Pure and Applied Mathematics Quarterly
Volume 21, Number 3, 1393-1435, 2025

On Chern classes of Lagrangian fibered hyper-Kahler
manifolds

CLAIRE VOISIN*

Abstract: We study the rank stratification for the differential of
a Lagrangian fibration over a smooth basis. We also introduce and
study the notion of Lagrangian morphism of vector bundles. As a
consequence, we prove some of the vanishing, in the Chow groups
of a Lagrangian fibered hyper-Kéhler variety X, of certain poly-
nomials in the Chern classes of X and the Lagrangian divisor,
predicted by the Beauville-Voisin conjecture. Under some natural
assumptions on the dimensions of the rank strata, we also establish
nonnegativity and positivity results for Chern classes.
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1. Introduction

In the paper [4], Beauville and myself proved that for any projective K3
surface S, there exists a canonical degree 1 zero-cycle og € CH(S) satisfying
the following properties:

1. For any elements D, D' € CH'(S), D - D' = deg (D - D')og in CHg(S).
2. ¢(S) = 240g in CHy(S).

Although we can work with integral coeflicients in the statement above,
CH(X) will denote from now on the Chow groups of a variety X with Q-
coefficients. Beauville subsequently proposed in [3] a generalization of prop-
erty 1 to any projective hyper-Kéhler manifold X, whose weak version is
called “Beauville weak splitting conjecture”, stating that any cycle Z on X
which is a polynomial in divisor classes and is cohomologous to 0 on X is

arXiv: 2305.09396

Received May 16, 2023.

2010 Mathematics Subject Classification: Primary 14J42; secondary
14C25.

*The author is supported by the ERC Synergy Grant HyperK (Grant agreement
No. 854361).

1393


https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php
https://arxiv.org/abs/2305.09396

1394 Claire Voisin

rationally equivalent to 0 modulo torsion. I proposed in turn in [41] to gener-
alize the combination of 1 and 2 to any projective hyper-Kéhler manifold X
in the following form:

Conjecture 1.1. Let X be a hyper-Kdihler manifold and let Z € CH(X)
be a cycle on X which belongs to the subalgebra generated by divisor classes
and the Chern classes of X. Then if Z is cohomologous to 0, Z is rationally
equivalent to 0 modulo torsion on X.

This conjecture is known to hold for Hilbert schemes of K3 surfaces by
[32] and for generalized Kummer varieties by [17]. It is also proved in [41] for
the Fano variety of lines in a smooth cubic fourfold. Riess proved in [37] a very
nice result concerning the weak splitting conjecture. We know the polynomial
cohomological relations between divisor classes on a hyper-Kéhler manifold
X, as they were described by Verbitsky (see [8]). When there is at least one
divisor class h = ¢;(H) € CH'(X) such that [, h?" = 0, or equivalently
q(h) = 0, where ¢ is the Beauville-Bogomolov quadratic form, the ideal of
these relations is generated by

(1) "t =0 in H*"2(X,Q) if q(I) = 0.

(In the absence of a rational isotropic class, the relations do not admit such
a concrete description and only have a representation-theoretic characteriza-
tion, unless we pass to real coefficients.) Riess noticed that the relation (1)
obviously holds in CH" ™ (X) when [ = ¢;(L) and L is a Lagrangian line bun-
dle, that is, there exist a Lagrangian fibration f : X — B, an integer d > 0,
and an ample line bundle Hg on B, such that L®? = f*Hp. Indeed, one has
dim B =n so H™ =0 in CH"™(B) and

(2) L™ =0 in CH"M(X).

If an isotropic line bundle L is Lagrangian, L is in particular nef. The
SYZ conjecture states conversely that a nef isotropic line bundle on a hyper-
Kéhler manifold is Lagrangian. When the Picard number of X is 2 and X
has an isotropic class, X has two isotropic classes (up to a scalar), and there
are many instances when only one class is nef, the other ray of the positive
cone not even belonging to the birational Kahler cone (see for example [40],
where the case of the O’Grady 10-dimensional manifold constructed in [28] is
discussed; see also [14]). We thus a priori do not have the relation (2) for the
other isotropic class. Riess, using work of Huybrechts [19] on the existence
of self-correspondences inducing automorphisms of the ring CH(X), could
nevertheless extend to the nonnef ray the relation (2) and finally prove the
following:
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Theorem 1.1. (Riess [37]) If X is a projective hyper-Kdhler manifold which
has an isotropic class in NS(X) and whose deformations satisfy the SYZ
conjecture, X satisfies Beauville’s weak splitting conjecture.

One of the purposes in this paper is to study Conjecture 1.1 for a certain
type of polynomial cohomological relations involving both Chern classes of X
and divisor classes. More precisely, as proved in [19], the following generalized

Verbitsky relations hold in H*(X, Q) for X hyper-Kéhler of dimension 2n
(3) "1 iep = 0in H2 27249 (X Q) if ¢(1) = Oand deg ey = 45 > 44,

where ¢; is any polynomial in the topological Chern classes cor(X) € H* (X,
Q) of X and the degree is the weighted cohomological degree. The relations
(3) hold in the cohomology algebra of X because they hold for the class oy
of any (2,0)-form on a deformation X; of X, and these classes o; fill-in an
Euclidean open (hence Zariski dense) set in the quadric ¢ = 0 in H?(X,C).
Indeed c; is of Hodge type (27,2j) on X;, while 0""'~* is of Hodge type
(2(n+1—1),0) on X;.

Remark 1.2. The odd Chern classes of a hyper-Kéhler manifold X vanish
in CH(X) since its cotangent bundle is isomorphic to its dual. This is why
we discuss only even Chern classes.

Remark 1.3. The relations (3) do not exhaust the cohomological relations
in the tautological ring generated by divisor classes and topological Chern
classes. For example, in top degree 4n, the cohomology ring has rank 1 and
thus all polynomials of weighted degree 4n in the topological Chern classes
c2(X), ..., con(X) generate only a 1-dimensional vector space. In degree 4n,
there are thus plenty of polynomial cohomological relations involving only the
c2;(X), while the relations in (3) not involving [ appear only for i = n + 1,
that is, in degree 4n + 4, (so they trivially hold in this case).

Conjecture 1.1 combined with (3) leads us to the following

Conjecture 1.4. Let X be a projective hyper-Kdihler manifold. Then for any
line bundle L on X with q(L) = 0, for any integer j > i, and any Chern
monomial ¢; € CHY (X)

(4) L™ "er =0 in CH(X).

When L is a Lagrangian line bundle, the vanishing (4) is the vanishing
(2) for ¢ = 0. The next case where i = 1 is also quite easy. Indeed, we have
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to prove that
(5) L"c; =0 in CH""(X)

for any Chern polynomial of degree 2i > 0 on X. This follows from the fact
that L™ is proportional to the class of a general fiber X} of the Lagrangian
fibration f: X — B and from the exact sequence

(6) 0— fyQpp — Qxx, = Qx, — 0,

where the vector bundles on the right and on the left are trivial on X; which
is an abelian variety. This implies that ¢;(Qx)x, = 0 in CH'(X}) for 4 > 0.
Note that we have more generally an exact sequence

0— f*Qpo — Qxo0 — [*Tro — 0

on XY := f~1(BY), where B® C B is the Zariski open set where B is smooth
and over which f has maximal rank. It follows that the Chern classes of
positive degree of X are supported over a proper closed algebraic subset of
B. A strengthened conjecture in the case of a Lagrangian fibration is the
following.

Conjecture 1.5. Assume X is projective hyper-Kdhler and f : X — B is
a Lagrangian fibration. Then for any i and any monomial ¢c; € CH*(X) of
weighted degree 2i in the Chern classes of X, there exists a codimension i
closed algebraic subset B* C B, such that c; vanishes in CH(X \ f~1(B?)).

This conjecture obviously implies Conjecture 1.4 in the case where L
is Lagrangian, since then L" ! is supported on f~1(B; 1), for a closed
algebraic subset B;_1 of B of dimension ¢ — 1 and in general position.

Our first results in this paper concern the study of the relations (4. We
first prove

Theorem 1.2. Let f : X — B be a Lagrangian fibration of a projective
hyper-Kdhler manifold, with Lagrangian line bundle L. Then for any pair of
integers i, ] < n, j > 1, we have

(7) L™y (X) = 0 in CH(X).

This proves Conjecture 1.4 only for the Chern classes, not for monomials
in the Chern classes. We will establish Theorem 1.2 in Section 2. We will
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discuss the case of c3L""! in Section 5.1. As we will see, unlike (7), the
vanishing

(8) L 1e2(X) =0 in CH(X)

predicted by Conjecture 1.4 does not follow from formal arguments involving
the Lagrangian fibration. We will establish this vanishing in Section 5.1 for
a specific class of Lagrangian fibered hyper-Kéhler manifolds, namely the
deformations of the 10-dimensional O’Grady manifolds constructed in [2§]
as compactifications of the intermediate Jacobian fibration associated with a
cubic fourfold (which we will call below a LSV-manifold).

Theorem 1.3. Let X — P® be a LSV-manifold. Then c3L* = 0 in CH¥(X).

In Section 5.2, we will show how the arguments of Riess in [37] allow us to
deduce from Theorem 1.2 the following result in direction of Conjecture 1.4.

Theorem 1.4. Let X be a projective hyper-Kdihler manifold of dimension
2n. Assume the hyper-Kahler manifolds in the same deformation class as X
satisfy the SYZ conjecture. Then for any isotropic class | = c¢1(L) € NS(X) =
CHY(X), and for any pair of integers i, j < n, j > i, one has

L1y (X) = 0 in CH(X).

Section 3 of the paper is devoted to introducing and studying the notion
of Lagrangian morphism between bundles F, E, of respective ranks n and
2n on a variety Y, where E is equipped with an everywhere nondegenerate
skew-symmetric 2-form, with the following

Definition 1.6. A morphism ¢ : F — E of vector bundles as above over Y
1s Lagrangian if

1. The generic rank of ¢ is equal to n.
2. At any point x € Y, the image Im ¢, C E, is isotropic for (, ) (hence
it is Lagrangian at a point where the rank of ¢ is n).

The morphism given by the differential of a Lagrangian fibration map
(over the smooth locus of the base) is the motivating example, although it is
not general since its rank loci are not of the expected codimension, except for
the first (see Remark 3.4). Nevertheless, the following result applies to them
when there are no nonreduced fibers in codimension 1, (and we will explain
in Section 3.2 a variant if nonreduced fibers appear in codimension 1).
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Theorem 1.5. Let ¢ : F' — E be a Lagrangian morphism of vector bundles
onY. Assume that ¢ is injective in codimension 1. Then

(i) The locus Y,—1 where ¢ has rank n — 1 is of codimension 2 (or is
empty).

(7i) Y,—1 is a local complete intersection.

(iii) There is an exact sequence

9) 0—-F—>FE—F" —§G—0,

where G is a torsion sheaf supported on the locus Y<,,—1 where ¢ has rank
<n-—1, and G is a line bundle on Y,_1.

The geometry of this sheaf G seems very interesting, as it has a locally
free resolution of length 3.

In Section 4, we will study the loci X}, resp. X<, where a Lagrangian
fibration morphism has rank k, resp. < k. We will explain why, starting from
corank 2, they do not satisfy the general codimension estimates for general
Lagrangian morphisms of vector bundles established in Section 3. We will
also establish the following

Theorem 1.6. Let X be a complex manifold of dimension 2n equipped with
a symplectic holomorphic structure and let f : X — B be a holomorphic
Lagrangian fibration, with B smooth. Then for any irreducible component
Xk, of Xy, with image By; in B, the following hold

(1) The dimension dim By, ; is at most k.

(2) The relative dimension of Xy ; over By, is at least k.

(3) If we have equality in (1) and (2), any connected component of the
general fiber Xy, ;p, b € By, is a complex torus T' of dimension k.

(4) Under the same assumptions as in (3), the locally closed complex sub-
manifold X is smooth along Xy, and the restricted normal bundle
Nx, /XX, 8 on each connected component T a homogeneous vector bun-
dle on the complex torus T'.

Furthermore, we prove in Theorem 4.1 that the dimension of the locus X}
where f has rank k is expected to be at least 2k and the dimension of its image
By in B is expected to be at least k, unless some unexpected cohomological
vanishing (30), (which is stronger than (3)), holds. As a consequence of our
arguments, we get a positivity result for the Chern classes which provides
some evidence for the questions asked in [35], see also [36].

Theorem 1.7. (Cf. Theorem 4.1) Let f : X — B be a Lagrangian fibration
of a hyper-Kdhler 2n-fold with Lagrangian line bundle L. Assume the base B
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is smooth and the rank loci Xy, satisfy dim Xy, = 2k, dim f(Xy) = k for all
k. Then the classes L™ (X )co;(X) are Q-effective. In particular, for i = n,
one has Xop(X) > 0, and furthermore Xiop(X) > 0 if the locus Xy where the
rank of f is 0 is not empty.

The last result is easy and follows from Beauville’s argument in [5] if we
know that the group scheme G, which is constructed under some assumptions
in [2], [26] and [27], acts on X.

Remark 1.7. The question of the existence of the relative group scheme G
over the base B, acting on X over B (extending the relative Albanese variety
defined over the regular locus of f and acting by translation on the smooth
fibers) seems to be open when some fibers are reducible or nonreduced. One
of our motivations in this paper is to analyze the geometry of Lagrangian
fibrations without assuming it.

Remark 1.8. The numerical positivity of the class ca(X) is well-known and
follows from the Liibke (or Bogomolov-Miyaoka-Yau) inequality and existence
of Kahler-Einstein metrics.

In Section 4.1 we will establish Conjecture 1.5 assuming that the base of
the Lagrangian fibration is smooth and under a dimension assumption on the
rank strata Xj.

Theorem 1.8. Let f: X — B be a Lagrangian fibration and i be a positive
integer. Assume that B is smooth in codimension i — 1 and that for any k >
n—i+1, and any irreducible component Z of Xy, we have either dim Z < 2k
or dim f(Z) > k. Then for j > i, co;(X) vanishes in CH(X \ f~1(B%)) for
some codimension i closed algebraic subset B' of B.

2. Proof of Theorem 1.2

Proof of Theorem 1.2(i). Let f : X — B be a Lagrangian fibration, where
X is projective hyper-Kéhler of dimension 2n. Let H be a very ample line
bundle on B, whose pull-back to X is thus a multiple uL. Let ¢ < n be a
positive integer. We will prove the vanishing

o (Qx) L™ = 0 in CH(X)

for j > 4 by induction on i. By Bertini, a general set of n — ¢ 4 1 sections of
f*H on X defines a smooth complete intersection > C X. Along X, we thus
have an injective morphism of vector bundles

¢: Ny/x — Qxs,



1400 Claire Voisin

where N5y & Os(—H)"—+,

As X is hyper-Kéhler, the vector bundle 2x carries an everywhere non-
degenerate skew-symmetric pairing (, ). We observe that, as f is Lagrangian,
the image of ¢ is totally isotropic for (, ). Indeed, it suffices to prove the
result at a generic point x of X, whose image b = f(z) does not belong to
Sing B and where f is of maximal rank. Then the image of ¢ is contained in
f*Qpp, which is Lagrangian in {1y , because f is a Lagrangian fibration.

The subbundle (Im ¢)* of Qx|s; is thus of rank n+i—1 and contains Im ¢.
Furthermore, the quotient Qx5 /(Im ¢)* is isomorphic to Nsyx = N3y by
duality using (, ). Let

(10) £ = (Im¢)*/Im ¢.
This is a vector bundle of rank 2i — 2 on X, hence we have
(11) c2:(€) =0 in CH(Y).
We now use the exact sequences
0— N3/x 4 (Ime)t — & -0,
0— (Img)" = Qxw — Nyyx — 0
explained above and the Whitney formula, which gives equalities in CH(X)

(12) c(Qxps) = e(Nsyyx)e((Im ¢) ™)
= C(NE/X)C(N;J/X)C(S)'

We also get by inverting the total Chern classes in (12)
(13) (&) = e(Qx1z)e(Nyyx) " e(Ns/x) ™ in CH(D).

If we expand the equality ¢(Qxs) = ¢(Ns/x)c(N5x)e(€) of (12), and take
into account the fact that cg;(£) = 0 and ¢(Nsy/x) = (14 pLx)" ", we find
that

(14) CZi(QX\E) = Z OélL|2£02i—21(5)
>0

for some integers «;. Using (13), we can replace in (14) the terms cg;—9;(€)
by polynomials in L and ¢ (€2x/5;), which provides us with an equation

(15) c2i(Qxiz) = D BiLivcaia(Qxx)
1>0
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for some integers ;. Using the fact that the class of ¥ in X is a nonzero
multiple of L~ in CH(X), equation (15) gives a relation

(16) Coi(Qx) LM = "y LT ey ()
1>0

for some rational numbers ;.

The proof of the vanishing cg;(Q2x)L" " in CH(X) thus follows by in-
duction on i. The proof of the vanishing of c2;(Qx )L™ ! in CH(X) for j > i
works in the same way. O

3. Lagrangian morphisms of vector bundles

We study in this section general properties of Lagrangian morphisms of vec-
tor bundles introduced in Definition 1.6. We do not know if the notion has
been classically studied. Our motivation for introducing this notion and its
relevance for the subject of this paper come from the following

Example 3.1. Let X be hyper-Kdahler and let f : X — B be a Lagrangian
fibration. Then denoting by B’ C B the smooth locus of B and X' C X its
inverse image in X, the morphism

(17) ¢ = f* : f*QB/ — Qx/

is Lagrangian on X'.

Note that it is conjectured that, if B is normal (which we will always
assume) B is smooth (and if it is smooth, it is known to be isomorphic to P"
by [22]). In any case, as B is normal, the codimension of B\ B" in B is at least
2, while the discriminant locus, over which ¢ is not everywhere of maximal
rank, has codimension 1 in B, so that the notion is already interesting over
B'.

To study the rank loci for a general Lagrangian morphism, we consider
the universal situation, where the basis is the set M, of matrices M of size
(2n,n) which are Lagrangian, in the sense that the morphism M : C* — C"
is Lagrangian.

Lemma 3.2. (i) The subvariety Miag C Moy is an irreducible, local com-

plete intersection subvariety of codimension n(n — 1)/2, hence of dimension

m2 n(n—1)
e
(1t) Mg is smooth at a matriz M which is of rank > n —1, but it is sin-

gular at a matriz which is of rank < n—2. Along the set Mg n—2 of matrices
of rank n — 2, Mg has an ordinary quadratic singularity of codimension 7.
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(71t) The locus Miag n—i of isotropic matrices of rank n — i is smooth and
has codimension 3’;” in Mag. In particular, the locus Myag n—1 is smooth of
codimension 2 in Mg and is contained in its smooth locus, and Mg n—o is

smooth of codimension 7 in My and is contained in its singular locus.

Proof. (i) Denoting my, the k-th column vector of a matrix m, the equations
defining M,e in Moy, ,, are

(18) (mk, ml> =0

for n > 1 > k > 1. This locus is thus defined by n(n — 1)/2 equations. In
order to prove that M, is a local complete intersection, it suffices to show
that its dimension is 2n? — @, which is done by proving (iii) since Mjag
is stratified by the rank n — i of the matrix. The locus of rank n — i isotropic

matrices is homogeneous under the symplectic group Sp(2n) and of dimension

nin—1) 32+

(n—i)(n+i)—(n—39)(n—1i—1)/2+n(n—1i)=2n*— 5 5

since a rank n — ¢ isotropic matrix of size n x 2n determines its image W,,_;
which is an isotropic vector subspace of C?" of dimension n — i, and a matrix
C" — W, _; of size n x n — i and rank n — ¢. This dimension count proves
the codimension statement in (iii). The irreducibility follows from the above
dimension count and the fact that the rank n stratum is homogeneous, hence
irreducible.

(ii) and (iii) Denote by m;; the entries of a matrix m € Ma,,, where
i €{l,...,2n} and j € {1,...,n}, and by m; its i-th column vector. Let
M € My, be any Lagrangian matrix. As the image of M is isotropic, we can
assume by choosing an adequate basis of C?" in which the intersection form
(, ) is the standard one, that for k& < rk M, the vector M}, is the basis vector
frx of C?, and that it is O for k > rk M. For a matrix m € My, ,, we then
write my = fi + hg for k <1k M, so that the column vector hy(m) vanishes
at the point M. For k > rk M, we write my =: hj and the vector hg(m)
vanishes at the point M. In the coordinates hy; on May, 5, centered at M, the
equations (18) are

(19) hk+n,l — hl+n,k + <hk, hl> =0fork, | <rkM
(20) hl,k+n + <hk, hl> =0for k <rkM,l>rkM
(21) (hig, i) =0 for k >rk M, [ > rk M.

where the terms (hy, h;) are quadratic in the coordinates hy;.
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When the rank of M is n, only the equations in the first line (19) appear.
When the rank of M is n — 1, only the equations in the first and second
lines (19), (20) appear. In both cases, the linear parts of these equations are
obviously independent, which proves the result in that case. When the rank
of M is n — 2, there is one quadratic equation in the third line (21), namely
(hn—1, hn) = 0. (ii) and the last statement in (iii) follows by studying the
rank of this quadratic equation. O

Remark 3.3. The variety M),, carries a universal Lagrangian morphism,
but, as we just proved that it is singular, we cannot say that it is universal
for the study of Lagrangian morphisms of vector bundles on smooth bases Y.
However, as Mag >n—1 is smooth, it is universal for the study of Lagrangian

morphisms of rank > n — 1 of vector bundles of ranks n, 2n on smooth bases
Y.

Remark 3.4. Consider the case of Example 3.1. Assume for simplicity that
the singular fibers have normal crossing singularities. Then the locus Z where
¢ = f* has corank 1 is the union of the singular loci of the fibers which
is expected to have codimension 2, by Lemma 3.2, so that singular fibers
are singular in codimension 1. If furthermore the normalization of the locus
Z is smooth of dimension 2n — 2, the locus where ¢ = f* has corank 14
is the locus of i-branches singularities in the fibers, which is expected to
appear in codimension 2i (being the locus of intersection of ¢ branches of 7).
So the geometric dimension count does not fit with the abstract dimension
count of Lemma 3.2. We will discuss from a different viewpoint this lack of
transversality in Section 4.

In the rest of this section, we will focus on the first rank stratum param-
eterizing matrices of rank n — 1, which is the only one to be studied in order
to establish the vanishing (8) because, by Sard’s theorem, the locus where a
Lagrangian map f : X — B has rank < n — 2 maps to a locus of dimension
<'n — 2 in the base B. Our first result is the following (cf. Theorem 1.5).

Proposition 3.5. Let ¢ : F — E be a Lagrangian morphism on a smooth
variety Y, with rank E = 2n. Assume that

(*) the codimension of the locus Y<p,—1 CY where ¢ has rank <n —1 is
at least 2.

Then

(1) Yn—1 is a local codimension 2 complete intersection in'Y.

(ii) There is an exact sequence on'Y

(22) 05 FAES PG,
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where G is supported on Y<,,—1 and is a line bundle on Y,—1 = Y<p_1\ Y<p_2.
(7ii) The normal bundle of Y,,—1 in'Y is isomorphic to Hom(E;, G), where
&> is a rank 2 vector bundle with trivial determinant on Y, _1.

In (22), ¢* denotes the transpose of ¢, which is defined using the self-
duality of E given by (, ).

Proof. Statement (i) follows, by local trivialization of the vector bundles F'
and F (equipped with its symplectic structure), from Lemma 3.2, (ii) and
(iii), which say that Mg ,—1 is a smooth codimension 2 locally closed subva-
riety of Mi,e and is contained in its smooth locus, hence is a local complete
intersection of codimension 2.

(ii) As the image of ¢ is isotropic, we have ¢* o ¢ = 0. Furthermore, at
any point where ¢ has rank n, we have Ker ¢* = (Im ¢)* = Im ¢ hence the
sequence

(23) 0 FAES P

is exact on the right and at the middle on the Zariski open set Y \ Y<,_1
of Y. Under assumption (*), this implies that the sequence remains exact
at the middle everywhere on Y. Indeed, let o be a local section of Ker ¢*
defined on a Zariski open set U of Y. Then, on U \ (Y<,—1NU), a = ¢(5) by
the exactness of the sequence (23) on U \ (Y<,—1 NU). As U is smooth and
Y<,,—1NU has codimension > 2 in U,  extends to a section B of F on U and
o = ¢(B3). This proves the exactness of (22) in the second term. Finally, the
cokernel of ¢* is a line bundle supported on Y;,_1, because it is isomorphic to

the cokernel of the rank n — 1 morphism

*
Py,

1 *
E‘Yn71 - F]Kt—l

of vector bundles on Y;,_1.

(iii) The vector bundle & on Y,,_1 is defined as follows: the morphism
@|y,_, has rank n — 1, hence its image in Im (¢y,_,) C E}y,_, is a vector
subbundle of rank n — 1, which is totally isotropic for (, ). We define &, as
(Im ¢)*/Tm ¢ = Ker ¢* /Tm ¢. The fact that & has trivial determinant follows
from the fact (, ) induces a nondegenerate skew-symmetric pairing on &,
which trivializes its determinant. It remains to prove that the normal bundle
of Y,,—1 in Y is isomorphic to Hom(&2,G). We first do the case where Y;,_;
is smooth of codimension 2. At any point y € Y,,_1, we have a well-defined
morphism

d¢y : Ty, — Hom(Ker ¢, Coker ¢,)
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whose kernel is the tangent space to Y,,_1 at y. It remains to see that the
image is contained in

Hom(Ker ¢, /Tm ¢, Coker ¢, ) = Hom(& y, Gy ).

This follows immediately from the fact that ¢*o¢ = 0 on Y. As Hom(& 4, Gy)
has dimension 2, we get from this construction a canonical isomorphism
Ny, )y & Hom(&>,G) in the case where Y, 1 C Y is smooth of codimen-
sion 2. The general case follows by local trivializations using Lemma 3.2(ii),
(iif). O
Corollary 3.6. Under the same assumptions as in Proposition 3.5, consider
the following combination C' of total Chern classes

C = ¢(E)ce(F) te(F*)™L.

Then, if the line bundle G is trivial on Y,_1, C; vanishes in CH(Y \ Y<,_2)
fori>3.

Proof. Indeed, by the exact sequence (22), one has C' = s(G), where s denotes
the total Segre class. As G is trivial on Y;,_; by assumption, and Y,,_; is a
local complete intersection of codimension 2 by Proposition 3.5(i), the normal
bundle Ny, |,y has trivial determinant by Proposition 3.5(i). Using the fact
that G = Oy, _,, the corollary follows from Lemma 3.7 below applied to the
closed subvariety Y,,_1 C Y \ Y<,_o. O

Lemma 3.7. Let Y be a smooth variety and Z C Y be a local complete
intersection of codimension 2. Assume that the determinant of Nz v is trivial.
Then the total Segre class s(Oyz) € CH(Y') satisfies s; =0 for i > 3.

Proof. The obvious case is when Z C Y is the zero locus of a section of a
rank 2 vector bundle M on Y with trivial determinant. Indeed, we have in
this case the two exact sequences

(24) 0—-2Z7; — Oy — 0z —0,
(25) 020y = M—=7I;—0.

From (24), we deduce that s(Oz) = ¢(Zz) and from (25), we deduce that
c(Zz) = ¢(M). Finally ¢;(M) = 0 for i > 3 since M has rank 2.

The general case follows from this case. There exists a rank 2 vector
bundle M on Y with the desired property if the natural morphism

(26) Ext'(Zz,Oy) — HY(Z,Ext' (T7,0y)) = HY(Z,0y)



1406 Claire Voisin

is surjective. Here the isomorphism Ext!(Z7, Oy) = Oy is given by the trivi-
ality of the determinant of Ny . The surjectivity of the local to global map
(26) is satisfied if Y is affine, hence the lemma is proved in the affine case. If
Y is not affine, we can use the Jouanolou trick [25, Lemme 1.5] and replace
Y by an affine bundle Ay over Y, which has isomorphic Chow groups since it
is fibered into affine spaces over Y and whose total space is affine. The result
then applies to Ay C Ay. O

3.1. The case of Lagrangian fibrations

We study in this section the Lagrangian morphism of vector bundles given in
Example 3.1, namely ¢ = f* for some Lagrangian fibration f : X — B, where
B is normal. More precisely, we will consider the restriction f : X' — B/,
where B’ is the smooth locus of B and X’ := f~1(B’). As before, we denote
by X/ the locally closed algebraic subset of X’ where f* has rank i. We will
give a second proof of Theorem 1.2 for ¢ = 2, based on the following

Proposition 3.8. There exists a Zariski open set B" C B’ such that B\ B”
has codimension > 2 in B’ (hence in B) and contains f(X]_5), with the
following property. Let X" := f=Y(B"), so ¢ has rank > n — 1 everywhere
on X" since X" N X, _5 = 0. Then the line bundle G on X,/_; constructed in
Proposition 5.5(ii) is trivial along the fibers of fix» = X; 4 — B".

/
n—1

Proof. Let T : X}’l_Lred — X, _; be a desingularization of the locus

equipped with its reduced structure and let
fn_l =for: X;L—Lred — B

Using Sard’s theorem, the locus Z C X _1.red Where fn_1 has rank < n — 1
satisfies dim f,,_1(Z) < n—2. Similarly, the closed algebraic subset f(X., )
of B has dimension < n — 2. Let B} := B'\ (f(X., 5) U fu_1(Z)). By
construction, f has rank exactly n — 1 on X'nq,red N f‘l(Bﬂ). Its image is
thus locally a finite union of smooth hypersurfaces in B} and, up to removing
a codimension 2 closed algebraic subset of B} where this hypersurface has at
least two branches, we get the desired Zariski open set B”. By construction,
the hypersurface A = f(f(n,“ed N f~1(B")) is a smooth hypersurface in

" and f )N(n_lvred N fﬁl(B") — A is everywhere of maximal rank n — 1.
Having constructed B”, it remains to prove the statement about G. We now
observe that, for any point y in the fiber Fj of f over b € A, the image
of fi : Tx r(y) — Ty has dimension n — 1 and contains the image of f* :
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Tgn_l,md,y’ namely Tay. Hence the two spaces are equal and we find that
the image of f. : Tx ;) — Ty is constant, equal to Tay along Fy. This
shows that G is trivial along the fiber Fp. This is a priori not enough to prove
the desired statement since we worked only with a desingularization of the
reduced structure of X,,_; and not with X, itself. To complete the proof,

we use the following

Lemma 3.9. Let Z be projective scheme and L be a line bundle on Z. Assume
that

(i) L is generated by global sections.

(ii) The pull-back of L to a desingularization Zred of the underlying re-
duced subscheme Zieq is trivial.

Then L s trivial.

Proof. As L is generated by global sections, it induces a morphism ¢g : Z —
PV such that L is isomorphic to ¢g*Opn(1). As the pull-back of L to Zred
is trivial, this morphism has image supported on a finite number of points.
Any line bundle on a 0-dimensional scheme is trivial and this finishes the
proof. O

Lemma 3.9 applies in our situation since the line bundle G on X/ _; is by
definition a quotient of the vector bundle f*{2%,, hence is generated by global
sections along the fibers of f: X, _; — B’ O

Combining the results of the previous sections, we get another proof of
Theorem 1.2(i) for i = 2.

Corollary 3.10. Let f : X — B be a Lagrangian fibration of a hyper-Kdihler
manifold, with B normal. Let L be the Lagrangian line bundle. Assume that
there is no divisor in X made of non-reduced fibers. Then for i > 2, the
Chern classes co;(X) € CH*(X) are supported over a closed algebraic subset
of codimension > 2 in B. In particular

(27) L™ ey(X) =0 in CH(X) for i > 4.

Proof. Let B” and X" be as in Proposition 3.8. By our assumption on singular
fibers, the locus X! | = X” , C X" where f: X" — B"” has rank n — 1 is
a closed algebraic subset of codimension 2 in X”. Proposition 3.8 tells that
the line bundle G on X/ is trivial on the fibers of f,—1 : X]/_;, — Bll_4,
so it is trivial on a Zariski open set f, !, (U) for some dense Zariski open set
U:= B! [\Wof B" |. Let B” := B"\ W and X" := f~%(B"). Then
B" C B is the complement of a closed algebraic subset of codimension > 2.
Furthermore, by construction, the line bundle G is trivial on X, ;. We can
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thus apply Corollary 3.6 to conclude that co;(Qx) vanishes in CH(X") for
1> 2. U

Remark 3.11. We will give a different proof of Corollary 3.10 in Section 4.1.
More precisely, Corollary 4.10 reproves Corollary 3.10 without the assumption
on non-reduced fibers.

3.2. Non-reduced fibers in codimension 1

We show in this section how to get rid of the assumption that there are no
non-reduced fibers in codimension 1. Our goal is to show how, in the case
of a Lagrangian fibration of a hyper-Kéhler manifold of Picard number 2,
we can modify the morphism (17) over the complement of a closed algebraic
subset of codimension > 2 of the base so as to get a Lagrangian morphism of
vector bundles having the property that its locus X, _; of jumping rank has
codimension at least 2, and to which the arguments of the previous section
apply. Note that the existence of a divisor in the base parameterizing non-
reduced fibers can occur, as in the following

Example 3.12. Consider an elliptic K3 surface f : S — P with elliptic
general fiber Ey, t € PL. Then for any n > 2, we have a composed morphism

which gives a Lagrangian fibration with non-reduced fibers over the big di-
agonal of (PH™. More precisely, for n = 2, the fiber of fo over t +t' €
(PY®) t £ t', is isomorphic to Ey x Ey, and for t = t', the fiber is as a
set the union of E§2) and another component which is also a P-bundle over
E;, namely the set of length 2 subschemes of S supported at one point of E;.
The first component is not reduced since near a general point (z,y), © #y of
Et(z), the morphism fa locally factors through the morphism P* x Pt — (P1)®?)
which ramifies over the diagonal. The second component is reduced because
the morphism fy : S — (PY)?) is of rank 2 at a general point of the divisor
parameterizing nonreduced schemes of length 2. Indeed, considering a general
curve C' C S, the morphism foce) c@ (Pl)@) s a local analytic isomor-
phism at a point 2¢c € CP | once Jic:C — P! is a local analytic isomorphism
at c.

In this example, there are non-reduced fibers in codimension 1 which are
not multiple fibers. This however cannot occur when X has Picard number 2
by the following lemma.
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Lemma 3.13. Let f: X — B be a Lagrangian fibration with X projective of
Picard number 2. Then the general non-reduced fibers appearing in codimen-
sion 1 are multiple fibers.

Proof. As B is normal, hence smooth in codimension 1, the general non-
reduced fibers appearing in codimension 1 appear over the smooth locus B,
over which the Lagrangian fibration is flat by Matsushita’s theorem [31]. As-
sume that over a generic point ¢t € B C B’ of a divisor in B’, the fiber X,
is not reduced but not a multiple fiber. This implies that it has several irre-
ducible components X;; appearing with different multiplicities {. The inverse
image D := f~1(B') thus has several irreducible components Dj,, where Dy,
is defined as the union of components of the general fiber of f over B! with
multiplicity k. As the fiber X; is a local complete intersection, its irreducible
components meet in codimension 1 and as it is connected, it follows that Dy, is
effective and non-trivial when restricted to a component X;; for some [ # k.
As the divisor Dy, is trivial on the general fiber Xy, t' € B, we conclude that
p(X) > 3, since Pic(X) already contains the Lagrangian line bundle, which
is trivial on X;; and Xy, and an ample divisor, which is nontrivial on both
X and Xy . This contradiction concludes the proof. O

Recall that, by Matsushita [30], the Lagrangian fibrations deform over
a codimension 1 locally closed analytic subspace of the Kuranishi family of
X, so that, for the general projective deformation (X, f;) of (X, f), X; has
Picard number 2 and Lemma 3.13 applies. We now consider the case of a
Lagrangian fibration f : X — B, such that the non-reduced fibers appearing
in codimension 1, that is, over a divisor B' of B, are multiple fibers. We work
again over the Zariski open set B” of B’ where the various components of
the divisor B! do not intersect and over which f has rank > n — 1. (This is
the complement of a codimension 2 subset in B.) We now make the following
construction: As f : X” — B” is of rank n — 1 over B"* := B' N B”, the
morphism ¢ : f*Qpr — Qx» can be modified into a morphism

(29) Gsat (f*QB”)sat — Qxn,

which is now generically of rank n along D, where the vector bundle (f*Qp/)gat
can be defined over B” as the saturation of f*Qp~ in Qx and has the fol-
lowing explicit description: let D := f~1(B!) (equipped with its reduced
structure). By our assumption on B”, at any point of X” N D, the kernel of
¢ : f*Qpr — Qxn over t € B! equals dg; where g, is a defining equation of B
near t. Indeed, if the fibers over the component of B! passing through ¢ have
multiplicity &, then we have locally in a neighborhood of f=1(t), f*g; = h¥ for
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a function h; on X defining D, hence f*dg, = khf‘ldht. The vector bundle

(f*Qpr)sat is then locally generated by f*Qp~ and dhy, that is, by f*Qp» and
f*dg
T

Using this construction and the fact that the Chern classes of (f*Qp/)sat
are pulled-back from B” with rational coefficients (as is the class of the di-
visor D), all the vanishing results for Chern classes obtained in the previous
section and relying on Proposition 3.5 on Lagrangian morphisms of vector
bundles with degeneracy locus of codimension 2, in particular Corollary 3.10,
can be proved without assuming the non-existence of non-reduced fibers in
codimension 1. When the Picard number of X is > 2, we first have to deform
X to a general X; with Picard number 2, prove the result for X; using the
construction above, and specialize it to X (see [37]). We do not give the full
argument here as we will discuss another approach in the next section.

4. Higher rank loci for Lagrangian fibrations

We study in this section the stratification by the rank of a Lagrangian fi-
bration with smooth base. Let f : X — B be a Lagrangian fibration of a
hyper-Kéhler manifold X with dim X = 2n. We assume that B is smooth (or
restrict to its smooth locus B’). For any integer k, we consider the Zariski
locally closed subset X C X of points where f has rank k.

Lemma 4.1. The relative dimension of Xy over B is at least k.

Proof. Let x € Xj, and let b = f(z) € B. Let fi,..., fr be k algebraic or
holomorphic functions on B, defined near b, such that the differentials f*df;
are independent near x. Then the Hamiltonian vector fields x; defined on X
near x by the formula

xidgox = frdf;

are independent near x and commute, since the fibration f is Lagrangian.
They thus generate a holomorphic foliation of an Euclidean neighborhood V
of x in X and a free action U x V — V' on V. C V' of a germ U C C* of
commutative group of automorphisms. As f is a Lagrangian fibration, the
considered automorphisms ¢ € U preserve f, namely fo = f on V for any
Y € U. It follows that the locus X NV is preserved by the action of U (that
is, mapped to X; N V') and for any 2’ € X} NV, the orbit U - 2’ is contained
in X3, NV’ As these orbits are contained in the fibers of fjy, the lemma is
proved. O
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Remark 4.2. This vertical group action is also used in [23]. Thanks to the
fact that the action is vertical and the map f is proper, the germ of commu-
tative group appearing above globalizes to a holomorphic action of a commu-
tative group isomorphic to C* on a neighborhood of the fiber X; in X passing
through z. This is obtained by observing that, by properness, the flow gen-
erated by Hamiltonian vector fields is defined for all time. This action is free
assuming that the differentials f*df; remain independent everywhere along
the fiber. This will be the case in Section 5.1, where we will consider the case
k=n-—1.

We also note the following basic

Lemma 4.3. Let f : Y — S be an algebraic or analytic morphism, where both
Y and S are smooth. With the same notation Yy as above, for any irreducible
component Z of Yy, one has dim f(Z) < k.

Proof. Indeed, the generic rank of f| is not greater than &, hence f(Z) has
dimension < k by Sard’s theorem. O

Proof of Theorem 1.6. Statement (1) is Lemma 4.3 and statement (2) is
Lemma 4.1. In order to prove (3) and (4), we need to globalize the argu-
ment used in the proof of Lemma 4.1. Let Z be an irreducible component of
X}, which has dimension 2k and whose image f(Z) in B has dimension k.
We observe that, by applying again Lemma 4.3 to X<j_1, for a general point
be f(Z), the fiber Z, := (fiz)~'(b) is contained in X}, that is, the rank of f
along 7 is everywhere k. There is thus a morphism

fZ : 7 — Grass(k, f*Tpg),
z — Im f*72 C TB,f(z)v

which is well-defined in a neighborhood of Z,. This morphism is generically
constant along Zp, since at any point of Z N X where the rank of f|z is also
k, we have

Imf|Z,* - Imf*

and the space Im f|, has to be equal to Tz, at a general point of f(Z). It
follows that the morphism f is actually constant along Z,. We now argue as
in the proof of Lemma 4.1, in a global setting. Let b = f(z) and let fi,..., fx
be holomorphic functions defined on B near b whose restrictions to f(Z2)
have independent differentials at b. By the above argument, the pulled-back
functions g; = f; o f on X have independent differentials along 7, hence
in a neighborhood of Z; in X. Furthermore, their Poisson brackets vanish
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since f is Lagrangian. It follows that the corresponding Hamiltonian vector
fields x; generate an integrable foliation, whose underlying vector bundle is
trivial along Zj, and which is vertical, in the sense that it is annihilated by
f«, or equivalently that the diffeomorphisms ;;, t € C, generated by the
Hamiltonian vector fields x; satisfy fo;; = f. Recall from Remark 4.2 that
these diffeomorphisms 1);; are in fact defined in a neighborhood of X3 in X.
As we have f o+ = f, ¥ preserves Xy, hence it preserves its irreducible
components and thus acts on Z and on the fiber Z,. As the group U = CF
generated by the 1 ;’s is of dimension k and acts freely on X, and by assump-
tion dim Zp = k, we conclude that the orbits of this germ of groups are open
in Zp. In particular Z; is smooth and its tangent bundle is trivial, isomorphic
to the restriction of F to Z;, and generated by commuting vector fields. Thus
Zy is a disjoint union of compact complex tori 7;, and the group action above
of U on Z, factors through the action of T; on itself by translations (thus U
identifies to the universal cover of T;). As we already observed, U not only
acts on T; by translations, but also on a neighborhood of T; in X and X. We
thus conclude that U acts on the restricted normal bundle N, ,xr,, making
it homogeneous. O

Coming back to Lemma 4.3, note that we can easily find examples where
f(Z) has dimension < k. For example, consider the case where the morphism
f is the blow-up Y := Bly(S) — S of a smooth subvariety M C S of
codimension 2. Then the exceptional divisor E is the locus where f is not of
maximal rank. The rank of f along E is m — 1, where m = dim S = dim Y,
and the rank of fg is m — 2. Unlike the Lagrangian fibration maps when the
basis is smooth, this example is not flat, but there are also flat examples of
this phenomenon: consider a 3-dimensional singular affine quadric Q C A* of
equation 22 + 42 + 22 +t> =0 and let 7 : Y — @ be a small resolution of
the singular point 0 € Q. Let f =lo7:Y — A% where [ : Q — A? is the
linear projection (z,y, z,t) — (z,y). Then the fibers of f over (z,y) # 0 are
conics 2% +t? = @ and the fiber of f over 0 is the union of a conic 22 +¢2 =0
and the exceptional curve E. They are thus of dimension 1, so f is flat. The
locus where f has rank 1 is the union of two components: the first component
is the set of singular points of the conics 2% + t2 = —22 — y? over the set of
points (z,y) such that 22 +y? = 0, and the restriction of f to this component
has generic rank 1. The second component is the exceptional curve E and the
restriction of f to £ has generic rank 0 since it is contracted. Finally, the rank
of f is generically 1 along F, because if instead of Y we consider the blow-up
of Y along E, that is the blow-up 7’ : @ — @ of @ at its singular point, with
exceptional divisor F', then the rank of [ o 7’ is generically 1 along F' and the
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same follows easily for Y. In the case of a Lagrangian fibration f : X — B
with smooth B, we do not know if an example as above is possible:

Question 4.4. Let f : X — B be a Lagrangian fibration with X hyper-Kdhler
and B smooth (or the restriction of a Lagrangian fibration over the smooth
locus B of its base). For any integer k > 0 and any component Z of the set
X, C X of points where f has rank k, is it true that f(Z) has dimension k
(or equivalently, that the generic rank of fiz is k)?

Note that an affirmative answer to Question 4.4 would imply, using
Lemma 4.1, that the dimension of X}, (assuming it is non-empty) is greater
than or equal to 2k, which is different from the generic codimension estimate
of Lemma 3.2.

The stratification of X by the rank, that is, by the Xy, induces a collection
of subsets f(Xy) =: By C B. It would be interesting to compare these subsets
to another natural stratification on B related to the topological degeneration
of the fibers of f. Assume that the fibers of f are reduced and irreducible.
We will say that the fiber X, has abelian rank k if the Albanese variety of
any desingularization X, of X, has dimension k. The following comparison
statement can be found in a slightly different form in [2, Proposition 5.17].

Proposition 4.5. Assume that the base B is smooth, the fibers of f are
reduced and irreducible so that, by [2], there exists a group scheme G over B
with Lie algebra isomorphic to Qp which acts on X over B. If a fiber Xy,
b € B, has abelian rank k, then b does not belong to f(X;) forl < k. In other
words, the rank of the differential f, : T'x , — Tgy is > k for any x € Xj.

Proof. (Cf. [2]) The Lie algebra of G is isomorphic to 5 and the infinitesimal
action of G on X is given at any x € X by the pull-back map f*: f*Qp —
Qx = Tx followed by evaluation at x. The set X; of points x € X where the
evaluation map has rank [ is thus also the locus where the isotropy subgroup
T, of x has dimension n — [. By our assumption on the singularities of the
fibers, any fiber X is birational to the corresponding fiber G;, which is a
commutative algebraic group. By [9, Theorem 2], the group Gy, b = f(x), is
an extension of an abelian variety A, by an affine group Ny, so any smooth
projective model of Gy is a rationally connected fibration over A;, hence A,
is the Albanese variety of any desingularization of G,. We now observe that,
as the fiber Xj is irreducible and reduced, there are points y € X3 such that
the isotropy group of y is trivial. It follows first of all that the fiber X is
birational to the corresponding fiber G,. Secondly, considering the action of
7T, on a general point y € X} close to x, we get that the isotropy group Z, is
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affine. It is thus contained in N,, hence we get, for x € X,
dimZ, =n — 1 < dim N, = n — dim Ay,

which proves the proposition. O

We will prove in the next section the following result, which relates Ques-
tion 4.4 to unexpected vanishing for Chern classes.

Theorem 4.1. Assume that B is smooth and that for some integer k > 0,
and for any | > n — k, either X; is empty or, for any irreducible component
W of X, one has dim W = 2l and dim f(W) = 1. Then

(i) If dim f(X,,—) < n — k, one has

(30) cox(X)a" % =0in H*(X,C)

for any class a € H*(X,C) such that g(a) = 0.
(i) If Xp—k is not empty and any component W of X,,_y. satisfies

dimW = 2n — 2k, dim f(W) =n — k,
the class
(31) cor(X)L"F € CH(X)

is Q-effective and nonzero.

(iii) Under the same assumptions as in (ii) for k =n, 2n = dim X, one
has xtop(X) > 0 and xiop(X) = 0 if and only if the locus Xy where f has
rank 0 is empty.

Remark 4.6. The vanishing (30) is a topological property which is different
from the cohomological vanishing relations (3) described in the introduction
and is not expected to hold in general. In fact, using Theorem 4.1(ii), one
sees that it does not hold for the known hyper-Kéhler manifolds.

Remark 4.7. Assume there is a commutative group scheme G over B, with
Lie algebra Qp, acting on X. Then according to [2, Proposition 5.17], the
abelian part of G, has for dimension the infimum of the ranks of f,, for
x € Xp. In particular the abelian part is nontrivial away from f(X,) and is
nontrivial everywhere if X is empty. This reproves Theorem 4.1(iii) in this
case by the classical argument (see [5]).
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We next discuss a refinement of the condition appearing in Question 4.4.
We denote by 7 : G, — B the relative Grassmannian G(k, Tg) of k-dimensional
subspaces of Tz. Consider the following condition for given k.

(xx) For any irreducible component W of the set Xy, C X, the rational
map

(32) Yw : W --> Gy,
r — Im f*@ C TB,f(:t)a

has image of dimension < k.

Lemma 4.8. Condition (*i) holds for a given component W of Xy, if either
dim W < 2k, or dim f(W) = k. In particular, it holds if Question 4.4 has an
affirmative answer for W.

Proof. Let w € W. Recall from the proof of Lemma 4.1 that there is a free
local action of an analytic germ of commutative group of dimension k on a
neighborhood of w in X, which is vertical, that is, preserves f. This group
action preserves W and the map vy is constant along the orbits of this group
acting on W, hence if dim W < 2k, we have dim ¢y (W) < k.

In the other case, where the generic rank of fjy is k, the image of fi :
Txw — T, f(w), for a general point w € W, is equal to the image of (fjw )« :
Tww — Tp, fw), that is, to the tangent space of f(W) at the point f(w).
In this case, 1w is constant along the fibers of fiy, hence dimyw (W) =
dim f(W) = k. O

We conclude this section with a result that will be used in the proof of
Theorem 1.8. We denote by

ng:XXng,
fg:ng—>gka TF)(Ing—>X

the fibered product of X and G and its two projections.

Lemma 4.9. Let i < n be an integer. Assume Condition () of (32) holds
for any k >n—i+ 1. Then the locus Z C Xg, , of pairs (x,V), z € X,V C
T f(), dimV =i —1, such that f* : V4L — Qx, ds not injective, is mapped
by fg to a closed algebraic subset of codimension > 1 in G;_1.

Proof. This is proved by a dimension count. The locus Z introduced above is
the union over all £ and irreducible components W of X}, of the loci Zy := ZN
7 (W). As dim f(W) < k for W C X, the loci 7 (W) are of codimension
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> i for n—k > i, so we can assume that k > n—i+1. At a point x € 7r;<1(W),
the map f : Qp ) — Qx . has rank exactly k, and for a n—i+1-dimensional
subspace V+ C OB, f(z), the condition that f; : V+ — Qx . is not injective
says that V- NKer f# # {0}. This imposes k—n+i Schubert conditions on V/,
that are determined by the point Im f, , € Gi. It follows that the codimension
of the image of Zy in G;_1 is at least

k —n+ i+ codim f(W) — dim ¢W(Wb),
where b € f(W) is a general point and Wy, := f~1(b) N W. As
codim f(W) =n — dim f(W), dimImvy = dim f(W) + dim ¢y (W),

we conclude that the codimension of the image of Zy in G, 1 is at least
i+ k — dim (Im ¢y ). By assumption, dim (Imv¢y ) < k forall k >n —i+1
and W, so we get that the codimension of the image of Zyy in G;_; is at least
1 for all W. O

4.1. Support for Chern classes of Lagrangian fibered varieties

We prove in this section the following result.

Theorem 4.2. Let f : X — B be a Lagrangian fibration of a projective
hyper-Kdhler manifold and i be a positive integer. Assume that B is smooth
in codimension i — 1 and that the condition (i) of the previous section (see
(32)) is satisfied for k > n — i+ 1. Then for any j > i, co;(X) vanishes in
CH(X \ f~Y(B?) for some codimension i closed algebraic subset B* of B.

We first establish some consequences.

Corollary 4.10. Let f : X — B be a Lagrangian fibration of a projective
hyper-Kdhler manifold, where we assume B normal. Then co(X) vanishes in
CH(X \ f~Y(B"Y)) and c2j(X) vanishes in CH(X \ f~1(B?)) for any j > 2,
where B* C B, i =1, 2, is a closed algebraic subset of codimension > i.

Proof. As B is normal, its singular locus has codimension > 2, so in both
cases, in order to apply Theorem 4.2, we only have to study the condition
(%) for kK > n— i+ 1 for i« = 1, 2. The assumption (%) obviously holds
for k = n, implying the first statement. For the second statement, where we
have i = 2, we only need to study the sets X for k = n — 1. Let W be an
irreducible component of X,,_1. Then the image of W under f has dimension
<n-—1,since fjw,, has rank < n—1 everywhere. If dim f(WW) = n — 1, then



Lagrangian fibered hyper-Kéhler manifolds 1417

(%#n—1) is satisfied by W by Lemma 4.8. There might be other components
W for which dim f(WW) < n — 2, but we can restrict the Lagrangian fibration
over the open set B\Uwcx,_,, dim f(w)<n—2f (W) and apply Theorem 4.2 over
this open set. O

Proof of Theorem 1.8. By Lemma 4.8, the assumptions of Theorem 1.8 imply
that Condition (%) holds for k& > n — i + 1. Thus Theorem 4.2 implies
Theorem 1.8. O]

For the proof of Theorem 4.2, we will use the following general lemma
about base change invariance of vanishing of Chern classes.

Lemma 4.11. Let f : Y — M be a proper morphism with M smooth and let
m: N — M be a smooth proper morphism. Denote by Y the fibered product
Y xp N and by

fn: YN = N, 7y Yy =Y

the two projections. Let E be a vector bundle on Y and let | be a positive
integer. Then the Chern class ¢;(E) vanishes in CH\(Y \ f=1(Z)) for some
codimension k closed algebraic subset Z of M if and only if the Chern class
/(% E) vanishes in CH'(Yy \ fx'(Z')) for some codimension k closed alge-
braic subset Z' of N.

Proof. If ¢;(E) vanishes in CH (Y \ f~1(Z)) for some codimension k closed
algebraic subset Z of M, ¢(m% E) vanishes in CH (Yy \ 7y (f~1(2))), and,
as fomy = mo fn, we have 7y (f1(Z)) = f¥'(Z'), where Z' = 771(Z) is
of codimension k£ by smoothness of 7.

Conversely, let H be a very ample line bundle on NV and let d be the
relative dimension of . Assume that the Chern class ¢(7ny E) vanishes in
CH! (Y \ f5'(Z")) for some codimension k closed algebraic subset of N. Then
considering the complete intersection of d general members of |H|, we get a
smooth closed algebraic subset Ny C N, that maps in a generically finite way
to M via m := 7y, and a codimension k£ closed algebraic subset Z1 C Ny,
whose image Z := m(Z]) C M has codimension k. As ¢;(73-F) vanishes in
CH'(Yn \ f5'(2")), we get that ¢(n}y E) vanishes in CH'(Ya, \ f3,(21)),
where Yy, := Y X Ny, with projections my : Yo, = Y, fn, : YN, — N1
As Z = mi(Z7), we find that 7 y.(c(n}y E)) vanishes on Y\ f7'(Z) and
this concludes the proof since m y.(ci(7} y £)) = (degm)ci(£). O

Let now f : X — B be a Lagrangian fibration, where X is projective
hyper-Kéhler of dimension 2n. Let B’ := B\ By and X’ := f~!(B’). The
variety G;_1 introduced in the previous section is smooth of dimension n +
(n—i+1)(i—1) and fibered into Grassmannians over B’ via a smooth proper
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morphism that we denote by . It carries a tautological subbundle S of rank
n — i+ 1 of the bundle 7*Qp/, with fiber V- C Qpp at a point

(b, [VD, V C TB/J,7 dimV =7—-1

of G;_1. We denote as before by fg : X; — Gi—1, mx : X; — X' the two
projections. We have on X’ the morphism of vector bundles

o= f": f*Qp = Qx
and thus, by pull-back to X and restriction to S, we get a morphism
(33) ¢s: S = mxQx.

We now conclude the proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.9, assumption () for & > n — i+ 1
implies that the morphism ¢s is injective on Xg \ fg 1(Z¢) for some closed
algebraic subset Z; of G; 1 of codimension > i. As X is hyper-Kéhler, the
vector bundle 2y carries an everywhere nondegenerate skew-symmetric pair-
ing (, ). As f is Lagrangian, the morphism f*: f*Qp — Q- is Lagrangian
and it follows that the image of the morphism ¢s, which by definition of Z; is
a subbundle of rank n —i+1 on Xg\ fg_l(ZZ-), is totally isotropic at any point
of X{\ f5'(Z;). The subbundle (Im ¢s)* of 7% Ly is thus of rank n+i — 1
on Xg \ fg_l(Zl) and contains Im ¢s. Furthermore, the quotient Qx /(Im ¢s)*
is isomorphic to f3S* via (, ). Let

£ = (Im ¢s)* /Tm ¢s.
This is a vector bundle of rank 2i — 2 on X( \ fg5 Y(Z;), hence we have
(34) c2i(€) = 0 in CH(Xg \ f5' (%))
We use the exact sequences

0= 58 = (Im¢s)t — € =0,

0— (Imgs)" — 75 Qx = f3S* =0

explained above and the Whitney formula, which gives equalities in CH(Xg \
fg'(Z)

(35) Txc(Qxr) = f5e(SF)e((Imgs) ™)
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= [gc(87) fge(S)e(€).
We also get by inverting the total Chern classes in (35)
(36) (&) = mxe(Qx) fge(S*) T fge(S) ™ in CH(Xg \ f5'(2)).

We now conclude the proof by induction on ¢. The induction assumption tells
us that for j < 4, the Chern class ¢9;(Qx) vanishes in CH(X"\ f~1(B7)) for
some codimension j closed algebraic subset of B’. By pull-back, the Chern
class co;(m% Qx) vanishes in CH(X} \ f5'(Z;)) for some codimension j closed
algebraic subset Z; of G,_;41, for j < i. It follows from (36) that, for j < i, the
Chern class ¢5;(€) vanishes in CH(X{ \ (f5'(Z; U Z})) for some codimension
j closed algebraic subset Z} of G;_1 (note that &, being self-dual, has trivial
odd Chern classes). It follows that any class of the form f&a - co;(€), where
a € CH*"%(G;_1), vanishes in CH* (X[ \ (f5'(Z;UZ})) for some codimension
i closed algebraic subset Z! of G;_1. By (34), this is also true for ¢y;(€). Using
(12) and expanding the product in degree 2i, we conclude that co;(7%Qx)
vanishes in CH(X{ \ f5'(Z; U Z))), where Z; and Z] have codimension > i
in G;_;. By Lemma 4.11, we conclude that cy;(€2x/) vanishes in CH(X" \
F7Y(B")) for some codimension i closed algebraic subset of B’. As B\ B’
has codimension > i in B by assumption, c9;(§2x) also vanishes in CH(X \
f~Y(BY)) for some codimension i closed algebraic subset of B. O

4.2. Proof of Theorem 4.1

Proof of Theorem 4.1. (i) First of all, we observe that the mapping class
group acts on the cohomology algebra H*(X, Q) preserving the Chern classes
c;(X) € H*(X, Q). Indeed, the Chern classes of a hyper-Kéhler manifold are
in fact determined by its Pontryagin classes, that are topological invariants.
Furthermore, it is known by results of Verbitsky that this action restricted
to H?(X,Z) is that of a finite index subgroup of O(q). The orbit under this
action of any nonzero class [ with ¢(I) = 0 is Zariski dense in the quadric
{g =0} C H*(X,C). It thus suffices to show that, under the assumptions of
Theorem 4.1(i), we have

(37) coe(X)I"F =0 in H*(X,Q),

since it will imply the same result with [ replaced by any a € H?(X,C) with
q(a) = 0. A fortiori, it suffices to show that

(38) cop(X)L"* =0 in CH*(X).
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We choose a general complete intersection B" % C B of n — k ample
hypersurfaces, whose inverse images in X belong to |dL| for some d, and
denote by X" % C X its inverse image in X, so that the class of X"7F
in CH(X) is a nonzero multiple of L"™*. As X" % is a smooth complete
intersection, we have the cotangent bundle exact sequence

(39) 0 — Oank(_dL)nik — QX‘ank — Qank — 0

As we already used several times, the image of the map O(—dL)" % —
Qx| xn-+ is totally isotropic and there is thus a dual surjective morphism

(40) Qxnr = Oxni(dL)" ™ =0

whose kernel is a rank 2k vector bundle on X" ¥, which will be denoted by
&. Using (39) and (40), we get formulas in CH(X"™~)

(41) CQk(Qx‘Xn—k) = Cgk(g) + Z OZ[LZZCZk_Ql(g),
>0
02i(E) = cai(Qxpxn—r) + > BL* coimon (R xn-),
>0

As we know by Theorem 1.2 that L"*2lcy, o(X) = 0 for [ > 0, we
deduce from (41) that the desired vanishing (38) is a consequence of the
vanishing

(42) cor(€) = 0 in CH(X"F)

that we prove now, using the assumptions of Theorem 4.1(i). We denote by
f': X"k — B"=k the restriction of f. Using the fact that f is a Lagrangian
fibration, the differential

f,* . f,*QBn—k — QX'VL—k
induces a morphism
(43) & " Qpa — E.

Note that £ has an induced nondegenerate skew-symmetric form and that ¢’
is a Lagrangian morphism of vector bundles in the sense of Definition 1.6. Let

7P :=PQpgus)— B"F XB7F .= Pxpg.w X"F
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and denote by
fp  XpF =P oax: XpF o X

the two projections. Let & C 7*Qpgn—+ be the rank 1 tautological subbundle.
The morphism ¢’ induces a morphism ¢” : fp*S — 7%E&, or equivalently a
section

(44) a € H'(Xp, fp"S7' @ 1%€).

The section « is not transverse and we are going to describe its vanishing
locus Z(«) below. After applying an excess formula a la Fulton [18, Section
6.3], the corrected vanishing locus will have class

(45) Z(a)vir = CQk(fIID*S_l & 7[';(5)
= Z f]lp*(01(Sil)Qi)ﬂ_;(CQk72i(£).

0<2i<2k

Recall that mx : Xp — X is the projectivized bundle P(f"*Qpgn-+), polarized
by f5*S~1. We note here for future use that, as we assumed that B is smooth,
it is isomorphic to P™ by [22], hence we can assume that B"* is a P¥ and
S~ ! is very ample on P, with space of global sections H°(P¥, Tpi). We get
from (45)

(46)rx(Z(@)virer (fp ST = eon(€) + Y " 52:(Qpnr ) can—2i(€)
>0
where the s9;’s denote the Segre classes. One proves as in Theorem 1.2 that
f" 52i(Qpgn—i )cap—2:(E) = 0 in CHZF(X™F)
for i > 0, so we get in fact the equality
(@7)  mxa(Z(@)irfp (e (STHY) = ean(€) in CH*(X"F).
We now describe the locus Z (o). We observe that X" * is stratified by strata
XPh = X0 X

where the rank of f, is n — k +1, or equivalently the rank of f, is I. For [ = 0,
as we assumed that dim f(X,_) < k, XJ7* is empty. We will now analyze
the contributions of the strata X l"_k for [ > 0 and show that they all vanish.
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For [ > 0, our assumption is that X;,,,_x has dimension 2/ + 2n — 2k and its
image Bl”*k in B has dimension [ +n — k, so we have dim Xl”*k =2l+n—k
and its image in B has dimension {. We now observe that, denoting X?,;k the
inverse image ' (X%), the section a of (44) vanishes along the projective
subbundle

P(K1) C P((f" Qs ) k) = X3,

where the vector bundle X; on Xl”_k is the kernel of f’*, hence has rank
k — 1. We thus conclude that the intersection Z(«); of the locus Z(«) with
the stratum Xﬁ;k has dimension

(48) dim Z(a); = dim X% + 1k K — 1
=A+4n—k4+k—Il—1=n+1-1

Note that the expected dimension of Z(«) is
dimXpF—2k=2n—(n—k)+k—1-2k=n—1.

The key point is now the following: generically along X l"_k, the rank k£ —1
vector bundle K; comes from the rank £ — [ subbundle on Bl"_k with fiber
Ker (2 Br-k| gk Qgn-r). This follows indeed from our assumptions that

l l

dim X;1 ., = 2(n +1— k), dim By =n+1—Fk,

which implies that the generic rank of fix, ., is n—k+1 (cf. Question 4.4),
hence the generic rank of f/X”*’“ is [. It follows from this fact that the image
l

fr(Z(a) N X]7*) in P has dimension at most
dimB ™ +k—1-1=l+k—-1-1=k—1.

When we intersect Z(a) with k& — 1 hypersurfaces in |fp*S™!| coming from
P, we thus get a subvariety Z’(«) which is supported over finitely many
points in P, and its image in X™ % under 7x has finitely many irreducible
components, all contained in fibers of f’. More precisely, the fibers of Z'(«)
supported over B; are supported over generic points of Bl”*k , contained in
X% and of dimension n — k + 1 by (48). Finally, recall that, by formula
(47), we have to compute mx.(Z(a)virfp (c1(S71)*71)) and show that it is
0 in CH(X"™*). Here the cycle Z(a)yi, is supported on Z(a) and computed
by applied Fulton’s refined intersection formula [18]. Now we observe that we
can replace the term Z(a)yi f5"(c1(S71)*~1) appearing in this formula by the
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virtual class of Z'(«). As we described Z’(«) as a disjoint union of components
Z'(a)1p, of dimension n — k + [ contained in fibers X}ﬁ;’]gﬂ it suffices to show
that the contribution of each Z'(a);p, to Z'(a)yir is 0 for [ > 0. This follows
from the following

Claim 4.12. The excess bundle for the section « is trivial of rank | along the
fiber Xﬁfbk N Z(«a), for a general point b € Bl"*k.

Proof. Let b € B{“k be a general point. Choose [ functions ¢1,...,¢9; on
B"* whose differentials at b are independent on Bl”*k. Then their pull-backs
to X" * have independent differentials along X l’fb_ * hence in a Zariski open
neighborhood Ugﬁb*k of Xﬁ;k in X"* since b € Bl”*k is a general point so
the morphism X l”_k — Bl”_k has to be of rank [ at any point over b. Let F
be the trivial rank ! vector bundle on Ul?*k generated by these differentials.
We have a natural morphism F — & induced by the inclusion F — QU:_k,
using the fact that f is Lagrangian. By duality, this induces a quotient map

qg:E—=>F" =0
on Ul?_k. The morphism
o Qpns — &,

being Lagrangian, takes value in Kergq. This proves that the excess bundle
identifies to F* along X l’fbf ¥ This proves the result since F is trivial on U glik,

hence on Xl’f_k. O

The claim concludes the proof since, as we already mentioned, by our
assumption that dim B, < n—k, Bg_k is empty so there is no contribution
from the stratum where [ = 0. O

Proof of Theorem 4.1(ii) and (iii). Statement (iii) is a particular case of (ii).
For the proof of (ii), we just follow the analysis made previously, except that
now, the stratum X{)’*k is not empty and of the right dimension by (48).
In particular Bgik is a non-empty set of points and X(’f*k has dimension
n — k, and there is no excess in the contribution of the stratum X" to the
cycle px.(ci(S™H* 1 Z(a)yir), and this stratum contributes via an effective
non-empty cycle of dimension n — k. The contributions of the other strata are
zero as explained in the previous proof. This shows that the cycle cop(X)L"*
is effective and nontrivial. O
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5. Proof of Theorems 1.3 and 1.4
5.1. The cycle ch"_l

We study in this section the cycle L™ tey(X)?, where L is a Lagrangian line
bundle on a projective hyper-Kéahler 2n-fold X, whose vanishing is predicted
by Conjecture 1.4. We use some of the constructions and notations intro-
duced in the previous sections. We denote by C' = B"~! C B the (smooth)
complete intersection of n — 1 ample general hypersurfaces in a very ample
linear system |H| on B with f*H = L®? and X¢ = X! C X its inverse
image in X with restricted morphism f’ : X¢ — C. We have on X the
rank 2 vector bundle £ with trivial determinant, which is the kernel of the
natural surjective morphism Qx,. — Ox.(dL)"~! of (40), and has an induced
symplectic structure (see also (10)). We only study the case where there are
no nonreduced fibers in codimension 1. The vanishing locus of the morphism
I Q¢ — Qx, thus has codimension > 2 in X¢. Furthermore, as we
saw already, this morphism takes values in £ and its vanishing locus Z thus
represents the class co(E(—f"*K¢)). Note that Z is supported on fibers of f,
on which f"*K¢ is trivial. Arguing as in the proof of Theorem 4.1, that is,
comparing j.c2(€), where j is the inclusion of X¢ in X, and L™ tep(X), we
get

Lemma 5.1. The class L™ 'cy(X)? € CH"?(X) is proportional to the class
Jz«(c2(E)z), where Z is as above the critical locus of f' and jz : Z — X is
the inclusion map.

The geometry of Z and £ is very interesting and a particular case of
a phenomenon studied in [11], [16]. Indeed, we can apply Theorem 1.6 with
k = n—1since for k = n—1, the equalities in (1) and (2) hold in codimension 1
on B once there are no nonreduced fibers in codimension 1. We thus conclude
that Z is a finite union of abelian varieties, which are projective leaves of a
foliation. The conormal bundle of a leaf F of a foliation F := £ on a manifold
Y admits an integrable holomorphic connection, defined as the composition

Qy DELENQy = E2Qp,

so it is a flat bundle. Unfortunately, we cannot say much more about it, since
by the suspension construction described in [16, Example 9.1], any flat vector
bundle £ on an abelian variety A is isomorphic to the conormal bundle of
a foliation on the total space of E, of which A is a leaf. Furthermore, the
Chern classes of a flat holomorphic vector bundle with trivial determinant on
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an abelian variety A can be nontrivial in CH(A). For example, for any line
bundle M € Pic(A), the vector bundle M @& M~! has trivial determinant but
its second Chern class —M? € CH?*(A) is in general nontorsion. In fact, once
the dimension of A is at least 2, the subgroup of CH?(A) generated by these
classes is infinite dimensional in the Mumford sense, by Mumford’s theorem
[34]. In the present situation, we have

Lemma 5.2. For each connected component Z; C X, of Z, the vector bundle
&z, 1s isomorphic to either

(i) a direct sum M; & M;" for some line bundle M; € Pic®(Z;), or

(i) a tensor product M; @ U for some 2-torsion line bundle M; on Z; and
rank 2 vector bundle U which is a an extension of the trivial line bundle by
itself.

Proof. The vector bundle £, is homogeneous by Theorem 1.6. Homogeneous
rank 2 vector bundles on abelian varieties are classified in [33] and are direct
sums of homogeneous (that is topologically trivial) line bundles, which gives
the first case, or of the form M; ® U as in (ii). In case (ii), M; has to be a
2-torsion line bundle since det £ is trivial. O

In case (ii), the class c2(€|z,) is trivial, and thus the contribution of Z;
to the class c(X)L""! is zero. Unfortunately, case (i) is the most naturally
encountered. We discuss another more classical viewpoint on the line bundle
M; in the following Proposition 5.3, showing that there is no restriction on
the topologically trivial line bundle M; in (i). Let ¢ € C be a critical value
of f’, let X, be the fiber f~ Y(¢) and Z. C X. be the singular locus of X.. By
[23], the normalization X, is smooth and it is a P'-bundle over an étale cover
of an abelian variety A., via its Albanese map

a:)A(C—>Ac.

The inverse image of Z. is a finite union of abelian varieties contained in )A(c
which are multisections of a and étale over A.. These facts follow again from
the existence of the local vertical free group action of C*~! on a neighbor-
hood of X, in X¢, which is transitive on the components of Z., and provides
automorphisms of X, which lift to )A(c.

Proposition 5.3. Assume we are in Case (i) of Lemma 5.2, and that M; is
not torsion, X, is irreducible, X has at most two branches along Z;, and the
branches are smooth. Then the inverse image Zi=n —1(Z) c X, is a divisor
which has degree 2 over Z; and there is a canonical isomorphism

(49) £z, = nu(05(Z)).
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Furthermore Z 1s the union of two disjoint divisors ZJ, 21‘72 isomorphic to
Ac via a: X, — A and to Z; via n and, for any ample line bundle H on X,
we have for some nonzero integer d

(50) dM; = Hy, — t*Hz,,

where t is the translation of A. = Z; given by the composition az.,

(alf-l)_l’ L being the natural isomorphism Z-J = Z-Q given by the isomor-

[oly e

phisms
n|/Z\z‘,1 . Zi,l = Zi7 n‘zﬂ . Zi72 = ZZ

Note that, from (50), we conclude that the line bundle M; is torsion if and
only if the translation ¢ has finite order. In most examples, the translation ¢
does not have finite order (see [23] for examples). In fact, the translation ¢
is well understood from the viewpoint of degenerations of abelian varieties.
If the family of fibers is the Jacobian fibration of a family of curves C — B
degenerating generically along the discriminant hypersurface A to irreducible
curves C., ¢ € A with one node z, then the translation used to construct
the generalized Jacobian of C. starting from a P!-bundle on .J (C ) by glueing
two sections is translation by the point alb(z1 — z2) € J (C.), where x1, 75 €
C, are the two preimages of z under the normalization map C. — C. (see
[10]). Similarly, if the family of fibers is the Jacobian fibration of a family
of threefolds X — B with h3" = 0 degenerating to threefolds X, with one
ordinary double point zy and nonzero vanishing cycle, then the similarly

defined translation is translation by the point ® & (Ry — Rp) € J 3(X,), where

X, — X. is the blow- up of the singular point, <I>~ is its Abel-Jacobi map,
and the curves R; are lines in the two different ruhngs of the exceptional
divisor, which is a 2-dimensional quadric (see [13]).

Proof of Proposition 5.3. Our assumption is that, locally analytically near
Z;, X is the union of two smooth divisors in X¢ so that n has degree 2
over Z;. For any point = € Z;, we denote by z1, o its preimages in )A(c and
R,,, R,, the respective fibers of a through x;, 2. Let g be a coordinate on
C centered at c. Then f*g vanishes along X, and its differential vanishes
along the component Z; of the singular locus of X.. The Hessian of f along
Z; is a nonzero section of S 25‘ z, since our assumptions also imply that X, has
multiplicity 2 along Z;. If M; is not a torsion line bundle, the only nonzero
section of S2€ is the section of the factor M; ® M;* C S2£, which vanishes
along the two factors M;, M; " of &7,- As we assumed that n is an immersion

at the points z1, x9 above x € Z; and we know that the inverse image ZZ - )A(C
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~Y

of Z; is étale over A., we get up to a permutation identifications Tsz a =M ;j
with j = 1, 2 and ¢; = (—1)7. This proves (49).

As X, is irreducible, X, is connected and it is a P!'-bundle over an abelian
variety A, by [23]. The inverse image Z; € X, is étale over Z;, hence is a
disjoint union of at most two abelian varieties, all isogenous to A.. If Z; is
irreducible, we have n*OA = Oy, @ Oz, (n) for some 2-torsion line bundle

n € Pic’(Z;). By (49), using the fact that the line bundle 0 (Z (Z;) on Z; is
homogeneous, hence topologically trivial, we get in this case an isomorphism

iz, = M; @ Mi(n)
for some line bundle M/ € Pic’(Z;). Comparing with the isomorphism

of (i), we conclude that M; is torsion, which is a contradiction. It follows
that Z has two connected components ZZ 1, ZZ 2, each dominating A. since
otherwise they would be ruled. As the canonical bundle of X, is trivial, the
divisor Z has degree at most 2 over A. so each component Z-,l, 21‘72 has
degree 1 over A, hence is isomorphic to A..

It remains to prove (50). Let H be an ample line bundle on X,.. Assume
for simplicity that the pull-back H := n*H has degree 1 on the fibers of
a:X.— A (This can be assumed in any case if we work with Picard groups
with Q-coefficients.) Then we have equalities in Pic(X,)

(51) Oz (Zia) = He a*M{, Og (Z;5) = H® a" M
for some line bundles M; on A.. We now use the fact that H is the pull-back
of a line bundle under n, so ﬁ » and H » coincide via the isomorphism ¢.

Denoting a; := a,%

) a2 = app , it follows from the definition of ¢ that

|Zi1
(52) (ay ) H = t*((a; )" H).

We now observe that Z,l and ng do not intersect, so we get
O (Z )|Zzz = OZ,Q,

hence, using (51), (52)

(53) (a3 ) H @M, =04 =t*((a7 V) H) @ M,.
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It follows that
(a7 ') (0" My)=(a; ") (05 (Zir))=(ay ") HOM] = (a;) Hot"((a7 ') H) ™,

where the first equality follows from (49) and the third from (53). This proves
(50) since H = n*H. O

Remark 5.4. The proof also shows that the singular locus Z is irreducible
in this case. This will be used below.

We now give a criterion for the vanishing of the class c(X)2L"! in
CH(X).

Proposition 5.5. Let X — B be a Lagrangian fibered hyper-Kdihler manifold.
Assume the following three conditions hold:

1. In codimension 1 on B, the singularities of the fibers are as in Propo-
sition 5.3, that is, the fiber Xy is irreducible, it has at most two local
branches at any point, and they are smooth.

2. For any irreducible component A; of the discriminant hypersurface A C
B, any desingularization Aj of Aj satisfies CHO(AJ-) =7Z.

3. For any irreducible component A; as above, the family of abelian vari-
eties Ay = Alb()A(b) parameterized by a Zariski open set of A; satisfies
the following nondegeneracy property:

(*) For a general point b € Aj, there exists u € Ta,p such that the first
order variation of Hodge structure

Vu : Hl’O(Ab) — Ho’l(Ab)

s an isomorphism.
Then co(X)2L" 1 =0 in CH(X).

Proof. The proof follows closely the argument of [43]. The family A; =
(Ap)pen,, of abelian varieties is an integrable system generically over A; be-
cause the symplectic holomorphic form has generic rank 2n — 2 on the nor-
malization of the restricted family Xa;, which is ruled over Aj;, hence induces
a 2-form on A; which is everywhere nondegenerate over a Zariski open set of
Aj. This 2-form makes A; — A; a Lagrangian fibration over a Zariski open
set of A;. By symmetry (see [15]) of the map giving the infinitesimal variation
of Hodge structure

V : TAj,b — Hom (Hl’o (Aj,b); ]’IO’1 (Aj,b))y
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the condition (*) translates into the fact that for general b € A;, and general
A € HYO(A;,), the map

v()\) : TAj,b — HO’I(Aj,b)

is surjective. By the main result of [1], this condition implies that, for any
normal function v, that is, algebraic section v of PicO(A;- JA%) — Al defined
over a generically finite cover A’ of Aj, the set of points b € A} such that v(b)
is torsion in PicO(Ajvb) is dense for the Euclidean topology of A;. We apply
this to the normal function defined as follows. Let Z; be the singular locus of
Xa,. If we restrict to an adequate dense Zariski open set of A;, Z; is smooth
of codimension 2 in X and its conormal bundle &; has one of the forms (i),
(ii) of Lemma 5.2. In case (ii), we already noticed that the contribution of
the fibers Z;; to ca(X)2L" ! is trivial. In case (i), the decomposition

Y -1
iz, = Mjp @ My,

defines a degree 2 cover of A; parameterizing the choice of one of the line
bundles M, thbl € Pic’(Z;;,) = Pic"(A;;). It follows that there are points
b € A; where the line bundles M;; and M th1 are torsion. By Lemmas 5.1
and 5.2, the cycle ca(§2x|z,,) is trivial in CH?(Z;,) for any of these points.
By condition 2, the cycle jz, ,«(c2(Q2x|z,,)) € CH™"3(X) does not depend on
b € A, hence it is trivial for any b € A;. The cycle c2(Qx)?L™ ! is up to a
coefficient the sum of these cycles over all j, and all points b € A; N C', hence
it is trivial. O

Proof of Theorem 1.3. We just have to check that the assumptions of Propo-
sition 5.5 are satisfied in the case of the LSV manifold and its Lagrangian
fibration. Let X C IP° be a smooth cubic fourfold. The base of the associated
LSV manifold is the dual 5-dimensional projective space P%* and the discrim-
inant hypersurface A C P°* is the dual of the cubic X C P°. It follows that
the LSV fibration satisfies condition 2. The condition 1 is also well-known:
the generic behavior along A of the compactified intermediate Jacobian fi-
bration is the same as the generic behaviour, along the discriminant divisor,
of the family of intermediate Jacobians of all cubic threefolds. This is studied
in [13], [15]. It only remains to check condition 3. However, since we are con-
sidering a Lagrangian family of abelian fourfolds, it is observed in [43] that
the infinitesimal condition 3, which says that for generic b € A, there exists
a u € Tay such that

VU : HLO(A(,) — Ho’l(Ab)
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is an isomorphism, is equivalent to the fact that there does not exist any
u € Tap, u # 0, such that V,, : H'0(A,) — H%!(A,) is identically 0, that
is, the moduli map of the family of abelian varieties (Ap)pea has nowhere
maximal rank. This follows from a result due to Lossen [29] concerning the
projective geometry of homogenenous cubic polynomials in four variables: it
says that if a projective cubic surface is not a cone, then it has a point where
its Hessian (or second fundamental form) is a nondegenerate quadratic form.
We apply the Lossen result to the cubic form

C(u,v,w) = (Vy(v),w),

with v € HY(A4,), u € Tap, w € HYO(Ap). The symmetry of C in u, v, w,
using the natural isomorphism Th, = H'“(4,) given by the Lagrangian
fibration structure, is observed in [15].

By this argument, if condition 3 were not satisfied, the family of abelian
varieties (Ap)pea would not have maximal modulus, and it is easy to show that
this does not happen, at least for very general X. For example, one can note
that, by [12], these abelian fourfolds are the Jacobians of complete intersection
curves of type (2,3) in P3, so that their variation of Hodge structure can be
described explicitly. O

Remark 5.6. If instead of a LSV manifold we consider the punctual Hilbert
scheme Sl of a K3 surface S with Picard group generated by a line bundle of
self-intersection 2g—2, or rather its birational version admitting a Lagrangian
fibration compactifying the Jacobian fibration of the universal family of curves
over |L| (see [5]), then the proof above does not apply since the condition 2
in Proposition 5.5 is not satisfied. However, in this case the discriminant
hypersurface is birational to a projective bundle over S, hence the relations
in the Chow group of a K3 surface established in [4] (see statements 1 and 2
in the introduction) can probably be used to conclude also in that case. As
the result is proved in [32], we do not pursue this argument.

5.2. Riess’ argument and proof of Theorem 1.4

Theorem 1.4 follows from Theorem 1.2 by Riess’ arguments as in [37]. For
completeness, we sketch the proof below. The main result from Riess’ paper
that we need is the following.

Theorem 5.1. Let X be a projective hyper-Kdihler manifold of dimension
2n, and let L € NS(X) be an isotropic class. Then there exists a projective
hyper-Kihler manifold X', and a correspondence T' € CH*(X x X') such that
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1. T induces a graded ring isomorphism Ty : CH(X) — CH(X') which
maps ¢;(X) to ¢;(X').
2. T.(L) = L', where for some nef line bundle L' on X'.

The variety X’ is birational to X, hence deformation equivalent to X by
[19]. The cycle T is effective and is the limit of graphs of isomorphisms X; &
X/ for some small deformations X; of X, resp. X] of X’. Such isomorphisms
satisfy property 1, hence also I', as was observed by Riess in [38]. Being
the specialization of graphs of isomorphisms, the correspondence [I']* also
induces a ring isomorphism on cohomology, so L’ is also isotropic since this
is equivalent to deg L’ n— by the Beauville-Fujiki formula, and we have
deg L?" = 0.

Assume now the SYZ conjecture for the hyper-Kéhler manifolds of the
same deformation type as X. Let [ = ¢;(L) be an algebraic isotropic class on
X. By Theorem 5.1, there exist X', I' € CH*"(X x X) satisfying properties 1
and 2. As ' :=T',l is nef on X', and X’ satisfies the SYZ conjecture, one has
by Theorem 1.2

L™ 00 (X') = 0 in CH(X') for j > i.
As I' is a ring isomorphism preserving Chern classes, it follows that
L™y (X) = 0 in CH(X),
for 7 > 4, which proves Theorem 1.4.
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