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On Chern classes of Lagrangian fibered hyper-Kähler
manifolds

Claire Voisin
∗

Abstract: We study the rank stratification for the differential of
a Lagrangian fibration over a smooth basis. We also introduce and
study the notion of Lagrangian morphism of vector bundles. As a
consequence, we prove some of the vanishing, in the Chow groups
of a Lagrangian fibered hyper-Kähler variety X, of certain poly-
nomials in the Chern classes of X and the Lagrangian divisor,
predicted by the Beauville-Voisin conjecture. Under some natural
assumptions on the dimensions of the rank strata, we also establish
nonnegativity and positivity results for Chern classes.
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1. Introduction

In the paper [4], Beauville and myself proved that for any projective K3
surface S, there exists a canonical degree 1 zero-cycle oS ∈ CH0(S) satisfying
the following properties:

1. For any elements D, D′ ∈ CH1(S), D ·D′ = deg (D ·D′)oS in CH0(S).
2. c2(S) = 24oS in CH0(S).

Although we can work with integral coefficients in the statement above,
CH(X) will denote from now on the Chow groups of a variety X with Q-
coefficients. Beauville subsequently proposed in [3] a generalization of prop-
erty 1 to any projective hyper-Kähler manifold X, whose weak version is
called “Beauville weak splitting conjecture”, stating that any cycle Z on X
which is a polynomial in divisor classes and is cohomologous to 0 on X is
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1394 Claire Voisin

rationally equivalent to 0 modulo torsion. I proposed in turn in [41] to gener-
alize the combination of 1 and 2 to any projective hyper-Kähler manifold X
in the following form:

Conjecture 1.1. Let X be a hyper-Kähler manifold and let Z ∈ CH(X)
be a cycle on X which belongs to the subalgebra generated by divisor classes
and the Chern classes of X. Then if Z is cohomologous to 0, Z is rationally
equivalent to 0 modulo torsion on X.

This conjecture is known to hold for Hilbert schemes of K3 surfaces by
[32] and for generalized Kummer varieties by [17]. It is also proved in [41] for
the Fano variety of lines in a smooth cubic fourfold. Riess proved in [37] a very
nice result concerning the weak splitting conjecture. We know the polynomial
cohomological relations between divisor classes on a hyper-Kähler manifold
X, as they were described by Verbitsky (see [8]). When there is at least one
divisor class h = c1(H) ∈ CH1(X) such that

∫
X h2n = 0, or equivalently

q(h) = 0, where q is the Beauville-Bogomolov quadratic form, the ideal of
these relations is generated by

ln+1 = 0 in H2n+2(X,Q) if q(l) = 0.(1)

(In the absence of a rational isotropic class, the relations do not admit such
a concrete description and only have a representation-theoretic characteriza-
tion, unless we pass to real coefficients.) Riess noticed that the relation (1)
obviously holds in CHn+1(X) when l = c1(L) and L is a Lagrangian line bun-
dle, that is, there exist a Lagrangian fibration f : X → B, an integer d > 0,
and an ample line bundle HB on B, such that L⊗d = f∗HB. Indeed, one has
dimB = n so Hn+1

B = 0 in CHn+1(B) and

Ln+1 = 0 in CHn+1(X).(2)

If an isotropic line bundle L is Lagrangian, L is in particular nef. The
SYZ conjecture states conversely that a nef isotropic line bundle on a hyper-
Kähler manifold is Lagrangian. When the Picard number of X is 2 and X
has an isotropic class, X has two isotropic classes (up to a scalar), and there
are many instances when only one class is nef, the other ray of the positive
cone not even belonging to the birational Kähler cone (see for example [40],
where the case of the O’Grady 10-dimensional manifold constructed in [28] is
discussed; see also [14]). We thus a priori do not have the relation (2) for the
other isotropic class. Riess, using work of Huybrechts [19] on the existence
of self-correspondences inducing automorphisms of the ring CH(X), could
nevertheless extend to the nonnef ray the relation (2) and finally prove the
following:
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Lagrangian fibered hyper-Kähler manifolds 1395

Theorem 1.1. (Riess [37]) If X is a projective hyper-Kähler manifold which
has an isotropic class in NS(X) and whose deformations satisfy the SYZ
conjecture, X satisfies Beauville’s weak splitting conjecture.

One of the purposes in this paper is to study Conjecture 1.1 for a certain
type of polynomial cohomological relations involving both Chern classes of X
and divisor classes. More precisely, as proved in [19], the following generalized
Verbitsky relations hold in H∗(X,Q) for X hyper-Kähler of dimension 2n

ln+1−icI = 0 inH2n+2−2i+4j(X,Q) if q(l) = 0 and deg cI = 4j ≥ 4i,(3)

where cI is any polynomial in the topological Chern classes c2k(X) ∈ H4k(X,
Q) of X and the degree is the weighted cohomological degree. The relations
(3) hold in the cohomology algebra of X because they hold for the class σt
of any (2, 0)-form on a deformation Xt of X, and these classes σt fill-in an
Euclidean open (hence Zariski dense) set in the quadric q = 0 in H2(X,C).
Indeed cI is of Hodge type (2j, 2j) on Xt, while σn+1−i is of Hodge type
(2(n + 1 − i), 0) on Xt.

Remark 1.2. The odd Chern classes of a hyper-Kähler manifold X vanish
in CH(X) since its cotangent bundle is isomorphic to its dual. This is why
we discuss only even Chern classes.

Remark 1.3. The relations (3) do not exhaust the cohomological relations
in the tautological ring generated by divisor classes and topological Chern
classes. For example, in top degree 4n, the cohomology ring has rank 1 and
thus all polynomials of weighted degree 4n in the topological Chern classes
c2(X), . . . , c2n(X) generate only a 1-dimensional vector space. In degree 4n,
there are thus plenty of polynomial cohomological relations involving only the
c2i(X), while the relations in (3) not involving l appear only for i = n + 1,
that is, in degree 4n + 4, (so they trivially hold in this case).

Conjecture 1.1 combined with (3) leads us to the following

Conjecture 1.4. Let X be a projective hyper-Kähler manifold. Then for any
line bundle L on X with q(L) = 0, for any integer j ≥ i, and any Chern
monomial cI ∈ CH2j(X)

Ln−i+1cI = 0 in CH(X).(4)

When L is a Lagrangian line bundle, the vanishing (4) is the vanishing
(2) for i = 0. The next case where i = 1 is also quite easy. Indeed, we have
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1396 Claire Voisin

to prove that

LncI = 0 in CHn+2i(X)(5)

for any Chern polynomial of degree 2i > 0 on X. This follows from the fact
that Ln is proportional to the class of a general fiber Xb of the Lagrangian
fibration f : X → B and from the exact sequence

0 → f∗
b ΩB,b → ΩX|Xb

→ ΩXb
→ 0,(6)

where the vector bundles on the right and on the left are trivial on Xb which
is an abelian variety. This implies that ci(ΩX)|Xb

= 0 in CHi(Xb) for i > 0.
Note that we have more generally an exact sequence

0 → f∗ΩB0 → ΩX0 → f∗TB0 → 0

on X0 := f−1(B0), where B0 ⊂ B is the Zariski open set where B is smooth
and over which f has maximal rank. It follows that the Chern classes of
positive degree of X are supported over a proper closed algebraic subset of
B. A strengthened conjecture in the case of a Lagrangian fibration is the
following.

Conjecture 1.5. Assume X is projective hyper-Kähler and f : X → B is
a Lagrangian fibration. Then for any i and any monomial cI ∈ CH2i(X) of
weighted degree 2i in the Chern classes of X, there exists a codimension i
closed algebraic subset Bi ⊂ B, such that cI vanishes in CH(X \ f−1(Bi)).

This conjecture obviously implies Conjecture 1.4 in the case where L
is Lagrangian, since then Ln−i+1 is supported on f−1(Bi−1), for a closed
algebraic subset Bi−1 of B of dimension i− 1 and in general position.

Our first results in this paper concern the study of the relations (4. We
first prove

Theorem 1.2. Let f : X → B be a Lagrangian fibration of a projective
hyper-Kähler manifold, with Lagrangian line bundle L. Then for any pair of
integers i, j ≤ n, j ≥ i, we have

Ln−i+1c2j(X) = 0 in CH(X).(7)

This proves Conjecture 1.4 only for the Chern classes, not for monomials
in the Chern classes. We will establish Theorem 1.2 in Section 2. We will
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Lagrangian fibered hyper-Kähler manifolds 1397

discuss the case of c22L
n−1 in Section 5.1. As we will see, unlike (7), the

vanishing

Ln−1c22(X) = 0 in CH(X)(8)

predicted by Conjecture 1.4 does not follow from formal arguments involving
the Lagrangian fibration. We will establish this vanishing in Section 5.1 for
a specific class of Lagrangian fibered hyper-Kähler manifolds, namely the
deformations of the 10-dimensional O’Grady manifolds constructed in [28]
as compactifications of the intermediate Jacobian fibration associated with a
cubic fourfold (which we will call below a LSV-manifold).

Theorem 1.3. Let X → P5 be a LSV-manifold. Then c22L
4 = 0 in CH8(X).

In Section 5.2, we will show how the arguments of Riess in [37] allow us to
deduce from Theorem 1.2 the following result in direction of Conjecture 1.4.

Theorem 1.4. Let X be a projective hyper-Kähler manifold of dimension
2n. Assume the hyper-Kähler manifolds in the same deformation class as X
satisfy the SYZ conjecture. Then for any isotropic class l = c1(L) ∈ NS(X) =
CH1(X), and for any pair of integers i, j ≤ n, j ≥ i, one has

Ln+1−ic2j(X) = 0 in CH(X).

Section 3 of the paper is devoted to introducing and studying the notion
of Lagrangian morphism between bundles F, E, of respective ranks n and
2n on a variety Y , where E is equipped with an everywhere nondegenerate
skew-symmetric 2-form, with the following

Definition 1.6. A morphism φ : F → E of vector bundles as above over Y
is Lagrangian if

1. The generic rank of φ is equal to n.
2. At any point x ∈ Y , the image Imφx ⊂ Ex is isotropic for 〈 , 〉 (hence

it is Lagrangian at a point where the rank of φ is n).

The morphism given by the differential of a Lagrangian fibration map
(over the smooth locus of the base) is the motivating example, although it is
not general since its rank loci are not of the expected codimension, except for
the first (see Remark 3.4). Nevertheless, the following result applies to them
when there are no nonreduced fibers in codimension 1, (and we will explain
in Section 3.2 a variant if nonreduced fibers appear in codimension 1).
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1398 Claire Voisin

Theorem 1.5. Let φ : F → E be a Lagrangian morphism of vector bundles
on Y . Assume that φ is injective in codimension 1. Then

(i) The locus Yn−1 where φ has rank n − 1 is of codimension 2 (or is
empty).

(ii) Yn−1 is a local complete intersection.
(iii) There is an exact sequence

0 → F → E → F ∗ → G → 0,(9)

where G is a torsion sheaf supported on the locus Y≤n−1 where φ has rank
≤ n− 1, and G is a line bundle on Yn−1.

The geometry of this sheaf G seems very interesting, as it has a locally
free resolution of length 3.

In Section 4, we will study the loci Xk, resp. X≤k, where a Lagrangian
fibration morphism has rank k, resp. ≤ k. We will explain why, starting from
corank 2, they do not satisfy the general codimension estimates for general
Lagrangian morphisms of vector bundles established in Section 3. We will
also establish the following

Theorem 1.6. Let X be a complex manifold of dimension 2n equipped with
a symplectic holomorphic structure and let f : X → B be a holomorphic
Lagrangian fibration, with B smooth. Then for any irreducible component
Xk,i of Xk, with image Bk,i in B, the following hold

(1) The dimension dimBk,i is at most k.
(2) The relative dimension of Xk,i over Bk,i is at least k.
(3) If we have equality in (1) and (2), any connected component of the

general fiber Xk,i,b, b ∈ Bk,i, is a complex torus T of dimension k.
(4) Under the same assumptions as in (3), the locally closed complex sub-

manifold Xk is smooth along Xk,i,b and the restricted normal bundle
NXk/X|Xk,i,b

is on each connected component T a homogeneous vector bun-
dle on the complex torus T .

Furthermore, we prove in Theorem 4.1 that the dimension of the locus Xk

where f has rank k is expected to be at least 2k and the dimension of its image
Bk in B is expected to be at least k, unless some unexpected cohomological
vanishing (30), (which is stronger than (3)), holds. As a consequence of our
arguments, we get a positivity result for the Chern classes which provides
some evidence for the questions asked in [35], see also [36].

Theorem 1.7. (Cf. Theorem 4.1) Let f : X → B be a Lagrangian fibration
of a hyper-Kähler 2n-fold with Lagrangian line bundle L. Assume the base B
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Lagrangian fibered hyper-Kähler manifolds 1399

is smooth and the rank loci Xk satisfy dimXk = 2k, dim f(Xk) = k for all
k. Then the classes Ln−i(X)c2i(X) are Q-effective. In particular, for i = n,
one has χtop(X) ≥ 0, and furthermore χtop(X) > 0 if the locus X0 where the
rank of f is 0 is not empty.

The last result is easy and follows from Beauville’s argument in [5] if we
know that the group scheme G, which is constructed under some assumptions
in [2], [26] and [27], acts on X.

Remark 1.7. The question of the existence of the relative group scheme G
over the base B, acting on X over B (extending the relative Albanese variety
defined over the regular locus of f and acting by translation on the smooth
fibers) seems to be open when some fibers are reducible or nonreduced. One
of our motivations in this paper is to analyze the geometry of Lagrangian
fibrations without assuming it.

Remark 1.8. The numerical positivity of the class c2(X) is well-known and
follows from the Lübke (or Bogomolov-Miyaoka-Yau) inequality and existence
of Kähler-Einstein metrics.

In Section 4.1 we will establish Conjecture 1.5 assuming that the base of
the Lagrangian fibration is smooth and under a dimension assumption on the
rank strata Xk.

Theorem 1.8. Let f : X → B be a Lagrangian fibration and i be a positive
integer. Assume that B is smooth in codimension i− 1 and that for any k ≥
n− i+1, and any irreducible component Z of Xk, we have either dimZ ≤ 2k
or dim f(Z) ≥ k. Then for j ≥ i, c2j(X) vanishes in CH(X \ f−1(Bi)) for
some codimension i closed algebraic subset Bi of B.

2. Proof of Theorem 1.2

Proof of Theorem 1.2(i). Let f : X → B be a Lagrangian fibration, where
X is projective hyper-Kähler of dimension 2n. Let H be a very ample line
bundle on B, whose pull-back to X is thus a multiple μL. Let i ≤ n be a
positive integer. We will prove the vanishing

c2j(ΩX)Ln−i+1 = 0 in CH(X)

for j ≥ i by induction on i. By Bertini, a general set of n− i + 1 sections of
f∗H on X defines a smooth complete intersection Σ ⊂ X. Along Σ, we thus
have an injective morphism of vector bundles

φ : N∗
Σ/X → ΩX|Σ,
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1400 Claire Voisin

where N∗
Σ/X

∼= OΣ(−H)n−i+1.
As X is hyper-Kähler, the vector bundle ΩX carries an everywhere non-

degenerate skew-symmetric pairing 〈 , 〉. We observe that, as f is Lagrangian,
the image of φ is totally isotropic for 〈 , 〉. Indeed, it suffices to prove the
result at a generic point x of Σ, whose image b = f(x) does not belong to
SingB and where f is of maximal rank. Then the image of φ is contained in
f∗ΩB,b, which is Lagrangian in ΩX,x because f is a Lagrangian fibration.

The subbundle (Imφ)⊥ of ΩX|Σ is thus of rank n+i−1 and contains Imφ.
Furthermore, the quotient ΩX|Σ/(Imφ)⊥ is isomorphic to NΣ/X = N∗∗

Σ/X by
duality using 〈 , 〉. Let

E := (Imφ)⊥/Imφ.(10)

This is a vector bundle of rank 2i− 2 on Σ, hence we have

c2i(E) = 0 in CH(Σ).(11)

We now use the exact sequences

0 → N∗
Σ/X

φ→ (Imφ)⊥ → E → 0,
0 → (Imφ)⊥ → ΩX|Σ → NΣ/X → 0

explained above and the Whitney formula, which gives equalities in CH(Σ)

c(ΩX|Σ) = c(NΣ/X)c((Imφ)⊥)(12)
= c(NΣ/X)c(N∗

Σ/X)c(E).

We also get by inverting the total Chern classes in (12)

c(E) = c(ΩX|Σ)c(NΣ/X)−1c(N∗
Σ/X)−1 in CH(Σ).(13)

If we expand the equality c(ΩX|Σ) = c(NΣ/X)c(N∗
Σ/X)c(E) of (12), and take

into account the fact that c2i(E) = 0 and c(NΣ/X) = (1+μL|Σ)n−i+1, we find
that

c2i(ΩX|Σ) =
∑
l>0

αlL
2l
|Σc2i−2l(E)(14)

for some integers αl. Using (13), we can replace in (14) the terms c2i−2l(E)
by polynomials in L and ck(ΩX|Σ), which provides us with an equation

c2i(ΩX|Σ) =
∑
l>0

βlL
2l
|Σc2i−2l(ΩX|Σ)(15)
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Lagrangian fibered hyper-Kähler manifolds 1401

for some integers βl. Using the fact that the class of Σ in X is a nonzero
multiple of Ln−i+1 in CH(X), equation (15) gives a relation

c2i(ΩX)Ln−i+1 =
∑
l>0

γlL
2l+n−i+1c2i−2l(ΩX)(16)

for some rational numbers γl.
The proof of the vanishing c2i(ΩX)Ln−i+1 in CH(X) thus follows by in-

duction on i. The proof of the vanishing of c2j(ΩX)Ln−i+1 in CH(X) for j ≥ i
works in the same way.

3. Lagrangian morphisms of vector bundles

We study in this section general properties of Lagrangian morphisms of vec-
tor bundles introduced in Definition 1.6. We do not know if the notion has
been classically studied. Our motivation for introducing this notion and its
relevance for the subject of this paper come from the following

Example 3.1. Let X be hyper-Kähler and let f : X → B be a Lagrangian
fibration. Then denoting by B′ ⊂ B the smooth locus of B and X ′ ⊂ X its
inverse image in X, the morphism

φ := f∗ : f∗ΩB′ → ΩX′(17)

is Lagrangian on X ′.

Note that it is conjectured that, if B is normal (which we will always
assume) B is smooth (and if it is smooth, it is known to be isomorphic to Pn

by [22]). In any case, as B is normal, the codimension of B\B′ in B is at least
2, while the discriminant locus, over which φ is not everywhere of maximal
rank, has codimension 1 in B, so that the notion is already interesting over
B′.

To study the rank loci for a general Lagrangian morphism, we consider
the universal situation, where the basis is the set Mlag of matrices M of size
(2n, n) which are Lagrangian, in the sense that the morphism M : Cn → C2n

is Lagrangian.

Lemma 3.2. (i) The subvariety Mlag ⊂ M2n,n is an irreducible, local com-
plete intersection subvariety of codimension n(n − 1)/2, hence of dimension
2n2 − n(n−1)

2 .
(ii) Mlag is smooth at a matrix M which is of rank ≥ n− 1, but it is sin-

gular at a matrix which is of rank ≤ n−2. Along the set Mlag,n−2 of matrices
of rank n− 2, Mlag has an ordinary quadratic singularity of codimension 7.
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1402 Claire Voisin

(iii) The locus Mlag,n−i of isotropic matrices of rank n− i is smooth and
has codimension 3i2+i

2 in Mlag. In particular, the locus Mlag,n−1 is smooth of
codimension 2 in Mlag and is contained in its smooth locus, and Mlag,n−2 is
smooth of codimension 7 in Mlag and is contained in its singular locus.

Proof. (i) Denoting mk the k-th column vector of a matrix m, the equations
defining Mlag in M2n,n are

〈mk, ml〉 = 0(18)

for n ≥ l > k ≥ 1. This locus is thus defined by n(n − 1)/2 equations. In
order to prove that Mlag is a local complete intersection, it suffices to show
that its dimension is 2n2 − n(n−1)

2 , which is done by proving (iii) since Mlag
is stratified by the rank n− i of the matrix. The locus of rank n− i isotropic
matrices is homogeneous under the symplectic group Sp(2n) and of dimension

(n− i)(n + i) − (n− i)(n− i− 1)/2 + n(n− i) = 2n2 − n(n− 1)
2 − 3i2 + i

2 ,

since a rank n− i isotropic matrix of size n× 2n determines its image Wn−i

which is an isotropic vector subspace of C2n of dimension n− i, and a matrix
Cn → Wn−i of size n × n − i and rank n − i. This dimension count proves
the codimension statement in (iii). The irreducibility follows from the above
dimension count and the fact that the rank n stratum is homogeneous, hence
irreducible.

(ii) and (iii) Denote by mij the entries of a matrix m ∈ M2n,n, where
i ∈ {1, . . . , 2n} and j ∈ {1, . . . , n}, and by mi its i-th column vector. Let
M ∈ Mlag be any Lagrangian matrix. As the image of M is isotropic, we can
assume by choosing an adequate basis of C2n in which the intersection form
〈 , 〉 is the standard one, that for k ≤ rkM , the vector Mk is the basis vector
fk of C2n, and that it is 0 for k > rkM . For a matrix m ∈ M2n,n, we then
write mk = fk + hk for k ≤ rkM , so that the column vector hk(m) vanishes
at the point M . For k > rkM , we write mk =: hk and the vector hk(m)
vanishes at the point M . In the coordinates hkl on M2n,n centered at M , the
equations (18) are

hk+n,l − hl+n,k + 〈hk, hl〉 = 0 for k, l ≤ rkM(19)
hl,k+n + 〈hk, hl〉 = 0 for k ≤ rkM, l > rkM(20)

〈hk, hl〉 = 0 for k > rkM, l > rkM.(21)

where the terms 〈hk, hl〉 are quadratic in the coordinates hkl.
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When the rank of M is n, only the equations in the first line (19) appear.
When the rank of M is n − 1, only the equations in the first and second
lines (19), (20) appear. In both cases, the linear parts of these equations are
obviously independent, which proves the result in that case. When the rank
of M is n− 2, there is one quadratic equation in the third line (21), namely
〈hn−1, hn〉 = 0. (ii) and the last statement in (iii) follows by studying the
rank of this quadratic equation.

Remark 3.3. The variety Mlag carries a universal Lagrangian morphism,
but, as we just proved that it is singular, we cannot say that it is universal
for the study of Lagrangian morphisms of vector bundles on smooth bases Y .
However, as Mlag,≥n−1 is smooth, it is universal for the study of Lagrangian
morphisms of rank ≥ n− 1 of vector bundles of ranks n, 2n on smooth bases
Y .

Remark 3.4. Consider the case of Example 3.1. Assume for simplicity that
the singular fibers have normal crossing singularities. Then the locus Z where
φ = f∗ has corank 1 is the union of the singular loci of the fibers which
is expected to have codimension 2, by Lemma 3.2, so that singular fibers
are singular in codimension 1. If furthermore the normalization of the locus
Z is smooth of dimension 2n − 2, the locus where φ = f∗ has corank i
is the locus of i-branches singularities in the fibers, which is expected to
appear in codimension 2i (being the locus of intersection of i branches of Z).
So the geometric dimension count does not fit with the abstract dimension
count of Lemma 3.2. We will discuss from a different viewpoint this lack of
transversality in Section 4.

In the rest of this section, we will focus on the first rank stratum param-
eterizing matrices of rank n− 1, which is the only one to be studied in order
to establish the vanishing (8) because, by Sard’s theorem, the locus where a
Lagrangian map f : X → B has rank ≤ n− 2 maps to a locus of dimension
≤ n− 2 in the base B. Our first result is the following (cf. Theorem 1.5).

Proposition 3.5. Let φ : F → E be a Lagrangian morphism on a smooth
variety Y , with rankE = 2n. Assume that

(*) the codimension of the locus Y≤n−1 ⊂ Y where φ has rank ≤ n− 1 is
at least 2.

Then
(i) Yn−1 is a local codimension 2 complete intersection in Y .
(ii) There is an exact sequence on Y

0 → F
φ→ E

φ∗
→ F ∗ → G → 0,(22)
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1404 Claire Voisin

where G is supported on Y≤n−1 and is a line bundle on Yn−1 = Y≤n−1 \Y≤n−2.
(iii) The normal bundle of Yn−1 in Y is isomorphic to Hom(E2,G), where

E2 is a rank 2 vector bundle with trivial determinant on Yn−1.

In (22), φ∗ denotes the transpose of φ, which is defined using the self-
duality of E given by 〈 , 〉.
Proof. Statement (i) follows, by local trivialization of the vector bundles F
and E (equipped with its symplectic structure), from Lemma 3.2, (ii) and
(iii), which say that Mlag,n−1 is a smooth codimension 2 locally closed subva-
riety of Mlag and is contained in its smooth locus, hence is a local complete
intersection of codimension 2.

(ii) As the image of φ is isotropic, we have φ∗ ◦ φ = 0. Furthermore, at
any point where φ has rank n, we have Kerφ∗ = (Imφ)⊥ = Imφ hence the
sequence

0 → F
φ→ E

φ∗
→ F ∗(23)

is exact on the right and at the middle on the Zariski open set Y \ Y≤n−1
of Y . Under assumption (*), this implies that the sequence remains exact
at the middle everywhere on Y . Indeed, let α be a local section of Kerφ∗

defined on a Zariski open set U of Y . Then, on U \ (Y≤n−1 ∩U), α = φ(β) by
the exactness of the sequence (23) on U \ (Y≤n−1 ∩ U). As U is smooth and
Y≤n−1 ∩U has codimension ≥ 2 in U , β extends to a section β̃ of F on U and
α = φ(β̃). This proves the exactness of (22) in the second term. Finally, the
cokernel of φ∗ is a line bundle supported on Yn−1, because it is isomorphic to
the cokernel of the rank n− 1 morphism

E|Yn−1

φ∗
|Yn−1→ F ∗

|Yn−1

of vector bundles on Yn−1.
(iii) The vector bundle E2 on Yn−1 is defined as follows: the morphism

φ|Yn−1 has rank n − 1, hence its image in Im (φ|Yn−1) ⊂ E|Yn−1 is a vector
subbundle of rank n − 1, which is totally isotropic for 〈 , 〉. We define E2 as
(Imφ)⊥/Imφ = Kerφ∗/Imφ. The fact that E2 has trivial determinant follows
from the fact 〈 , 〉 induces a nondegenerate skew-symmetric pairing on E2,
which trivializes its determinant. It remains to prove that the normal bundle
of Yn−1 in Y is isomorphic to Hom(E2,G). We first do the case where Yn−1
is smooth of codimension 2. At any point y ∈ Yn−1, we have a well-defined
morphism

dφy : TY,y → Hom(Kerφ∗
y,Cokerφ∗

y)
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whose kernel is the tangent space to Yn−1 at y. It remains to see that the
image is contained in

Hom(Kerφ∗
y/Imφy,Cokerφ∗

y) = Hom(E2,y,Gy).

This follows immediately from the fact that φ∗◦φ = 0 on Y . As Hom(E2,y,Gy)
has dimension 2, we get from this construction a canonical isomorphism
NYn−1/Y

∼= Hom(E2,G) in the case where Yn−1 ⊂ Y is smooth of codimen-
sion 2. The general case follows by local trivializations using Lemma 3.2(ii),
(iii).

Corollary 3.6. Under the same assumptions as in Proposition 3.5, consider
the following combination C of total Chern classes

C = c(E)c(F )−1c(F ∗)−1.

Then, if the line bundle G is trivial on Yn−1, Ci vanishes in CH(Y \ Y≤n−2)
for i ≥ 3.

Proof. Indeed, by the exact sequence (22), one has C = s(G), where s denotes
the total Segre class. As G is trivial on Yn−1 by assumption, and Yn−1 is a
local complete intersection of codimension 2 by Proposition 3.5(i), the normal
bundle NYn−1/Y has trivial determinant by Proposition 3.5(i). Using the fact
that G ∼= OYn−1 , the corollary follows from Lemma 3.7 below applied to the
closed subvariety Yn−1 ⊂ Y \ Y≤n−2.

Lemma 3.7. Let Y be a smooth variety and Z ⊂ Y be a local complete
intersection of codimension 2. Assume that the determinant of NZ/Y is trivial.
Then the total Segre class s(OZ) ∈ CH(Y ) satisfies si = 0 for i ≥ 3.

Proof. The obvious case is when Z ⊂ Y is the zero locus of a section of a
rank 2 vector bundle M on Y with trivial determinant. Indeed, we have in
this case the two exact sequences

0 → IZ → OY → OZ → 0,(24)
0 → OY → M → IZ → 0.(25)

From (24), we deduce that s(OZ) = c(IZ) and from (25), we deduce that
c(IZ) = c(M). Finally ci(M) = 0 for i ≥ 3 since M has rank 2.

The general case follows from this case. There exists a rank 2 vector
bundle M on Y with the desired property if the natural morphism

Ext1(IZ ,OY ) → H0(Z, Ext1(IZ ,OY )) = H0(Z,OZ)(26)
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is surjective. Here the isomorphism Ext1(IZ ,OY ) ∼= OZ is given by the trivi-
ality of the determinant of NZ/Y . The surjectivity of the local to global map
(26) is satisfied if Y is affine, hence the lemma is proved in the affine case. If
Y is not affine, we can use the Jouanolou trick [25, Lemme 1.5] and replace
Y by an affine bundle AY over Y , which has isomorphic Chow groups since it
is fibered into affine spaces over Y and whose total space is affine. The result
then applies to AZ ⊂ AY .

3.1. The case of Lagrangian fibrations

We study in this section the Lagrangian morphism of vector bundles given in
Example 3.1, namely φ = f∗ for some Lagrangian fibration f : X → B, where
B is normal. More precisely, we will consider the restriction f : X ′ → B′,
where B′ is the smooth locus of B and X ′ := f−1(B′). As before, we denote
by X ′

i the locally closed algebraic subset of X ′ where f∗ has rank i. We will
give a second proof of Theorem 1.2 for i = 2, based on the following

Proposition 3.8. There exists a Zariski open set B′′ ⊂ B′ such that B \B′′

has codimension ≥ 2 in B′ (hence in B) and contains f(X ′
n−2), with the

following property. Let X ′′ := f−1(B′′), so φ has rank ≥ n − 1 everywhere
on X ′′ since X ′′ ∩X ′

n−2 = ∅. Then the line bundle G on X ′′
n−1 constructed in

Proposition 3.5(ii) is trivial along the fibers of f|X′′
n−1

: X ′′
n−1 → B′′.

Proof. Let τ : X̃ ′
n−1,red → X ′

n−1 be a desingularization of the locus X ′
n−1

equipped with its reduced structure and let

f̃n−1 := f ◦ τ : X̃ ′
n−1,red → B′.

Using Sard’s theorem, the locus Z ⊂ X̃ ′
n−1,red where f̃n−1 has rank < n − 1

satisfies dim f̃n−1(Z) ≤ n−2. Similarly, the closed algebraic subset f(X ′
≤n−2)

of B has dimension ≤ n − 2. Let B′
1 := B′ \ (f(X ′

≤n−2) ∪ f̃n−1(Z)). By
construction, f̃ has rank exactly n − 1 on X̃n−1,red ∩ f̃−1(B′

1). Its image is
thus locally a finite union of smooth hypersurfaces in B′

1 and, up to removing
a codimension 2 closed algebraic subset of B′

1 where this hypersurface has at
least two branches, we get the desired Zariski open set B′′. By construction,
the hypersurface Δ = f̃(X̃n−1,red ∩ f̃−1(B′′)) is a smooth hypersurface in
B′′ and f̃ : X̃n−1,red ∩ f̃−1(B′′) → Δ is everywhere of maximal rank n − 1.
Having constructed B′′, it remains to prove the statement about G. We now
observe that, for any point y in the fiber Fb of f̃ over b ∈ Δ, the image
of f∗ : TX,τ(y) → TB,b has dimension n − 1 and contains the image of f̃∗ :
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T
X̃n−1,red,y

, namely TΔ,b. Hence the two spaces are equal and we find that
the image of f∗ : TX,τ(y) → TB,b is constant, equal to TΔ,b along Fb. This
shows that G is trivial along the fiber Fb. This is a priori not enough to prove
the desired statement since we worked only with a desingularization of the
reduced structure of Xn−1 and not with Xn−1 itself. To complete the proof,
we use the following

Lemma 3.9. Let Z be projective scheme and L be a line bundle on Z. Assume
that

(i) L is generated by global sections.
(ii) The pull-back of L to a desingularization Z̃red of the underlying re-

duced subscheme Zred is trivial.
Then L is trivial.

Proof. As L is generated by global sections, it induces a morphism g : Z →
PN such that L is isomorphic to g∗OPN (1). As the pull-back of L to Z̃red
is trivial, this morphism has image supported on a finite number of points.
Any line bundle on a 0-dimensional scheme is trivial and this finishes the
proof.

Lemma 3.9 applies in our situation since the line bundle G on X ′
n−1 is by

definition a quotient of the vector bundle f∗Ω∗
B′ , hence is generated by global

sections along the fibers of f : X ′
n−1 → B′.

Combining the results of the previous sections, we get another proof of
Theorem 1.2(i) for i = 2.

Corollary 3.10. Let f : X → B be a Lagrangian fibration of a hyper-Kähler
manifold, with B normal. Let L be the Lagrangian line bundle. Assume that
there is no divisor in X made of non-reduced fibers. Then for i ≥ 2, the
Chern classes c2i(X) ∈ CH2i(X) are supported over a closed algebraic subset
of codimension ≥ 2 in B. In particular

Ln−1ci(X) = 0 in CH(X) for i ≥ 4.(27)

Proof. Let B′′ and X ′′ be as in Proposition 3.8. By our assumption on singular
fibers, the locus X ′′

n−1 = X ′′
≤n−1 ⊂ X ′′ where f : X ′′ → B′′ has rank n− 1 is

a closed algebraic subset of codimension 2 in X ′′. Proposition 3.8 tells that
the line bundle G on X ′′

n−1 is trivial on the fibers of fn−1 : X ′′
n−1 → B′′

n−1,
so it is trivial on a Zariski open set f−1

n−1(U) for some dense Zariski open set
U := B′′

n−1 \ W of B′′
n−1. Let B′′′ := B′′ \ W and X ′′′ := f−1(B′′′). Then

B′′′ ⊂ B is the complement of a closed algebraic subset of codimension ≥ 2.
Furthermore, by construction, the line bundle G is trivial on X ′′′

n−1. We can
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thus apply Corollary 3.6 to conclude that c2i(ΩX) vanishes in CH(X ′′′) for
i ≥ 2.

Remark 3.11. We will give a different proof of Corollary 3.10 in Section 4.1.
More precisely, Corollary 4.10 reproves Corollary 3.10 without the assumption
on non-reduced fibers.

3.2. Non-reduced fibers in codimension 1

We show in this section how to get rid of the assumption that there are no
non-reduced fibers in codimension 1. Our goal is to show how, in the case
of a Lagrangian fibration of a hyper-Kähler manifold of Picard number 2,
we can modify the morphism (17) over the complement of a closed algebraic
subset of codimension ≥ 2 of the base so as to get a Lagrangian morphism of
vector bundles having the property that its locus Xn−1 of jumping rank has
codimension at least 2, and to which the arguments of the previous section
apply. Note that the existence of a divisor in the base parameterizing non-
reduced fibers can occur, as in the following

Example 3.12. Consider an elliptic K3 surface f : S → P1 with elliptic
general fiber Et, t ∈ P1. Then for any n ≥ 2, we have a composed morphism

fn : S[n] → S(n) → (P1)(n) = Pn,(28)

which gives a Lagrangian fibration with non-reduced fibers over the big di-
agonal of (P1)(n). More precisely, for n = 2, the fiber of f2 over t + t′ ∈
(P1)(2), t �= t′, is isomorphic to Et × Et′, and for t = t′, the fiber is as a
set the union of E(2)

t and another component which is also a P1-bundle over
Et, namely the set of length 2 subschemes of S supported at one point of Et.
The first component is not reduced since near a general point (x, y), x �= y of
E

(2)
t , the morphism f2 locally factors through the morphism P1×P1 → (P1)(2)

which ramifies over the diagonal. The second component is reduced because
the morphism f2 : S[2] → (P1)(2) is of rank 2 at a general point of the divisor
parameterizing nonreduced schemes of length 2. Indeed, considering a general
curve C ⊂ S, the morphism f2|C(2) : C(2) → (P1)(2) is a local analytic isomor-
phism at a point 2c ∈ C(2), once f|C : C → P1 is a local analytic isomorphism
at c.

In this example, there are non-reduced fibers in codimension 1 which are
not multiple fibers. This however cannot occur when X has Picard number 2
by the following lemma.

For the author's personal use only.

For the author's personal use only.



Lagrangian fibered hyper-Kähler manifolds 1409

Lemma 3.13. Let f : X → B be a Lagrangian fibration with X projective of
Picard number 2. Then the general non-reduced fibers appearing in codimen-
sion 1 are multiple fibers.

Proof. As B is normal, hence smooth in codimension 1, the general non-
reduced fibers appearing in codimension 1 appear over the smooth locus B′,
over which the Lagrangian fibration is flat by Matsushita’s theorem [31]. As-
sume that over a generic point t ∈ B1 ⊂ B′ of a divisor in B′, the fiber Xt

is not reduced but not a multiple fiber. This implies that it has several irre-
ducible components Xt,l appearing with different multiplicities l. The inverse
image D := f−1(B1) thus has several irreducible components Dk, where Dk

is defined as the union of components of the general fiber of f over B1 with
multiplicity k. As the fiber Xt is a local complete intersection, its irreducible
components meet in codimension 1 and as it is connected, it follows that Dk is
effective and non-trivial when restricted to a component Xt,l for some l �= k.
As the divisor Dk is trivial on the general fiber Xt′ , t

′ ∈ B, we conclude that
ρ(X) ≥ 3, since Pic(X) already contains the Lagrangian line bundle, which
is trivial on Xt,l and Xt′ , and an ample divisor, which is nontrivial on both
Xt,l and Xt′ . This contradiction concludes the proof.

Recall that, by Matsushita [30], the Lagrangian fibrations deform over
a codimension 1 locally closed analytic subspace of the Kuranishi family of
X, so that, for the general projective deformation (Xt, ft) of (X, f), Xt has
Picard number 2 and Lemma 3.13 applies. We now consider the case of a
Lagrangian fibration f : X → B, such that the non-reduced fibers appearing
in codimension 1, that is, over a divisor B1 of B, are multiple fibers. We work
again over the Zariski open set B′′ of B′ where the various components of
the divisor B1 do not intersect and over which f has rank ≥ n − 1. (This is
the complement of a codimension 2 subset in B.) We now make the following
construction: As f : X ′′ → B′′ is of rank n − 1 over B′′1 := B1 ∩ B′′, the
morphism φ : f∗ΩB′′ → ΩX′′ can be modified into a morphism

φsat : (f∗ΩB′′)sat → ΩX′′ ,(29)

which is now generically of rank n along D, where the vector bundle (f∗ΩB′′)sat
can be defined over B′′ as the saturation of f∗ΩB′′ in ΩX and has the fol-
lowing explicit description: let D := f−1(B1) (equipped with its reduced
structure). By our assumption on B′′, at any point of X ′′ ∩D, the kernel of
φ : f∗ΩB′′ → ΩX′′ over t ∈ B′′1 equals dgt where gt is a defining equation of B1

near t. Indeed, if the fibers over the component of B1 passing through t have
multiplicity k, then we have locally in a neighborhood of f−1(t), f∗gt = hk

t for
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a function ht on X defining D, hence f∗dgt = khk−1
t dht. The vector bundle

(f∗ΩB′′)sat is then locally generated by f∗ΩB′′ and dht, that is, by f∗ΩB′′ and
f∗dgt
hk−1
t

.
Using this construction and the fact that the Chern classes of (f∗ΩB′′)sat

are pulled-back from B′′ with rational coefficients (as is the class of the di-
visor D), all the vanishing results for Chern classes obtained in the previous
section and relying on Proposition 3.5 on Lagrangian morphisms of vector
bundles with degeneracy locus of codimension 2, in particular Corollary 3.10,
can be proved without assuming the non-existence of non-reduced fibers in
codimension 1. When the Picard number of X is > 2, we first have to deform
X to a general Xt with Picard number 2, prove the result for Xt using the
construction above, and specialize it to X (see [37]). We do not give the full
argument here as we will discuss another approach in the next section.

4. Higher rank loci for Lagrangian fibrations

We study in this section the stratification by the rank of a Lagrangian fi-
bration with smooth base. Let f : X → B be a Lagrangian fibration of a
hyper-Kähler manifold X with dimX = 2n. We assume that B is smooth (or
restrict to its smooth locus B′). For any integer k, we consider the Zariski
locally closed subset Xk ⊂ X of points where f has rank k.

Lemma 4.1. The relative dimension of Xk over B is at least k.

Proof. Let x ∈ Xk and let b = f(x) ∈ B. Let f1, . . . , fk be k algebraic or
holomorphic functions on B, defined near b, such that the differentials f∗dfi
are independent near x. Then the Hamiltonian vector fields χi defined on X

near x by the formula

χi�σX = f∗dfi

are independent near x and commute, since the fibration f is Lagrangian.
They thus generate a holomorphic foliation of an Euclidean neighborhood V

of x in X and a free action U × V → V ′ on V ⊂ V ′ of a germ U ⊂ Ck of
commutative group of automorphisms. As f is a Lagrangian fibration, the
considered automorphisms ψ ∈ U preserve f , namely f ◦ψ = f on V for any
ψ ∈ U . It follows that the locus Xk ∩ V is preserved by the action of U (that
is, mapped to Xk ∩ V ′) and for any x′ ∈ Xk ∩ V , the orbit U · x′ is contained
in Xk ∩ V ′. As these orbits are contained in the fibers of f|V , the lemma is
proved.
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Remark 4.2. This vertical group action is also used in [23]. Thanks to the
fact that the action is vertical and the map f is proper, the germ of commu-
tative group appearing above globalizes to a holomorphic action of a commu-
tative group isomorphic to Ck on a neighborhood of the fiber Xt in X passing
through x. This is obtained by observing that, by properness, the flow gen-
erated by Hamiltonian vector fields is defined for all time. This action is free
assuming that the differentials f∗dfi remain independent everywhere along
the fiber. This will be the case in Section 5.1, where we will consider the case
k = n− 1.

We also note the following basic

Lemma 4.3. Let f : Y → S be an algebraic or analytic morphism, where both
Y and S are smooth. With the same notation Yk as above, for any irreducible
component Z of Yk, one has dim f(Z) ≤ k.

Proof. Indeed, the generic rank of f|Z is not greater than k, hence f(Z) has
dimension ≤ k by Sard’s theorem.

Proof of Theorem 1.6. Statement (1) is Lemma 4.3 and statement (2) is
Lemma 4.1. In order to prove (3) and (4), we need to globalize the argu-
ment used in the proof of Lemma 4.1. Let Z be an irreducible component of
Xk which has dimension 2k and whose image f(Z) in B has dimension k.
We observe that, by applying again Lemma 4.3 to X≤k−1, for a general point
b ∈ f(Z), the fiber Zb := (f|Z)−1(b) is contained in Xk, that is, the rank of f
along Zb is everywhere k. There is thus a morphism

f̃Z : Z → Grass(k, f∗TB),
z �→ Im f∗,z ⊂ TB,f(z),

which is well-defined in a neighborhood of Zb. This morphism is generically
constant along Zb, since at any point of Z ∩Xk where the rank of f|Z is also
k, we have

Im f|Z,∗ = Im f∗

and the space Im f|Z,∗ has to be equal to Tf(Z),b at a general point of f(Z). It
follows that the morphism f̃Z is actually constant along Zb. We now argue as
in the proof of Lemma 4.1, in a global setting. Let b = f(z) and let f1, . . . , fk
be holomorphic functions defined on B near b whose restrictions to f(Z)
have independent differentials at b. By the above argument, the pulled-back
functions gi = fi ◦ f on X have independent differentials along Zb, hence
in a neighborhood of Zb in X. Furthermore, their Poisson brackets vanish
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since f is Lagrangian. It follows that the corresponding Hamiltonian vector
fields χi generate an integrable foliation, whose underlying vector bundle is
trivial along Zb, and which is vertical, in the sense that it is annihilated by
f∗, or equivalently that the diffeomorphisms ψi,t, t ∈ C, generated by the
Hamiltonian vector fields χi satisfy f ◦ψi,t = f . Recall from Remark 4.2 that
these diffeomorphisms ψi,t are in fact defined in a neighborhood of Xb in X.
As we have f ◦ ψi,t = f , ψi,t preserves Xk, hence it preserves its irreducible
components and thus acts on Z and on the fiber Zb. As the group U ∼= Ck

generated by the ψt,i’s is of dimension k and acts freely on X, and by assump-
tion dimZb = k, we conclude that the orbits of this germ of groups are open
in Zb. In particular Zb is smooth and its tangent bundle is trivial, isomorphic
to the restriction of F to Zb, and generated by commuting vector fields. Thus
Zb is a disjoint union of compact complex tori Ti, and the group action above
of U on Zb factors through the action of Ti on itself by translations (thus U
identifies to the universal cover of Ti). As we already observed, U not only
acts on Ti by translations, but also on a neighborhood of Ti in Xk and X. We
thus conclude that U acts on the restricted normal bundle NXk/X|Ti

, making
it homogeneous.

Coming back to Lemma 4.3, note that we can easily find examples where
f(Z) has dimension < k. For example, consider the case where the morphism
f is the blow-up Y := BlM (S) → S of a smooth subvariety M ⊂ S of
codimension 2. Then the exceptional divisor E is the locus where f is not of
maximal rank. The rank of f along E is m − 1, where m = dimS = dim Y ,
and the rank of f|E is m− 2. Unlike the Lagrangian fibration maps when the
basis is smooth, this example is not flat, but there are also flat examples of
this phenomenon: consider a 3-dimensional singular affine quadric Q ⊂ A4 of
equation x2 + y2 + z2 + t2 = 0 and let τ : Y → Q be a small resolution of
the singular point 0 ∈ Q. Let f = l ◦ τ : Y → A2, where l : Q → A2 is the
linear projection (x, y, z, t) �→ (x, y). Then the fibers of f over (x, y) �= 0 are
conics z2 + t2 = a and the fiber of f over 0 is the union of a conic z2 + t2 = 0
and the exceptional curve E. They are thus of dimension 1, so f is flat. The
locus where f has rank 1 is the union of two components: the first component
is the set of singular points of the conics z2 + t2 = −x2 − y2 over the set of
points (x, y) such that x2 +y2 = 0, and the restriction of f to this component
has generic rank 1. The second component is the exceptional curve E and the
restriction of f to E has generic rank 0 since it is contracted. Finally, the rank
of f is generically 1 along E, because if instead of Y we consider the blow-up
of Y along E, that is the blow-up τ ′ : Q̃ → Q of Q at its singular point, with
exceptional divisor F , then the rank of l ◦ τ ′ is generically 1 along F and the
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same follows easily for Y . In the case of a Lagrangian fibration f : X → B
with smooth B, we do not know if an example as above is possible:

Question 4.4. Let f : X → B be a Lagrangian fibration with X hyper-Kähler
and B smooth (or the restriction of a Lagrangian fibration over the smooth
locus B′ of its base). For any integer k ≥ 0 and any component Z of the set
Xk ⊂ X of points where f has rank k, is it true that f(Z) has dimension k
(or equivalently, that the generic rank of f|Z is k)?

Note that an affirmative answer to Question 4.4 would imply, using
Lemma 4.1, that the dimension of Xk (assuming it is non-empty) is greater
than or equal to 2k, which is different from the generic codimension estimate
of Lemma 3.2.

The stratification of X by the rank, that is, by the Xk, induces a collection
of subsets f(Xk) =: Bk ⊂ B. It would be interesting to compare these subsets
to another natural stratification on B related to the topological degeneration
of the fibers of f . Assume that the fibers of f are reduced and irreducible.
We will say that the fiber Xb has abelian rank k if the Albanese variety of
any desingularization X̃b of Xb has dimension k. The following comparison
statement can be found in a slightly different form in [2, Proposition 5.17].

Proposition 4.5. Assume that the base B is smooth, the fibers of f are
reduced and irreducible so that, by [2], there exists a group scheme G over B
with Lie algebra isomorphic to ΩB which acts on X over B. If a fiber Xb,
b ∈ B, has abelian rank k, then b does not belong to f(Xl) for l < k. In other
words, the rank of the differential f∗ : TX,x → TB,b is ≥ k for any x ∈ Xb.

Proof. (Cf. [2]) The Lie algebra of G is isomorphic to ΩB and the infinitesimal
action of G on X is given at any x ∈ X by the pull-back map f∗ : f∗ΩB →
ΩX

∼= TX followed by evaluation at x. The set Xl of points x ∈ X where the
evaluation map has rank l is thus also the locus where the isotropy subgroup
Ix of x has dimension n − l. By our assumption on the singularities of the
fibers, any fiber Xt is birational to the corresponding fiber Gt, which is a
commutative algebraic group. By [9, Theorem 2], the group Gb, b = f(x), is
an extension of an abelian variety Ab by an affine group Nb, so any smooth
projective model of Gb is a rationally connected fibration over Ab, hence Ab

is the Albanese variety of any desingularization of Gb. We now observe that,
as the fiber Xb is irreducible and reduced, there are points y ∈ Xb such that
the isotropy group of y is trivial. It follows first of all that the fiber Xb is
birational to the corresponding fiber Gb. Secondly, considering the action of
Ix on a general point y ∈ Xb close to x, we get that the isotropy group Ix is
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affine. It is thus contained in Nb, hence we get, for x ∈ Xl,

dim Ix = n− l ≤ dimNb = n− dimAb,

which proves the proposition.

We will prove in the next section the following result, which relates Ques-
tion 4.4 to unexpected vanishing for Chern classes.

Theorem 4.1. Assume that B is smooth and that for some integer k ≥ 0,
and for any l > n − k, either Xl is empty or, for any irreducible component
W of Xl, one has dimW = 2l and dim f(W ) = l. Then

(i) If dim f(Xn−k) < n− k, one has

c2k(X)αn−k = 0 in H∗(X,C)(30)

for any class α ∈ H2(X,C) such that q(α) = 0.
(ii) If Xn−k is not empty and any component W of Xn−k satisfies

dimW = 2n− 2k, dim f(W ) = n− k,

the class

c2k(X)Ln−k ∈ CH(X)(31)

is Q-effective and nonzero.
(iii) Under the same assumptions as in (ii) for k = n, 2n = dimX, one

has χtop(X) ≥ 0 and χtop(X) = 0 if and only if the locus X0 where f has
rank 0 is empty.

Remark 4.6. The vanishing (30) is a topological property which is different
from the cohomological vanishing relations (3) described in the introduction
and is not expected to hold in general. In fact, using Theorem 4.1(ii), one
sees that it does not hold for the known hyper-Kähler manifolds.

Remark 4.7. Assume there is a commutative group scheme G over B, with
Lie algebra ΩB, acting on X. Then according to [2, Proposition 5.17], the
abelian part of Gb has for dimension the infimum of the ranks of fx∗ for
x ∈ Xb. In particular the abelian part is nontrivial away from f(X0) and is
nontrivial everywhere if X0 is empty. This reproves Theorem 4.1(iii) in this
case by the classical argument (see [5]).
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We next discuss a refinement of the condition appearing in Question 4.4.
We denote by π : Gk → B the relative Grassmannian G(k, TB) of k-dimensional
subspaces of TB. Consider the following condition for given k.

(∗k) For any irreducible component W of the set Xk ⊂ X, the rational
map

ψW : W ��� Gk,(32)
x �→ Im f∗,x ⊂ TB,f(x),

has image of dimension ≤ k.

Lemma 4.8. Condition (∗k) holds for a given component W of Xk if either
dimW ≤ 2k, or dim f(W ) = k. In particular, it holds if Question 4.4 has an
affirmative answer for W .

Proof. Let w ∈ W . Recall from the proof of Lemma 4.1 that there is a free
local action of an analytic germ of commutative group of dimension k on a
neighborhood of w in X, which is vertical, that is, preserves f . This group
action preserves W and the map ψW is constant along the orbits of this group
acting on W , hence if dimW ≤ 2k, we have dimψW (W ) ≤ k.

In the other case, where the generic rank of f|W is k, the image of f∗ :
TX,w → TB,f(w), for a general point w ∈ W , is equal to the image of (f|W )∗ :
TW,w → TB,f(w), that is, to the tangent space of f(W ) at the point f(w).
In this case, ψW is constant along the fibers of f|W , hence dimψW (W ) =
dim f(W ) = k.

We conclude this section with a result that will be used in the proof of
Theorem 1.8. We denote by

XGk
= X ×B Gk,

fG : XGk
→ Gk, πX : XGk

→ X

the fibered product of X and Gk and its two projections.

Lemma 4.9. Let i ≤ n be an integer. Assume Condition (∗k) of (32) holds
for any k ≥ n− i+ 1. Then the locus Z ⊂ XGi−1 of pairs (x, V ), x ∈ X, V ⊂
TB,f(x), dimV = i− 1, such that f∗ : V ⊥ → ΩX,x is not injective, is mapped
by fG to a closed algebraic subset of codimension ≥ i in Gi−1.

Proof. This is proved by a dimension count. The locus Z introduced above is
the union over all k and irreducible components W of Xk of the loci ZW := Z∩
π−1
X (W ). As dim f(W ) ≤ k for W ⊂ Xk, the loci π−1

X (W ) are of codimension
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1416 Claire Voisin

≥ i for n−k ≥ i, so we can assume that k ≥ n−i+1. At a point x ∈ π−1
X (W ),

the map f∗
x : ΩB,f(x) → ΩX,x has rank exactly k, and for a n−i+1-dimensional

subspace V ⊥ ⊂ ΩB,f(x), the condition that f∗
x : V ⊥ → ΩX,x is not injective

says that V ⊥∩Ker f∗
x �= {0}. This imposes k−n+i Schubert conditions on V ,

that are determined by the point Im f∗,x ∈ Gk. It follows that the codimension
of the image of ZW in Gi−1 is at least

k − n + i + codim f(W ) − dimψW (Wb),

where b ∈ f(W ) is a general point and Wb := f−1(b) ∩W . As

codim f(W ) = n− dim f(W ), dim ImψW = dim f(W ) + dimψW (Wb),

we conclude that the codimension of the image of ZW in Gi−1 is at least
i + k − dim (ImψW ). By assumption, dim (ImψW ) ≤ k for all k ≥ n − i + 1
and W , so we get that the codimension of the image of ZW in Gi−1 is at least
i for all W .

4.1. Support for Chern classes of Lagrangian fibered varieties

We prove in this section the following result.

Theorem 4.2. Let f : X → B be a Lagrangian fibration of a projective
hyper-Kähler manifold and i be a positive integer. Assume that B is smooth
in codimension i− 1 and that the condition (∗k) of the previous section (see
(32)) is satisfied for k ≥ n − i + 1. Then for any j ≥ i, c2j(X) vanishes in
CH(X \ f−1(Bi)) for some codimension i closed algebraic subset Bi of B.

We first establish some consequences.

Corollary 4.10. Let f : X → B be a Lagrangian fibration of a projective
hyper-Kähler manifold, where we assume B normal. Then c2(X) vanishes in
CH(X \ f−1(B1)) and c2j(X) vanishes in CH(X \ f−1(B2)) for any j ≥ 2,
where Bi ⊂ B, i = 1, 2, is a closed algebraic subset of codimension ≥ i.

Proof. As B is normal, its singular locus has codimension ≥ 2, so in both
cases, in order to apply Theorem 4.2, we only have to study the condition
(∗k) for k ≥ n − i + 1 for i = 1, 2. The assumption (∗k) obviously holds
for k = n, implying the first statement. For the second statement, where we
have i = 2, we only need to study the sets Xk for k = n − 1. Let W be an
irreducible component of Xn−1. Then the image of W under f has dimension
≤ n− 1, since f|Wreg has rank ≤ n− 1 everywhere. If dim f(W ) = n− 1, then
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(∗n−1) is satisfied by W by Lemma 4.8. There might be other components
W for which dim f(W ) ≤ n− 2, but we can restrict the Lagrangian fibration
over the open set B\∪W⊂Xn−1,dim f(W )≤n−2f(W ) and apply Theorem 4.2 over
this open set.

Proof of Theorem 1.8. By Lemma 4.8, the assumptions of Theorem 1.8 imply
that Condition (∗k) holds for k ≥ n − i + 1. Thus Theorem 4.2 implies
Theorem 1.8.

For the proof of Theorem 4.2, we will use the following general lemma
about base change invariance of vanishing of Chern classes.

Lemma 4.11. Let f : Y → M be a proper morphism with M smooth and let
π : N → M be a smooth proper morphism. Denote by YN the fibered product
Y ×M N and by

fN : YN → N, πY : YN → Y

the two projections. Let E be a vector bundle on Y and let l be a positive
integer. Then the Chern class cl(E) vanishes in CHl(Y \ f−1(Z)) for some
codimension k closed algebraic subset Z of M if and only if the Chern class
cl(π∗

YE) vanishes in CHl(YN \ f−1
N (Z ′)) for some codimension k closed alge-

braic subset Z ′ of N .

Proof. If cl(E) vanishes in CHl(Y \ f−1(Z)) for some codimension k closed
algebraic subset Z of M , cl(π∗

YE) vanishes in CHl(YN \ π−1
Y (f−1(Z))), and,

as f ◦ πY = π ◦ fN , we have π−1
Y (f−1(Z)) = f−1

N (Z ′), where Z ′ = π−1(Z) is
of codimension k by smoothness of π.

Conversely, let H be a very ample line bundle on N and let d be the
relative dimension of π. Assume that the Chern class cl(π∗

YE) vanishes in
CHl(YN \f−1

N (Z ′)) for some codimension k closed algebraic subset of N . Then
considering the complete intersection of d general members of |H|, we get a
smooth closed algebraic subset N1 ⊂ N , that maps in a generically finite way
to M via π1 := π|N1 , and a codimension k closed algebraic subset Z ′

1 ⊂ N1,
whose image Z := π1(Z ′

1) ⊂ M has codimension k. As cl(π∗
YE) vanishes in

CHl(YN \ f−1
N (Z ′)), we get that cl(π∗

1,YE) vanishes in CHl(YN1 \ f−1
N1

(Z ′
1)),

where YN1 := Y ×M N1, with projections π1,Y : YN1 → Y , fN1 : YN1 → N1.
As Z = π1(Z ′

1), we find that π1,Y ∗(cl(π∗
1,YE)) vanishes on Y \ f−1(Z) and

this concludes the proof since π1,Y ∗(cl(π∗
1,YE)) = (deg π1)cl(E).

Let now f : X → B be a Lagrangian fibration, where X is projective
hyper-Kähler of dimension 2n. Let B′ := B \ Bsing and X ′ := f−1(B′). The
variety Gi−1 introduced in the previous section is smooth of dimension n +
(n− i+1)(i−1) and fibered into Grassmannians over B′ via a smooth proper
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1418 Claire Voisin

morphism that we denote by π. It carries a tautological subbundle S of rank
n− i + 1 of the bundle π∗ΩB′ , with fiber V ⊥ ⊂ ΩB′,b at a point

(b, [V ]), V ⊂ TB′,b, dimV = i− 1

of Gi−1. We denote as before by fG : X ′
G → Gi−1, πX : X ′

G → X ′ the two
projections. We have on X ′ the morphism of vector bundles

φ := f∗ : f∗ΩB′ → ΩX′

and thus, by pull-back to X ′
G and restriction to S, we get a morphism

φS : S → π∗
XΩX′ .(33)

We now conclude the proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.9, assumption (∗k) for k ≥ n − i + 1
implies that the morphism φS is injective on XG \ f−1

G (Zi) for some closed
algebraic subset Zi of Gi−1 of codimension ≥ i. As X is hyper-Kähler, the
vector bundle ΩX carries an everywhere nondegenerate skew-symmetric pair-
ing 〈 , 〉. As f is Lagrangian, the morphism f∗ : f∗ΩB′ → ΩX′ is Lagrangian
and it follows that the image of the morphism φS , which by definition of Zi is
a subbundle of rank n− i+1 on X ′

G \f−1
G (Zi), is totally isotropic at any point

of X ′
G \ f−1

G (Zi). The subbundle (ImφS)⊥ of π∗
XΩX′ is thus of rank n + i− 1

on X ′
G \f−1

G (Zi) and contains ImφS . Furthermore, the quotient ΩX/(ImφS)⊥
is isomorphic to f∗

GS∗ via 〈 , 〉. Let

E := (ImφS)⊥/ImφS .

This is a vector bundle of rank 2i− 2 on X ′
G \ f−1

G (Zi), hence we have

c2i(E) = 0 in CH(X ′
G \ f−1

G (Zi)).(34)

We use the exact sequences

0 → f∗
GS → (ImφS)⊥ → E → 0,

0 → (ImφS)⊥ → π∗
XΩX′ → f∗

GS∗ → 0

explained above and the Whitney formula, which gives equalities in CH(X ′
G \

f−1
G (Zi))

π∗
Xc(ΩX′) = f∗

Gc(S∗)c((ImφS)⊥)(35)
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Lagrangian fibered hyper-Kähler manifolds 1419

= f∗
Gc(S∗)f∗

Gc(S)c(E).

We also get by inverting the total Chern classes in (35)

c(E) = π∗
Xc(ΩX′)f∗

Gc(S∗)−1f∗
Gc(S)−1 in CH(X0

G \ f−1
G (Z)).(36)

We now conclude the proof by induction on i. The induction assumption tells
us that for j < i, the Chern class c2j(ΩX) vanishes in CH(X ′ \ f−1(Bj)) for
some codimension j closed algebraic subset of B′. By pull-back, the Chern
class c2j(π∗

XΩX′) vanishes in CH(X ′
G \f−1

G (Zj)) for some codimension j closed
algebraic subset Zj of Gn−i+1, for j < i. It follows from (36) that, for j < i, the
Chern class c2j(E) vanishes in CH(X ′

G \ (f−1
G (Zi ∪Z ′

j)) for some codimension
j closed algebraic subset Z ′

j of Gi−1 (note that E , being self-dual, has trivial
odd Chern classes). It follows that any class of the form f∗

Gα · c2j(E), where
α ∈ CH2i−2j(Gi−1), vanishes in CH2i(X ′

G\(f−1
G (Zi∪Z ′

i)) for some codimension
i closed algebraic subset Z ′

i of Gi−1. By (34), this is also true for c2i(E). Using
(12) and expanding the product in degree 2i, we conclude that c2i(π∗

XΩX)
vanishes in CH(X ′

G \ f−1
G (Zi ∪ Z ′

i))), where Zi and Z ′
i have codimension ≥ i

in Gi−1. By Lemma 4.11, we conclude that c2i(ΩX′) vanishes in CH(X ′ \
f−1(Bi)) for some codimension i closed algebraic subset of B′. As B \ B′

has codimension ≥ i in B by assumption, c2i(ΩX) also vanishes in CH(X \
f−1(Bi)) for some codimension i closed algebraic subset of B.

4.2. Proof of Theorem 4.1

Proof of Theorem 4.1. (i) First of all, we observe that the mapping class
group acts on the cohomology algebra H∗(X,Q) preserving the Chern classes
ci(X) ∈ H2i(X,Q). Indeed, the Chern classes of a hyper-Kähler manifold are
in fact determined by its Pontryagin classes, that are topological invariants.
Furthermore, it is known by results of Verbitsky that this action restricted
to H2(X,Z) is that of a finite index subgroup of O(q). The orbit under this
action of any nonzero class l with q(l) = 0 is Zariski dense in the quadric
{q = 0} ⊂ H2(X,C). It thus suffices to show that, under the assumptions of
Theorem 4.1(i), we have

c2k(X)ln−k = 0 in H2∗(X,Q),(37)

since it will imply the same result with l replaced by any α ∈ H2(X,C) with
q(α) = 0. A fortiori, it suffices to show that

c2k(X)Ln−k = 0 in CH∗(X).(38)
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1420 Claire Voisin

We choose a general complete intersection Bn−k ⊂ B of n − k ample
hypersurfaces, whose inverse images in X belong to |dL| for some d, and
denote by Xn−k ⊂ X its inverse image in X, so that the class of Xn−k

in CH(X) is a nonzero multiple of Ln−k. As Xn−k is a smooth complete
intersection, we have the cotangent bundle exact sequence

0 → OXn−k(−dL)n−k → ΩX|Xn−k → ΩXn−k → 0.(39)

As we already used several times, the image of the map O(−dL)n−k →
ΩX|Xn−k is totally isotropic and there is thus a dual surjective morphism

ΩXn−k → OXn−k(dL)n−k → 0(40)

whose kernel is a rank 2k vector bundle on Xn−k, which will be denoted by
E . Using (39) and (40), we get formulas in CH(Xn−k)

c2k(ΩX|Xn−k) = c2k(E) +
∑
l>0

αlL
2lc2k−2l(E),(41)

c2i(E) = c2i(ΩX|Xn−k) +
∑
l>0

βlL
2lc2i−2l(ΩX|Xn−k),

As we know by Theorem 1.2 that Ln−k+2lc2k−2l(X) = 0 for l > 0, we
deduce from (41) that the desired vanishing (38) is a consequence of the
vanishing

c2k(E) = 0 in CH(Xn−k)(42)

that we prove now, using the assumptions of Theorem 4.1(i). We denote by
f ′ : Xn−k → Bn−k the restriction of f . Using the fact that f is a Lagrangian
fibration, the differential

f ′∗ : f ′∗ΩBn−k → ΩXn−k

induces a morphism

φ′ : f ′∗ΩBn−k → E .(43)

Note that E has an induced nondegenerate skew-symmetric form and that φ′

is a Lagrangian morphism of vector bundles in the sense of Definition 1.6. Let

π : P := P(ΩBn−k) → Bn−k, Xn−k
P := P ×Bn−k Xn−k
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and denote by
f ′
P : Xn−k

P → P, πX : Xn−k
P → X

the two projections. Let S ⊂ π∗ΩBn−k be the rank 1 tautological subbundle.
The morphism φ′ induces a morphism φ′′ : f ′

P
∗S → π∗

XE , or equivalently a
section

α ∈ H0(XP , f
′
P
∗S−1 ⊗ π∗

XE).(44)

The section α is not transverse and we are going to describe its vanishing
locus Z(α) below. After applying an excess formula à la Fulton [18, Section
6.3], the corrected vanishing locus will have class

Z(α)vir = c2k(f ′
P
∗S−1 ⊗ π∗

XE)(45)
=

∑
0≤2i≤2k

f ′
P
∗(c1(S−1)2i)π∗

Xc2k−2i(E).

Recall that πX : XP → X is the projectivized bundle P(f ′∗ΩBn−k), polarized
by f ′

P
∗S−1. We note here for future use that, as we assumed that B is smooth,

it is isomorphic to Pn by [22], hence we can assume that Bn−k is a Pk, and
S−1 is very ample on P , with space of global sections H0(Pk, TPk). We get
from (45)

πX∗(Z(α)virc1(f ′
P
∗S−1)k−1) = c2k(E) +

∑
i>0

f ′∗s2i(ΩBn−k)c2k−2i(E)(46)

where the s2i’s denote the Segre classes. One proves as in Theorem 1.2 that

f ′∗s2i(ΩBn−k)c2k−2i(E) = 0 in CH2k(Xn−k)

for i > 0, so we get in fact the equality

πX∗(Z(α)virf
′
P
∗(c1(S−1)k−1)) = c2k(E) in CH2k(Xn−k).(47)

We now describe the locus Z(α). We observe that Xn−k is stratified by strata

Xn−k
l := Xn−k ∩Xn−k+l

where the rank of f∗ is n− k+ l, or equivalently the rank of f ′
∗ is l. For l = 0,

as we assumed that dim f(Xn−k) < k, Xn−k
0 is empty. We will now analyze

the contributions of the strata Xn−k
l for l > 0 and show that they all vanish.
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For l > 0, our assumption is that Xl+n−k has dimension 2l + 2n− 2k and its
image Bn−k

l in B has dimension l+ n− k, so we have dimXn−k
l = 2l+ n− k

and its image in B has dimension l. We now observe that, denoting Xn−k
P,l the

inverse image π−1
X (Xn−k

l ), the section α of (44) vanishes along the projective
subbundle

P(Kl) ⊂ P((f ′∗ΩBn−k)|Xn−k
l

) = Xn−k
P,l ,

where the vector bundle Kl on Xn−k
l is the kernel of f ′∗, hence has rank

k − l. We thus conclude that the intersection Z(α)l of the locus Z(α) with
the stratum Xn−k

P,l has dimension

dimZ(α)l = dimXn−k
l + rkKl − 1(48)

= 2l + n− k + k − l − 1 = n + l − 1.

Note that the expected dimension of Z(α) is

dimXn−k
P − 2k = 2n− (n− k) + k − 1 − 2k = n− 1.

The key point is now the following: generically along Xn−k
l , the rank k− l

vector bundle Kl comes from the rank k − l subbundle on Bn−k
l with fiber

Ker (ΩBn−k|Bn−k
l

→ ΩBn−k
l

). This follows indeed from our assumptions that

dimXl+n−k = 2(n + l − k), dimBl+n−k = n + l − k,

which implies that the generic rank of f|Xn−k+l
is n− k + l (cf. Question 4.4),

hence the generic rank of f ′
|Xn−k

l

is l. It follows from this fact that the image
f ′
P (Z(α) ∩Xn−k

l ) in P has dimension at most

dimBn−k
l + k − l − 1 = l + k − l − 1 = k − 1.

When we intersect Z(α) with k − 1 hypersurfaces in |f ′
P
∗S−1| coming from

P , we thus get a subvariety Z ′(α) which is supported over finitely many
points in P , and its image in Xn−k under πX has finitely many irreducible
components, all contained in fibers of f ′. More precisely, the fibers of Z ′(α)
supported over Bl are supported over generic points of Bn−k

l , contained in
Xn−k

l and of dimension n − k + l by (48). Finally, recall that, by formula
(47), we have to compute πX∗(Z(α)virf

′
P
∗(c1(S−1)k−1)) and show that it is

0 in CH(Xn−k). Here the cycle Z(α)vir is supported on Z(α) and computed
by applied Fulton’s refined intersection formula [18]. Now we observe that we
can replace the term Z(α)virf

′
P
∗(c1(S−1)k−1) appearing in this formula by the
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virtual class of Z ′(α). As we described Z ′(α) as a disjoint union of components
Z ′(α)l,bi of dimension n− k + l contained in fibers Xn−k

P,l,bi
, it suffices to show

that the contribution of each Z ′(α)l,bi to Z ′(α)vir is 0 for l > 0. This follows
from the following

Claim 4.12. The excess bundle for the section α is trivial of rank l along the
fiber Xn−k

P,b ∩ Z(α), for a general point b ∈ Bn−k
l .

Proof. Let b ∈ Bn−k
l be a general point. Choose l functions g1, . . . , gl on

Bn−k whose differentials at b are independent on Bn−k
l . Then their pull-backs

to Xn−k have independent differentials along Xn−k
l,b , hence in a Zariski open

neighborhood Un−k
b of Xn−k

l,b in Xn−k, since b ∈ Bn−k
l is a general point so

the morphism Xn−k
l → Bn−k

l has to be of rank l at any point over b. Let F
be the trivial rank l vector bundle on Un−k

b generated by these differentials.
We have a natural morphism F → E induced by the inclusion F → ΩUn−k

b
,

using the fact that f is Lagrangian. By duality, this induces a quotient map

q : E → F∗ → 0

on Un−k
b . The morphism

f ′∗ : f ′∗ΩBn−k → E ,

being Lagrangian, takes value in Ker q. This proves that the excess bundle
identifies to F∗ along Xn−k

l,b . This proves the result since F is trivial on Un−k
b ,

hence on Xn−k
b .

The claim concludes the proof since, as we already mentioned, by our
assumption that dimBn−k < n−k, Bn−k

0 is empty so there is no contribution
from the stratum where l = 0.

Proof of Theorem 4.1(ii) and (iii). Statement (iii) is a particular case of (ii).
For the proof of (ii), we just follow the analysis made previously, except that
now, the stratum Xn−k

0 is not empty and of the right dimension by (48).
In particular Bn−k

0 is a non-empty set of points and Xn−k
0 has dimension

n− k, and there is no excess in the contribution of the stratum Xn−k
0 to the

cycle pX∗(c1(S−1)k−1Z(α)vir), and this stratum contributes via an effective
non-empty cycle of dimension n−k. The contributions of the other strata are
zero as explained in the previous proof. This shows that the cycle c2k(X)Ln−k

is effective and nontrivial.
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5. Proof of Theorems 1.3 and 1.4

5.1. The cycle c2
2L

n−1

We study in this section the cycle Ln−1c2(X)2, where L is a Lagrangian line
bundle on a projective hyper-Kähler 2n-fold X, whose vanishing is predicted
by Conjecture 1.4. We use some of the constructions and notations intro-
duced in the previous sections. We denote by C = Bn−1 ⊂ B the (smooth)
complete intersection of n − 1 ample general hypersurfaces in a very ample
linear system |H| on B with f∗H = L⊗d and XC = Xn−1 ⊂ X its inverse
image in X with restricted morphism f ′ : XC → C. We have on XC the
rank 2 vector bundle E with trivial determinant, which is the kernel of the
natural surjective morphism ΩXC → OXC (dL)n−1 of (40), and has an induced
symplectic structure (see also (10)). We only study the case where there are
no nonreduced fibers in codimension 1. The vanishing locus of the morphism
f ′∗ : f ′∗ΩC → ΩXC thus has codimension ≥ 2 in XC . Furthermore, as we
saw already, this morphism takes values in E and its vanishing locus Z thus
represents the class c2(E(−f ′∗KC)). Note that Z is supported on fibers of f ′,
on which f ′∗KC is trivial. Arguing as in the proof of Theorem 4.1, that is,
comparing j∗c2(E), where j is the inclusion of XC in X, and Ln−1c2(X), we
get

Lemma 5.1. The class Ln−1c2(X)2 ∈ CHn+3(X) is proportional to the class
jZ∗(c2(E)|Z), where Z is as above the critical locus of f ′ and jZ : Z → X is
the inclusion map.

The geometry of Z and E is very interesting and a particular case of
a phenomenon studied in [11], [16]. Indeed, we can apply Theorem 1.6 with
k = n−1 since for k = n−1, the equalities in (1) and (2) hold in codimension 1
on B once there are no nonreduced fibers in codimension 1. We thus conclude
that Z is a finite union of abelian varieties, which are projective leaves of a
foliation. The conormal bundle of a leaf F of a foliation F := E⊥ on a manifold
Y admits an integrable holomorphic connection, defined as the composition

ΩY ⊃ E d→ E ∧ ΩY → E ⊗ ΩF ,

so it is a flat bundle. Unfortunately, we cannot say much more about it, since
by the suspension construction described in [16, Example 9.1], any flat vector
bundle E on an abelian variety A is isomorphic to the conormal bundle of
a foliation on the total space of E, of which A is a leaf. Furthermore, the
Chern classes of a flat holomorphic vector bundle with trivial determinant on
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an abelian variety A can be nontrivial in CH(A). For example, for any line
bundle M ∈ Pic0(A), the vector bundle M⊕M−1 has trivial determinant but
its second Chern class −M2 ∈ CH2(A) is in general nontorsion. In fact, once
the dimension of A is at least 2, the subgroup of CH2(A) generated by these
classes is infinite dimensional in the Mumford sense, by Mumford’s theorem
[34]. In the present situation, we have

Lemma 5.2. For each connected component Zi ⊂ Xc of Z, the vector bundle
E|Zi

is isomorphic to either
(i) a direct sum Mi ⊕M−1

i for some line bundle Mi ∈ Pic0(Zi), or
(ii) a tensor product Mi⊗U for some 2-torsion line bundle Mi on Zi and

rank 2 vector bundle U which is a an extension of the trivial line bundle by
itself.

Proof. The vector bundle E|Zi
is homogeneous by Theorem 1.6. Homogeneous

rank 2 vector bundles on abelian varieties are classified in [33] and are direct
sums of homogeneous (that is topologically trivial) line bundles, which gives
the first case, or of the form Mi ⊗ U as in (ii). In case (ii), Mi has to be a
2-torsion line bundle since det E is trivial.

In case (ii), the class c2(E|Zi
) is trivial, and thus the contribution of Zi

to the class c2(X)Ln−1 is zero. Unfortunately, case (i) is the most naturally
encountered. We discuss another more classical viewpoint on the line bundle
Mi in the following Proposition 5.3, showing that there is no restriction on
the topologically trivial line bundle Mi in (i). Let c ∈ C be a critical value
of f ′, let Xc be the fiber f−1(c) and Zc ⊂ Xc be the singular locus of Xc. By
[23], the normalization X̂c is smooth and it is a P1-bundle over an étale cover
of an abelian variety Ac, via its Albanese map

a : X̂c → Ac.

The inverse image of Zc is a finite union of abelian varieties contained in X̂c

which are multisections of a and étale over Ac. These facts follow again from
the existence of the local vertical free group action of Cn−1 on a neighbor-
hood of Xc in XC , which is transitive on the components of Zc, and provides
automorphisms of Xc which lift to X̂c.

Proposition 5.3. Assume we are in Case (i) of Lemma 5.2, and that Mi is
not torsion, Xc is irreducible, Xc has at most two branches along Zi, and the
branches are smooth. Then the inverse image Ẑi := n−1(Zi) ⊂ X̂c is a divisor
which has degree 2 over Zi and there is a canonical isomorphism

E|Zi
∼= n∗(OẐi

(Ẑi)).(49)
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Furthermore Ẑi is the union of two disjoint divisors Ẑi,1, Ẑi,2 isomorphic to
Ac via a : X̂c → Ac and to Zi via n and, for any ample line bundle H on X,
we have for some nonzero integer d

dMi
∼= H|Zi

− t∗H|Zi
,(50)

where t is the translation of Ac
∼= Zi given by the composition a|Ẑi,2

◦ ι ◦
(a|Ẑi,1

)−1, ι being the natural isomorphism Ẑi,1 ∼= Ẑi,2 given by the isomor-
phisms

n|Ẑi,1
: Ẑi,1 ∼= Zi, n|Ẑi,2

: Ẑi,2 ∼= Zi.

Note that, from (50), we conclude that the line bundle Mi is torsion if and
only if the translation t has finite order. In most examples, the translation t
does not have finite order (see [23] for examples). In fact, the translation t
is well understood from the viewpoint of degenerations of abelian varieties.
If the family of fibers is the Jacobian fibration of a family of curves C → B
degenerating generically along the discriminant hypersurface Δ to irreducible
curves Cc, c ∈ Δ with one node x, then the translation used to construct
the generalized Jacobian of Cc starting from a P1-bundle on J(Ĉc) by glueing
two sections is translation by the point alb(x1 − x2) ∈ J(Ĉc), where x1, x2 ∈
Ĉc are the two preimages of x under the normalization map Ĉc → Cc (see
[10]). Similarly, if the family of fibers is the Jacobian fibration of a family
of threefolds X → B with h3,0 = 0 degenerating to threefolds Xc with one
ordinary double point x0 and nonzero vanishing cycle, then the similarly
defined translation is translation by the point Φ

X̃c
(R1 −R2) ∈ J3(X̃c), where

X̃c → Xc is the blow-up of the singular point, Φ
X̃c

is its Abel-Jacobi map,
and the curves Ri are lines in the two different rulings of the exceptional
divisor, which is a 2-dimensional quadric (see [13]).

Proof of Proposition 5.3. Our assumption is that, locally analytically near
Zi, Xc is the union of two smooth divisors in XC so that n has degree 2
over Zi. For any point x ∈ Zi, we denote by x1, x2 its preimages in X̂c and
Rx1 , Rx2 the respective fibers of a through x1, x2. Let g be a coordinate on
C centered at c. Then f∗g vanishes along Xc, and its differential vanishes
along the component Zi of the singular locus of Xc. The Hessian of f along
Zi is a nonzero section of S2E|Zi

since our assumptions also imply that Xc has
multiplicity 2 along Zi. If Mi is not a torsion line bundle, the only nonzero
section of S2E is the section of the factor Mi ⊗M−1

i ⊂ S2E , which vanishes
along the two factors Mi, M

−1
i of E∗

|Zi
. As we assumed that n is an immersion

at the points x1, x2 above x ∈ Zi and we know that the inverse image Ẑi ⊂ X̂c
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of Zi is étale over Ac, we get up to a permutation identifications TRxj ,xj
∼= M

εj
j

with j = 1, 2 and εj = (−1)j . This proves (49).
As Xc is irreducible, X̂c is connected and it is a P1-bundle over an abelian

variety Ac by [23]. The inverse image Ẑi ⊂ X̂c is étale over Zi, hence is a
disjoint union of at most two abelian varieties, all isogenous to Ac. If Ẑi is
irreducible, we have n∗OẐi

= OZi ⊕ OZi(η) for some 2-torsion line bundle
η ∈ Pic0(Zi). By (49), using the fact that the line bundle O

Ẑi
(Ẑi) on Ẑi is

homogeneous, hence topologically trivial, we get in this case an isomorphism

E|Zi
∼= M ′

i ⊕M ′
i(η)

for some line bundle M ′
i ∈ Pic0(Zi). Comparing with the isomorphism

E|Zi
∼= Mi ⊕M−1

i

of (i), we conclude that Mi is torsion, which is a contradiction. It follows
that Ẑi has two connected components Ẑi,1, Ẑi,2, each dominating Ac since
otherwise they would be ruled. As the canonical bundle of Xc is trivial, the
divisor Ẑi has degree at most 2 over Ac so each component Ẑi,1, Ẑi,2 has
degree 1 over Ac, hence is isomorphic to Ac.

It remains to prove (50). Let H be an ample line bundle on Xc. Assume
for simplicity that the pull-back Ĥ := n∗H has degree 1 on the fibers of
a : X̂c → Ac. (This can be assumed in any case if we work with Picard groups
with Q-coefficients.) Then we have equalities in Pic(X̂c)

O
X̂c

(Ẑi,1) = Ĥ ⊗ a∗M ′
1, O

X̂c
(Ẑi,2) = Ĥ ⊗ a∗M ′

2(51)

for some line bundles M ′
i on Ac. We now use the fact that Ĥ is the pull-back

of a line bundle under n, so Ĥ|Ẑi,2
and Ĥ|Ẑi,1

coincide via the isomorphism ι.
Denoting a1 := a|Ẑi,1

, a2 := a|Ẑi,2
, it follows from the definition of t that

(a−1
2 )∗Ĥ = t∗((a−1

1 )∗Ĥ).(52)

We now observe that Ẑi,1 and Ẑi,2 do not intersect, so we get

O
X̂c

(Ẑi,1)|Ẑi,2
∼= O

Ẑi,2
,

hence, using (51), (52)

(a−1
2 )∗Ĥ ⊗M ′

1 = OAc = t∗((a−1
1 )∗Ĥ) ⊗M ′

1.(53)

For the author's personal use only.

For the author's personal use only.



1428 Claire Voisin

It follows that

(a−1
1 )∗(n∗Mi)=(a−1

1 )∗(O
Ẑi,1

(Ẑi,1))=(a−1
1 )∗Ĥ⊗M ′

1 = (a−1
1 )∗Ĥ⊗t∗((a−1

1 )∗Ĥ)−1,

where the first equality follows from (49) and the third from (53). This proves
(50) since Ĥ = n∗H.

Remark 5.4. The proof also shows that the singular locus Z is irreducible
in this case. This will be used below.

We now give a criterion for the vanishing of the class c2(X)2Ln−1 in
CH(X).

Proposition 5.5. Let X → B be a Lagrangian fibered hyper-Kähler manifold.
Assume the following three conditions hold:

1. In codimension 1 on B, the singularities of the fibers are as in Propo-
sition 5.3, that is, the fiber Xb is irreducible, it has at most two local
branches at any point, and they are smooth.

2. For any irreducible component Δj of the discriminant hypersurface Δ ⊂
B, any desingularization Δ̃j of Δj satisfies CH0(Δ̃j) = Z.

3. For any irreducible component Δj as above, the family of abelian vari-
eties Ab = Alb(X̂b) parameterized by a Zariski open set of Δj satisfies
the following nondegeneracy property:
(*) For a general point b ∈ Δj, there exists u ∈ TΔj ,b such that the first
order variation of Hodge structure

∇u : H1,0(Ab) → H0,1(Ab)

is an isomorphism.

Then c2(X)2Ln−1 = 0 in CH(X).

Proof. The proof follows closely the argument of [43]. The family Aj =
(Ab)b∈Δj , of abelian varieties is an integrable system generically over Δj be-
cause the symplectic holomorphic form has generic rank 2n − 2 on the nor-
malization of the restricted family XΔj , which is ruled over Aj , hence induces
a 2-form on Aj which is everywhere nondegenerate over a Zariski open set of
Δj . This 2-form makes Aj → Δj a Lagrangian fibration over a Zariski open
set of Δj . By symmetry (see [15]) of the map giving the infinitesimal variation
of Hodge structure

∇ : TΔj ,b → Hom (H1,0(Aj,b), H0,1(Aj,b)),
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the condition (*) translates into the fact that for general b ∈ Δj , and general
λ ∈ H1,0(Aj,b), the map

∇(λ) : TΔj ,b → H0,1(Aj,b)

is surjective. By the main result of [1], this condition implies that, for any
normal function ν, that is, algebraic section ν of Pic0(A′

j/Δ′
j) → Δ′

j defined
over a generically finite cover Δ′

j of Δj , the set of points b ∈ Δ′
j such that ν(b)

is torsion in Pic0(Aj,b) is dense for the Euclidean topology of Δj . We apply
this to the normal function defined as follows. Let Zj be the singular locus of
XΔj . If we restrict to an adequate dense Zariski open set of Δj , Zj is smooth
of codimension 2 in X and its conormal bundle Ej has one of the forms (i),
(ii) of Lemma 5.2. In case (ii), we already noticed that the contribution of
the fibers Zj,b to c2(X)2Ln−1 is trivial. In case (i), the decomposition

Ej|Zj,b
= Mj,b ⊕M−1

j,b

defines a degree 2 cover of Δj parameterizing the choice of one of the line
bundles Mj,b, M

−1
j,b ∈ Pic0(Zj,b) = Pic0(Aj,b). It follows that there are points

b ∈ Δj where the line bundles Mj,b and M−1
j,b are torsion. By Lemmas 5.1

and 5.2, the cycle c2(ΩX|Zj,b
) is trivial in CH2(Zj,b) for any of these points.

By condition 2, the cycle jZj,b∗(c2(ΩX|Zj,b
)) ∈ CHn+3(X) does not depend on

b ∈ Δj , hence it is trivial for any b ∈ Δj . The cycle c2(ΩX)2Ln−1 is up to a
coefficient the sum of these cycles over all j, and all points b ∈ Δj ∩C, hence
it is trivial.

Proof of Theorem 1.3. We just have to check that the assumptions of Propo-
sition 5.5 are satisfied in the case of the LSV manifold and its Lagrangian
fibration. Let X ⊂ P5 be a smooth cubic fourfold. The base of the associated
LSV manifold is the dual 5-dimensional projective space P5∗ and the discrim-
inant hypersurface Δ ⊂ P5∗ is the dual of the cubic X ⊂ P5. It follows that
the LSV fibration satisfies condition 2. The condition 1 is also well-known:
the generic behavior along Δ of the compactified intermediate Jacobian fi-
bration is the same as the generic behaviour, along the discriminant divisor,
of the family of intermediate Jacobians of all cubic threefolds. This is studied
in [13], [15]. It only remains to check condition 3. However, since we are con-
sidering a Lagrangian family of abelian fourfolds, it is observed in [43] that
the infinitesimal condition 3, which says that for generic b ∈ Δ, there exists
a u ∈ TΔ,b such that

∇u : H1,0(Ab) → H0,1(Ab)
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is an isomorphism, is equivalent to the fact that there does not exist any
u ∈ TΔ,b, u �= 0, such that ∇u : H1,0(Ab) → H0,1(Ab) is identically 0, that
is, the moduli map of the family of abelian varieties (Ab)b∈Δ has nowhere
maximal rank. This follows from a result due to Lossen [29] concerning the
projective geometry of homogenenous cubic polynomials in four variables: it
says that if a projective cubic surface is not a cone, then it has a point where
its Hessian (or second fundamental form) is a nondegenerate quadratic form.
We apply the Lossen result to the cubic form

C(u, v, w) := 〈∇u(v), w〉,

with v ∈ H1,0(Ab), u ∈ TΔ,b, w ∈ H1,0(Ab). The symmetry of C in u, v, w,
using the natural isomorphism TΔ,b

∼= H1,0(Ab) given by the Lagrangian
fibration structure, is observed in [15].

By this argument, if condition 3 were not satisfied, the family of abelian
varieties (Ab)b∈Δ would not have maximal modulus, and it is easy to show that
this does not happen, at least for very general X. For example, one can note
that, by [12], these abelian fourfolds are the Jacobians of complete intersection
curves of type (2, 3) in P3, so that their variation of Hodge structure can be
described explicitly.

Remark 5.6. If instead of a LSV manifold we consider the punctual Hilbert
scheme S[g] of a K3 surface S with Picard group generated by a line bundle of
self-intersection 2g−2, or rather its birational version admitting a Lagrangian
fibration compactifying the Jacobian fibration of the universal family of curves
over |L| (see [5]), then the proof above does not apply since the condition 2
in Proposition 5.5 is not satisfied. However, in this case the discriminant
hypersurface is birational to a projective bundle over S, hence the relations
in the Chow group of a K3 surface established in [4] (see statements 1 and 2
in the introduction) can probably be used to conclude also in that case. As
the result is proved in [32], we do not pursue this argument.

5.2. Riess’ argument and proof of Theorem 1.4

Theorem 1.4 follows from Theorem 1.2 by Riess’ arguments as in [37]. For
completeness, we sketch the proof below. The main result from Riess’ paper
that we need is the following.

Theorem 5.1. Let X be a projective hyper-Kähler manifold of dimension
2n, and let L ∈ NS(X) be an isotropic class. Then there exists a projective
hyper-Kähler manifold X ′, and a correspondence Γ ∈ CH2n(X×X ′) such that
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1. Γ induces a graded ring isomorphism Γ∗ : CH(X) → CH(X ′) which
maps ci(X) to ci(X ′).

2. Γ∗(L) = L′, where for some nef line bundle L′ on X ′.

The variety X ′ is birational to X, hence deformation equivalent to X by
[19]. The cycle Γ is effective and is the limit of graphs of isomorphisms Xt

∼=
X ′

t for some small deformations Xt of X, resp. X ′
t of X ′. Such isomorphisms

satisfy property 1, hence also Γ, as was observed by Riess in [38]. Being
the specialization of graphs of isomorphisms, the correspondence [Γ]∗ also
induces a ring isomorphism on cohomology, so L′ is also isotropic since this
is equivalent to degL′2n = 0 by the Beauville-Fujiki formula, and we have
degL2n = 0.

Assume now the SYZ conjecture for the hyper-Kähler manifolds of the
same deformation type as X. Let l = c1(L) be an algebraic isotropic class on
X. By Theorem 5.1, there exist X ′, Γ ∈ CH2n(X×X ′) satisfying properties 1
and 2. As l′ := Γ∗l is nef on X ′, and X ′ satisfies the SYZ conjecture, one has
by Theorem 1.2

L′n+1−i
c2j(X ′) = 0 in CH(X ′) for j ≥ i.

As Γ is a ring isomorphism preserving Chern classes, it follows that

Ln+1−ic2j(X) = 0 in CH(X),

for j ≥ i, which proves Theorem 1.4.
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