles, and it is even easier to see in this
context the reason for the coefficient (2irr)¥. Indeed the Chern classes are determined by the first Chern
class using the standard axiomatic formalism (see [Gro58]) so it suffices to check that for an algebraic
line bundle L on X, we have the comparison

CI(L)dR = (2i7l')C1 (Lan) (28)

between its algebraic de Rham Chern class and the first Chern class of the holomorphic line bundle L,
on Xy,. The algebraic line bundle L is an element of the algebraic Picard group Pic X, hence corresponds
to a cocycle oy € H'(X,0%), with analytic counterpart Oran € H ' (Xan, Ok, ) defining the holomorphic
line bundle L,,. On the left hand side of (28), ¢1(L)qr is by construction the image of ¢y, in

H' (X,059%%) < B (x,07)

via the map dlog : Oy — Qg(l‘/’%ed which sends f to %. On the right hand side of (28), looking at the
construction of ¢ (Lyy) via the exponential exact sequence, one checks that ¢ (Lay) is the image of 0y, an
in

H' (Xan, Q%) € H' (Xan, Q5

via the % map which sends f to ﬁ% (see [Voi02b, 7.1.3]). This proves (28).

Let us explain the consequences of these constructions on the structure of “Hodge loci” predicted by
the Hodge conjecture. Let 7 : XX — B be a smooth projective morphism of complex algebraic varieties,
with B smooth. We can even assume that X, B and 7 are defined over a number field K, since by the
theory of the Hilbert scheme (or just by spreading the coefficients of the defining equations), every smooth
complex projective variety is a fiber of a family of smooth projective varieties defined over a number
field. The associated morphism

Tan : Xan — Ban

of complex manifolds is smooth and proper, hence is a topological fibration by Ehresmann’s theorem.
There is thus for each integer k a local system H%* := R2kﬂan7*@ of Q-vector spaces, and using the
relative version of the various comparison theorems we have been discussing above, we can compute the
holomorphic vector bundle H* := H* @ Op,_ as

2k _ p2k .
j-{: - R xana*( xan/Ban)7

with Hodge subbundle

U = R T (0575, )

The fibers of these bundles over b € B are respectively H*(X,,C), F*H?**(X,,C). By a slight abuse of
notations, we use the same notation for the total space of the holomorphic vector bundles above, and,
following [CDK95], we make the following

Definition 3.19. The locus of Hodge classes for the family 1t : X — B is the subset of F*IH?* consisting
of classes oy € F*H?*(X,) N H*(X,,Q), t € B.
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As Hdg?(X;) = FFH* N H?*(X,,Q) by Remark 2.6, the locus of Hodge classes is the set of all
Hodge classes of degree 2k in fibers of 7. The locus of Hodge classes can be locally written as a countable
union of closed analytic subsets of F¥3{%, determined locally by the choice of a section & of the local
system R* 7, Q, determining a closed analytic subset of ** made of points r € B where ; belongs to
F*3?*. The Hodge conjecture predicts a more algebraic structure, as we now explain. Indeed, it predicts
that the locus of Hodge classes is also the locus of cycle classes [Z;] € FKH?(X,) for all codimension k
algebraic cycles in some fiber of 7. Next, the holomorphic vector bundle F¥3{? has the structure of an
algebraic vector bundle on B, defined over K. Indeed, there is the relative algebraic de Rham complex
Q% /B whose analytisation is the holomorphic relative de Rham complex, which provides algebraic vector

bundles HZ | Fka(2

alg® alg ON B, defined over K, and given by the formulas

k k . ke 2k o>k
j{Zlg = R¥m.( /) F g{glg = RZk”*(QﬁB)'

2k ka 2k
alg and F*H

The relative version of the comparison theorem (24) says that J{* is the analytization of
is the analytization of F kﬂ{ﬁﬁg.

Finally there are the so-called relative Chow varieties parameterizing all pairs (¢,Z;) consisting of
a point ¢ € B and a codimension k cycle Z;, C X;. There are countably many such varieties f; : M; — B,
where M, is algebraic, f; is an algebraic morphism, (M;, f;) is defined over a finite extension of K’, and
there exists a codimension & cycle Z; C M; x g X, with the property that any pair (,Z;) as above is the fiber
Zis C Xy, for some point s € M; such that r = f;(s). By resolution of singularities, we can assume that M;
is smooth, and the cycle Z; then has an algebraic cycle class [Z;]¢r € H 2k (M; x g X), whose restriction to
Xy is [Zis]ar = (2im)¥[2; 4], and in particular is locally constant along the fibers of f;. The image of the
morphism

M; — ka}fglkg, S — [Z’i,s]dR

is thus an algebraic subvariety of F kﬂ-Cfﬂkg which is defined over a finite extension K’ of K. To summarize

this discussion, the vector bundle F*H** over B contains the locus HL of Hodge classes of degree 2k
in the fibers, and the locus CL of codimension k cycle classes in the fibers. The locus HL is locally a
countable union of closed analytic subsets. The locus CL has more structure, namely (2i7)*CL is the
image of the algebraic de Rham cycle class, hence is a countable union of closed algebraic subvarieties of
F kﬂ-fﬁ{‘g defined over a finite extension of K, namely those constructed above. Taking into account the

comparison (27), the Hodge conjecture thus predicts that (2i7)* times the locus of Hodge classes is a
countable union of closed algebraic subvarieties of F kﬂ-ffdkg defined over finite extensions of K. Part of
this prediction is a theorem, which is the best known evidence for the Hodge conjecture.

Theorem 3.20. [CDK95] The locus of Hodge classes is a countable union of closed algebraic subvarieties

of Rk,

What is missing is the statement concerning the definition field of these loci, despite some results (see
eg [KOU23]). For example, a completely open problem is whether, given a family 7 : X — B as above,
that is, everything is defined over a number field, the image in B of the locus of Hodge classes could have
isolated points not defined over a number field. This would disprove the Hodge conjecture...

The question of the field of definition of Hodge loci is almost equivalent to the following
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Conjecture 3.21. Any Hodge class on an algebraic variety is absolute Hodge.

Here the notion of “absolute Hodge class” has been introduced by Deligne in [Del82], who proved
that Hodge classes on abelian varieties are absolute Hodge. let X be a smooth projective variety defined
over a field K of characteristic 0. For any field embedding 7 : K — C, we get a complex manifold X[,
and for a de Rham cohomology class & € F "H&I’Q(X /K) we get using (23) a Betti cohomology class
a; € FFH?(XTE ,C). If Z C X is a codimension k cycle on X, and o = [Z]gr, then (27) shows that
waf € H*(XZ,Q). The class thr € H**(X7,Q) is thus a Hodge class, but it also satisfies the
property that for any field embedding ¢ : K — C, the class ﬁag belongs to H*(X2,Q), hence is
again a Hodge class. This property (independence of the field embedding) characterizes the absolute
Hodge classes.

Cycle classes are absolute Hodge, which motivates Conjecture 3.21. The Hodge classes that appear
in the standard conjectures are absolute Hodge. If we have a family 7 : X — B with B irreducible and a
rational cohomology class o € H**(X,,,Q) which has the property that oy, is a Hodge class for every
b € B, then qy, is an absolute Hodge class for every b € B if and only if ¢y, is an absolute Hodge class
for some b € B (hence in particular if ajy, is algebraic for some b € B).

4 The generalized Hodge conjecture

We discuss in this section a conjecture stated in [Gro69], and called the “generalized Hodge conjecture”.
Technically, it is a mild generalization of the Hodge conjecture (see Proposition 4.8).

4.1 Coniveau

Recall the definition of the (Hodge) coniveau of a Hodge structure (Definition 2.4). Given a smooth
projective variety X, a natural geometric way to construct Hodge substructures L C H*(X,Q) of Hodge
coniveau c is as follows. Let Y be a smooth complex projective variety, with dimY = dimX — ¢, and let

@Y =X (29)
be a morphism (i.e. a holomorphic map). Then
¢.: H*°(¥,Q) — H*(X,Q)

is a morphism of Hodge structures, that maps H”4(Y) to HP™4+¢(X). It follows that L := Im ¢, C
H¥(X,Q) is a Hodge substructure with L4 =0if p' < corq < c. Hence L has Hodge coniveau > c.

Definition 4.1. A cohomology class o € H*(X,Q) has geometric coniveau > c, if there is a closed
algebraic (equivalently, analytic) subset Z C X, of codimension c, such that

oz =0in H(X\ Z,Q). (30)

By considering the cohomology of the pair (X,X \ Z), a class « satisfying (30) has to come from a
class in H*(X,X \ Z,Q), and by Poincaré duality, this also says that & comes from H,, ;(Z,Q) via the
composite map

PDyx
Ho 1(Z,Q) — Ha (X,Q) & H*(X,Q).
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Example 4.2. The class [Z] € H*(X,Q) of a cycle Z = Y;n;Z; of codimension ¢ vanishes away from
the support SuppZ := U;Z; of Z, hence has geometric coniveau c. More generally, if [Z] is a cycle class
as above, and 8 € H*(X,Q) is any cohomology class, then § — [Z] vanishes in H**2¢(X \ SuppZ,Q),
hence has geometric coniveau > c.

Example 4.3. Here is an example that does not fit in the above category. Let X C P" be a generic
hypersurface of degree d < n. The Fano variety of lines F;(X) of X is smooth of dimension 2n —d — 3.
Choose a smooth complete intersection of ample hypersurfaces W C F;(X) of dimension n — 3, and
consider the restriction Py — W to W of the universal P! -bundle over the Grassmannian G(2,n+ 1) of
lines in P". There is an incidence diagram

p:Pyv—=Wqg:Py—X
and it is known (see for example [Shi90]) that
g.op* tH"3(W,Q) — H" '(X,Q)

is surjective. Thus the cohomology H"~!(X,Q) has geometric coniveau > 1, as it vanishes away from
X\ ¢q(Pw), with dimg(Py) =n—2.

Obviously, if o = @, for some morphism ¢ : Y — X as in (29), then & has geometric coniveau > c,
because o vanishes away from the closed algebraic subset ¢ (Y) C X, which has codimension > c. It
turns out that there is a converse to this statement, which follows from the following

Theorem 4.4. (Deligne [Del71]) Let j: Z — X be the inclusion of a closed algebraic subset of codi-
mension ¢, and let T : Z' — Z be a desingularization of Z, j' := to j:Z' — X. Then for any integer
[>0

Im (j, : H(Z,Q) = H/(X,Q)) =Im(j, : H/(Z',Q) = H;(X,Q)). (31)

This highly nontrivial equality follows from the theory of mixed Hodge structures, and the fact that a
morphism j, as above is a morphism of mixed Hodge structures (see [Del71], [Voi03, 4.3.2]).

Corollary 4.5. Let X be a smooth projective complex variety. Then

(i) Classes of geometric coniveau > c on X are the classes of the form ¢.[3, for some morphism
¢ 1Y — X, with Y smooth projective and dimY = dimX — c.

(ii) The set of degree k cohomology classes of geometric coniveau > c is a Hodge substructure of
H*(X,Q) of Hodge coniveau > c.

An example of a smooth complex projective variety X, together with a nonzero rational cohomology
class o € H*(X,Q) which is of Hodge coniveau 1, that is, ac = a>! + ', while H*(X,Q) does not
contain any Hodge substructure of coniveau 1 is described in [Voi03, Exercise 1, p 184]. Such a class «
is of Hodge coniveau 1 but not of geometric coniveau 1.
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4.2 Grothendieck’s generalized Hodge conjecture
The generalized Hodge conjecture is the converse of Corollary 4.5(ii).

Conjecture 4.6. [Gro69] Let X be a smooth complex projective variety, and let L C H*(X,Q) be a
Hodge substructure of coniveau c. Then L is of geometric coniveau > c, that is, there exists a closed
algebraic subset Z C X of codimension > c such that

L C Ker (H"(X,Q) — H*(X\ Z,Q)).

Equivalently (by Corollary 4.5(ii)), there exist a smooth projective variety Y of dimension n— c and a
morphism j:Y — X, such that

LCIm(j,: H*(Y,Q) — H*(X,Q)).

The Hodge conjecture (Conjecture 3.1) is a particular case of the generalized Hodge conjecture
because the data of a Hodge class o € H**(X,Q) is the same as the data of a Hodge substructure
Qo C H*(X,Q) of Hodge coniveau k (and of rank 1). The generalized Hodge conjecture then predicts
that o vanishes on X \ Z for some codimension k closed algebraic subset. As explained in the previous
section, this says that ¢ is supported on Z and must be a rational combination of homology classes of
irreducible components of Z.

The Hodge conjecture itself does not imply the generalized Hodge conjecture, but we observe that the
generalized Hodge conjecture, together with Corollary 4.5 and the semisimplicity property (Proposition
2.11), implies the following

Conjecture 4.7. Let X be a smooth complex projective variety and let L C H*(X,Q) be a Hodge
substructure of Hodge coniveau c. Then there exist a smooth projective variety Y and a Hodge substructure
L' ¢ H*2¢(Y,Q) such that there exists an isomorphism of Hodge structures L' = L (of bidegree (c,c)).

We have the following implication

Proposition 4.8. Conjecture 4.7 and the Hodge conjecture together imply the generalized Hodge conjec-
ture.

Proof. Let X be a smooth complex projective variety and let L C H*(X,Q) be a Hodge substructure of
Hodge coniveau c. Assuming Conjecture 4.7, there exist a smooth projective variety Y and a Hodge
substructure L' C H*2¢(Y,Q) such that there exists an isomorphism of Hodge structures L' = L (of
bidegree (c,c)). By semi-simplicity, the Hodge substructure L' C H*%¢(Y,Q) is a direct summand, as
a Hodge structure, of H*~2¢(¥,Q). By Lemma 2.9, the isomorphism of Hodge structures 1, : L' = L
is induced by a Hodge class 1 of degree 2n on Y x X, where n = dimX. The Hodge conjecture then
predicts that there exists a codimension n cycle Z = Y ;n;Z; in Y x X with rational coefficients, such that
[Z] = 1. Hence we have [Z]. = 1, and for any class & € H*~2¢(¥,Q) we have

o= [Z].a =} mipry. (pry o — [Zi]),

where pry, pry are the respective projections from Y x X to X, Y. It follows that 7n..c¢ vanishes away from
U;pry (Z;), which is a closed algebraic subset of the codimension > ¢ of X, so L = 1, (L’) has geometric
coniveau > c. O
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4.3 The generalized Hodge conjecture as a construction problem

Let X be a smooth projective complex variety. The Hodge conjecture for Hodge classes of degree 2k on
X rises a construction problem for codimension k subvarieties of X. We want to show in this paragraph
that the generalized Hodge conjecture (Conjecture 4.6) is also a construction problem. Let L C H*(X,Q)
and c be its coniveau. In order to solve the generalized Hodge conjecture for L, we can assume that
k < n =dimX, by the hard Lefschetz isomorphism. Indeed, if k = n+ r, with r > 0, then we have the
Lefschetz isomorphism

I':H""(X,Q) — H"(X,Q)

determined by an ample class [ = ¢;(L). This isomorphism of Hodge structures provides a Hodge
substructure
L' cH""(X,Q)

which is isomorphic to L, and has coniveau ¢ — r. If we solve the generalized Hodge conjecture for L/,
then L’ is supported on a subvariety of codimension > ¢ —r so L =" — L' is supported on a subvariety
of codimension > c.

Next, the generalized Hodge conjecture predicts the existence of a smooth projective variety Y of
dimension n — ¢ and a morphism j : ¥ — X such that

LCIm(j,:H*(Y,Q) —» H*(X,Q)). (32)

The Lefschetz standard conjecture applied to Y implies the existence of a cycle Z C Y x Y of codimension
k — 2c¢ with rational coefficients, such that

[Z’]* : Hk—ZC(Y7 Q) — Hk_ZC(Ya @) (33)

is surjective. Combining (32) and (33), we conclude that the cycle Z' := (Id, j).Z C Y x X has the
property that

LcIm([Z], : Hi_2(Y,Q) = H*(X,Q)). (34)

We now observe that, as dimY = n —c, and dimZ = 2dimY — k +2c¢ = 2n — k, Z has relative dimension
n—k+ c over Y, hence the cycle Z' can be seen as a family of cycles of dimension n —k+ ¢ on X,
parameterized by Y. The generalized Hodge conjecture for degree k cohomology and coniveau ¢ on X
of dimension n thus predicts the existence of “interesting” (families of) subvarieties of X of dimension
n— k4 c. Conversely, if there exist a smooth projective variety ¥ and a cycle W in Y x X of relative
dimension n — k+-c over Y, such that (34) holds, we observe that, by the Lefschetz theorem on hyperplane
sections, we may assume that dimY < k —2c, so dimW < n —c. Then Im [W],. has geometric coniveau
> ¢, as it vanishes away from U;pry (W;), where W = Y, n;W;. So L has geometric coniveau > c.

5 Chow groups and coniveau

We discuss in this section an algebrogeometric approach to the coniveau of a variety via its Chow groups.
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5.1 Chow groups and Mumford’s theorem

let X be an algebraic variety over a field K. We define the group Z,(X) of d-cycles as the free abelian
group generated by closed irreducible subsets Z C X of dimension d defined over K.

Definition 5.1. The Chow group CH,(X) is the quotient of Z4(X) by the subgroup of cycles rationally
equivalent to 0, namely the subgroup generated by d-cycles of the form j.div ¢, for any projective
morphism j: W — X, where W is a normal variety and ¢ € K(W) is a nonzero rational function on W,
everything being defined over K.

Here we use the push-forward j, on d-cycles under proper maps j: if Z is closed irreducible
inW, j.Z € Z,(X) is 0 if dim j(Z) < dimZ, and otherwise it is deg(Z/j(Z))j(Z), where the degree
deg(Z/j(Z)) is the degree of the field extension K(j(Z)) C K(Z). We denote also CH,(X) = CH" % (X)
when X is irreducible of dimension n. The Chow groups have excellent functoriality properties. The
push-forward ¢, : CH;(X) — CH,(Y) under a projective morphism is induced by the push-forward on
cycles as defined above. In a much more subtle way, if ¢ : X — Y is a morphism and Y is smooth, then
there is a pull-back morphism

¢* : CH°(Y) — CH*(X),

that needs intersection theory in order to be rigorously defined (see [Ful84], which defines more generally
the intersection product of cycles modulo rational equivalence on a smooth variety). When K = C and X
is smooth, the cycle class introduced in Section 3.1 induces a group morphism

[]: CHY(X) = H* (Xan, Z),

which is compatible with the pull-back and push-forward morphisms when defined, and is also compatible
with the intersection product.

That there is a strong relationship between the Chow groups of a smooth projective complex algebraic
variety and the coniveau of its cohomology was first observed by Mumford [Mum68] (see also [Roj72]).
A generalized formulation is

Theorem 5.2. Let X be a smooth projective variety over C such that CHy(X) = 7Z (or equivalently by
[R0j80], CHo(X)g = Q). Then H**(X) = 0 for any i > 0. It follows that H'(X,Q) has Hodge coniveau
>1fori>0.

Let us comment on the assumption. It means that any two points of X are rationally equivalent in
X. This is clearly satisfied if any two points are contained in a rational curve in X, namely a projective
curve that is dominated by P!. (Indeed, if x, y are two points on P!, the difference x — y is the divisor of
a rational function on P'.) This property, that is now called “rational connectedness", directly implies
that H ivo(X )y=HX ,Qg() =0 for any i > 0 (see [KMM92]). However, there are examples of smooth
projective varieties over C such that CHy(X) = Z and that are far from being rationally connected. For
example, smooth quintic Godeaux surfaces satisfy CHy(X) = Z (see [V0i92]), while the general one can
be proved to contain no rational curve.
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5.2 Decomposition of the diagonal and the generalized Bloch conjecture

We discuss in this section a notion and method proposed by Bloch and Srinivas [BS83], who give an
elegant proof of Mumford’s Theorem 5.2 and more importantly prove a stronger statement, namely that,
under the same assumptions, the geometric coniveau of H'(X,Q) is > 1 for i > 0. This method has been
since generalized by many authors (see eg [Lat98], [Par94]) to relate Chow groups of small dimension
and geometric coniveau.

Definition 5.3. A smooth projective variety of dimension n is said to have a cohomological decomposition
of the diagonal (in codimension 1), if there exist a divisor D C X, and a cycle I € Z"(X x X)q supported
on D x X, such that

[Ax] = [X x x] + [[]in H*'(X x X,Q) (35)

In the definition above, x is any point of X. The right generalization of this notion to higher
codimension is

Definition 5.4. A smooth projective variety of dimension n is said to have a cohomological decomposition
of the diagonal in codimension c, if there exist a closed algebraic subset D. C X of codimension c, and a
cycleT" € Z"(X x X)q supported on D x X, such that

[Ax] = [W]+[[]in H(X x X,Q), (36)

where the cycle W is decomposable, namely W =Y ;n;W; x W/ _, for some closed algebraic subsets W;,
W,_; of X such that dimW; +dimW,_; = n.

The relevance of this notion for the study of the generalized Hodge conjecture is illustrated by the
following statement

Proposition 5.5. If X has a cohomological decomposition of the diagonal in codimension c, then
H*(X,Q) =H"(X,Q)ug + N°H*(X,Q), (37

where N°H*(X,Q) denotes cohomology of geometric coniveau > c.
Ifc =1, H>°(X,Q) has geometric coniveau > 1.

Proof. The second statement follows from the first since cycle classes of codimension > 0 are of coniveau
> 1. To prove (37), we use the action ¥* of a correspondence y € H**(X x X, @Q)a1g on cohomology, given
by
Y (&) = pry.(prra — 7).
From (36), we get for any @ € H*(X,Q), by letting both sides acting on H*(X,Q)
o= [Wa+[I"ain H(X,Q). (38)

As W is decomposable, we get
W] o =) mi[Wil{e, [W,,_]),
i

hence [W]*a € H*(X, Q). Finally the last term [I']* in (38) vanishes on X \ D, since I" is supported
on D, x X, hence [I[']* & has geometric coniveau > ¢ for any @ € H*(X,Q). O
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The cohomological version of Bloch-Srinivas decomposition of the diagonal is the following state-
ment.

Theorem 5.6. Let X be a smooth projective complex variety. Assume that CHy(X) = Z. Then X admits a
cohomological decomposition of the diagonal in codimension 1.

Combining Theorem 5.6 with Proposition 5.5, one gets the following strengthening of Mumford’s
theorem 5.2:

Corollary 5.7. The assumptions on X being as in Theorem 5.6, H*>°(X,Q) has geometric coniveau > 1.

For completeness, we note also the following application of the decomposition of the diagonal to the
Hodge conjecture itself.

Theorem 5.8. [BS83] The assumptions on X being as in Theorem 5.6, X satisfies the Hodge conjecture
for Hodge classes of degree 4.

Proof. We write the decomposition of the diagonal
N[Ax — X x x] = [[]in H'(X x X,Q) (39)

with I" supported on D x X, for some divisor D of X. Let i D—Xbea desingularization of D. We can
lift I" to a cycle I" supported on D x X, at least with rational coefficients. Then for a Hodge class a of
degree 4 on X, we have, by letting both sides of (39) act on

o = J.([T]" o) in Hdg* (X, Q).

As [ﬁ*a is a Hodge class of degree 2 on D, itis algebraic on D by Theorem 3.3, hence « is algebraic on
X. O

Remark 5.9. This theorem has a more general version (see [BS83]), where the assumption on X is that
CHy(X) is supported on a closed algebraic subset of dimension at most 3. In this form, it generalizes a
result due to Conte and Murre, see [CM78].

Theorem 5.6 has been generalized with a very similar proof in [Lat98], [Par94] (see also [V0i03,
10.2] or [Voil14])).

Theorem 5.10. Let X be a smooth projective complex variety of dimension n. Assume that the cycle
class map [] : CH;(X)g — H*?(X,Q) is injective for i < ¢ — 1. Then X admits a cohomological
decomposition of the diagonal in codimension c.

Combining this statement with Proposition 5.5, one gets
Corollary 5.11. The assumptions on X being as in Theorem 5.10,

H*(X,Q)=H"(X,Q)ue + N‘H*(X,Q).
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This suggests that the generalized Hodge conjecture could possibly be attacked in certain cases through
the computation of Chow groups. In fact, Bloch [Blo80], and later Bloch and Beilinson, conjectured a
converse to the statements above. One version of the generalized Bloch conjecture is

Conjecture 5.12. Let X be a smooth complex projective variety. Assume that H**(X) = 0 for i > 0. Then
CHy(X) =Z.
More generally, assume

H*(X,Q) = Hdg"/*(X,Q) + L, (40)

where each L. C H'(X,Q) is a Hodge substructure of coniveau > c. Then the cycle class map [] :
CH;(X)g — H*" (X, Q) is injective for i < ¢ — 1.

Remark 5.13. Even if we make the stronger assumption that L has geometric coniveau > ¢, Conjecture
5.12 is still open (despite promising work by Ayoub, see [Ayol7]). For example, it is open for surfaces X
with p, = g = 0, while this condition is equivalent, thanks to the Lefschetz (1,1)-theorem (cf. Theorem
3.3) to the fact that the whole cohomology H*(X, Q) is algebraic.

5.3 Generalized Hodge conjecture and cohomological decomposition of the diagonal
We will say that a smooth projective complex variety X has geometric coniveau > c if (37) holds.

Remark 5.14. Assuming furthermore the Hodge conjecture on X, the Poincaré pairing is nondegenerate
on H*(X,Q)a, so replacing N°H*(X,Q) by

N°H*(X,Q)q := N°H*(X,Q) NH* (X, Q)

where H**(X,Q) eﬁg denotes the orthogonal complement of H**(X,Q)a with respect to the Poincaré
pairing, we can replace the decomposition (37) by a direct sum decomposition

H*(X,Q) = H*(X,Q)as P NH*(X,Q)y. (41)
For X as above, we have the following partial converse to Proposition 5.5.

Proposition 5.15. Let X be a smooth projective of dimension n. Assume the Hodge conjecture holds
for varieties of dimension < 2n—2. Then if X has geometric coniveau > c, it has a cohomological
decomposition of the diagonal in codimension c.

Proof. We use (41), where N°H* (X, Q) has geometric coniveau > ¢, hence comes from the cohomology
of Y via a morphism j : Y — X, where Y is a smooth projective variety of dimension n — ¢ (see Corollary
4.5). Using (41) and the Kiinneth decomposition, the class [Ax] € H**(X x X,Q) of the diagonal writes
as

[AX] - 5alg + 52c (42)

where &, € H>* (X, Q)ag Q@ H>*(X, Q)alg and 6>, € N°H*(X,Q) @ N°H*(X,Q)yr. The fact that there
is no term in H** (X, Q) e ® N°H* (X, Q) follows from the fact that there is no nonzero Hodge class in
N°H*(X,Q)y, hence no nonzero Hodge class in H**(X,Q)a, @ N°H* (X, Q).
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We now observe that 8,1, € H (X, Q)ag®H (X,Q) alg 1s the class of a decomposable cycle Y, n;W; x
W/, while the Hodge class &, on X x X comes from a Hodge class on Y x Y via the morphism (j, ) :
Y XY — X x X by Corollary 2.12. The Hodge conjecture applied to Y x Y says that

0 = (]»J)*[Z,}
for some cycle Z' with rational coefficients supported on Y x Y. Putting things together, we get

[Ax] = [Z”iWi X W +1(J,/)+Z in H*"(X x X,Q),

which provides a cohomological decomposition of the diagonal in codimension ¢ since the cycle (j, j).Z'
is supported on j(¥) x X and j(¥) C X has codimension > c. O

6 The case of complete intersections

6.1 Computing the Hodge coniveau

Let X C IP" be a smooth complete intersection of r hypersurfaces of degree d; < ... <d,. Thus X is
smooth of dimension n — r and of degree d; - ... - d,. The Lefschetz theorem on hyperplane sections says
that the restriction map

H'(P",Z) — H'(X,Z) (43)

is an isomorphism if i < n — r and is injective for i = n — r. Thus fori < n—r, we have H'(X,Z) = 0 if i is
odd and H(X,7Z) = Z if i is even. This implies by Poincaré duality on X that, for 2n —2r > i > n—r, the
groups H'(X,Z) are cyclic if i is even and vanish if i is odd. Here all the generators with Q-coefficients
are known, namely, they are powers A/, i = 2, where h is the class of a hyperplane section. In particular
the Hodge structures on H'(X,Q) are uninteresting for i # n —r.

The Hodge structures on the middle cohomology H"~"(X,Q), and better, when n — r is even, the
subgroup H"~"(X,Q)prim of classes orthogonal for the Poincaré pairing to the image of the restriction
map (43), are however very interesting. To start with, we know how to compute their Hodge coniveau,
thanks to the work of Griffiths [Gri69] and later generalization in the case of complete intersections (see
[Pet75]).

Theorem 6.1. Let X C P be a smooth hypersurface of degree d. Then H?1(X,Q)prim vanishes for any
g < cifand only if n > cd. Equivalently the Hodge coniveau of H" ™' (X, Q) prim s greater than or equal
to c if and only if n > cd.

More generally, if X C IP" is a smooth complete intersection of hypersurfaces of degrees dy < ... <d,,
the Hodge coniveau of H"™"(X,Q)prim is greater than or equal to ¢ if and only if

n>Ydi+(c—1)d,. (44)
i
As discussed in Section 4.3, the generalized Hodge conjecture predicts the following:
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Conjecture 6.2. Let X C P" be a smooth complete intersection of hypersurfaces of degrees di < ... <d,.
Then, if n > Y,;d;i+ (c — 1)d, as in (44), X has a cohomological decomposition of the diagonal in
codimension c.

If the complete intersection X is very general, an equivalent statement is that there exist a smooth
projective variety Y of dimension n —r — 2¢ and a family Z C Y x X of cycles of dimension ¢ of X such
that

[Z]* ZHnir(Xy@)prim N Hn7r72c(yj Q)

is injective. So the geometric question is to construct “interesting” subvarieties of dimension c in these
complete intersections.
By Theorem 5.10, one way to prove Conjecture 6.2 is to solve the following Bloch type conjecture

Conjecture 6.3. Let X C IP" be a smooth complete intersection of hypersurfaces of degrees d| < ... <d,.
Then, ifn > Y,;d;+ (¢ — 1)d,, the cycle class map

CH;(X)q — H2(X,Q)

is injective fori < c— 1.
In the case ¢ = 1, Theorem 6.1 is immediate, since we have
H" (X)) = H(X,Kx)

where the canonical bundle Ky = A"~ Qy is by the adjunction formula isomorphic to Ox(—n—1+Y,;d;).
So for ¢ = 1, the numerical condition (44) just says that Kx is negative, that is, X is Fano. This implies
both conjectures 6.2 and 6.3 in this case. Indeed, if X is Fano, then it is rationally connected by [KMM?92],
that is, through any two points of X, there is a rational curve. Then obviously any two points are rationally
equivalent which proves Conjecture 6.3 in this case. By Theorem 5.10, this in turn implies Conjecture 6.2.
Historically, Conjecture 6.2 for ¢ = 1 was proved directly using the family of lines in X (as in Example
4.3). Also a direct proof of the isomorphism CHy(X) = Z was given in [Roj72] for Fano hypersurfaces
X.

6.2 Further examples where the generalized Hodge conjecture is known and further
results

We discuss in this section what is known about Conjectures 6.2 and 6.3 for coniveau ¢ > 1. We restrict
for simplicity to the hypersurface case. First of all, thanks to work of Esnault-Levine-Viehweg [ELV97],
[Par94], improved later on by Otwinovska [Otw99], Conjecture 6.3 is true for ¢ given and n >> d
depending on ¢ and by Theorem 5.10, this implies 6.2 for the same values of n, d. The best known general
statement is the following:

Theorem 6.4. Let n, d, c be integers such that
d
(c—i—l)(n—c)—(c—; >2n—1—c. (45)

Then for a smooth hypersurface of degree d in P", the group CH;(X)q hom 0f i-cycles cohomologous to 0
is zero fori < c—1.
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The inequality (45) corresponds to the condition that the family of linear spaces P¢ C P"* contained in
X sweeps-out a subvariety of X of codimension < c.

Unfortunately, except for very small values of d, inequality (45) is very different from inequality
(44) which tells that the conclusion of Theorem 6.4 should hold once n > dc. For example, Theorem 6.4
implies Conjectures 6.3 and 6.2 for cubic hypersurfaces of dimension n — 1 < 16. This also works for
quartic hypersurfaces of dimension < 10: they have trivial CH; (X )g nom Once n > 8.

We have been discussing above the case of a general hypersurface of degree d in P*. In [V0i96], it
is proved that for any value of d and n, there exist smooth hypersurfaces of degree d in P satisfying
Conjecture 6.3, hence also Conjecture 6.2. More precisely, hypersurfaces whose equation takes the form

Ko, Xu) = fiXo, - Xa) + fo(Xeqrs - Xoe) o+ feKae—1)415- - Xaesr),

with n = dc+r, r < c, satisty the two conjectures.

We finish with a result showing that for general hypersurfaces, the two conjectures 6.3 and 6.2, where
Conjecture 6.3 is a priori stronger by Theorem 5.10, are in fact equivalent (that is, equally difficult and
possibly wrong!).

Theorem 6.5. [Voil5] Assume that a general hypersurface X of degree d in P* has a cohomological
decomposition of the diagonal in codimension c. Then, for any smooth hypersurface X of degree d in P",
the cycle class map

CHi(X)g — Hx(X,Q)
is injective for i < c— 1.

This theorem works as well for complete intersections of very ample hypersurfaces in homogeneous
varieties and has a more general version for motives of complete intersections admitting a finite group
action.
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