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Abstract

We prove in this paper the smoothability of cycles modulo rational equivalence
below the middle dimension, that is, when the dimension is strictly smaller than the
codimension. We introduce and study the class of cycles obtained as “flat pushforwards
of Chern classes” (or equivalently, flat pushforwards of products of divisors) and prove
that they are smoothable below the middle dimension. Our main result is that all
cycles (of any dimension) on a smooth projective variety are flat pushforwards of Chern
classes. In the case of abelian varieties, one can even restrict to smooth pushforwards
of Chern classes.

1 Introduction

Let X be a smooth projective variety of dimension n. Following [9], we will say that a cycle
class z ∈ CHd(X) is smoothable if it belongs to the subgroup of CHd(X) generated by the
classes of d-dimensional smooth subvarieties of X. A number of non-smoothability results
have been proved above the middle dimension, that is, when 2d ≥ n, since the question of
smoothability was first raised by Borel and Haefliger [2] for cohomology classes. Hartshorne,
Rees and Thomas [9] proved the non-smoothability of the second Chern class c2(E) of the
tautological subbundle E on a Grassmannian G(3, n), n ≥ 6. Debarre [5] proved the non-

smoothability of the minimal class θ2

2 on a very general Jacobian of curve of genus ≥ 7, where
θ is the class of a Theta-divisor. This class of examples has been greatly expanded in [3].
Benoist [1] exhibits examples of nonsmoothable d-cycles on varieties of dimension n for many
possible pairs (d, n) above the middle dimension, including the case where 2d = n, under
some arithmetic condition on the codimension c = n− d. When 2d ≥ n+ 2, a big question
which remains completely open despite these counterexamples concerns the smoothability
of cycles with Q-coefficients.

When 2d− 1 ≤ n, Kleiman proves in [12] that for any cycle z ∈ CHd(X) of codimension
c, the cycle (c− 1)!z is smoothable. (A similar result in the range 2d < n already appeared
in [10], but Hironaka acknowledges there the help of Kleiman.) We also mention a related
result by Sumihiro [20, Theorem 3.2] saying that for any cycle z ∈ CHc(X), the cycle
(c − 1)!z becomes smoothable after pull-back under a flat base-change X ′ → X, with X ′

smooth. (Note that there is no condition on c in this statement.) For the cycles themselves
(as opposed to a multiple), Hironaka proved in 1968 the following result.

Theorem 1.1. (Hironaka [10]) Cycles of dimension d ≤ 3 are smoothable on smooth vari-
eties of dimension n > 2d.

We study in this paper the smoothability problem for cycles modulo rational equivalence
below the middle dimension, which is mentioned in the introduction of [1], and our first
main result is
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Theorem 1.2. Let X be a smooth projective variety of dimension n, defined over a field
of characteristic 0. Then for any integer d such that 2d < n, any cycle z ∈ CHd(X) is
smoothable.

Note that this result is related to the easy case of Whitney’s embedding theorem in differ-
ential topology, thanks to Hironaka’s resolution theorem [11]. Indeed, for any d-dimensional

subvariety Z ⊂ X, we can resolve the singularities of Z and get a proper morphism j̃ : Z̃ → X
such that j̃∗[Z̃] = [Z] in CHd(X). Our statement is that, if 2d < n, we can replace modulo

rational equivalence j̃ : Z̃ → X by an integral combination of embeddings ji : Zi ↪→ X of
smooth subvarieties. The difficulty is the following : We can of course embed Z̃ in X × Pn
over X, and then, by an easy projection argument, we see that it suffices to construct a
cycle Z ′ =

∑
i niZ

′
i in X × Pn, which is rationally equivalent to Z̃, and such that the Z ′i

are both smooth and in general position. The Chow moving lemma provides such a cycle in
general position but unfortunately the Z ′i are not smooth starting from dimension 4.

Remark 1.3. In [1, Theorem 0.3], Benoist produces, for infinitely many values of d, exam-
ples of cycles of dimension d and codimension d on smooth projective varieties over C, that
are not smoothable. Theorem 1.2 shows that, at least for these values of d, his examples are
optimal and the condition 2d < n is necessary for smoothability.

Theorem 1.2 is obtained as a consequence of a more general structure result for algebraic
cycles of any dimension that we now describe. For any smooth variety X, we denote by
CH∗(X)Ch ⊂ CH∗(X) the subring generated by Chern classes of vector bundles on X. The
standard formula (7) combined with locally free resolutions shows that

(c− 1)!CHc(X) ⊂ CHc(X)Ch.

In particular we have CH∗(X) ⊗ Q = CH∗(X)Ch ⊗ Q. However, it is well-known that
CH∗(X)Ch can be a proper subring of CH∗(X). We refer to [4] for an explicit example
and to Lemma 3.5 for another example. As discussed in Sections 3.2, further examples
are provided by homogeneous varieties G/H, where G is a semi-simple, simply connected
group, H is a Borel subgroup and the torsion order of G is not 1 (we are grateful to Burt
Totaro for explaining this to us). Cycles of Chern type, that is, elements of CHd(X)Ch,
are relevant for our subject, since we know that they are smoothable under the Whitney
condition 2d < dimX. (We will give in Section 2 an argument which involves Segre classes
and seems slightly different from Kleiman’s and Hironaka’s arguments.)

For the purpose of this paper, let us now introduce further definitions that will be crucial
for the proof (the notation is a bit heavy, we welcome a better suggestion).

Definition 1.4. Let X be smooth. We will denote by CH(X)fl∗Ch (for “flat pushforward
of Chern classes”), resp. CH(X)sm∗Ch (for “smooth pushforward of Chern classes”) the
subgroup generated by cycles of the form π∗z

′ for a flat, resp. smooth, proper morphism
π : P → X, with P smooth, and for some cycle z′ ∈ CH(P )Ch.

Lemma 2.5 proved in Section 3.1 says that CH∗(X)Ch ⊂ CH∗(X) is generated by smooth
pushforwards of classes of complete intersections of divisors. it follows that, in Definition
1.4, we could replace “cycle in CH(P )Ch” by “cycle in the subring of CH∗(P ) generated by
divisors” (see Remark 3.1). Further easy properties are discussed in Section 3.1.

We prove in Section 2 the following basic

Proposition 1.5. (Cf. Proposition 2.10) Cycles in CHd(X)fl∗Ch are smoothable when 2d <
dimX.

The analogous result for cycles in CHd(X)sm∗Ch is a standard statement. Proposition
1.5 is our motivation to introduce Definition 1.4. Our second main theorem is the following

Theorem 1.6. Let X be a smooth projective variety over a field of characteristic 0. Then

CH(X) = CH(X)fl∗Ch. (1)
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More precisely, any cycle on a smooth projective variety X over a field of characteristic 0 is
obtained as a pushforward of intersections of divisors on a smooth projective (nonnecessarily
connected) variety Y under a flat morphism f : Y → X.

Remark 1.7. Equality (1) combined with Remark 3.1 a priori just says that any cycle
on a smooth projective variety X over a field of characteristic 0 belongs to the subgroup
generated by pushforwards of intersections of divisors on smooth projective varieties Yi
under flat morphisms fi : Yi → X. However, by allowing disjoint unions (and possibly
taking products with Pri if we want that the disjoint union Y = tYi is equidimensional), we
find that pushforwards of intersections of divisors on a smooth projective (nonnecessarily
connected) variety Y under a flat morphism f : Y → X form a group. Thus the second
statement is in fact implied by (1).

Theorem 1.2 follows from Theorem 1.6 and Proposition 1.5.
The first step in the proof of Theorem 1.6 is the following Theorem 1.8 proved in Section

3.3, which establishes stability properties of CH(·)fl∗Ch under certain non-flat pushforwards.
As there does not seem to exist a standard terminology, we will use here and in the rest of
the paper the term complete bundle-section in X, for “closed algebraic subset of codimension
c which is the zero-set of a section of a vector bundle of rank c on X”. We welcome again a
better suggestion.

Theorem 1.8. (i) (Cf. Proposition 3.7.) Given a finite morphism j : Y → X, where Y
and X are smooth projective and dimY = dimX − 1, one has

j∗(CH(Y )fl∗Ch) ⊂ CH(X)fl∗Ch.

(ii) (Cf. Proposition 3.9.) Let X be a smooth projective variety and let j : Y ↪→ X
be the inclusion of a smooth subvariety which is a complete bundle-section in X. Then
j∗(CH(Y )fl∗Ch) ⊂ CH(X)fl∗Ch.

(iii) (Cf. Proposition 3.11.) Let X be smooth projective and let Y ⊂ X be a smooth

complete bundle-section in X. Let τ : X̃ = BYX → X be the blow-up of X along Y . Then

τ∗(CH(X̃)fl∗Ch) ⊂ CH(X)fl∗Ch.

We will also show in Section 3.3 how Theorem 1.8 easily implies Theorem 1.6 for cycles
of dimension ≤ 3 (cf. Theorem 3.12).

Theorem 1.6 is then obtained as a consequence of the following “cbs resolution theorem”,
which will be proved in Section 4.

Theorem 1.9. Let Z ⊂ X be a smooth subvariety of dimension d, with X smooth projective
and dimX > 4d. Then, after successive blow-ups of smooth complete bundle-sections Wi ⊂
Xi

τi→ Xi−1, i = 0, . . . , r, X0 = X, the proper transform Zr ⊂ Xr is a smooth connected
component of a smooth complete bundle-section Z∗r on Xr.

Corollary 1.10. Let Z ⊂ X be smooth, projective varieties such that dimZ < 1
4 dimX.

Then after successive blow-ups Xr+1
τr+1→ Xr

τr→ · · · → X0 := X along smooth complete
bundle-sections Wi ⊂ Xi, there exists a complete intersection subvariety Zr+1 ⊂ Xr+1 such
that Π∗(Zr+1) = Z as effective cycles in X, where Π : Xr+1 → X is the composition of the
τi’s.

Proof. Let Xr → · · · → X0 := X be as in Theorem 1.9, and let πr : Xr+1 → Xr be the blow-
up of Z∗r . Let Er+1 be the πr-exceptional divisor lying over Zr. Choose Hr sufficiently ample
on Xr such that |π∗rHr−Er+1| restricts to a very ample divisor on Er+1. Then we can choose
general members Di ∈ |π∗rHr − Er+1| to obtain a complete intersection subvariety Zr+1 :=(
Er+1 ∩D1 ∩ · · · ∩Dc

)
satisfying the desired property, where c = dimX − dimZ − 1.
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Theorem 1.8 and Corollary 1.10 immediately imply Theorem 1.6. Indeed, let Z ⊂ X
be a subvariety of dimension d. By desingularizing Z, we get a smooth subvariety Z ′ ⊂
X × PN , with N large, projecting to Z ⊂ X. This way, we are reduced to proving that
[Z] ∈ CHd(X)fl∗Ch when Z is smooth and dimX > 4dimZ. We apply Corollary 1.10

to Z ⊂ X, and get Zr+1 ⊂ Xr+1
Π→ X such that [Z] = Π∗[Zr+1] in CHd(X), where Π

is a composition of blow-ups along smooth complete bundle-section centers and Zr+1 is a
complete intersection of divisors in Xr+1. By Theorem 1.8(iii), it follows that

Π∗[Zr+1] = [Z] ∈ CHd(X)fl∗Ch.

The methods used to prove Theorems 1.6 and 1.8 do not allow us to prove the stronger
result that CHd(X) = CHd(X)sm∗Ch. In particular, the proof of the main Proposition 3.7
(Theorem 1.8(i) above) does not work if we replace the groups CHd(Y )fl∗Ch and CHd(X)fl∗Ch

respectively by CHd(Y )sm∗Ch and CHd(X)sm∗Ch. This leaves open the following

Question 1.11. Are there smooth projective varieties X such that CH(X) 6= CH(X)sm∗Ch?

As follows from Theorem 1.12 below, the equality CH(X) = CH(X)sm∗Ch is satisfied by
abelian varieties but it could be that for the example treated in Lemma 3.5, or for some
homogeneous varieties, we have CH0(X) 6= CH0(X)sm∗Ch.

In section 5, we will give an alternative proof of Theorem 1.6 for homogeneous varieties,
which does not use the cbs resolution Theorem 1.9, and which, in the case of abelian varieties,
even gives a stronger result.

Theorem 1.12. Let G be an algebraic group and X be a projective variety which is homo-
geneous under G.

(i) If there exists a smooth projective G-equivariant completion G of G which satisfies
CH0(G) = CH0(G)sm∗Ch, then

CHd(X)sm∗Ch = CHd(X) (2)

for all d.
(ii) If A is an abelian variety, then CHd(A) = CHd(A)sm∗Ch for any d.

We do not know if the assumption in Theorem 1.12(i) is always satisfied. The stronger
version that there always exists a smooth projective G-equivariant completion G of G which
satisfies

CH0(G) = CH0(G)Ch (3)

is wrong for abelian varieties. For simply connected groups, the condition (3) seems to be
closely related to the torsion order of G being 1 (see [6] and Section 4), but the precise
relation is not obvious to us.

To finish, let us mention that Kleiman also studies in [12] the strong smoothability
problem, which asks whether, given a smooth projective variety X and finitely many smooth
subvarieties Wi ⊂ X, any cycle z ∈ CH(X) is a combination of classes of smooth subvarieties
Zj ⊂ X, that have a proper smooth intersection with all the Wi. Kleiman establishes strong
smoothability of cycles with rational coefficients, in the range 2d− 1 ≤ n.

Our results do not prove strong smoothability of cycles with integral coefficients in the
range 2d < n, except in the case of abelian varieties. In general, they imply the weaker
statement that, in the situation above, if 2d < n = dimX, any cycle z ∈ CHd(X) is a
combination of classes of smooth subvarieties Zj ⊂ X, that have a proper intersection with
all the Wi (see Theorem 5.1).

Thanks. CV thanks Olivier Benoist and Olivier Debarre for introducing her to this
subject and for interesting discussions, and Michel Brion, Laurent Manivel, Nicolas Perrin
and Burt Totaro for their help with homogeneous varieties. Both authors thank the referees
for their careful reading and constructive suggestions.
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2 Criteria for smoothability

We first prove the following basic result

Proposition 2.1. Let φ : Y → X be a flat morphism between smooth varieties over a field of
characteristic 0. Let n = dimX. Then for a smooth subvariety Z ⊂ Y of dimension d < n

2
which is in general position and such that the restriction φ|Z is proper, φ|Z : Z → φ(Z) is an
isomorphism, so the closed algebraic subset φ(Z) ⊂ X is smooth. Furthermore, if n = 2d,
φ|Z is an immersion and the image φ(Z) has finitely many singular points.

Although this will be clear from the proof, let us first make precise what we mean by “in
general position”. For the application to the proposition, the general position assumption
will be a transversality condition with respect to φ and its infinitesimal properties. More
precisely, let us say that Z is in general position if Z is the general fiber Zb of a family of
embeddings

Z f→ Y
p ↓
B

(4)

where Z is smooth and p is smooth, which is very mobile at any point (x, y), x 6= y, of
Z × Z ∼= Zb × Zb, (that is, (f, f) : Z ×B Z → Y × Y is a submersion at any point (x, y) of
Z × Z \∆Z), and whose tangent space is mobile at any point of Z, that is, the morphism

F : P(TZ/B)→ P(TY )

given by the differential of the inclusions fb : Zb → Y , is submersive at any point of Z.
The important fact for us is the following

Remark 2.2. Assuming Y ⊂ PN is projective of dimension m, the general position as-
sumption will be satisfied by a general complete intersection of m− d very ample divisors.

For the proof of Proposition 2.1, we will use the following consequence of the “general
position” assumption.

Lemma 2.3. (i) If W ⊂ Y is a closed algebraic subvariety of codimension > d and Z ⊂ Y
is a smooth subvariety of dimension d which is in general position, then Z does not intersect
W .

(ii) If W ⊂ Y ×Y is a subvariety of codimension > 2d, and Z ⊂ Y is a smooth subvariety
of dimension d which is in general position, then Z×Z does not intersect W away from the
diagonal of Z.

(iii) If W ⊂ P(TY ) is a subvariety of codimension ≥ 2d, and Z ⊂ Y is a smooth
subvariety of dimension d which is in general position, P(TZ) does not intersect W .

Remark 2.4. The general position assumption in each of these statements is relative to
the choice of W , in the sense that, with the notation of (4), the Zariski open set of points
b ∈ B for which the fiber Zb satisfies the conclusion depends on W .

Proof of Lemma 2.3. (i) We use the notations of (4), with Z = Zb, b ∈ B being a general
point of B. As f is a submersion along Zb, there exists a Zariski neighborhood U of Zb in Z
such that any component of f−1(W )∩U has codimension > d in U . As dimB = dimZ −d,
it follows that

p|f−1(W )∩U : f−1(W ) ∩ U → B

cannot be dominant, hence for a general b ∈ B, Zb does not intersect f−1(W ), that is,
Z = f(Zb) does not intersect W .

(ii) The argument is the same as above with f replaced by (f, f) : Z ×B Z → Y × Y .
The fibers of (p, p) : Z ×B Z → B are now of dimension 2d and (f, f) is a submersion away
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from the diagonal of Zb, so if W ⊂ Y × Y has codimension > 2d, (f, f)−1(W ) will have
codimension > 2d in Z×BZ\∆Z , and will not dominate B, since dimB = dim (Z×BZ)−2d.

(iii) The argument is the same as above except that we work now with F : P(TZ/B) →
P(TY ). We simply observe that the fibers of the natural map P(TZ/B)→ B are of dimension
2d− 1.

Proof of Proposition 2.1. Let ∆Y ⊂ Y ×Y be the diagonal and let Y ′ ⊂ Y ×Y \∆Y be the
closed algebraic subset Y ×X Y \∆Y . By flatness of φ, we have codim (Y ′ ⊂ Y × Y ) = n.
As dimZ × Z = 2d < n and Z is in general position, Z × Z does not intersect Y ′ away
from the diagonal by Lemma 2.3(ii), so φ|Z is injective. When n = 2d, Z × Z intersects Y ′

away from the diagonal in at most finitely many points. It remains to prove the infinitesimal
statement, for which we only assume that 2d ≤ n. Let Yk ⊂ Y be the locally closed subset
of Y where the rank of φ is equal to k. Then, as we are in characteristic 0, we have

dimφ(Yk) ≤ k,

hence by flatness, codim (Yk ⊂ Y ) ≥ n − k, or equivalently dimYk ≤ m + k, where m :=
dimY − n. Along Yk, we have the rank k morphism

φk := (φ∗)|Yk
: TY |Yk

→ (φ∗TX)|Yk

with kernel a subbundle Kk ⊂ TY |Yk
of corank k. Let W ⊂ P(TY ) be the set of pairs

(y, u), y ∈ Y, u ∈ Kerφ∗,y. The stratification of Y by the Yk’s describes W as a union

W = tkP(Kk).

As dimYk ≤ k +m and rkKk = m+ n− k, we get

dimP(Kk) ≤ 2m+ n− 1

for any k, and thus dimW ≤ 2m+ n− 1. As dimP(TY ) = 2(m+ n)− 1, it follows that

codim (W ⊂ P(TY )) ≥ n.

By Lemma 2.3(iii), Z being of dimension d and in general position with n ≥ 2d, P(TZ) does
not intersect W . This means that φ|Z is an immersion, which concludes the proof.

We will combine Proposition 2.1 with the following easy result.

Lemma 2.5. Let X be smooth of dimension n and let z ∈ CHd(X) be a cycle. Assume
that z belongs to the subring CH∗(X)Ch of CH∗(X) generated by Chern classes ci(E) for
any coherent sheaf E on X. Then there exist a smooth variety Y and a smooth projective
morphism f : Y → X such that z = f∗z

′ in CH(X), where z′ ∈ CH(Y ) belongs to the
subring generated by divisors on Y .

Proof. First of all, using finite locally free resolutions and the Whitney formula, we know
that z belongs to the subring of CH∗(X) generated by the Chern classes ci(E) for any locally
free coherent sheaf E on X. Secondly, we can replace in this statement the Chern classes by
the Segre classes, since the total Segre and Chern classes s(E) and c(E) satisfy the relation

s(E) = c(E)−1, c(E) = s(E)−1,

so any polynomial with integral coefficients in the Segre classes is a polynomial with integral
coefficients in the Chern classes and vice-versa.

It thus suffices to prove that any monomial si1(E1) . . . sik(Ek) ∈ CH(X), where the Ei’s
are locally free sheaves on X of rank ri, satisfies the conclusion of Lemma 2.5. This statement
follows from the definition of Segre classes (see [8]). Indeed, let πi : P(Ei) → X be the
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projectivization of Ei and let Hi ∈ Pic(P(Ei)) with first Chern class c1(Hi) ∈ CH1(P(Ei))
be the dual of its Hopf line bundle (so that R0πi∗Hi = E∗i ). Then

sj(Ei) = πi∗(c1(Hi)
j+ri−1) in CH(X). (5)

It follows from (5) and the projection formula that

si1(E1) . . . sik(Ek) = π∗(pr∗1c1(H1)i1+r1−1 . . . pr∗kc1(Hk)ik+rk−1) in CH(X), (6)

where π : P(E1)×X . . .×X P(Ek)→ X is the fibred product of the πi : P(Ei)→ X and pri
is the projection from P(E1)×X . . .×X P(Ek) to its i-th factor.

Corollary 2.6. Let X be smooth of dimension n and let z ∈ CHd(X)Ch, with 2d < n. Then
z is smoothable, that is, z is rationally equivalent to a cycle Z ′ =

∑
i niZ

′
i, where Z ′i ⊂ X is

smooth.

Proof. Using Lemma 2.5, the result follows from Proposition 2.1 by Remark 2.2.

Corollary 2.7. (Hironaka [10], Kleiman [12]) If X is smooth and 2d < dimX, any cycle
z ∈ CHd(X)Q is rationally equivalent to a smooth cycle with Q-coefficients. More precisely
(c− 1)!z is smoothable, where c := n− d is the codimension of z.

Proof. Indeed, it suffices to prove the result when z = [Z] is the class of a subvariety Z of
X of dimension d. Let OZ be the structural sheaf of Z, seen as a coherent sheaf on X. It
follows from the Grothendieck-Riemann-Roch formula (see [8, Example 15.3.1]) that

cn−d(OZ) = (−1)n−d−1(n− d− 1)![Z] ∈ CHd(X)Ch ⊂ CHd(X), (7)

so Corollary 2.6 applies.

Remark 2.8. In [10], which does not use Segre classes but the splitting principle to reduce
Chern classes to products of divisors, the coefficient (c−1)! appears multiplied by a constant,
which is possibly 1.

Remark 2.9. Kleiman in [12] argues differently by studying singularities of Schubert vari-
eties and proves a result which is of a different nature, as it also includes the cases where
n = 2d or 2d− 1, which are above the middle dimension.

Combining Lemma 2.5 and Proposition 2.1, we get the following criterion

Proposition 2.10. Let φ : Y → X be a proper flat morphism between smooth varieties.
Then for any cycle z ∈ CHd(Y )Ch with 2d < n = dimX, the class z′ = φ∗z ∈ CHd(X) is
smoothable on X.

Proof. By Lemma 2.5, the cycles z as above are of the form π∗z
′ for a smooth proper

morphism π : P → Y and for some cycle z′ ∈ CH(P ) which is a combination with integral
coefficients of intersections of divisors on P . By Remark 2.2, Proposition 2.1 applies to z′

and the flat morphism φ ◦ π : P → X, proving the statement.

3 Flat pushforwards of Chern classes

3.1 Comments on Definition 1.4

We start with the following remarks on Definition 1.4.

Remark 3.1. By Lemma 2.5, in the definition of CH(X)fl∗Ch and CH(X)sm∗Ch, we can
replace “elements of CH(P )Ch” by “intersections of divisors on P”. Indeed, if Y is smooth,
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p : Y → X is a proper flat morphism, and z ∈ CHd(Y )Ch, there exist by Lemma 2.5 a
smooth variety P and a smooth morphism p′ : P → Y such that

z = p′∗(w) in CHd(Y ),

where w belongs to the subring of CH(P ) generated by divisors. The morphism p◦p′ : P → X
is flat and projective, and p∗z = (p ◦ p′)∗w.

Remark 3.2. If f : Y → X is a flat (resp. smooth) morphism between smooth projective
varieties, one has f∗(CH(Y )fl∗Ch) ⊂ CH(X)fl∗Ch, resp. f∗(CH(Y )sm∗Ch) ⊂ CH(X)sm∗Ch.

Let us now establish a few elementary facts.

Lemma 3.3. (i) One has CH(X)Ch ⊂ CH(X)sm∗Ch ⊂ CH(X)fl∗Ch.
(ii) The subgroup CH(X)sm∗Ch is a subring of CH(X).
(iii) The subgroup CH(X)fl∗Ch is a module over the ring CH(X)sm∗Ch.

Proof. (i) The second inclusion is obvious since smoothness implies flatness.
(ii) and (iii) Let p1 : P1 → X, p2 : P2 → X be proper morphisms with P1, P2, X smooth

and assume p1 is smooth, p2 is flat. Then P12 := P1 ×X P2 is smooth. If Z1, resp. Z2

are intersections of divisors on P1, resp. P2, their pull-backs Z ′1, resp. Z ′2 to P12 via the
projections

p′1 : P12 → P2, p
′
2 : P12 → P1

are also intersections of divisors, and the projection formula gives

p1∗Z1 · p2∗Z2 = p12∗(Z
′
1 · Z ′2) in CH(X),

where p12 : P1 ×X P2 → X is the natural morphism. This proves (ii) and (iii) since p12 is
flat and it is smooth if p2 is smooth.

Another useful lemma is the following

Lemma 3.4. Let φ : Y1 → Y2 be a morphism, with Y1, Y2 smooth. Then
(i) One has

φ∗(CH(Y2)sm∗Ch) ⊂ CH(Y1)sm∗Ch, (8)

(ii) If φ is smooth, then

φ∗(CH(Y2)fl∗Ch) ⊂ CH(Y1)fl∗Ch. (9)

Proof. Let ψ : W → Y2 be a flat (resp. smooth) projective morphism. Then

ψ1 : W1 := W ×Y2
Y1 → Y1

is flat (resp. smooth). Furthermore, if either ψ is smooth (Case (i)) or φ is smooth (Case
(ii)), W1 is smooth.

Let φ1 : W1 → W be the first projection. If γ ∈ CH(W )Ch, we have φ∗1γ ∈ CH(W1)Ch,
and furthermore we have by [8, Proposition 1.7]

ψ1∗(φ
∗
1γ) = φ∗(ψ∗γ) in CH(Y1).

This proves (8) and (9).
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3.2 Examples of cycles not in CH(X)Ch

Theorem 1.6 is interesting when the considered cycles do not belong to CH(X)Ch. Besides
the case of 0-cycles on very general abelian varieties with high degree polarization (see [4]),
some hypersurfaces in projective space provide such examples. For example, we have

Lemma 3.5. Let X ⊂ P4 be a very general hypersurface of degree 64. Then the class of a
point x ∈ X does not belong to CH0(X)Ch. More precisely, for any vector bundle E on X,
the degree deg c3(E) is divisible by 2.

Proof. Let E be a vector bundle of rank r on X. By the Hirzebruch-Riemann-Roch formula,
the holomorphic Euler-Poincaré characteristic of E is given by the formula

χ(X,E) =

∫
X

ch(E)td(X) = αc3(E) + βc2(E)c1(E) + γc2(E)c1(X) + q(E), (10)

where the constants α, β, γ, which are independent of E, are rational and the quantity q(E)
is the part of the Riemann-Roch polynomial (in the Chern classes of E) which involves only
c1(E) and the rank of E, and is an integer since it is equal to∫

X

(r − 1)td3(X) + ch(detE)td(X) = (r − 1)χ(X,OX) + χ(X,detE).

The constants α and β are obtained by expressing ch3(E) as a polynomial in the Chern
classes ci(E). One gets

α = 1
2 , β = − 1

2 . (11)

Finally, the constant γ is obtained by expressing ch2(E)td1(X) using the Chern classes of
E. One gets

γ = − 1
2 . (12)

It is proved in [14] that for X as above, any curve C ⊂ X has degree divisible by 2. It
follows that the numbers

∫
X
c2(E)c1(E) and

∫
X
c2(E)c1(X) are even. We thus deduce from

(11) and (12) that χ(X,E) = 1
2

∫
X
c3(E) + s, where s is an integer. Thus the degree of

c3(E) has to be an even integer.

Remark 3.6. We see from the proof above that the obstruction to the existence of a vector
bundle E on X (or more generally an element of K0(X)) with deg c3(E) = 1 comes from
the defect of the integral Hodge conjecture for degree 4 Hodge classes on X. Conversely, if
the integral Hodge conjecture for degree 4 Hodge classes on X holds true, then, denoting
by H ∈ CH1(X) the class of a hyperplane section, the generator a ∈ H4(X,Z) such that
〈a, [H]〉 = 1 is algebraic, that is, a = [Z] for some 1-cycle Z ∈ CH1(X). As we have

CH1(X) = CH2(X) = CH2(X)Ch

by formula (7), the cycle Z belongs to CH2(X)Ch, so the cycle H ·Z belongs to CH3(X)Ch.
Hence there exists a degree 1 element in CH3(X)Ch in this case.

Other examples of smooth projective varieties X for which CH(X) 6= CH(X)Ch are given
by generalized flag manifolds for certain affine algebraic groups with torsion index > 1 (see
[6] and [21], [22] where this notion is discussed and computed for many groups). Merkurjev
proved in [17] that for a simply connected semisimple algebraic group G, and for a closed
subgroup H, the K0-ring of G/H is generated by classes of homogeneous vector bundles on
G/H that come from representations of H. If furthermore H is a Borel subgroup of G, then
homogeneous vector bundles on G/H coming from representations of H are direct sums of
line bundles. In the last case, it follows that the subgroup

CH0(G/H)Ch ⊂ CH0(G/H)

9



is also the subgroup generated by products of divisor classes. By definition of the torsion
index of G, the index of the latter subgroup is a multiple of the torsion index of G. The
computations in [21], [22] thus give plenty of examples where CH0(G/H)Ch ⊂ CH0(G/H)
is a proper subgroup.

3.3 Some stability results for CH(X)fl∗Ch

We will give in this section the proof of Theorem 1.8. It will rely on the following three
propositions.

Proposition 3.7. Let X, Y be smooth projective varieties with dimY = dimX − 1, and let
j : Y → X be a finite morphism. Then

j∗(CH(Y )fl∗Ch) ⊂ CH(X)fl∗Ch.

Proof. Let T = BΓj
(Y ×X) be the smooth projective variety obtained by blowing-up the

graph Γj of j in Y ×X. Let
τ : T → Y ×X

be the blow-up map and let prY , prX be the two projections from Y ×X to Y and X. We
denote

p := prY ◦ τ : T → Y, q := prX ◦ τ : T → X

the two natural morphisms.

Lemma 3.8. The morphism p is smooth and the morphism q is flat.

Proof. Indeed, the fiber of p over y ∈ Y is the blow-up of X along j(y), which is smooth.
The fiber of q over x ∈ X is isomorphic to Y when x 6∈ j(Y ), hence it has dimension n− 1,
n = dimX. We claim that all the fibers of q have dimension ≤ n−1. To see this, we observe
that

q−1(x) = τ−1(Y × {x})

is the set-theoretic union of several components, some being contained in the exceptional
divisor E over Γj and mapping via τ to (Y ×{x})∩Γj , the other being birational to Y . The
component which is birational to Y has dimension n− 1. The other components are also of
dimension ≤ n−1, since the morphism τ|E : E → Γj ∼= Y has fibers of dimension n−1, and

(Y × {x}) ∩ Γj ∼= j−1(x) ⊂ Y ∼= Γj

has dimension 0 because j is finite. This proves the claim. The fibers are thus equidimen-
sional, hence q is flat since both T and X are smooth.

For any class w ∈ CHd(Y )fl∗Ch, there exist by definition a (not necessarily connected but
equidimensional) smooth projective variety W , a flat morphism φ : W → Y , and divisors
D1, . . . , DN−d ∈ CH1(W ), N := dimW , such that

w = φ∗(D1 · . . . ·DN−d) in CHd(Y ). (13)

We now observe that

j∗w = Γj∗(w) = prX∗(pr∗Y w · Γj) (14)

in CHd(X). Furthermore, we have as usual

Γj = ±τ∗En in CHn(Y ×X), n = dimX. (15)

Let now
WT := W ×Y T
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with first projection pW to W , second projection pT to T and morphism

ψ := q ◦ pT : WT → X.

We first observe that WT is smooth by Lemma 3.8. Next, combining (13), (14), and (15),
and applying the projection formula, we get

j∗w = ±ψ∗(p∗W (D1 . . . DN−d) · p∗TEn) in CHd(X), (16)

which proves that j∗w belongs to CHd(X)fl∗Ch, since the morphism ψ is flat, being the
composition of the two flat morphisms q and pT . The proof of Proposition 3.7 is finished.

Proposition 3.7 has the following consequences.

Proposition 3.9. Let X be smooth projective and let j : Y ↪→ X be the inclusion of a smooth
projective subvariety which is the zero-set of a transverse section σ of a vector bundle E on
X. Then

j∗(CH(Y )fl∗Ch) ⊂ CH(X)fl∗Ch. (17)

Proof. We prove the result by induction on the rank of E, the case of rank 1 being a
particular case of Proposition 3.7. Let E be a rank r vector bundle on X and let π :
P(E∗) = Proj (Sym∗E) → X be the projectivization of E∗. Let π∗E → H be the quotient
line bundle on P(E∗). The section π∗σ ∈ H0(P(E∗), π∗E) projects to a section σ′ of H and
we have

Lemma 3.10. (i) The zero-locus of σ′ is a smooth hypersurface X ′ of P(E∗).
(ii) Furthermore, the induced section σ′′ of F := Ker (π∗E → H) on X ′ is transverse

with zero-locus π−1(Y ) = P(E∗|Y ) ⊂ X ′ ⊂ P(E∗).

Proof. (i) The vanishing locus of σ′ is a Pr−2-bundle over the open subset X \Y of X where
σ 6= 0, hence it is smooth over X \ Y . It obviously contains π−1(Y ) and it remains to show
that it is smooth there, which is easy.

(ii) The vanishing locus of σ′′ on X ′ equals scheme-theoretically the vanishing locus of
the section π∗σ of π∗E on P(E∗), hence equals π−1(Y ). It is thus smooth of codimension
r − 1 in X ′.

Denoting by πY : P(E∗|Y )→ Y the restriction of π over Y , we know by Lemma 3.4 that

π∗Y : CH(Y )→ CH(P(E∗|Y )) maps CH(Y )fl∗Ch to CH(P(E∗|Y ))fl∗Ch. Denoting by

j′ : P(E∗|Y ) ↪→ X ′, j′′ : X ′ ↪→ P(E∗)

the inclusion maps, we get, first by the induction hypothesis on the rank and Lemma 3.10,
and secondly by Proposition 3.7, that

j′∗(CH(P(E∗|Y ))fl∗Ch) ⊂ CH(X ′)fl∗Ch, j
′′
∗ (CH(X ′)fl∗Ch) ⊂ CH(P(E∗))fl∗Ch.

We conclude that the map γ := j′′∗ ◦ j′∗ ◦ π∗Y : CH(Y )→ CH(P(E∗)) has the property that

γ(CH(Y )fl∗Ch) ⊂ CH(P(E∗))fl∗Ch.

Recalling from [8, Proposition 1.7] that γ = π∗ ◦ j∗, we thus proved that

π∗ ◦ j∗(CH(Y )fl∗Ch) ⊂ CH(P(E∗))fl∗Ch.

Let h = c1(H) ∈ CH1(P(E∗)). By Lemma 3.3, we have

hr−1CH(P(E∗))fl∗Ch ⊂ CH(P(E∗))fl∗Ch

and by Remark 3.2, π∗(CH(P(E∗))fl∗Ch) ⊂ CH(X)fl∗Ch. As π∗(h
r−1π∗z) = z for any z ∈

CH(X), we conclude that for any z ∈ CH(Y )fl∗Ch,

j∗z = π∗(h
r−1π∗(j∗z)) ∈ CH(X)fl∗Ch.
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Another consequence of Proposition 3.7 is the following

Proposition 3.11. Let X be smooth projective and let Y ⊂ X be a smooth projective
subvariety which is the zero-set of a transverse section σ of a vector bundle E on X. Let
τ : X̃ = BYX → X be the blow-up of X along Y . Then

τ∗(CH(X̃)fl∗Ch) ⊂ CH(X)fl∗Ch. (18)

Proof. Let π : P(E) = Proj(Sym∗E∗) → X be the projectivization of E. Then the section

σ gives a rational section X 99K P(E) of π, whose image is isomorphic to X̃. Furthermore,

as a local computation shows, X̃ ⊂ P(E) is the zero-set of a transverse section σ of the
quotient vector bundle F := π∗E/S on P(E), namely, σ is the projection of π∗σ in π∗E/S,
where S ⊂ π∗E is the tautological subbundle. We have

τ∗ = π∗ ◦ j∗ : CH(X̃)→ CH(X), (19)

where j : X̃ → P(E) is the inclusion map. By Proposition 3.9, we have

j∗(CH(X̃)fl∗Ch) ⊂ CH(P(E))fl∗Ch

and π∗(CH(P(E))fl∗Ch) ⊂ CH(X)fl∗Ch by Remark 3.2. Hence (19) implies (18).

As a consequence of these propositions, we give the easy proof of Theorem 1.6 for cycles
of dimension at most 3, and more generally of the following result.

Theorem 3.12. For any smooth projective variety X, we have

(d− 2)!CHd(X) ⊂ CHd(X)fl∗Ch, (20)

with the convention that (d− 2)! = 1 if d ≤ 2. In particular, for d ≤ 3, we have CHd(X) =
CHd(X)fl∗Ch.

Proof. Let X be smooth projective of dimension n and let Z ⊂ X be a subvariety of
dimension d. We choose a desingularization Z̃ → Z of Z and an embedding Z̃ ⊂ X × Pm
over X for some m. As the projection pX : X × Pm → X to X is flat, it suffices to prove
that

(d− 2)!Z̃ ∈ CH(X × Pm)fl∗Ch, (21)

as it implies by Remark 3.2 that (d− 2)!Z ∈ CH(X)fl∗Ch, which is the contents of (20). In
other words, letting

Z ′ = Z̃, X ′ = X × Pm,

we reduced to the case of the class of a smooth subvariety Z ′ ⊂ X ′, which we treat now.
If dimX ′ ≤ 2d − 1, this is finished by formula (7) since then codim (Z ′ ⊂ X ′) ≤ d − 1. If
not, let Y be a smooth general complete intersection of sufficiently ample hypersurfaces in
X ′ containing Z ′, with Y of dimension 2d. Such Y exists by Lemma 3.13 below, since Z ′ is
smooth of dimension d and dimX ′ ≥ 2d. Let j : Y ↪→ X ′ be the inclusion of Y . As Y is a
smooth complete bundle-section in X ′, we have by Proposition 3.9

j∗(CH(Y )fl∗Ch) ⊂ CH(X ′)fl∗Ch.

In order to prove Theorem 3.12, it thus suffices to prove that the class z′ of Z ′ in Y
satisfies

(d− 2)!z′ ∈ CHd(Y )fl∗Ch. (22)

Let Y ′ ⊂ Y be a general sufficiently ample hypersurface containing Z ′.
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Lemma 3.13. Let N be a smooth variety and M ⊂ N be a smooth subvariety of dimension
d and codimension c. Then a general sufficiently ample hypersurface H ⊂ N containing M
has ordinary quadratic singularities along a smooth subvariety D ⊂M of dimension d−c. In
particular H is smooth if d < c and, if d = c, H has isolated ordinary quadratic singularities.

Proof. (See also [7, Theorem 2.1 and Corollary 2.5].) By Bertini, the singularities of H are
on M , and they correspond to the zeroes of the differential

dσ ∈ H0(M,N∗M/N (H)) (23)

along M of the defining equation σ of H. When H is sufficiently ample, the section (23)
is a general section of the bundle N∗M/N (H) and this bundle is globally generated, so the

zero-locus of dσ is transverse, hence the singular locus of Y ′ is smooth of dimension d − c
(and empty if d− c < 0). In fact, the transversality of the section dσ also implies that the
singularities are ordinary quadratic as a local computation shows.

By Lemma 3.13, the hypersurface Y ′ above is desingularized by a single blow-up along
the finite set W ⊂ Y ′ of its singular points. We choose now a general 0-dimensional complete
intersection W ′ ⊂ Y containing W . We have W ′ = W ∪W ′′, where the set W ′′ is disjoint
from Y ′. It follows that the blow-up Ỹ of Y along W ′ contains the blow-up Ỹ ′ of Y ′ along
W as a smooth hypersurface. Let Z̃ ′ ⊂ Ỹ ′ be the proper transform of Z ′ and denote by z̃′

its class in CHd(Ỹ ′). As the codimension of Z̃ ′ in Ỹ ′ is d−1, we have (d−2)!z̃′ ∈ CHd(Ỹ ′)Ch

by (7). We now apply Proposition 3.7 to the inclusion i of Ỹ ′ in Ỹ and conclude that

(d− 2)!i∗z̃
′ ∈ CHd(Ỹ )fl∗Ch.

As the morphism τ : Ỹ → Y blows-up the smooth complete bundle-section W ′ in Y , we
finally get

(d− 2)!z′ = τ∗((d− 2)!i∗z̃
′) ∈ CHd(Y )fl∗Ch

by Proposition 3.11.

4 The cbs resolution Theorem

The main result of this section is Theorem 4.2, which says that a smooth subvariety of a
smooth variety becomes an irreducible component of a smooth complete bundle-section after
a suitable sequence of blow-ups, whose centers are also smooth complete bundle-sections.

In this section we work over an infinite perfect field. All varieties are allowed to be
reducible, but assumed pure dimensional.

Blow-up sequences. A blow-up sequence is a sequence of morphisms

Yr
πr−1−→ Yr−1

πr−2−→ · · · π0−→ Y0, (24)

where each πi : Yi+1 → Yi is the blow up of a subscheme Ci ⊂ Yi, called the center of the
blow-up.

Let W0 ⊂ Y0 be a subscheme. If the images of the centers Ci are nowhere dense in W0,
then we let Wi ⊂ Yi denote the birational transform of W0 (also called proper transform of
W0).

Here we only deal with blow-up sequences where Y0 is smooth, and the Ci are smooth
and pure dimensional. In this case all the Yi are smooth.

We say that a blow-up sequence as in (24) is a complete bundle-section blow-up sequence
(abbreviated as cbs blow-up sequence), if the Ci ⊂ Yi are all complete bundle-sections.

We consider the following.

Question 4.1. Let Z ⊂ Y be smooth projective varieties. Is there a cbs blow-up sequence
Yr → · · · → Y0 := Y with centers Ci ⊂ Yi such that dimCi < dimZ for every i, and
Zr ⊂ Yr is an irreducible component (that is, a connected component) of a smooth, complete
bundle-section?
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Most likely the answer is yes, but we prove this only when dimZ < 1
4 dimY ; this is

sufficient for our purposes, as explained in the introduction.

Theorem 4.2. Let Z ⊂ Y be smooth projective varieties such that dimZ < 1
4 dimY . Then

there is a cbs blow-up sequence Yr → · · · → Y0 := Y with centers Ci ⊂ Yi, such that
dimCi < dimZ for every i, and Zr ⊂ Yr is a connected component of a smooth complete
bundle-section Z∗r ⊂ Yr.

We will prove this theorem as an almost immediate consequence of Property CBSd stated
in 4.6. In the inductive proof of Theorem 4.2 we need a stronger version, where the centers
Ci are in ‘general position’ with respect to some other subvarieties. To understand what we
need, consider the blow-up of H := (xy + z2) ⊂ A4 along the line L := (x = z = t = 0). In
one chart we get the equation H ′ = (x1y+z2

1t1 = 0). Thus H ′ does not have ordinary double
points. Here L ⊂ H, and it is transversal to the singular set of H, which is (x = y = z = 0).

This leads to the following definition.

Definition 4.3. (Full intersection property) Let Z ⊂ Y be schemes. A closed subset U ⊂ Y
has full intersection with Z, if Z ∩ U is a union of connected components of U . A blow-up
sequence Yr → · · · → Y0 = Y has full intersection with Z if the birational transforms Zi ⊂ Yi
are defined, and each blow-up center Ci has full intersection with Zi.

Let Y be a smooth variety and Z,C smooth subvarieties. We will say that Z has normal
crossings with C, if the intersection Z ∩ C is smooth.

Lemma 4.4. (Elementary blow-up lemmas) Let π : Y ′ := BCY → Y be the blow-up and
Z ′ ⊂ Y ′ the birational transform.

(i) If Z has normal crossings with C, then Z ′ is smooth.
(ii) If Z is a complete bundle-section in Y and C has full intersection with Z, then Z ′

is a complete bundle-section in Y ′.

In addition, let H ⊂ Y be a hypersurface that has only ordinary double points along some
smooth D ( H.

(iii) If C = D, then H ′ is smooth.
(iv) If C has full intersection with D and normal crossings with H \D, then H ′ has only

ordinary double points along the proper transform D′ of D.

Proof. We only prove (iv), as the other statements are completely standard. Using (i), we
only have to check what happens over the components of C contained in D. Let r := dimC,
d := dimD, so r ≤ d, and n := dimY = dimH + 1. By assumption, we can construct local
analytic coordinates z1, . . . , zn on Y such that D is defined by zi = 0, i ≥ d+1, C is defined
by zi = 0, i ≥ r + 1, and H is defined by

f(z) :=

n∑
i=d+1

z2
i = 0. (25)

The blow-up Ỹ of Y along C is defined inside

Pn−r−1 × Y

by the equations
Yizj = Yjzi

for i, j ≥ r+ 1, the Yi’s being homogeneous coordinates on Pn−r−1. On the open set where
Yk 6= 0, we have local coordinates

zl, 1 ≤ l ≤ r, yj , j ≥ r + 1, j 6= k, and zk
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on Ỹ and the blow-up map is given by

zj = zkyj , for j ≥ r + 1, j 6= k,

the exceptional divisor being defined by zk = 0. We examine separately the two cases k ≤ d
and d+ 1 ≤ k ≤ n.

If k ≤ d, the local equations for H̃ is

n∑
i=d+1

y2
i = 0, (26)

and D̃ is defined by yi = 0 for any i ≥ d + 1. It follows that H̃ has ordinary quadratic
singularities along D̃.

If d+ 1 ≤ k ≤ n, the local equation for H̃ is

1 +

n∑
i=d+1,i6=k

y2
i = 0, (27)

and D̃ is defined by yi = 0 for any i ≥ d + 1. It follows that H̃ is smooth in this open
set.

We also need the following subtler variant. This is the main point in the proof where
going from complete intersections to complete bundle-sections becomes necessary.

Lemma 4.5. Let Y be smooth projective and let M ⊂ Y be a complete bundle-section.
Assume that M has only ordinary double points along some smooth subvariety D (M . Let
π : Y ′ := BDY → Y be the blow-up of Y along D and M ′ the birational transform of M in
Y ′. Then M ′ ⊂ Y ′ is a smooth complete bundle-section.

Proof. We know that M ⊂ Y is the zero-set of a transverse section s of a vector bundle F
on Y . Let E be the exceptional divisor of the blow-up map π : Y ′ → Y . We construct a
vector bundle F ′ on Y ′ by modifying π∗F(−E) along E. As D ⊂M , the section s vanishes
along D and has a differential

ds : ND/Y → F|D.

This differential has corank 1, as follows from the fact that M is singular with hypersurface
singularities along D. We thus have a quotient line bundle L of F|D, and denoting πE :
E → D the restriction of π to E, we get a quotient map constructed as the composition

q : π∗F(−E)→ π∗EF|D(−E)→ π∗EL(−E).

We set

F ′ := Ker q.

This is a vector bundle on Y ′. Furthermore, we observe that, by construction, the section
π∗s of π∗F provides a section s′ of F ′ ⊂ π∗F . One then checks, using the fact that the
singularities of M are ordinary quadratic along D, that the vanishing locus of s′ is exactly
the proper transform M ′.

We can now state the inductive forms of Theorem 4.2. Consider the following statements
4.6 and 4.8 depending on dimension d.

4.6. Property CBSd. Let Z ( X ⊂ Y be smooth, projective varieties, dimZ ≤ d and
dimY > 4d. Assume that X ⊂ Y is a smooth complete bundle-section, and dimX <
1
2 dimY . Let Z ⊂W j ⊂ Y be smooth subvarieties such that dimW j < 1

2 dimY .
Then there is a cbs blow-up sequence Π : Yr → · · · → Y0 := Y with centers Ci ⊂ Yi, such

that
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1. dimCi < dimZ for every i,

2. each Ci has full intersection with Zi, Xi and the W j
i , and

3. Zr is a union of irreducible components of a smooth complete bundle-section Z∗r ⊂
Xr ⊂ Yr.

Remark 4.7. Note that we do not claim that Z∗r has full intersection with the W j
r . In

our construction, Z∗r is essentially the birational transform of a complete intersection Z∗ of
the same dimension as Z, and that contains Z as an irreducible component. We can thus
guarantee that Z∗r is in general position away from Π−1(Z). Note, however, that the blow-up
sequence depends on Z∗ in a complicated way, so it is unlikely that we can guarantee that
Z∗r is also in general position along Π−1(Z) \ Zr. This will cause some difficulties in the
proof below.

4.8. Property CBS′d. Let Z ⊂ X ⊂ Y be smooth, projective varieties, with dimZ ≤
d and dimY > 4d. Assume that X ⊂ Y is a smooth complete bundle-section and that
dimX < 1

2 dimY , dimZ < dimX. Let Z ⊂ W j ⊂ Y be smooth subvarieties such that
dimW j < 1

2 dimY .
Then there is a cbs blow-up sequence Yr → · · · → Y0 := Y with centers Ci ⊂ Yi, such

that

1. dimCi < dimZ for every i,

2. each Ci has full intersection with Zi, Xi and the W j
i , and

3. there is a smooth complete bundle-section X
(1)
r ⊂ Yr, such that Zr ⊂ X

(1)
r ⊂ Xr and

dimX
(1)
r < dimXr.

Remark 4.9. In the construction below, X
(1)
r is a subset of Xr of codimension 1. If

dimX ≥ dimZ + 2, then every irreducible component of Xr contains a unique irreducible

component of X
(1)
r . If dimX = dimZ + 1, then Zr is a union of irreducible components of

X
(1)
r , but usually there are other irreducible components as well.

Theorem 4.10. CBSd and CBS′d hold for every d.

For the proof, we use induction on d, and show that CBSd−1 ⇒ CBS′d ⇒ CBSd. Note
that CBS0 is clear.

Proof of CBS′d ⇒ CBSd. Since dimZ < 1
4 dimY , there exists by Lemma 3.13 a smooth

complete intersection X ⊂ Y containing Z, such that dimX < 1
2 dimY .

We are done if dimZ = dimX. Otherwise, using Property CBS′d for d = dimZ, there is a
smooth cbs blow-up sequence Yr1 → · · · → Y0 = Y , whose centers have full intersections with

Z,X, and a smooth complete bundle-section X
(1)
r1 ⊂ Yr1 such that Zr1 ⊂ X

(1)
r1 ⊂ Xr1 ⊂ Yr1

and dimX
(1)
r < dimXr.

We now replace Z ⊂ X ⊂ Y by Zr ⊂ X(1)
r ⊂ Yr and repeat the argument to get

Zri ⊂ X(i)
ri ⊂ X

(i−1)
ri ⊂ Yri , for i = 2, . . .

With each step we lower the dimension of the smooth complete bundle-section X
(i)
ri ⊂ Yri ,

until we reach
Zrm ⊂ X(m)

rm ⊂ Yrm ,

such that dimZrm = dimX
(m)
rm .
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Proof of CBSd−1 ⇒ CBS′d. Take a general hypersurface Z ⊂ H ⊂ Y . Then H ∩ X has
ordinary double points along some smooth D ( Z by Lemma 3.13. We apply CBSd−1 to D
to get Dr which is a union of irreducible components of a smooth cbs D∗r . Next we should
blow up D∗r . Using Lemma 4.4(iii) we get that the birational transform of (H ∩X)r is now
smooth over Dr, and it is a complete bundle-section by Lemma 4.5. However, we also need
to guarantee that the other components D∗r \Dr have full intersection with Hr and Xr. As
we noted in Remark 4.7, this is not clear.

We go around this problem by creating an auxiliary general complete intersection X̄ ⊂ Y
that contains D and has dimension < 1

2 dimY . Using dimW j < 1
2 dimY , we can achieve

that X̄ ∩X = D and X̄ ∩W j = D for every j, scheme theoretically.
Now we apply CBSd−1 to D̄ := D ⊂ X̄ ⊂ Y and W̄ j := W j , with the original X playing

the role of a new W̄ 0. We then get D̄∗r ⊃ D̄r, which is contained in X̄r. In particular,

D̄∗r ∩ W̄ j
r ⊂ X̄r ∩ W̄ j

r ⊂ D̄r = Dr.

For j = 0 this gives that D̄∗r ∩ Xr ⊂ Dr. Thus D̄∗r \ D̄r is disjoint from Xr and the W j
r ,

hence D̄∗r has full intersections with Zr, Xr and W j
r , as needed.

Proof of Theorem 4.2. Since dimZ < 1
4 dimY , there is a smooth complete intersection Z ⊂

X ⊂ Y such that dimX < 1
2 dimY . We can now apply Property CBSd stated in 4.6 with

W j = ∅; the latter is shown to hold in Theorem 4.10.

5 The case of homogeneous varieties

This section is devoted to the case of cycles on homogeneous varieties, for which stronger
results are available.

5.1 Cycles on abelian varieties

We start with the proof of Theorem 1.12(ii). The result in this case is stronger than Theorem
1.6 since it states that

CHd(A) = CHd(A)sm∗Ch (28)

for any abelian variety A and any integer d.

Proof of Theorem 1.12(ii). Let z ∈ CHd(A). We want to prove that

z ∈ CHd(A)sm∗Ch. (29)

We can assume z = [Z] for some subvariety Z ⊂ A of dimension d. We denote by τ : Z̃ → A
a desingularization of Z. Consider the morphism

φ : A× Z̃ → A

(x, z̃) 7→ x+ τ(z̃).

Obviously φ is smooth, since it is A-equivariant. Furthermore, we have, denoting 0A ∈ A
the origin

z = φ∗([0A × Z̃]). (30)

If [0A] ∈ CH0(A) belongs to the subring CH∗(A)Ch of CH∗(A) which is generated by Chern

classes of coherent sheaves on A, so does pr∗1([0A]) = [0A × Z̃] ∈ CH(A × Z̃), hence (30)
implies (29) in this case. It is proved however in [4] that for a very general abelian variety A
with sufficiently divisible polarization degree and high dimension, the class of a point does
not belong to CH∗(A)Ch, so we cannot apply the argument directly to A. Nevertheless,
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Debarre also proves in loc. cit. that, if J is the Jacobian of a curve C of genus g, then for
any point x of J , there exists a rank g vector bundle on J with a section whose zero locus is
{x} (with its reduced structure). In particular, the class [x] belongs to CH∗(J)Ch (a result
that was also proved by Mattuck in [16]). Let now j : C ↪→ A be the inclusion of a smooth
curve of genus g which is a complete intersection of ample hypersurfaces in A. Then by
Lefschetz theorem on hyperplane sections, we have a surjective (hence smooth) morphism
ψ = j∗ : J = JC → A of abelian varieties, and ψ∗([0J ]) = [0A]. Let

φJ : J × Z̃ → A

be the composite φ ◦ (ψ, Id). Then φJ is smooth and we have

z = φJ∗([0J × Z̃]). (31)

As [0J ] belongs to CH∗(J)Ch, [0J×Z̃] belongs to CH∗(J×Z̃)Ch, so (29) follows from formula
(31).

We easily get the following consequence (we refer to the introduction for the definition
of “strongly smoothable”):

Theorem 5.1. (i) Let A be an abelian variety of dimension g. Then for any integer d such
that 2d < g, cycles z ∈ CHd(A) are strongly smoothable.

(ii) Let X be a smooth projective variety of dimension n and Wi ⊂ X be a finite set of
smooth subvarieties. Then if 2d < n, any cycle z ∈ CHd(X) is an integral combination of
classes of smooth subvarieties which intersect all Wi in a proper way.

Statement (i) follows from the equality (28) proved above and from the following

Lemma 5.2. Let X be smooth projective of dimension n. Then, if 2d < n, cycles in
CHd(X)sm∗Ch are strongly smoothable.

Proof. A cycle z ∈ CHd(X)sm∗Ch is of the form

z = f∗z
′

where f : Y → X is smooth projective and z′ belongs to the subring of CH∗(Y ) generated
by divisor classes. Let Wi ⊂ X be a finite number of smooth subvarieties of codimension ci.
As f is smooth, the inverse images f−1(Wi) are smooth of codimension ci. The cycle z′ is a
combination with integral coefficients of classes of general complete intersections Z ′′ of very
ample hypersurfaces, which are smooth in general position and such that their intersections
Z ′′ ∩ f−1(Wi) are also smooth in general position, and of dimension d − ci. If 2d < n,
then 2(d− ci) < n− ci = dimWi. Hence Proposition 2.1 applies to the smooth morphisms
f|f−1(Wi) → Wi, showing that f(Z ′′ ∩ f−1(Wi)) = f(Z ′′) ∩ Wi is smooth of dimension
d− ci.

The proof of statement (ii) follows from the equality (1) and the following

Lemma 5.3. Let Y, X be smooth projective and f : Y → X be a flat morphism, and let
z = f∗z

′, where z′ belongs to the subring of CH∗(Y ) generated by divisor classes. Let Wi ⊂ X
be a finite number of subvarieties of codimension ci. Then, if 2d < n, z is represented by a
cycle of smooth subvarieties which intersect each Wi in a proper way.

Lemma 5.3 is proved exactly as above, using the fact that, by flatness of f , the varieties
f−1(Wi) ⊂ Y have codimension ci.
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5.2 More general homogeneous varieties

We prove in this section Theorem 1.12(i), which is the following statement

Theorem 5.4. Let X be a homogeneous variety under a group G. If there exists a smooth
projective G-equivariant completion G of G which satisfies CH0(G) = CH0(G)sm∗Ch, then

CHd(X)sm∗Ch = CHd(X) (32)

for all d.

Proof of Theorem 5.4. Let z ∈ CHd(X) be the class of a subvariety Z ⊂ X and let τ : Z̃ →
X be a desingularization of Z. We consider the morphism

f : G× Z̃ → X,

(g, z̃) 7→ g · τ(z̃).

The morphism f is obviously smooth since it is G-equivariant. It is however not proper, but
it provides a G-equivariant rational map

F : G× Z̃ 99K X, (33)

where G is any smooth projective completion of G on which G acts (which exists by G-
equivariant resolution of singularities [15]). The action of G on the left hand side of (33) is
via its action on G. By G-equivariant resolution of indeterminacies [19], there exist a smooth

projective variety Y on which G acts, a G-equivariant birational morphism η : Y → G× Z̃,
and a morphism

F̃ : Y → X,

such that F ◦η = F̃ as rational maps to X. The morphism F̃ is proper since Y is projective,
and it is again smooth because it is G-equivariant. Furthermore we have

z = F̃∗(η
∗([e× Z̃])) in CHd(X), (34)

where e ∈ G ⊂ G is the neutral element. We choose now G as in Theorem 5.4. Then there
exist a smooth projective variety W (nonnecessarily connected but that we can assume
equidimensional) and a smooth proper morphism φ : W → G such that e can be written as

e = φ∗(D1 · . . . ·DN ) in CH0(G), N = dimW, (35)

for some divisors Dl ∈ CH1(W ). Let Y ′ := W ×G Y , with first projection q : Y ′ → W and
second projection p : Y ′ → Y . Then Y ′ is smooth projective and p : Y ′ → Y is smooth.
Denoting F̃ ′ := F̃ ◦ p : Y ′ → X, F̃ ′ is also smooth. Moreover, by (34) and (35), z can be
written as

z = F̃ ′∗(q
∗D1 · . . . · q∗DN ) in CHd(X). (36)

Formula (36) shows that z ∈ CHd(X)sm∗Ch.
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