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Stable birational invariants
and the Lüroth problem

Claire Voisin

Abstract. We describe recent progress on rationality and stable ra-
tionality questions. We discuss the cohomological or Chow decomposi-
tion of the diagonal, a very strong stably birationally invariant property
which controls many of the previously defined stable birational invari-
ants. On the other hand, it behaves very well under specialization and
desingularization of mild singularities.

1. Introduction

The subject of this paper is the generalized Lüroth problem which
asks for criteria distinguishing unirational varieties from rational or stably
rational varieties. Here the definitions are the following:

Definition 1.1. A smooth projective variety X over a field K is unira-
tional if there exist an integer N and a dominant rational map Φ : PN

K ��� X.

Note that one can always (at least if K is infinite) reduce to the case
N = n = dimX by restricting Φ to a general linear subspace Pn

K ⊂ PN
K .

Definition 1.2. A smooth projective variety X over a field K is rational
if there exists a birational map Pn

K ��� X. X is stably rational if X × Pr is
rational for some integer r.

Of course, all these notions can be reformulated using only the function
field K(X) of X, so that the smoothness or projectivity of X is not
important here. However, it is very important in practice to work with
smooth projective models. To start with, we have the following basic lemma.

Lemma 1.3. A rational map φ : X ��� Y between projective varieties X
and Y with X smooth is well-defined away from a closed algebraic subset of
X of codimension ≥ 2.

We also have in characteristic 0 the Hironaka theorem on resolution of
indeterminacies:

c© 2016 International Press

313



314 CLAIRE VOISIN

Theorem 1.4. Let φ : X ��� Y be a rational map between projective
varieties. Then there exists a smooth projective variety X ′ with a morphism
τ : X ′ → X which is the composition of a finite number of blow-ups along
smooth centers, such that φ ◦ τ is a morphism φ′ : X ′ → Y .

In dimension 1 and 2 and over an algebraically closed field of character-
istic 0, unirationality implies rationality (hence a fortiori stable rationality).
In the surface case, this follows from the Castenuovo characterization of
smooth projective rational surfaces as those smooth projective surfaces X
satisfying q(X) = p2(X) = 0 (see [5]).

Starting from dimension 3, the answer to the Lüroth problem asking
whether unirational varieties are rational is negative. Three methods have
been developed in the 70’s to solve this problem, namely the Clemens-
Griffiths method [10], the Iskovskikh-Manin method [22], and the Artin-
Mumford method [2]. Among them, only the Artin-Mumford method solves
the stable Lüroth problem, exhibiting unirational threefolds which are not
stably rational. The invariant used by Artin-Mumford is the Brauer group
and it is a topological invariant for rationally connected varieties. Colliot-
Thélène and Ojanguren [11] described the higher degree generalization of
this invariant, which takes the form of unramified cohomology with torsion
coefficients. The first next invariant is the group H3

nr(X,Q/Z) which was
reinterpreted in [13] as the group Hdg4(X,Z)/H4(X,Z)alg, at least when X
is rationally connected smooth projective defined over C. It was proved in
[39] that this group is trivial if X is rationally connected of dimension 3,
and in fact the Colliot-Thélène-Ojanguren examples of unirational varieties
for which this group is nontrivial are known to exist only starting from
dimension 6 (it is likely that they exist starting from dimension 4).

In [38] and [36], we studied the notion of decomposition of the diagonal,
which in the Chow-theoretic setting is equivalent to the universal triviality
of the CH0 group, as beautifully explained in [4]. This led us to the discovery
of many new obstructions to the stable rationality of unirational threefolds.
In particular, we proved

Theorem 1.5. [36] The very general quartic double solid is not stably
rational.

Using a beautiful combination of this method as improved by Colliot-
Thélène and Pirutka [12] with the Kollár degeneration [24], Totaro proved
the following:

Theorem 1.6. [35] A very general hypersurface of degree ≥ 2 �(n+2
3 )�

in Pn, n ≥ 3, is not stably rational.

The goal of this paper is to survey these recent developments, and some
further related results in the case of cubic hypersurfaces, whose (stable)
irrationality remains one of the most challenging problems in the field.
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Thanks. I thank Ludmil Katzarkov for his invitation to lecture on these
topics in Miami, and Shing-Tung Yau for giving me the opportunity to
present these new developments in this volume.

2. Stable birational invariants

We will discuss in this section quantities or properties of a smooth com-
plex projective variety which are invariant under stable birational equiva-
lence. Here we have in mind the following definition:

Definition 2.1. Two smooth projective varieties X and Y are stably

birational if X × Pr
birat∼= Y × Ps for some integers r, s.

In particular, X is stably rational if and only if it is stably birationally
equivalent to a point. We will first discuss stable birational invariants which
come from topology or complex differential geometry. As we will see, very
few of them can be nontrivial if the variety is unirational. We will then
introduce more refined tools such as Chow groups and Hodge structures.

2.1. Topology.

2.1.1. Holomorphic forms. If X is smooth projective over K, we can
consider the spaces H0(X,Ω⊗k

X/K), where ΩX/K is the sheaf of Kähler
differentials. If K = C, by GAGA [32], this space identifies to the space
H0(Xan,Ω⊗k

Xan), where Xan is the complex manifold associated to X. We
have the following lemma:

Lemma 2.2. For any k ≥ 0, the space H0(X,Ω⊗k
X/K) is a stable birational

invariant.

Proof. We have to check first that this space does not change if X is
replaced by X × Pr

K . We have

ΩX×Pr/K = p∗
1ΩX/K ⊕ p∗

2ΩPr
K/K ,

where the pi’s are the projections from X × Pr to its factors. Thus
Ω⊗k

X×Pr
K/K = ⊕p+q=kp

∗
1Ω

⊗p
X/K ⊗ p∗

2Ω
⊗q
Pr

K/K and

H0(X × Pr
K ,Ω⊗k

X×Pr
K/K) = ⊕p+q=kH

0(X,Ω⊗p
X/K)⊗H0(Pr

K ,Ω⊗q
Pr

K/K).

Then the result follows from H0(Pr
K ,Ω⊗q

Pr
K/K) = 0 for q > 0 (and this space

is obviously equal to K for q = 0). We next have to show that this space
is invariant under birational equivalence. Let φ : X ��� Y be a birational
map. By Lemma 1.3, there exists a Zariski open set U ⊂ X such that
codimX \ U ≥ 2 and φ is well defined on U . We can thus define (because
k ≥ 0)

φ∗ : H0(Y,Ω⊗k
Y/K) → H0(U,Ω⊗k

U/K).

This morphism is injective because φ is generically of maximal rank. As
X is normal or by Hartogs in the complex setting, we have H0(U,Ω⊗k

U/K) =
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H0(X,Ω⊗k
X/K). We thus constructed an injective morphism φ∗ : H0(Y,Ω⊗k

Y/K)

→ H0(X,Ω⊗k
X/K), which admits as inverse (φ−1)∗.

�

This fact is of course very important for birational geometry, but it is
not useful for the Lüroth problem, by the following lemma:

Lemma 2.3. Let X be a rationally connected variety over a field K of
characteristic 0. Then H0(X,Ω⊗k

X/K) = 0 for k > 0.

Remark 2.4. This lemma remains true in characteristic different from 0
if “rationally connected” is replaced with “separably rationally connected”.

Proof of Lemma 2.3. By definition, there exists a dominating ratio-
nal map

Φ : Y × P1
K ��� X

which maps Y ×0 to x ∈ X(K). As in the previous proof, the map Φ induces
for any k ≥ 0 an injective pull-back morphism Φ∗ : H0(X,Ω⊗k

X/K) → H0(Y ×
P1,Ω⊗k

Y ×P1
K/K

). We already saw that H0(Y × P1,Ω⊗k
Y ×P1

K/K
) ∼= H0(Y,Ω⊗k

Y/K),
where the isomorphism is given by restriction to Y × 0. On the other hand,
we have for any α ∈ H0(X,Ω⊗k

X/K)

(Φ∗α)|Y ×0 = (Φ|Y ×0)
∗α = 0

for k > 0 since Φ(Y × 0) = {x}. �

Remark 2.5. We used above the fact that Y × 0 ⊂ Y × P1 is a divisor,
so that Φ is well defined generically along Y × 0.

We have the following corollary:

Corollary 2.6. Let X be a smooth rationally connected variety over
C. Then H i(X,OX) = 0 for i > 0. This remains true over any field of
characteristic 0.

Proof. Indeed, we can use the Hodge symmetry that will be discussed
in Section 2.2.3 and gives a C-antilinear isomorphism between H i(X,OX)
and H0(X,Ωi

X). �

2.1.2. Fundamental group. The fundamental group π1(Xan) of a smooth
complex algebraic variety X does not change when X is replaced by U =
X\F , where F is a closed algebraic subset of codimension ≥ 2. It follows that
if φ : X ��� Y is a rational map between smooth complex algebraic varieties,
there is an induced morphism φ∗ : π1(X,x) ∼= π1(U, x) → π1(Y, φ(x)) where
x ∈ U and U is the open set where φ is well-defined. When φ is birational,
we can do the same thing for φ−1. We then conclude

Lemma 2.7. The fundamental group of a smooth projective algebraic
variety is a stable birational invariant.
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On the other hand, this invariant is not useful for the Lüroth problem,
by the following result, which is due to Serre [31] in the unirational case.

Lemma 2.8. Let X be a smooth projective rationally connected complex
variety. Then π1(Xan) is trivial.

Proof. First of all, π1(Xan) is finite. This is proved as follows : there
exists a dominating rational map

Φ : Y × P1 ��� X

which maps Y × 0 to x ∈ X. We now use the fact that any surjective
morphism ψ : T → X between complex algebraic varieties induces a
morphism ψ∗ : π1(T an) → π1(Xan) whose image has finite index. We apply

this to any birational model T = Ỹ × P1 on which Φ is a well defined
morphism ψ. By Lemma 2.7, T an has the same fundamental group as
(Y × 0)an, and thus we conclude that ψ∗(π1(T an)) = Φ∗(π1(Y an × 0)). The
later group is trivial since Φ|Y ×0 is constant. This proves finiteness. The
end of the argument is due to Serre. Let u : X̃an → Xan be the universal
cover. The compact complex manifold X̃an is the analytisation of a smooth
complex projective variety X̃. We have χ(X̃,O

X̃
) = Nχ(X,OX), where

N = deg u = |π1(Xan)|. On the other hand, X̃ is also rationally connected
since CP1 is simply connected so any morphism from P1 to X lifts to a
morphism from P1 to X̃. Thus H i(X̃,O

X̃
) = 0 for i > 0 by Lemma 2.6, and

this implies that χ(X̃,O
X̃

) = 1. Thus N = 1 and X = X̃. �

2.1.3. The Artin-Mumford invariant. In this section, we introduce a
stable birational invariant which is topological (although it can be described
in a purely algebraic way as part of the Brauer group) but can be nontrivial
for some unirational varieties, as was discovered by Artin and Mumford [2].
The result is the following.

Lemma 2.9. The group TorsH3
B(X,Z) is a stable birational invariant

for smooth projective varieties. In particular, a stably rational variety has
TorsH3

B(X,Z) = 0.

Here we denote H i
B(X,A) the ith Betti cohomology of Xan, or of X(C)

equipped with the Euclidean topology, with coefficients in A. The group
TorsH3

B(X,Z) is called the Artin-Mumford invariant of X.

Proof of Lemma 2.9. The fact that the group does not change when
X is replaced by X × Pr follows from

H3
B(X × Pr,Z) = H3

B(X,Z)⊕H1
B(X,Z),

where the map H1
B(X,Z) → H3

B(X × Pr,Z) is given by α �→ p∗
2h "

p∗
1α, h = c1(OPr(1)). (Here the pi’s denote the projections from X × Pr

to its factors.) On the other hand, H1
B(X,Z) has no torsion (this follows

from the consideration of the long exact sequence associated to the short
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exact sequence of sheaves 0 → Z n→ Z → Z/n → 0 on Xan). It remains to
prove birational invariance: if φ : Y ��� X is birational, let

τ : Ỹ → Y, φ̃ : Ỹ → X

be a desingularization of φ. As φ̃ has degree 1, the morphism φ̃∗ :
H3

B(X,Z) → H3
B(Ỹ ,Z) is injective, because φ̃∗ ◦ φ̃∗ = Id on cohomol-

ogy. On the other hand τ is a sequence of blow-ups along smooth centers
and it follows from this that τ∗ : TorsH3

B(Ỹ ,Z) → TorsH3
B(Y,Z) is an

isomorphism. Indeed, for a single blow-up along a smooth Z ⊂ Y , we have

H3
B(Ỹ ,Z) = H3

B(Y,Z)⊕H1
B(Z,Z)

and thus TorsH3
B(Ỹ ,Z) = TorsH3

B(Y,Z). Thus we conclude that τ∗ ◦ φ̃∗

injects TorsH3
B(X,Z) in TorsH3

B(Y,Z). To prove that

τ∗ ◦ φ̃∗ : TorsH3
B(X,Z) → TorsH3

B(Y,Z)

is surjective, one can construct by a finite sequence of blow-ups a variety
X̃

τ ′
→ X dominating Ỹ , via a morphism ψ desingularizing φ−1. Then τ ′∗ :

TorsH3
B(X,Z) → TorsH3

B(X̃,Z) is surjective and since ψ∗ is surjective, this
implies as above that φ̃∗ : TorsH3

B(X,Z) → TorsH3
B(Ỹ ,Z) is surjective. �

Artin and Mumford constructed in [2] unirational threefolds with non-
trivial Artin-Mumford invariant, providing the first examples of unirational
not stably rational threefolds. Their construction is as follows. We consider
quartic double solids X → P3 ramified along a quartic surface S ⊂ P3.
Such a variety X is defined as a hypersurface in the affine fibration p : L =
Spec (SymOP3(−2)) → P3 (the total space of the line bundle OP3(2)) by the
following equation: L has a canonical nonzero section u ∈ H0(L, p∗O(2)) and
S is defined as the zero set of a section f ∈ H0(P3,OP3(4)). Then X ⊂ L
is defined by the equation u2 = p∗f . Assume now that S has an ordinary
double point P . The equation f can then be written as

f = X2
0q(X1, X2, X3) + X0t(X1, X2, X3) + f4(X1, X2, X3),

where X1, X2, X3 vanish at P , and deg q = 2, deg f4 = 4, deg t = 3. Pro-
jecting from P , we see that S, or rather its blow-up at P , is a double
cover of P2 ramified along the sextic curve C with equation t(X1, X2, X3)2−
4q(X1, X2, X3)f4(X1, X2, X3). The condition imposed by Artin and Mum-
ford is the following: the curve C is the union of two cubic curves meeting
transversally. This imposes nine supplementary double points to the K3
surface S, namely one for each node of C. Thus S, hence also X, has 10
ordinary double points. Let X̃ be the blow-up of X at its singular points.

Theorem 2.10. [2] The variety X̃ has some nontrivial 2-torsion in

H3
B(X̃,Z). In particular it is not stably rational.

On the other hand, it is easy to check that X̃ is unirational. Indeed,
choose a node of X, corresponding to a node P of S. The lines in P3 passing
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through P meet S in three points, namely P counted with multiplicity 2
and two other points x, y. The inverse image of such a line in X is thus a
curve whose normalization at P is a double cover of P1 ramified at only 2
points, hence is a rational curve. This construction gives X̃ the structure of
a conic bundle over the P2 parameterizing lines in P3 through P . On the
other hand, let H ⊂ P3 be a general plan. The inverse image Σ of H in X̃

is a del Pezzo surface, hence is rational. The fibered product Y := Σ×P2 X̃
is a conic bundle over Σ which admits a section, hence is rational. As it
dominates X̃, the later is unirational.

2.2. Further tools.

2.2.1. Chow groups. Let X be an algebraic variety over a field K. Let
Zk(X) be the free abelian group generated by the subvarieties (that is,
irreducible closed algebraic subsets) Z ⊂ X of dimension k. If φ : X → Y is
a proper morphism, one defines

φ∗ : Zk(X) → Zk(Y )

on generators by φ∗(Z) = 0 if dimφ(Z) < k and φ∗(Z) = (degZ/φ(Z))φ(Z),
where the integer degZ/φ(Z) is the degree of the field extension K(φ(Z)) ⊂
K(Z). (If K = C and φ(Z) is smooth, this is also the topological degree of
φ : Zan → φ(Z)an.)

The Chow groups CHk(X) are defined as the quotients Zk(X)/Zk(X)rat

where the subgroup Zk(X)rat ⊂ Zk(X) is generated by the following cycles
n∗(div f) said rationally equivalent to 0: for any irreducible closed algebraic
subset W ⊂ X of dimension k + 1, and any nonzero rational function
f ∈ K(W )∗, letting n : W̃ → X be the normalization of W , we get
n∗(div f) ∈ Zk(X).

If X is smooth of dimension n, we will denote CHn−k(X) := CHk(X).
Chow groups (particularly on smooth projective varieties) have excellent
functoriality properties:

a) If φ : X → Y is a proper morphism, the map φ∗ defined above on
cycles factors through rational equivalence and provides φ∗ : CHk(X) →
CHk(Y ).

b) If X and Y are smooth, and φ : X → Y is any morphism, there is
a pull-back morphism φ∗ : CHk(Y ) → CHk(X). If φ is flat, φ∗ is induced
by the morphism φ∗ : Zk(Y ) → Zk(X) which to Z associates the cycle of
φ−1(Z). Here φ−1(Z) has the right codimension by flatness but it is not
irreducible or reduced in general, and its cycle is the sum of its irreducible
components counted with adequate multiplicities, the “lengthes”.

c) If Y is smooth, there is an intersection product CHk(Y )⊗CHl(Y ) →
CHk+l(Y ), which maps Z ⊗ Z ′ to i∗Δ(Z × Z ′) where iΔ is the diagonal
inclusion of Y in Y × Y . If X and Y are smooth, and φ : X → Y is any
morphism, the pull-back map φ∗ : CH∗(Y ) → CH∗(X) is compatible with
the intersection product: φ∗(Z · Z ′) = φ∗Z · φ∗Z ′.
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d) (Projection formula) If φ : X → Y is a projective morphism between
smooth varieties, one has for Z ∈ CH(X), Z ′ ∈ CH(Y ), φ∗(Z · φ∗(Z ′)) =
Z ′ · φ∗(Z) in CH(Y ).

Chow groups also have a very good property which makes them easier to
handle than cohomology or homology, namely if F ⊂ X is a closed algebraic
subset and U = X \ F , then we have the localization exact sequence

CHi(F ) → CHi(X) → CHi(U) → 0(1)

where the last map is restriction to U (or intersection with U) and is a
particular case of the flat pull-back mentioned in b) above, and the first
map is the proper pushforward i∗ mentioned in a), where i is the inclusion
of F in X.

2.2.2. Birational invariance of CH0. The group CH0(X) is a very in-
teresting invariant of a smooth projective variety. Over C and in the case
of curves, it has been completely understood thanks to Abel’s theorem (see
Section 3.2.1). In higher dimension (and still over C), it is conjectured that
the group CH0(X) is trivial (that is, equal to Z) if H0(X,Ωk

X) = 0 for k > 0.
This is a famous conjecture due to Bloch.

Let us prove the following easy fact:

Lemma 2.11. The group CH0(X) is a stable birational invariant of
smooth projective varieties.

Proof. First of all, CH0(Pr
K) = Z as follows from the localization

exact sequence (1) and CH0(As
K) = 0 for s > 0. The same argument

proves more generally that CH0(X × Pr
K) = CH0(X), where the morphism

CH0(X) → CH0(X × Pr
K) is ix∗ for any x ∈ Pr

K(K), ix being the inclusion
X ∼= X × x ↪→ Pr

K .
It remains to prove birational invariance. If φ : X ��� Y is birational,

then we have the graph Γφ ⊂ X × Y which has a class Γ ∈ CHn(X × Y ),
n = dimX = dimY . We can then construct

Γ∗ : CH(Y ) → CH(X), Γ∗ : CH(X) → CH(Y )

by the formula

Γ∗(z) := pr1∗(Γ · pr∗
2z), Γ∗(z′) := pr2∗(Γ · pr∗

1z
′)

for z ∈ CH(Y ), z′ ∈ CH(X). The composition of two correspondences

Z ∈ CH(X × Y ), Z ′ ∈ CH(Y ×W )

where X, Y, W are smooth and projective over K is the correspondence
Z ′ ◦ Z ∈ CH(X ×W ) defined as

Z ′ ◦ Z = prXW∗(pr∗
XY Z · pr∗

Y WZ ′),

where the pr••’s are the projections from X × Y ×W to the product of two
of its factors. One easily checks that

(Z ′ ◦ Z)∗ = Z ′
∗ ◦ Z∗ : CH(X) → CH(W ).
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Using this formalism, one now proves that Γ∗ ◦ Γ∗ = Id on CH0(Y ) and
Γ∗ ◦ Γ∗ = Id on CH0(X). One uses for this the easy fact that the cycles
Γ ◦ tΓ ∈ CH(Y × Y ), resp. tΓ ◦ Γ ∈ CH(X ×X), differ from ΔY (resp. ΔX)
by a cycle supported on E × E, where E is proper closed algebraic subset
of Y (resp. X). (Here the cycle tΓ ∈ CH(Y ×X) is the image of the cycle Γ
by the obvious isomorphism X × Y ∼= Y ×X.) Indeed, writing

Γ ◦ tΓ = ΔY + Z ∈ CHn(Y × Y )(2)

with Z supported on E×Y for some proper closed algebraic subset E ⊂ Y ,
we observe that Z∗ = 0 on CH0(Y ) so that (2) gives

Γ∗ ◦ tΓ∗ = Γ∗ ◦ Γ∗ = ΔY ∗ = Id

on CH0(Y ), and similarly for X. �
We will also use later on the projective bundle and blow-up formulas,

which give another proof of the birational invariance of CH0 assuming
desingularization (hence in characteristic 0). First of all, we always have
from the definitions CH1(X) = PicX. In particular, if π : P → X is a
projective bundle, P = P(E), we have the line bundle OP(E)(1) on P which
provides an element h ∈ CH1(P ).

Theorem 2.12. [15, Theorem 3.3] One has

CHi(P ) = ⊕k=Inf(r−1,i)
k=0 CHi−k(X),

where the maps from the right to the left are given by α �→ hk · π∗α, and
r = rank E.

Let now X be smooth projective, and Z ⊂ X be a smooth closed
subvariety of codimension r. Let τ : X̃Z → X be the blow-up of X along Z.
Let E be the exceptional divisor of τ and denote by iE the inclusion of E
in X̃Z , τE : E → Z the restriction of τ to E. The morphism τE makes E
into a Pr−1-bundle, which admits as O(1)-bundle the line bundle OE(−E)
of class δ ∈ CH1(E).

Theorem 2.13. [15, Proposition 6.7] One has

CHi(X̃Z) = CHi(X)⊕k=Inf(r−2,i)
k=0 CHi−k−1(Z),

where the maps from the right to the left are given by

τ∗ : CHi(X) → CHi(X̃Z), iE∗ ◦ δk · ◦τ∗
E : CHi−k−1(Z) → CHi(X̃Z).

2.2.3. Hodge structures and cycle classes. Let X be a smooth projective
complex variety. We have H i

B(X,C) = H i
B(X,Z)⊗C and on the other hand,

Hodge theory provides the Hodge decomposition

H i
B(X,C) = ⊕p+q=iH

p,q(X),(3)

where Hp,q(X) is defined as the set of de Rham cohomology classes of
closed forms of type (p, q) on Xan. This definition makes obvious the Hodge
symmetry property, which says that Hp,q(X) = Hq,p(X), since the complex
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conjugate of a closed form of type (p, q) is a closed form of type (q, p). These
data endow H i

B(X,Z)/torsion with an integral Hodge structure of weight i.
We concentrate in this section on even degree cohomology.

Definition 2.14. An integral Hodge class of degree 2k on X (notation

Hdg2k(X,Z)) is an integral cohomology class α ∈ H2k
B (X,Z) whose image

αC in H2k
B (X,C) belongs to Hk,k(X).

Let Z ⊂ X be a closed irreducible subset of codimension k. Let
j : Z̃ → X be a desingularization of Z. Then as a compact complex manifold,
Z̃an has a fundamental homology class [Z̃]fund ∈ H2n−2k(Z̃an,Z) whose
image in H2k

B (X,Z) by the composite map

H2n−2k(Z̃an,Z)
j∗→ H2n−2k(Xan,Z)

Poincaré duality∼= H2k(Xan,Z)

= H2k
B (X,Z),

where n = dimX, is called the cycle class of Z.
More generally, if Z =

∑
i niZi, one defines [Z] ∈ H2k

B (X,Z) as
∑

i ni[Zi].
It is easy to prove that the cycle class so defined on Zk(X) factors through
rational equivalence to give

cl : CHk(X) → H2k
B (X,Z).

Lemma 2.15. The image of cl is contained in Hdg2k(X,Z).

Proof. Indeed, a class αC ∈ H2k(Xan,C) belongs to Hk,k(X) if and
only if for any β ∈ Hp,q(X), p + q = 2n − 2k, with (p, q) �= (n − k, n − k),
one has 〈αC, β〉X . In the case of α = [Z], we have

〈αC, β〉X =
∫

Z̃an

j∗β,

hence the vanishing follows from the vanishing of a form j∗β on Z̃an when
β is of type (p, q), p + q = 2n− 2k, (p, q) �= (n− k, n− k). �

2.3. Stable birational invariants from cycle class.

2.3.1. The Lefschetz (1, 1)-theorem. The simplest example of the cycle
class is the case of codimension 1 cycles. Assume X is smooth and projective.
Recall that CH1(X) = PicX. By GAGA [32], we have PicX = PicXan and
the later group is isomorphic to H1(Xan,O∗

Xan). We have the exponential
exact sequence on Xan

0 → Z 2ιπ→ OXan
exp→ O∗

Xan → 1,(4)

whose associated long exact sequence gives

PicXan c1→ H2(Xan,Z) → H2(Xan,OXan)(5)

defining c1. It is not hard to prove (see [43, Theorem 11.33]) that via the
identification CH1(X) = PicXan, c1 identifies to the cycle class map for
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divisors. The exact sequence (5) now gives us the Lefschetz theorem on
(1, 1)-classes:

Theorem 2.16. The image of the cycle class map

cl : CH1(X) → H2
B(X,Z)

is the group of integral Hodge classes Hdg2(X,Z) ⊂ H2
B(X,Z).

Proof. We only have to prove that Hdg2(X,Z) identifies with
Ker (H2(Xan,Z) → H2(X,OXan)). Clearly, any cohomology class of type
(1, 1), in particular any degree 2 Hodge class, maps to 0 in H2(Xan,OXan).
Conversely, if a degree 2 integral cohomology class α maps to 0 in
H2(Xan,OXan), then its (0, 2)-component α0,2 vanishes in H0,2(X) =
H2(Xan,OXan). As α is real, α2,0 also vanishes by Hodge symmetry, hence
α is of type (1, 1). �

2.3.2. Integral Hodge classes of degree 4. We use now the Lefschetz
theorem on (1, 1)-classes to prove the following

Proposition 2.17. (See [33]) The group Z4(X) := Hdg4(X,Z)/
H4

B(X,Z)alg is a stable birational invariant of a smooth projective com-
plex variety X.

Proof. We have

Hdg4(X × Pr,Z) = pr∗
1Hdg4(X,Z)⊕ pr∗

2[h] " pr∗
1Hdg2(X,Z),

where h = c1(OPr(1)), [h] = cl(h) and the pri are the obvious projections.
Similarly and in a compatible way with respect to the cycle class map,

we have by Theorem 2.12

CH2(X × Pr) = pr∗
1CH2(X)⊕ pr∗

2h · pr∗
1CH1(X).

The equality Z4(X × Pr) = Z4(X) then follows from the Lefschetz theorem
on (1, 1)-classes, which says that cl(CH1(X)) = Hdg2(X,Z).

Next assume φ : Y ��� X is a birational map. As usual, let φ̃ : Y ′ → X
be a desingularization of φ, where Y ′ is deduced from Y by a sequence of
blow-ups. Let α be a degree 4 integral Hodge class on X. Then α is algebraic
if and only if φ̃∗α is algebraic on Y ′, since φ̃∗ ◦ φ̃∗ = Id on Hdg4(X,Z) and
by compatibility of the cycle class map with the pull-back and push-forward
maps. We claim now that

Z4(Y ′) ∼= Z4(Y ).

Indeed, we reduce to the case where τ : Y ′ → Y is the blow-up of a smooth
subvariety Z. Then we have

Hdg4(Y ′,Z) = τ∗Hdg4(Y,Z)⊕ i∗(τ∗
EHdg2(Z,Z))⊕ i∗([δ] " τ∗

EHdg0(Z,Z)),

where the last term appears only if codimZ ≥ 3. We have the similar formula
for Chow groups (see Theorem 2.13)

CH2(Y ′) = τ∗CH2(Y )⊕ i∗(τ∗
ECH1(Z))⊕ i∗([δ] " τ∗

ECH0(Z)),
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where the last term appears only if codimZ ≥ 3. We now use the Lefschetz
(1, 1)-theorem to conclude that Hdg2(Z,Z) = cl(CH1(Z)) and the obvious
fact that Hdg0(Z,Z) is generated by the class of Z, to conclude that
i∗(τ∗

EHdg2(Z,Z)) ⊕ i∗([δ] " τ∗
EHdg0(Z,Z)) ⊂ H4

B(Y ′,Z)alg which proves
the claim. The claim now concludes the proof of the proposition since we
proved that

φ̃∗ = τ∗ ◦ φ̃∗ : Z4(X) → Z4(Y )
is injective, and we can prove surjectivity similarly by blowing-up X rather
than Y . �

The group Z4(X) is a very interesting invariant recently studied in [13]
and [40], which is known since 1962 to be nontrivial in general (see [3] and
[23]). In [13], this invariant is interpreted using unramified cohomology: If
A is an abelian group, we define sheaves Hi(A) on X(C)Zar by the formula

Hi(A) = Rif∗A,

where f : Xan → X(C)Zar is the identity map on the set X(C) changing
the topology. Concretely, Hi(A) is the sheaf associated to the presheaf on
X(C)Zar which to U ⊂ X associates H i

B(U,A). One then defines H i
nr(X,A)

as H0(XZar,Hi(A)).

Theorem 2.18. [13] If X is rationally connected, then Z4(X) is iso-
morphic to the unramified cohomology group H3

nr(X,Q/Z).

This makes Z4(X) the next degree analogue of the Artin-Mumford
invariant, since it is easy to prove that, for rationally connected varieties,
Tors(H3

B(X,Z)) = H2
nr(X,Q/Z).

This interpretation of Z4(X) and the work of [11] allow to prove (cf.
[13]).

Theorem 2.19. The 6-dimensional quadric bundles X over P3 built in
[11] have Z4(X) �= 0.

On the other hand, it is proved in [40] that cubic fourfolds X have Z4(X)
trivial, which in turn can be interpreted using Theorem 2.19 by saying that
they have trivial unramified degree 3 unramified cohomology.

2.3.3. Integral Hodge classes of degree 2n − 2 and 1-cycles. The same
arguments as above allow us to construct stable birational invariants from
1-cycles and their cycle classes.

Lemma 2.20. The group

Z2n−2(X) := Hdg2n−2(X,Z)/H2n−2
B (X,Z)alg, n = dimX

is a stable birational invariant of smooth projective varieties.

Remark 2.21. It is in fact more appropriate to write the degree 2n− 2
cohomology as degree 2 homology in order to make clear that this group does
not in fact depend on the dimension (the functoriality here is covariant). We
will thus use the notation Z2(X) for Z2n−2(X).
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In any dimension n, there are examples due to Kollár [23] of smooth
projective high degree hypersurfaces X in Pn+1 with nontrivial Z2(X). On
the other hand, there is some evidence that this group is trivial for rationally
connected varieties.

Theorem 2.22. (i) The group Z2(X) is trivial for rationally connected
threefolds [39].

(ii) The group Z2(X) is trivial for Fano fourfolds [20].
(iii) Assuming the Tate conjecture for integral degree 2 Tate classes on

surfaces defined over finite fields, the group Z2(X) is trivial for any smooth
projective rationally connected variety over C [37].

Another interesting stably birationally invariant group is the group
Griff1(X) of 1-cycles homologous to 0 modulo algebraic equivalence. A
celebrated result of Griffiths [17] says that the group Griff1(X) can be a
nontorsion group, for example when X is a very general quintic hypersurface
in P4

C.

Lemma 2.23. If X is smooth projective rationally connected, the group
Griff1(X) is a torsion group.

Proof. There exists a dominant rational map φ : Y ×P1 ��� X mapping
Y × 0 to a point x ∈ X. We may assume that dimY = n − 1. Then if
φ̃ : Ỹ × P1 → X is a desingularization of φ, φ̃ has a finite nonzero degree N ,
and thus

φ̃∗ ◦ φ̃∗ = N Id(6)

on Griff1(X). On the other hand, as Griff1 is stably birationally invariant,

the map i0∗ : Griff1(Ỹ ) → Griff1(Ỹ × P1) is surjective, where Ỹ is a

desingularization of the proper transform of Y × 0 in Ỹ × P1. It follows
that the map φ̃∗ : Griff1(Ỹ × P1) → Griff1(X) vanishes identically, since
φ̃ ◦ i0 is constant. Formula (6) then shows that Griff1(X) is annihilated by
N . �

It is proved in [34] that the group Griff1(X) is trivial if X is a Fano
complete intersection of index at least 2. I do not know if it is always trivial
for a smooth projective rationally connected variety.

3. Intermediate Jacobians

3.1. Intermediate Jacobians and Griffiths Abel-Jacobi map.

3.1.1. Definition of the intermediate Jacobians. We consider the odd
degree cohomology H2i−1

B (X,Z)/Torsion of a smooth complex variety of
dimension n. The Hodge decomposition (3) provides the subspace

F iH2i−1
B (X,C) := ⊕p+q=2i−1, p≥iH

p,q(X) ⊂ H2i−1
B (X,C)
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and the Hodge symmetry implies that

H2i−1
B (X,C) = F iH2i−1

B (X,C)⊕ F iH2i−1
B (X,C).

It follows that the natural map

H2i−1
B (X,R) → H2i−1

B (X,C)/F iH2i−1
B (X,C)

is an isomorphism. Thus the image of H2i−1
B (X,Z)/Torsion in H2i−1

B (X,C)/
F iH2i−1

B (X,C) is a lattice and the quotient

J2i−1(X) = H2i−1
B (X,C)/(F iH2i−1

B (X,C)⊕H2i−1
B (X,Z)/Torsion)

is a complex torus, called the i-th intermediate Jacobian of X.
It is not in general an abelian variety, except when Hp,q(X) = 0 for

p + q = 2i− 1 and p > i or q > i. In the later case, choosing an ample line
bundle L on X and denoting l = c1(L) ∈ H2

B(X,Z), the intersection pairing

〈α, β〉l :=
∫

X
ln−2i+1 " α " β

on H2i−1
B (X,Z)/Torsion (conveniently modified in a way which takes into

account the Lefschetz decomposition)) defines a polarization on J2i−1(X)
which makes it an abelian variety.

3.1.2. The Abel-Jacobi map. Let X be a smooth complex projective vari-
ety of dimension n, and denote by Zi(X)hom the group of cycles homologous
to 0. The Griffiths Abel-Jacobi map ΦX : Zi(X)hom → J2i−1(X) is defined
as follows (this generalizes the Abel map): First of all, using Poincaré duality,
we can see J2i−1(X) as

J2i−1(X) = Fn−i+1H2n−2i+1
B (X,C)∗/H2n−2i+1,B(X,Z),

where the map H2n−2i+1,B(X,Z) → Fn−i+1H2n−2i+1
B (X,C)∗ sends a to

∫
a.

The image of this last map is called the group of periods.
Now let Z be a cycle of codimension i (hence real dimension 2n − 2i)

which is homologous to 0. Then there is a chain Γ of real dimension 2n−2i+1
such that ∂Γ = Z (think for example to singular homology chains).

It is a key point that
∫
Γ ∈ Fn−i+1H2n−2i+1

B (X,C)∗ is well defined, even
though Γ is not closed. The key for that is to choose representatives of
elements in Fn−i+1H2n−2i+1

B (X,C) which are closed forms of type (2n −
2i + 1, 0) + . . . + (n− i + 1, n− i) and to apply the dd-bar lemma (see [43,
12.1.2]). Furthermore, Γ is determined up to the addition of a closed chain,
hence

∫
Γ is defined up to periods

∫
a, a ∈ H2n−2i+1,B(X,Z). This gives us a

point

ΦX(Z) =
∫

Γ
mod. periods ∈ J2i−1(X).

The Abel-Jacobi map factors through rational equivalence (see [44, Lemma
9.19]), which provides

ΦX : CHi(X)hom → J2i−1(X).
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3.1.3. Dimension 3: the Theta divisor . Let X be a smooth projective
threefold with H1,0(X) = H3,0(X) = 0. Then J3(X) is canonically a princi-
pally polarized abelian variety. We use for this the unimodular intersection
pairing 〈 , 〉X on H3

B(X,Z)/Torsion. By our hypothesis, this skew-symmetric
pairing satisfies the Riemann relations

〈α, β〉X = 0, ∀α, β ∈ F 2H3(X) = H2,1(X),

−ι〈α, α〉X > 0, ∀0 �= α ∈ H2,1(X).

These conditions guarantee that minus the intersection form 〈 , 〉X , seen
as an element of the group

∧2 H1(J3(X),Z)∗ = H2(J3(X),Z), is the first
Chern class of an ample line bundle on J3(X), which is thus an abelian
variety. The fact that the pairing is unimodular guarantees that this line
bundle (which is well-defined up to translation) has a unique nonzero
section up to scalar multiples. This shows that J3(X) has a Theta divisor,
determined up to translation, and defined as the zero set of this unique
section.

3.2. Codimension 1 cycles.

3.2.1. Abel’s theorem. In the case of codimension 1 cycles, the following
result is one version of Abel’s theorem.

Theorem 3.1. The Abel-Jacobi map ΦX : CH1(X)hom → J1(X) is an
isomorphism.

This is proved by looking at the beginning of the long exact sequence
associated to the exponential exacte sequence (4): This provides us (using
CH1(X) = PicX = PicXan and CH1(X)hom = Ker c1 ⊂ PicXan)

0 → H1(X,Z) → H1(X,OX) → CH1(X)hom → 0.(7)

Hence we get, using H0,1(X) = H1(X,OX), an isomorphism J1(X) =
CH1(X)hom and the proof is concluded by showing that this is the inverse
of the Abel-Jacobi map (see [43, Proposition 12.7]).

3.2.2. Existence of a universal divisor. By the previous sections, we
know that if X is smooth and projective over C, J1(X) is always an abelian
variety and furthermore it parameterizes divisors homologous to 0 on X
modulo linear equivalence, or equivalently topologically trivial line bundles
on X. In fact much more is true.

Theorem 3.2. There exists a line bundle P on J1(X) × X which has
the following property: For any t ∈ J1(X) the divisor Dt ∈ CH1(X) is
homologous to 0 and ΦX(Dt) = t.

Such a divisor is called the universal divisor of X or the Poincaré divisor
if X is an abelian variety. It is not unique but can be normalized by fixing
a point x ∈ X and imposing the condition that P|J1(X)×{x} is trivial.
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Sketch of proof of Theorem 3.2. There are several approaches to
the existence of the universal divisor. One is transcendental and is based
on the observation that there is a natural degree 2 integral Hodge class on
J1(X)×X, namely the one which induces the canonical isomorphism

H1(J1(X),Z) ∼= H1
B(X,Z).

It suffices then to apply the Lefschetz (1, 1)-theorem.
The second approach is purely algebraic: One observes that if one chooses

a complete family
D ⊂M×X

of sufficiently ample hypersurfaces on X, the Abel-Jacobi map

ΦD : M→ J1(X)

m �→ Φ1
X(Dm −D0),

where 0 is a chosen base point onM, makesM into a projective bundle over
J1(X). This is a honest projective bundle, and not a Brauer-Severi variety,
because by Abel’s theorem, the fibers of ΦD are linear systems |Dt| and
thus fixing a point x ∈ X, we have a codimension 1 projective subbundle
consisting of divisors passing through x. Hence there is a rational section
σ of the morphism ΦD. Then (σ, IdX)∗D provides the desired universal
divisor. �

3.2.3. Codimension 2 cycles. Let X be a rationally connected smooth
projective variety. Then H3,0(X) = 0 by Lemma 2.2 and thus J3(X) is an
abelian variety. The following result is due to Bloch and Srinivas [8] (see
also [29]):

Theorem 3.3. We have CH2(X)hom = CH2(X)alg and the Abel-Jacobi
map

ΦX : CH2(X)hom → J3(X)

is an isomorphism.

Note that the left hand side is only a group, while the right hand side is
an algebraic group, but it makes sense to say that ΦX is algebraic. Indeed
the meaning is the following: For any smooth algebraic variety M , and
any codimension 2 cycle Z ∈ CH2(M × X) such that the restricted cycles
Zm, m ∈M , are homologous to 0 on X, the map

ΦZ : M → J3(X), m �→ ΦX(Zm),

is a morphism of algebraic varieties. Theorem 3.3 is a beautiful analogue
of Abel’s theorem for divisors and shows that codimension 2 cycles on
rationally connected varieties behave very much as codimension 1 cycles
on any variety. Of course the assumption that X is rationally connected is
crucial here (see [28], [17] for various pathologies which appear otherwise).

However, a question remains open, namely:
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Question 3.4. Let X be smooth projective rationally connected over C.
Does there exist a universal codimension 2 cycle on J3(X) × X, that is
Z ∈ CH2(J3 ×X) such that the restricted cycles Zt ∈ CH2(X), t ∈ J3(X),
are cohomologous to 0 and the morphism

ΦZ : J3(X) → J3(X)

is the identity?

This question, which we will answer negatively in next section, was first
asked and studied in [38]. One motivation is the following fact:

Proposition 3.5. The existence of a universal codimension 2 cycle is
a stably birationally invariant property.

Proof. Indeed, consider first invariance under the substitution X �
X × Pr, r ≥ 1. Then we have

J3(X × Pr) = J3(X)⊕ J1(X),

where the inclusion J1(X) → J3(X) is given by α �→ pr∗
2h · pr∗

1α. (We use
the fact that Hodge classes act on Jacobians via their cup-product on odd
degree cohomology.) Now we also have

CH2(X × Pr)hom = CH2(X)hom ⊕ CH1(X)hom.

Using the functoriality of the Abel-Jacobi map with respect to pull-back
and intersection with a cycle class (see [44, 9.2.4]), and the fact that there
exists a universal codimension 1 divisor on J1(X) ×X, we easily conclude
that X has a universal codimension 2 cycle if and only if X × Pr does. We
next have to check invariance under birational maps, which is very similar as
before. As usual, using the Hironaka desingularization theorem, we reduce
to proving that the property is invariant under blow-ups. Next if Z ⊂ X is
the inclusion of a smooth projective subvariety, we have

J3(X̃Z) = τ∗J3(X)⊕ J1(Z),(8)

where the map J1(Z) → J3(X̃Z) is given by jE∗ ◦ τ∗
E . Similarly, we have

CH2(X̃Z)hom = CH2(X)hom ⊕ CH1(Z)hom,

where the maps are given by the same formulas on the level of algebraic
cycles. The Abel-Jacobi map is compatible with these decompositions. Then
as before we use the fact that Z has a universal divisor and the compatibility
of the Abel-Jacobi map with the various operations to conclude that X̃Z has
a universal codimension 2 cycle if and only if X does. More precisely, if X has
a universal codimension 2 cycle Z ∈ CH2(J3(X)×X) and D is a universal
divisor for Z, then

Z ′ := (α, τ)∗Z + (Id
J3(X̃Z), jE)∗(β, τE)∗D

is a universal codimension 2 cycle for X̃Z , where

α : J3(X̃Z) → J3(X), β : J3(X̃Z) → J1(Z)
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are the two projections induced by (8). �
It will be proved in Section 4.3.3 that Question 3.4 above does not

have in general an affirmative answer for some unirational threefolds with
trivial Artin-Mumford invariant. Hence by Proposition 3.5, the existence of
a universal codimension 2 cycle is an effective necessary criterion for the
stable rationality of unirational varieties.

3.3. Cubic threefolds. We first review in this section the beautiful
work [10] which provides a strong necessary condition for rationality of a
smooth projective threefold. We will finally discuss a generalization discov-
ered in [38], [42], concerning stable rationality of smooth projective three-
folds.

3.3.1. Clemens-Griffiths criterion. Let X be a smooth complex projec-
tive 3-fold with H3,0(X) = H1,0(X) = 0. We mentioned that J3(X) is then
canonically a principally polarized abelian variety. The Clemens-Griffiths
criterion for rationality is the following:

Theorem 3.6. If X is rational, (J3(X),ΘX) is a direct product of
Jacobians of smooth curves (J(Ci),ΘCi).

Proof. If X is rational, there is a diagram

Y
φ ��

τ
��

X

P3,

(9)

where φ is a projective morphism of degree 1 and τ is a composition of blow-
ups along smooth connected centers. It follows then from the computation
of the cohomology and Hodge structures of a blow-up that (J3(Y ),ΘY ) is,
as a ppav, a product

(J3(Y ),ΘY ) =
∏

(J(Ci),ΘCi),(10)

where the Ci’s are the curves blown-up by τ (blowing-up a point does not
affect J3). It remains to prove that the same thing happens for X. The
point is that we have the pull-back map φ∗ : H3(X,Z) → H3(Y,Z) which
is an injective morphism of Hodge structures (with left inverse φ∗), and is
compatible with intersection pairing since degφ = 1. It follows that

(J3(Y ),ΘY ) = (J3(X),ΘX)× (B,ΘB),(11)

where (B,ΘB) is a principally polarized abelian variety. We now use two
facts:

1) The decomposition of a principally polarized abelian variety as a
product of irreducible principally polarized abelian varieties is unique up to
permutation of the factors.

2) The Jacobian of a smooth connected curve is irreducible as a princi-
pally polarized abelian variety.
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The second point is an immediate consequence of Riemann’s description
(see [1, p. 27]) of the Theta divisor of J1(C), where C is a smooth projective
connected curve of genus g, as the image in J1(C) of C(g−1) via the Abel
map (a base-point being chosen on C). From 1) and (11), we deduce that
(J3(X),ΘX) is the product of some of the irreducible ppav’s appearing
in the decomposition of (J3(Y ),ΘY ). From (10) and 2), we deduce that
the irreducible ppav’s appearing in the decomposition of (J3(Y ),ΘY ) are
Jacobians of smooth curves.

�

3.3.2. Application to the cubic threefold. The Clemens-Griffiths criterion
has been successfully applied to prove the irrationality of many rationally
connected threefolds, particularly conic bundles (see [6], [9]). The model for
these results was first provided by Clemens and Griffiths [10], who proved

Theorem 3.7. Let X be a smooth cubic hypersurface in P4. Then X is
not rational.

Note that X is unirational, as all smooth cubic hypersurfaces of dimen-
sion ≥ 2 over an algebraically closed field are. Indeed, choose a line Δ ⊂ X.
Consider the projective bundle P(TX|Δ). This is clearly a rational variety and
it dominates rationally X by the map which to (x, u), x ∈ Δ, u ∈ P(TX,x)
associates the residual point of the intersection with X of the line passing
through x with tangent direction u.

Theorem 3.7 is deduced from Theorem 3.6 and a beautiful analysis of
J3(X). It is proved that this is an irreducible ppav of dimension 5 and
that the singular locus of its Theta divisor consists of a single point. As
the singular locus of the Theta divisor of a smooth projective curve has
codimension ≤ 4 by Riemann singularity theorem [1, p. 226], this is enough
to conclude.

3.3.3. A generalized Clemens-Griffiths criterion. Let (A,Θ) be a princi-
pally polarized abelian variety of dimension g. The class θ = [Θ] ∈ H2

B(A,Z)
has the property that the class θg−1/(g − 1)! is a degree 2g − 2 integral
Hodge class on A. Of course the class θg−1 is algebraic, but it is not clear if
θg−1/(g − 1)!, which is called the minimal class, is also algebraic, although
no counterexample is known.

By Matsusaka work’s [27], one has the following characterization of
products of Jacobians.

Theorem 3.8. A ppav (A,Θ) is a product of Jacobians if and only if
the minimal class is the class of an effective 1-cycle in A.

Using this theorem, one can rephrase Clemens-Griffiths’ theorem 3.6 by
saying that if X is rational, there is an effective 1-cycle in the minimal class
of (J3(X),ΘX).

The following result, which will be proved in a much more general form
in Section 4.2.3 has been obtained in [42].
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Theorem 3.9. Let X be a stably rational threefold. Then the minimal
class of (J3(X),ΘX) is algebraic.

It is a completely open problem whether this criterion is restrictive or
not. In particular, it is not known if it is satisfied by the general cubic
threefold (and it is not known if a general (and in fact, any) cubic threefold
is stably rational or not).

4. Decomposition of the diagonal

4.1. Generalities. We are now going to exploit an invariant which
has been introduced and studied in a cohomological form in [38] and in a
Chow-theoretic form in [4]. This invariant is clearly interesting for the stable
Lüroth problem, because as we will see below it controls the “classical”
invariants that we described in the previous sections, namely the Artin-
Mumford invariant, and the invariant Z4(X). The main novelty that we have
discovered in [36] is the fact that it is actually more powerful and can be used
to show stable irrationality of many classes of unirational varieties, which
are much less exotic than the Artin-Mumford or Colliot-Thélène-Ojanguren
examples.

4.1.1. Definitions. Let X be a smooth projective variety of dimension n
over a field K and let x ∈ X(K).

Definition 4.1. (i) We say that X has a Chow decomposition of the
diagonal if

ΔX = X × x + Z in CHn(X ×X),(12)

where Z is a cycle supported on D × X for some closed proper algebraic
subset D � X.

(ii) If K = C, X is said to have a cohomological decomposition of the
diagonal if

[ΔX ] = [X × x] + [Z] in H2n
B (X ×X,Z),(13)

where Z is as above.

Lemma 4.2. If X has a Chow decomposition of the diagonal, then
CH0(X) = Z. In particular, all K-points of X are rationally equivalent.

Proof. Indeed, both sides of (12) act on CH0(X) and as the diagonal
cycle acts as the identity, we get for any z ∈ CH0(X):

z = (X × x)∗z + Z∗z in CH0(X).

But as Z is supported over D × X, where D � X, we get Z∗z = 0. On
the other hand, it is obvious that (X × x)∗z = (deg z)x in CH0(X). Hence
z = (deg z)x in CH0(X). �

When the field K is big, like C, this lemma has an almost converse
which is due to Bloch and Srinivas and is at the origin of the notion of
decomposition of the diagonal.
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Theorem 4.3. Let X be a variety over C. Then if CH0(X) = Z, X
admits a Chow decomposition of the diagonal with Q-coefficients, that is,
for some integer N > 0

NΔX = N(X × x) + Z in CHn(X ×X),

where Z is a cycle supported on D × X for some closed proper algebraic
subset D � X.

Corollary 4.4. A rationally connected variety over C has a Chow
decomposition of the diagonal with Q-coefficients.

This last fact can in fact be proved directly and is true over any field of
characteristic 0.

A direct proof of Corollary 4.4. Indeed there exists a rational
dominating map

Y × P1 ��� X

contracting Y × 0 to a point x ∈ X. We may assume dimY = n − 1.
Let φ : Ỹ × P1 → X be a desingularization of this rational map and let
N := deg φ. It is then clear that (φ, φ)∗Δ

Ỹ ×P1 = NΔX in CHn(X × X).

Now the diagonal of Ỹ × P1 decomposes as the sum of a term Z0 supported
on E×E, where E is the exceptional divisor of the blow-up map Ỹ × P1 →
Y × P1, and of the pull-back of the diagonal of Y × P1. For the latter, we
use the fact that ΔP1 = P1 × 0 + 0 × P1, and we conclude that Y × P1

is the sum of a term Z1 supported on Y × P1 × Y × 0 and of a term Z2
supported on Y × 0× Y ×P1. As Y × 0 is contracted to x by φ, (φ, φ)∗Z1 is
supported on X×0 and (φ, φ)∗Z2 is supported on 0×X. Finally (φ, φ)∗(Z0)
is supported over φ(E)× φ(E). Putting everything together we constructed
a Chow decomposition of NΔX . �

4.1.2. Relation to the universal CH0 group. Following [4], we now for-
mulate the notion of having a Chow decomposition of the diagonal in the
following form, involving the study of X over surfields L of K. This view-
point makes very clear why a variety defined over an algebraically closed
field may not have a decomposition of the diagonal, even if it is rationally
connected.

Definition 4.5. The variety X has universally trivial CH0 group if for
any field L containing K, one has CH0(XL) = ZxL, where x is a K-point
of X.

Let us explain the proof of the following equivalence proved in [4].

Lemma 4.6. Having a Chow decomposition of the diagonal and having
universally trivial CH0 group are equivalent properties.
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Proof. First of all, if X admits a decomposition of the diagonal over
K for some point x ∈ X(K), so does XL, hence CH0(XL) = ZxL by
Lemma 4.2. In the other direction, assume CH0(X) is universally trivial and
take for L the function field K(X) of X. Then we have the generic point
δL ∈ CH0(XL) = CHn(XL). Clearly its class in CHn(XL) is the restriction
to Spec (K(X))×X of the diagonal ΔX ∈ CHn(X×X). The fact that δL has
the same class as xL in CH0(XL) thus says that the difference ΔX −X × x
vanishes in CHn(XL), hence that for some dense Zariski open set U of X,
ΔX−X×x vanishes in CHn(U×X). By the localization exact sequence (1),
we conclude that ΔX −X × x is rationally equivalent to a cycle supported
on D ×X, where D := X \ U . �

4.1.3. Stable birational invariance. The following fact was our motiva-
tion in [38] to study the decomposition of the diagonal.

Proposition 4.7. The existence of a (Chow-theoretic or cohomological)
decomposition of the diagonal is a stably birationally invariant property of
smooth projective varieties.

Proof. First of all, if X × Y admits a decomposition of the diago-
nal, where Y is smooth projective, so does X. Indeed, we have ΔX =
prX×X∗(ΔX×Y |X×X×Y ×y), where prX×X is the projection from X ×X × Y
to X ×X. This now implies that X admits a decomposition of the diagonal
if and only X × Pr does. For this, we just have to show that if X admits a
decomposition of the diagonal, so does X×Pr. But this immediately follows
from the fact that Pr

K admits a Chow decomposition of the diagonal. Namely,
if h = c1(OPr

K
(1)) ∈ CH1(Pr

K), we have ΔPr
K

=
∑r

i=0 p
∗
1h

i · p∗
2h

r−i and hr is
the class of any K-point of Pr

K , while p∗
1h

i · p∗
2h

r−i is clearly supported in
D ×X for some closed algebraic subset D � X if i > 0.

For the birational invariance, let us use the desingularization theorem
in the weak form saying that if φ : X ��� Y is a birational map, then
there exist a smooth projective variety X ′, and two morphisms τ : X ′ → X,
τ ′ : X ′ → Y of degree 1 such that φ = τ ′ ◦ τ−1. This reduces the birational
invariance of the property to the case of birational morphisms τ : X ′ → X.
But then we have

(τ, τ)∗(ΔX′) = ΔX in CHn(X ×X),

(τ, τ)∗([ΔX′ ]) = [ΔX ] in H2n
B (X ×X,Z),

and for some cycle Z ′ supported on E×E, where E is the exceptional divisor
of τ ,

(τ, τ)∗(ΔX) = ΔX′ + Z ′ in CHn(X ′ ×X ′),

(τ, τ)∗([ΔX ]) = [ΔX′ ] + [Z ′] in H2n
B (X ′ ×X ′,Z).

These formulas immediately imply that X has a decomposition of the
diagonal if and only if X ′ does since the cycle Z ′ does not dominate X ′

by the first projection. �
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Remark 4.8. For the Chow-theoretic version, one could use as well the
stable birational invariance of CH0 and Lemma 4.6.

4.2. Consequences. We are going to describe in this section three con-
sequences of the existence of a cohomological decomposition of the diagonal.
More consequences can be obtained using a Chow-theoretic decomposition
of the diagonal.

4.2.1. Generalized Artin-Mumford invariants. Let us start with the
Artin-Mumford invariant and the invariant Z4(X). As we noticed, these
groups respectively identify, for a rationally connected variety over C, with
the groups H2

nr(X,Q/Z) and H3
nr(X,Q/Z).

Proposition 4.9. Let X be smooth projective of dimension n. Then
if X admits a cohomological decomposition of the diagonal, the groups
Z4(X) = Hdg4(X,Z)/H4

B(X,Z)alg and TorsH3
B(X,Z) vanish.

Proof. By assumption, there exist a closed proper algebraic subset
D ⊂ X and a cycle Z supported on D ×X such that

[ΔX ] = [X × x] + [Z] in H2n(X ×X,Z).(14)

We now observe that we can choose D to be a divisor having for each
component Zi of the support of Z a component Di such that Di × X

contains Zi and is generically smooth along it. Then if j : D̃ → D ↪→ X is
a desingularization of D, the cycle Z lifts to a cycle Z̃ ∈ CHn−1(D̃ × X).
Equation (14) then rewrites as

[ΔX ] = [X × x] + (j, IdX)∗[Z̃] in H2n
B (X ×X,Z).(15)

We now let both sides of (15) act on H∗
B(X,Z). If α ∈ Hk(X,Z) with k > 0,

then [X × x]∗α = 0, and we thus get

α = j∗([Z̃]∗α) in Hk
B(X,Z).(16)

If now α ∈ TorsH3
B(X,Z),

[Z̃]∗α ∈ TorsH1
B(D̃,Z) = 0

and we thus conclude from (16) that α = 0. Similarly, if α ∈ Hdg4(X,Z)
then

[Z̃]∗α ∈ Hdg2(D̃,Z) = H2
B(D̃,Z)alg

and we thus conclude from (16) that α ∈ H4
B(X,Z)alg. �

4.2.2. Universal codimension 2 cycle. We observed in Section 3.2.3 that
if X is a stably rational variety, there exists a universal codimension 2 cycle
on J3(X)×X. The following gives a strengthened version of this result.

Proposition 4.10. Let X be smooth projective complex. Then if X
admits a cohomological decomposition of the diagonal, one has H0,i(X) = 0
for i > 0, the Abel-Jacobi map

ΦX : CH2(X)hom → J3(X)
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is surjective, and there exists a universal codimension 2 cycle on J3(X)×X.

Remark 4.11. The existence of a universal codimension 2 cycle with
Q-coefficients on J3(X)×X follows from the fact that the Abel-Jacobi map
is surjective. Indeed, this implies that for some smooth projective variety B
and some codimension 2 cycle Z ∈ CH2(B×X) such that Zb is homologous
to 0 on X for any b ∈ B, the morphism

ΦZ : B → J3(X)

is surjective. But then we may assume this morphism is generically finite of
degree N , and the cycle

Z ′ := (ΦZ , IdX)∗Z ∈ CH2(J3(X)×X)

satisfies
ΦZ′ = N IdJ3(X).

Proof of Proposition 4.10. The fact that the existence of a co-
homological decomposition diagonal implies the vanishing of the groups
H i(X,OX) for i > 0 is proved in [8] and uses only a cohomological decompo-
sition of the diagonal with Q-coefficients. The surjectivity of the Abel-Jacobi
map ΦX : CH2(X) → J3(X) is also proved in loc. cit. assuming only a co-
homological decomposition of the diagonal with Q-coefficients. It will be in
fact a consequence of the existence of a universal codimension 2 cycle. We
prove now the last statement. As in the previous proof, the existence of a
cohomological decomposition of the diagonal provides us with a morphism
j : D̃ → X from a smooth variety D̃ of dimension n − 1, and of a cycle
Z̃ ∈ CHn−1(D̃) such that

[ΔX ] = [X × x] + (j, IdX)∗[Z̃] in H2n
B (X ×X,Z).(17)

This equality gives us for any α ∈ H3
B(X,Z)

α = j∗([Z̃]∗α) in H3
B(X,Z).(18)

The morphisms j∗ : H1
B(D̃,Z) → H3

B(X,Z) and [Z̃]∗ : H3
B(X,Z) →

H1
B(D̃,Z) are morphisms of Hodge structures of odd weight, hence induce

morphisms of the corresponding intermediate Jacobians:

j∗ : J1(D̃) → J3(X), [Z̃]∗ : J3(X) → J1(D̃),

and we have

j∗ ◦ [Z̃]∗ = IdJ3(X).(19)

By Theorem 3.2, there exists a universal divisor D on J1(D̃) × D̃.
Denoting by γ the morphism [Z̃]∗, we can consider the codimension 2 cycle
on J3(X)×X defined by

Z := (IdJ3(X), j)∗((γ, IdD̃
)∗D) ∈ CH2(J3(X)×X).

It is immediate to check using (19) that Z is a universal codimension 2
cycle. �
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4.2.3. Minimal class on intermediate Jacobian. We now concentrate on
the case where X has dimension 3 and satisfies h0,i(X) = 0 for i > 0.
Recall from Section 3.1.3 that in this case J3(X) is a principally polarized
abelian variety with polarizing class θ and minimal class θg−1/(g − 1)! ∈
H2g−2(J3(X),Z), g = dimJ3(X). The following result is proved in [42].

Theorem 4.12. A smooth projective threefold X with h0,i(X) = 0 for
i > 0 admits a cohomological decomposition of the diagonal if and only if
the following four conditions are satisfied:

(i) TorsH∗
B(X,Z) = 0.

(ii) Z4(X) = 0.
(iii) There exists a universal codimension 2 cycle on J3(X)×X.
(iv) The minimal class θg−1/(g − 1)! is algebraic on J3(X).

In the case where X is rationally connected, condition (ii) is automati-
cally satisfied by [39]. The fact that (i), (ii) and (iii) are necessary is essen-
tially proved in Propositions 4.9 and 4.10. The necessity of condition (iv) is
more difficult and proved in [42, Theorem 4.1]. In the other direction, the
existence of a cohomological decomposition of the diagonal assuming (i) to
(iv) is proved in [38, Theorem 4.9].

4.3. Non-existence.

4.3.1. The degeneration theorem. The following result is proved in [36].

Theorem 4.13. Let π : X → B be a flat projective morphism of relative
dimension n ≥ 2, where B is a smooth curve. Assume that the fiber Xt is
smooth for t �= 0, and has at worst ordinary quadratic singularities for t = 0.
Then

(i) If for general t ∈ B, Xt admits a Chow theoretic decomposition of
the diagonal (equivalently, CH0(Xt) is universally trivial), the same is true

for any smooth projective model X̃o of Xo.
(ii) If for general t ∈ B, Xt admits a cohomological decomposition of the

diagonal, and the even degree integral homology of a smooth projective model

X̃o of Xo is algebraic (i.e. generated over Z by classes of subvarieties), X̃o

also admits a cohomological decomposition of the diagonal.

Sketch of proof. One first shows by a specialization argument (and
this step does not need any assumption on the singularities of the fibers)
that under the assumptions made on the general fibers, the central fiber
admits a Chow decomposition (case (i)) or a homological decomposition
of the diagonal (case (ii)). Note that we have the notion of a homological
decomposition of the diagonal even for singular projective varieties: we just
need to know that cycles have a homology class, which is standard.

The second step is passing from Xo to X̃o and this is here that we use
the assumption on the singularities. Let us concentrate on (i). From the
decomposition

ΔXo = Xo × x + Z in CHn(Xo ×Xo),
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where Z is supported on D ×Xo, we deduce by restriction to

U × U, U := Xo \ SingXo = X̃o \ E,

where E is the exceptional divisor of the resolution singularities of Xo

obtained by blowing-up the singular points:

ΔU = U × x + Z|U×U in CHn(U × U).

By the localization exact sequence (1), we get a decomposition on X̃o which
takes the following form:

ΔX̃o
= X̃o × x + Z̃ + Γ1 + Γ2 in CHn(X̃o × X̃o),

where Z̃ is supported on D′ × X̃o for some D′ � X̃o, and Γ1 is supported
on E × X̃o, Γ2 is supported on X̃o × E. Of course the cycle Γ1 does not
dominate X̃o by the first projection, so we need only to understand Γ2. But
E is a disjoint union of smooth quadrics Qi of dimension ≥ 1, and for each
of them, n-dimensional cycles in X̃o×Qi decompose as αiX̃o×xi +Zi, where
Zi does not dominate X̃o by the first projection. This concludes the proof
if one realizes that the xi’s are all rationally equivalent in X̃o (this is where
we use n ≥ 2). �

Theorem 4.13, (i), has been improved in [12] which proves the same
result under weaker assumptions on the singularities. This has been used in
[12], [7], [19], [35] to get many new applications. We will describe below
only our original application of the method.

4.3.2. The very general double solid is not stably rational. Recall that a
quartic double solid is a hypersurface X in L := Spec (SymOP3(−2)) defined
by the equation u2 = p∗f , where u is the canonical extra section of π∗OP3(2)
on L and f ∈ H0(P3,OP3(4)). Thus quartic double solids are parameterized
by P(H0(P3,OP3(4))). We described in Section 2.1.3 the Artin-Mumford
double solid Xo which is nodal, with the property that X̃o has a nontrivial
Artin-Mumford invariant.

Theorem 4.14. The very general double solid X does not admit a co-
homological (hence a fortiori Chow-theoretic) decomposition of the diagonal.
Similarly, the desingularization of the very general double solid X with k ≤ 7
nodes in general position does not admit a cohomological decomposition of
the diagonal.

Here we observe that given k ≤ 7 general points in P3, there is a
linear space of dimension 34 − 4k of quartic homogeneous polynomials
having 0 differential at these 7 points. There is thus an irreducible variety
parameterizing quartic double solids with k nodes in general position. As
usual, very general means that the statement is true for an equation f in
the complement of a countable union of proper closed algebraic subsets of
this variety.
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Theorem 4.14 immediately follows from Theorem 4.13 by degeneration to
the Artin-Mumford double solid. Indeed, if Xo is the Artin-Mumford double
solid, X̃o does not admit a cohomological decomposition of the diagonal
by Proposition 4.9. For the nodal case, one needs to check that the Artin-
Mumford double solid smoothifies partially to the k-nodal quartic double
solid with k nodes in general position, for k ≤ 7.

A a consequence of Theorem 4.14, one gets the following

Theorem 4.15. The desingularization of the very general double solid
with k ≤ 7 nodes in general position is not stably rational.

Note that by Endrass [14], if X̃ is as in Theorem 4.15, X̃ has trivial
Artin-Mumford invariant. In fact Endrass proves that the desingularization
of a quartic double solid with less than 10 points has no torsion in its
third Betti cohomology. To our knowledge, the only criterion for stable
irrationality of rationally connected threefolds used previously was the
Artin-Mumford invariant.

4.3.3. Further results. Theorem 4.14 has for consequence the following
result:

Theorem 4.16. Let X be the desingularization of the very general double
solid with 7 nodes in general position. Then there is no universal codimension
2 cycle on J3(X)×X.

Proof. Indeed, we know by Theorem 4.14 that X has no cohomological
decomposition of the diagonal. On the other hand, by [14], TorsH3

B(X,Z) =
0 and as X is rationally connected this implies that TorsH∗

B(X,Z) = 0.
Also Z4(X) = 0 by [39] since X is rationally connected. Finally, we have
dimJ3(X) = 3, hence (J3(X),ΘX) is a Jacobian in this case, so that the
minimal class θ2/2 is algebraic on J3(X). Theorem 4.12 then tells us that
X does not have a universal codimension 2 cycle. �

We conclude with a sketch of the results obtained in [42] concerning
cubic hypersurfaces. There are two challenging open problems concerning
cubic hypersurfaces, namely the conjectured irrationality of the very general
cubic fourfold and the question whether a cubic threefold is stably rational
or not. We do not have definite results on either of these questions, but we
studied in [42] decomposition of the diagonal (or universal CH0 group) for
smooth cubic hypersurfaces. Our main result is the following:

Theorem 4.17. [42, Theorem 1.1] Let X be a smooth cubic hypersur-
face such that the group H2∗

B (X,Z)/H2∗
B (X,Z)alg has no 2-torsion. (This

includes odd dimensional cubics and cubic fourfolds.) Then X has a Chow
decomposition of the diagonal (that is CH0(X) is universally trivial) if and
only if X admits a cohomological decomposition of the diagonal.

As it is much easier to study cohomological decompositions of the
diagonal, we get various consequences.
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Theorem 4.18. [42, Theorem 5.6] Let X be a special cubic fourfold in
the sense of Hassett [18], whose discriminant is not divisible by 4. Then
CH0(X) is universally trivial.

Concerning cubic threefolds, we conclude using Theorem 4.12 that we
have the following equivalence

Theorem 4.19. [42, Theorem 1.7] A smooth cubic threefold X has
universally trivial CH0 group if and only if the minimal class θ4/4! is
algebraic on J3(X).

To state the last result, let us introduce the following definition.

Definition 4.20. Let X be an algebraic variety over a field K and
let Y ⊂ X be a closed algebraic subset. Then CH0(Y ) → CH0(X) is
universally surjective if for any field L containing K, CH0(YL) → CH0(XL)
is surjective.

Applying the definition to L = K(X) we see immediately that this is
equivalent to the existence of a decomposition of the diagonal

ΔX = Z1 + Z2 in CHn(X ×X),

where Z1 is supported on D × X for some D � X, and Z2 supported on
X×Y . We will say that the essential CH0 dimension of X is k if the minimal
dimension of a closed algebraic subset Y ⊂ X with CH0(Y ) → CH0(X)
universally surjective is k.

Theorem 4.21. [42, Theorem 1.3] Let X be a very general cubic hyper-
surface of dimension n. Then the essential CH0 dimension of X is either 0
or n.
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[10] H. Clemens, Ph. Griffiths. The intermediate Jacobian of the cubic threefold, Annals
of Mathematics. Second Series 95 (2): 281-356 (1972).

[11] J.-L. Colliot-Thélène, M. Ojanguren. Variétés unirationnelles non rationnelles: au-
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