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SYMMETRIC TENSORS ON THE INTERSECTION OF TWO QUADRICS AND LAGRANGIAN

FIBRATION

A. BEAUVILLE, A. ETESSE, A. HÖRING, J. LIU, AND C. VOISIN

ABSTRACT. Let X be a n -dimensional (smooth) intersection of two quadrics, and let T
∗
X be its cotangent

bundle. We show that the algebra of symmetric tensors on X is a polynomial algebra in n variables. The

corresponding map Φ : T
∗
X → Cn is a Lagrangian fibration, which admits an explicit geometric description;

its general fiber is a Zariski open subset of an abelian variety, quotient of a hyperelliptic Jacobian by a 2 -

torsion subgroup. In dimension 3 , Φ is the Hitchin fibration of the moduli space of rank 2 bundles with fixed

determinant on a curve of genus 2 .

1. INTRODUCTION

Let X ⊂ P
n+2
C

be a smooth n-dimensional complete intersection of two quadrics, with n ≥ 2 , and let

T ∗X be its cotangent bundle. The C-algebra H0(T ∗X,OT∗X) is canonically isomorphic to the algebra

of symmetric tensors H0(X, S•TX) . Recall that T ∗X carries a canonical symplectic structure. Our main

result is the following theorem:

Theorem. a) The vector space W := H0(X, S2TX) has dimension n , and the natural map S
•W → H0(X, S•TX)

is an isomorphism.

b) The corresponding map Φ : T ∗X →W ∗ ∼= C
n is a Lagrangian fibration.

c) When X is general, the general fiber of Φ is of the form A r Z , where A is an abelian variety and

codimZ ≥ 2 .

We will give a precise geometric description of the map Φ and of the abelian variety A in § 4 and 5.

1.1. Comments. 1) For n = 2 , a) follows from Theorem 5.1 in [DO-L], while b) and c) are proved in [K-L].

The proof is based on the isomorphism TX ∼= Ω1
X(1) . The Theorem also follows from the fact that X is

a moduli space for parabolic rank 2 bundles on P1 [C], so that Φ : T ∗X → C2 is identified to the Hitchin

fibration (see [B-H-K]).

For n = 3 , X is isomorphic to the moduli space of vector bundles of rank 2 and fixed determinant

of odd degree [N]; again the Theorem follows from the properties of the Hitchin fibration (see §2). It

would be interesting to have a modular interpretation of Φ for n ≥ 4 . Note that the Hitchin map for G-

bundles is homogeneous quadratic only when G is SL(2) or a product of copies of SL(2) , so this limits

the possibilities of using it.

2) The map Φ is an example of an algebraically completely integrable system — see for instance [V], and

Remark 5.1. Such a situation is rather exceptional: most varieties do not admit nonzero symmetric ten-

sors (for instance, hypersurfaces of degree ≥ 3 [H-L-S]); when they do, even for varieties as simple as

quadrics, the algebra of symmetric tensors is fairly complicated. We do not have a conceptual explanation

for the particularly simple behaviour in our case.
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3) For n = 2 or 3 , the generality assumption on X in c) is unnecessary. It seems likely that this is the

case for all n , but our method does not allow us to conclude.

1.2. Strategy. We will first treat the case n = 3 , which is independent of the rest of the paper (§ 2). For the

general case we will develop two different approaches. In the first one we exhibit a natural n-dimensional

subspace W ⊂ H0(X, S2TX) , from which we deduce a map T ∗X → W ∗ ∼= Cn (§ 3). We then show that

Φ has the required properties, which implies a), b) and c) for general X (5.1). In the second approach

(§ 7) we prove directly a) for all smooth X , by realizing X as a double covering of a quadric.

1.3. Notations. Throughout the paper X will be a smooth complete intersection of two quadrics in Pn+2 ,

with n ≥ 2 . We denote by T ∗X its cotangent bundle and by PT ∗X its projectivization in the geometric

sense (not in the Grothendieck sense). If V is a vector space, we denote by P(V ) the associated projective

space V r {0}/C∗ parametrising one-dimensional subspaces of V .

2. THE CASE n = 3

In this section we show how our general results can be obtained in the case n = 3 by interpretating X

as a moduli space.

As in 4.1 below, we associate to X a genus 2 curve C , such that the variety of lines in X is isomorphic

to JC . Let us fix a line bundle N on C of degree 1 ; then X is isomorphic to the moduli space M of

rank 2 stable vector bundles on C with determinant N [N]. The cotangent bundle T ∗M is naturally

identified with the moduli space of Higgs bundles, that is pairs (E, u) with E ∈ M and u : E → E ⊗KC

a homomorphism with Tru = 0 . The Hitchin map Φ : T ∗M → H0(K2
C) associates to a pair (E, u) the

section detu of K2
C . It is a Lagrangian fibration [H].

Let ω ∈ H0(K2
C) . We assume in what follows that ω vanishes at 4 distinct points. Let Cω be the curve in

the cotangent bundle T ∗C defined by z2 = ω . The projection π : Cω → C is a double covering, branched

along div(ω) , and Cω is a smooth curve of genus 5. Let P be the Prym variety associated to π , that is,

the kernel of the norm map Nm : JCω → JC ; it is a 3-dimensional abelian variety.

Proposition 2.1. The fiber Φ−1(ω) is isomorphic to the complement of a curve in P .

Proof : Recall that the map L 7→ π∗L establishes a bijective correspondence between line bundles on

Cω and rank 2 vector bundles E on C endowed with a homomorphism u : E → E ⊗ KC such that

u2 = ω · IdE , or equivalently, Tr u = 0 and detu = ω (see for instance [B-N-R]). To get (E, u) in Φ−1(ω)

we have to impose moreover detE = N and E stable. Since detπ∗L = Nm(L)⊗K−1
C , the first condition

means that L belongs to the translate PN := Nm−1(KC ⊗N) of P .

Then the vector bundle π∗L is unstable if and only if it contains an invertible subsheaf M of degree 1;

this is equivalent to saying that there is a nonzero map π∗M → L , that is, L = π∗M(p) for some point

p ∈ Cω . The condition L ∈ PN means M2(πp) = KC ⊗N , so M is determined by p up to the 2-torsion

of JC . Thus the locus of line bundles L ∈ PN such that π∗L is unstable is a curve.

Let ρ : C → P
1 be the canonical double covering, and B ⊂ P

1 its branch locus. Since the homomor-

phism S2H0(KC) → H0(K2
C) is surjective, the divisor of ω is of the form ρ∗(p + q) , for some p, q ∈ P1 ;

by assumption we have p 6= q and p, q /∈ B .

Proposition 2.2. Let Γ be the double covering of P1 branched along B ∪ {p, q} . There is an exact sequence

0 → Z/2 → JΓ → P → 0 .
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Proof : Let χ : P1 → P1 be the double covering branched along {p, q} . Since div(ω) = ρ∗(p + q) , there is

a cartesian diagram of double coverings

Cω
ξ

//

π

��

P1

χ

��

C
ρ

// P1

which gives rise to two commuting involutions σ, τ of Cω , exchanging the two sheets of π and ξ respec-

tively. The field of rational functions on Cω is

C(x, y, z) | y2 = f(x), z2 = g(x)

where f and g are polynomials with div f = B and div g = {p, q} . Then σ and τ change the sign of y

and z respectively.

The involution στ is fixed point free, so the quotient Γ := Cω/〈στ 〉 has genus 3; its field of functions

is C(x,w) with w = yz and w2 = f(x)g(x) . We have again a cartesian square

Cω
ϕ

//

π

��

Γ

ψ

��

C
ρ

// P1.

Let α ∈ JΓ . We have Nmπ ϕ
∗α = ρ∗ Nmψ α = 0 , hence ϕ∗ maps JΓ into P ⊂ JCω . Since ϕ is étale, we

have Kerϕ∗ = Z/2 ; since dim JΓ = dimP = 3 , ϕ∗ is surjective.

3. DEFINITION OF Φ

Let Y be a smooth degree d hypersurface in PN , defined by an equation f = 0 . Recall that one

associates to f a section hf of S2Ω1
Y (d) , the hessian or second fundamental form of f [G-H]: at a point y of

Y , the intersection of Y with the tangent hyperplane H to Y at y is a hypersurface in H singular at y ,

and hf (y) is the degree 2 term in the Taylor expansion of f|H at y .

Now let X ⊂ Pn+r be a smooth complete intersection of r hypersurfaces of degree d ; let

V ⊂ H0(Pn+r,OP(d))

be the r -dimensional subspace of degree d polynomials vanishing on X . By restricting hf , for f ∈ V ,

to X , we get a linear map

V ⊗ OX −→ S
2Ω1

X(d)

which gives at each point x ∈ X a linear space of quadratic forms on the tangent space Tx(X) . Note

that, when d = 2 , the corresponding quadrics in P(Tx(X)) can be viewed geometrically as follows:

the projective space P(Tx(X)) can be identified with the space of lines in Pn+r passing through x and

tangent to X ; then for each q ∈ V , the quadric defined by hq(x) parameterizes the lines passing through

x and contained in the quadric {q = 0} .

Now we want to consider the “inverse” of the quadratic form hf (x) on Tx(X) , that is, the form on

T ∗
x (X) given in coordinates by the cofactor matrix. Intrinsically, each f ∈ V gives a twisted symmetric

morphism

hf : TX −→ Ω1
X(d)
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which induces a twisted symmetric morphism on (n− 1)-th exterior powers, namely

∧n−1hf :
∧n−1

TX −→
∧n−1

Ω1
X((n− 1)d) .

We now observe that KX = OX(−n− 1− r + dr) , hence

∧n−1
TX ∼= Ω1

X(n+ 1− r(d− 1)) ,
∧n−1

Ω1
X

∼= TX(−n− 1 + r(d − 1)) ,

so that ∧n−1hf is in fact a symmetric morphism from Ω1
X(n+1−r(d−1)) to TX((n−1)d−n−1+r(d−1)) ,

hence provides a section

∧n−1hf ∈ H0(X, S2TX(d(n + 2r − 1)− 2(n+ r + 1))).

Being locally given by the cofactor matrix, ∧n−1hf is homogeneous of degree n− 1 in f , hence we have

constructed a morphism

α : Sn−1V −→ H0(X, S2TX(d(n+ 2r − 1)− 2(n+ r + 1))) such that α(fn−1) = ∧n−1hf .

From now on, we restrict to the case d = 2, r = 2 , so X is the complete intersection of two quadrics in

Pn+2 . The previous construction gives a morphism

α : Sn−1V −→ H0(X, S2TX) .

Using the canonical isomorphism H0(T ∗X,OT∗X) = H0(X, S•TX) , we deduce from α a morphism

Φ : T ∗X −→ S
n−1V ∗ ∼= C

n .

We have Φ(λv) = λ2Φ(v) for v ∈ T ∗X , λ ∈ C , so Φ induces a rational map

ϕ : PT ∗X 99K P
n−1

whose indeterminacy locus Z is the image of Φ−1(0) .

Proposition 3.1. 1) α is injective.

2) Φ is surjective.

3) The image of Z by the structure map p : PT ∗X → X is a proper subvariety of X .

Proof : Let x be a general point of X . We claim that the base locus in P(Tx(X)) of the pencil of quadratic

forms {hq(x)}q∈V is smooth. Indeed, this locus can be viewed as the variety Fx of lines in X passing

through x . Let F be the Fano variety of lines contained in X , and let

G ⊂ F ×X = {(ℓ, y) | y ∈ ℓ} .

Then F and therefore G are smooth [R, Theorem 2.6], hence Fx , which is the fiber above x of the pro-

jection G → X , is smooth since x is general. It follows that, in an appropriate system of coordinates

(k1, . . . , kn) of Tx(X) , the forms {hq(x)} can be written

t
∑

k2i +
∑

αik
2
i with αi distinct in C, t ∈ C .

Then ∧n−1hq(x) is given by the diagonal matrix with entries βi :=
∏

j 6=i

(t+ αj) (i = 1, . . . , n) . These poly-

nomials in t are linearly independent, hence they generate the space of quadratic forms on T ∗
xX which

are diagonal in the basis (ki) . This linear system has dimension n , so α is injective; it has no base point,

so ϕ induces a finite, surjective morphism P(T ∗
xX) → Pn−1 . Thus Φ is surjective, and Z ∩ P(T ∗

xX) = ∅ ,

which gives 2) and 3).
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We want to give a geometric construction of the rational map ϕ : PT ∗X 99K Pn−1 . A point of PT ∗X

is a pair (x,H) , where x ∈ X and H is a hyperplane in Tx(X) . Restricting the pencil {hq(x)}q∈V to H

gives a pencil of quadrics on H , which for (x,H) general contains n− 1 singular quadrics q1, . . . , qn−1 .

The subset {q1, . . . , qn−1} of P(V ) corresponds to a point ϕx,H of P(Sn−1V ∗) – namely the hyperplane

in Sn−1V spanned by qn−1
1 , . . . , qn−1

n−1 .

Proposition 3.2. ϕ(x,H) = ϕx,H .

Proof : We can assume that x is general. We have seen that the restriction of ϕ to P(T ∗
xX) is the morphism

given by the linear system of quadratic forms W ∼= Sn−1V spanned by the forms ∧n−1hq(x) , for q ∈ V ;

in other words, ϕ maps the point H of P(T ∗
xX) to the hyperplane of forms in W vanishing at H .

On the other hand, ϕx,H is the hyperplane of Sn−1V spanned by the qn−1 for those q ∈ V such that

hq(x)|H is singular; this condition is equivalent to say that the form ∧n−1hq(x) on T ∗
xX vanishes at H .

Therefore ϕx,H is spanned by quadratic forms vanishing at H , hence coincides with ϕ(x,H) .

Corollary 3.1. codimZ ≥ 2 .

Proof : Suppose Z contains a component Z0 of codimension 1; since p(Z) 6= X , we have Z0 = p−1(p(Z0)) .

We claim that this is impossible, in fact Z cannot contain a fiber p−1(x) . Indeed this would mean that for

q ∈ V , the form hq(x) is singular along all hyperplanes H ⊂ TxX , that is, hq(x) has rank ≤ n−2 . But the

rank of hq(x) is the rank of the restriction of q to the projective tangent subspace to X at x . Restricting

a quadratic form to a hyperplane lowers its rank by up to two. Since a general q in V has rank n+ 3 , its

restriction to a codimension 2 subspace has rank ≥ n− 1 .

4. FIBERS OF ϕ

In an appropriate system of coordinates (x0, . . . , xn+2) , our variety X is defined by the equations

q1 = q2 = 0 , with

q1 =
∑

x2i , q2 =
∑

µix
2
i with µi ∈ C distinct.

Let Π = P(V ) (∼= P1) be the pencil of quadrics containing X . We choose a coordinate t on Π so that

the quadrics of Π are given by tq1 − q2 = 0 . Then the singular quadrics of Π correspond to the points

µ0, . . . , µn+2 .

The goal of this section is to describe the general fiber of the rational map ϕ : PT ∗X 99K Sn−1Π (∼= Pn−1) .

For λ = (λ1, . . . , λn−1) ∈ S
n−1Π , let Cµ,λ denote the hyperelliptic curve y2 =

∏
(t − µi)

∏
(t − λj) , of

genus n . We will prove:

Proposition 4.1. For λ general in Sn−1Π , the fiber ϕ−1(λ) is birational to the quotient of the Jacobian JCµ,λ by

the group Γ := {±1JC} × Γ+ , where Γ+ ∼= (Z/2Z)n−2 is a group of translations by 2 -torsion elements.

4.1. Odd-dimensional intersection of 2 quadrics. We briefly recall here the results of Reid’s thesis ([R],

see also [D-R]). Let Y ⊂ P
2g+1 be a smooth intersection of 2 quadrics, and let Ξ (∼= P

1) be the pencil of

quadrics containing Y . Let Σ ⊂ Ξ be the subset of 2g + 2 points corresponding to singular quadrics,

and let C be the double covering of Ξ branched along Σ – this is a hyperelliptic curve of genus g .

The intermediate Jacobian JY of Y is isomorphic to JC (as principally polarized abelian varieties).

The variety F of (g − 1)-planes contained in Y is also isomorphic to JC , but this isomorphism is not

canonical.
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In an appropriate system of coordinates, the equations of Y are of the form
∑

x2i =
∑

αix
2
i = 0 with αi ∈ C distinct;

then Σ = {α1, . . . , α2g+2} . The group Γ := (Z/2Z)2g+1 acts on Y (hence also on F ) by changing the

signs of the coordinates. Let Γ+ ⊂ Γ be the subgroup of elements which change an even number of

coordinates. For an appropriate choice of the isomorphism F ∼−→ JC , the image of Γ+ in Aut(JC) is

the group T2 of translations by 2 -torsion elements of JC , and the image of Γ is T2 × {±1JC} [D-R,

Lemma 4.5].

4.2. An auxiliary construction. We consider the projective space P2n+1 equipped with the system of

homogeneous coordinates

x0, . . . , xn+2; y1, . . . , yn−1

and the affine space A
n−1 equipped with the affine coordinates λ1, . . . , λn−1 . Let

X ⊂ P
2n+1 × A

n−1

be the complete intersection of the two quadrics with equations

Q1 = Q2 = 0 with Q1 =
n+2∑

i=0

x2i +
n−1∑

j=1

y2j , Q2 =
n+2∑

i=0

µix
2
i +

n−1∑

j=1

λjy
2
j .

The second projection X → An−1 gives a family of complete intersections of two quadrics Xλ of dimen-

sion 2n−1 parameterized by An−1 . Note that X is the intersection of X with the subspace Pn+2 ⊂ P2n+1

defined by y1 = . . . = yn−1 = 0 .

Let p : F → An−1 be the family of (n− 1)-planes contained in the Xλ , that is

F = {(P, λ) |λ ∈ A
n−1, P (n− 1)-plane ⊂ Xλ} .

For λ general, the fiber Fλ is isomorphic to the Jacobian of the hyperelliptic curve Cµ,λ (4.1).

Let (P, λ) be a general point of F . Then P ∩ Pn+2 is a point x of X . Let π : P2n+1
99K Pn+2 be

the projection (xi, yj) 7→ (xi) . Since the differentials of Qi and qi coincide at x , the derivative π∗ maps

Tx(P ) ⊂ Tx(X ) into Tx(X) . Since P is general, π∗Tx(P ) is a hyperplane in Tx(X) – this will follow

from the proof of Proposition 4.2 1) below, where we construct explicitely pairs (P, λ) with this property.

Therefore we have a rational map

ψ : F 99K PT ∗X (P, λ) 7→ (x = P ∩ P
n+2 , π∗Tx(P )) .

The symmetric group Sn−1 acts on P2n+1 by permuting the yj , and the group (Z/2Z)n−1 by changing

their signs; this gives an action of the semi-direct product G := (Z/2Z)n−1 ⋊ Sn−1 . We make G act on

An−1 through its quotient Sn−1 , by permutation of the λi . This induces an action of G on X and there-

fore on F , compatible via p with the action on the base. The map ψ is invariant under this action, hence

factors through the quotient F/G . By passing to the quotient we get a map p♯ : F/G→ An−1/Sn−1 .

Proposition 4.2. 1) ψ induces a birational map ψ♯ : F/G 99K PT ∗X .

2) There is a commutative diagram

F/G
ψ♯

//❴❴❴❴❴

p♯

��

PT ∗X

ϕ

��
✤

✤

✤

A
n−1/Sn−1 σ

∼
// A

n−1 ⊂ P
n−1
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where p♯ is deduced from p , and σ is the isomorphism given by symmetric functions.

Proof : 1) Let (x,H) ∈ PT ∗X ; we want to describe the pairs (P, λ) such that P ∩ Pn+2 = {x} and

π∗Tx(P ) = H . The latter condition says that, via the decomposition

Tx(P
2n+1) = Tx(P

n+2)⊕Kerπ∗ ,

Tx(P ) identifies with the graph of a linear map

α : H → Kerπ∗ .

Using the basis ( ∂
∂y1

, . . . , ∂
∂yn−1

) of Kerπ∗ , we have α = (α1, . . . , αn−1) , where the αi are linear forms on

H . The condition P ⊂ Xλ implies that the hessians hQ1
(x) and hQ2

(x) vanish on Tx(P ) , which gives

(1) hq1(x)|H = −
∑

i

α2
i , hq2(x)|H = −

∑

i

λiα
2
i .

This is a simultaneous diagonalization of the quadratic forms hq1(x)|H and hq2(x)|H ; when they are in

general position, this determines the λi up to permutation and the αi up to sign and permutation, which

proves 1).

2) Let (P, λ) ∈ F , and let (x,H) := ψ(P, λ) . According to Proposition 3.2, ϕ(x,H) is given by the

(n−1)-uple of quadrics q ∈ Π such that the form hq(x)|H is singular. Using (α1, . . . , αn−1) as coordinates

on H , we see from (1) that this (n− 1)-uple is given by (λ1, . . . , λn−1) , which proves 2).

4.3. Proof of Proposition 4.1. Let λ be a general element of An−1 . Let us denote by Γ the subgroup

(Z/2Z)n−1 of G . From Proposition 4.2 and the cartesian diagram

F/Γ //

p

��

F/G

p♯

��

An−1 // An−1/Sn−1

we see that the fiber ϕ−1(λ) is birational to the quotient Fλ/Γ . By (4.1) Fλ is isomorphic to JCµ,λ ,

and one can choose the isomorphism so that Γ acts on JCµ,λ as {±1J} × Γ+ , where Γ+ is a group of

translations by 2 -torsion elements. This proves the Proposition.

5. FIBERS OF Φ

5.1. Results. We keep the settings of the previous section. Recall that our parameter λ lives in

An−1 ⊂ Sn−1Π ∼= Pn−1 . For λ in An−1 , we denote by λ̃ a lift of λ in Cn for the quotient map

C
n
r {0} → P

n−1 .

Theorem 5.1. Assume that X is general. For λ ∈ An−1 general, the fiber Φ−1(λ̃) is isomorphic to A r Z ,

where :

• A is the abelian variety quotient of JCµ,λ by a 2 -torsion subgroup, isomorphic to (Z/2Z)n−2 ;

• Z is a closed subvariety of codimension ≥ 2 in A .

Corollary 5.1. For every smooth complete intersection of two quadrics X ⊂ Pn+2 , the fibration Φ : X → Cn is

Lagrangian.
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Proof : Assume first that X is general. The symplectic form on T ∗X is dη , where η is the Liouville form.

By the Theorem and the Hartogs principle, the pull back of η to a general fiber of Φ is the restriction of a

1-form on an abelian variety, hence is closed. This implies the result.

Let p : X → B be a complete family of smooth intersection of two quadrics in Pn+2 . The constructions

of §3 can be globalized over B : we have a rank 2 vector bundle V over B whose fiber at a point b ∈ B is

the space of quadratic forms vanishing on Xb . We get a homomorphism Sn−1V → p∗TX /B , which gives

rise to a morphism Φ : T ∗(X /B) → Sn−1V ∗ over B which induces over each point b ∈ B our map Φ .

There is a natural Liouville form η on T ∗(X /B) ; since dη vanishes on a general fiber of Φ , it vanishes

on all fibers.

Corollary 5.2. Assume that X is general. The multiplication map S•H0(X, S2TX) → H0(X, S•TX) is an

isomorphism.

(We will give in § 7 a proof valid with no generality assumption.)

Proof : The Theorem implies that every function on a general fiber of Φ is constant, hence the pull back

Φ∗ : H0(Cn,OCn) → H0(T ∗X,OT∗X) is an isomorphism. The right hand space is canonically isomorphic

to H0(X, S•TX) , hence we get an algebra isomorphism C[t1, . . . , tn]
∼−→ H0(X, S•TX) . By construction

the ti are mapped to elements of H0(X, S2TX) , so the Corollary follows.

Remark 5.1. Let V1, . . . , Vn be the Hamiltonian vector fields on T ∗X associated to the components of Φ .

For λ general in Cn , let us identify Φ−1(λ) to A r Z as in the Theorem. Then by Hartogs’ principle the

Vi linearize on A — that is, they extend to a basis of H0(A, TA) . This allows in principle to write explicit

solutions of the Hamilton equations for Φi in terms of theta function.

5.2. Proof of the Theorem: lemmas. We fix a general point λ ∈ An−1 . We denote by F o the open subset

of F where the rational map ψ is well-defined, and by F o
λ its intersection with the fiber Fλ . Since λ is

general, the complement of F o
λ in Fλ has codimension ≥ 2 . The rational map ψ induces a morphism

ψo : F o → PT ∗X ; we denote by ψo
λ its restriction to F o

λ . Let Z ⊂ PT ∗X be the indeterminacy locus of

ϕ (§ 3), and let Fbad
λ := (ψo

λ)
−1(Z) ⊂ F o

λ .

Proposition 5.1. Fbad
λ has codimension ≥ 2 in Fλ .

We postpone the proof of the Proposition to the next section, and first show how it implies Theorem

5.1.

Let 0X ⊂ T ∗X be the zero section, and let q : T ∗X r 0X → PT ∗X be the quotient map. Let

ϕo : PT ∗X r Z → Pn−1 be the morphism induced by ϕ . We have q(Φ−1(λ̃)) = (ϕo)−1(λ) , and the

restriction

qλ : Φ−1(λ̃) → (ϕo)−1(λ)

is an étale double cover, with Galois involution ι induced by (−1T∗X) .

We put F oo
λ := F o

λ r Fbad
λ , and consider the restriction

ψo
λ : F

oo
λ → (ϕo)−1(λ) of ψo .

Lemma 5.1. The fiber Φ−1(λ̃) is Lagrangian, and has trivial tangent bundle.

Proof : The étale double cover qλ induces by fibered product an étale double cover

π : F̃
oo
λ → F

oo
λ
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such that ψo
λ lifts to a morphism ψ̃o

λ : F̃ oo
λ → Φ−1(λ̃) .

By Proposition 5.1, the complement of F oo
λ in Fλ has codimension ≥ 2 , so π extends to an étale

double cover F̃λ → Fλ , where F̃λ is an abelian variety or the disjoint union of two abelian varieties. The

morphism ψ̃o
λ : F̃ oo

λ → Φ−1(λ̃) is generically of maximal rank. Again by Proposition 5.1, the holomorphic

1-forms on F̃ oo
λ are closed, hence by pull back the same holds for the holomorphic 1-forms on Φ−1(λ̃) .

As in the proof of Corollary 5.1, this implies that Φ−1(λ̃) is Lagrangian. The second assertion is a basic

property of Lagrangian fibers.

Lemma 5.2. The morphism ψo
λ lifts to a morphism ψ̃o

λ : F oo
λ → Φ−1(λ̃) .

Proof : It suffices to show that the double covering π : F̃ oo
λ → F oo

λ splits.

Assume the contrary, so that F̃λ is an abelian variety. By Lemma 5.1 H0(Φ−1(λ̃),Ω1) has dimension

n . It follows that the pull back (ψ̃o
λ)

∗ : H0(Φ−1(λ̃),Ω1) → H0(F̃ oo
λ ,Ω1) is bijective. Since the Galois

involution of the double covering π acts trivially on holomorphic 1-forms, the same holds for the Galois

involution ι of the double covering qλ : Φ−1(λ̃) → (ϕo)−1(λ) .

Now we observe that the 1-forms on Φ−1(λ̃) are “pure”, that is, extend to any smooth projective

compactification of Φ−1(λ̃) : this follows from the fact that this holds after pull back to F̃ oo
λ . But the

quotient Φ−1(λ̃)/ι is isomorphic to a Zariski open subset of ϕ−1(λ) , which by Proposition 4.1 has no

nonzero holomorphic 1-forms, so that any Zariski open set has no nonzero closed pure holomorphic

1-forms. This contradiction proves the Lemma.

5.3. Proof of Theorem 5.1. Lemma 5.2 gives a factorization

ψo
λ : F

oo
λ

ψ̃o

λ−−−→ Φ−1(λ̃)
qλ
−−→ (ϕo)−1(λ) .

By Proposition 4.1, ψo
λ induces a birational morphism

ψo
λ,Γ : F

oo
λ /Γ −→ (ϕo)−1(λ) ;

it follows that for some subgroup Γ′ ⊂ Γ of index 2 , the morphism ψ̃o
λ : F oo

λ → Φ−1(λ̃) factors through

a birational morphism

ψ̃o
λ,H′ : F

oo
λ /Γ′ −→ Φ−1(λ̃) .

By Lemma 5.1, the cotangent bundle of Φ−1(λ̃) is trivial. Therefore the cotangent bundle of F oo
λ /Γ′ is

generically generated by its global sections. This implies that Γ′ acts trivially on holomorphic 1-forms,

hence is the subgroup Γ+ of Γ generated by translations, isomorphic to (Z/2Z)n−2 ; thus Fλ/Γ
′ is an

abelian variety A .

To simplify notation, we put Ao := F oo
λ /Γ′ and u := ψ̃o

λ,H′ . The rational map u−1 : Φ−1(λ̃) 99K A is

everywhere defined (see e.g. [B-L, Theorem 4.9.4]), so we have two morphisms

Ao u
−−→ Φ−1(λ̃)

u−1

−−−→ A

whose composition is the inclusion Ao →֒ A . Since the tangent bundles of A and Φ−1(λ̃) are trivial, the

determinant of Tu : TAo → u∗TΦ−1(λ̃) is a function on Ao , hence constant by Proposition 5.1. Therefore u

is étale and birational, hence an open embedding. This implies that every function on Φ−1(λ̃) is constant

(because its restriction to Ao is constant). Then the previous argument shows that u−1 is also an open

embedding, so that Φ−1(λ̃) is isomorphic to an open subset of A containing Ao . This proves the Theorem.
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6. PROOF OF PROPOSITION 5.1

We keep the notations of (4.2). Recall that we have coordinates (x0, . . . , xn+2; y1, . . . , yn−1) on P2n+1 ,

and subspaces P
n+2 and P

n−2 in P
2n+1 defined by y = 0 and x = 0 .

Let q1(x) = q2(x) = 0 be the equations defining X in Pn+2 , and let R be the vector space of quadratic

forms in y = (y1, . . . , yn−1) . We define an extended family X e ⊂ P2n+1 ×R2 by

X
e = {

(
(x, y); (r1, r2)

)
∈ P

2n+1 ×R2 | q1(x) + r1(y) = q2(x) + r2(y) = 0} .

The fiber X e
r at a point r = (r1, r2) of R2 is the intersection in P2n+1 of the two quadrics q1(x)+ r1(y) =

q2(x) + r2(y) = 0 . Let G be the Grassmannian of (n− 1)-planes in P
2n+1 ; we define as before

F
e := {(P, r) ∈ G×R2 |P ⊂ X

e
r }

and the extended rational map ψe : F e
99K PT ∗X , which maps a general P ⊂ X e

r to the pair (x,H)

with {x} = P ∩ Pn+2 , H = π∗Tx(P ) .

We observe that a general pair r = (r1, r2) of R2 is simultaneously diagonalizable, so the restriction

of ψe to F e
r coincides, for an appropriate choice of the coordinates (yi) , with the map ψλ that we want

to study. Thus Proposition 5.1 will follow from the following Proposition:

Proposition 6.1. Assume that X is general.

1) Let Γ ⊂ F e be the locus of points (P, r) such that either dimP ∩ Pn+2 > 0 , or P ∩ Pn−2 6= ∅ . Then Γ

has codimension ≥ 2 in F e .

2) There exists no divisor in F e r Γ which dominates R2 and is mapped to the base-locus Z ⊂ PT ∗X by ψe .

Proof : 1) Let Q be the vector space of quadratic forms on P2n+1 of the form q(x)+r(y) for some quadratic

forms q and r . For each pair of integers (k, l) with k ≥ 0 , l ≥ −1 , let Gk,l be the locally closed subvariety

of (n− 1)-planes P ∈ G such that

dim(P ∩ P
n+2) = k , dim(P ∩ P

n−2) = l .

(We put by convention l = −1 if P ∩ Pn−2 = ∅ .) Let

F
Q := {(P, (Q1, Q2)) ∈ G×Q2 | Q1|P = Q2|P = 0} ,

F
Q
k,l := F

Q ∩ (Gk,l ×Q2) .

The general fiber of the projection FQ → Q2 is an abelian variety, and we recover F e by restricting FQ

to pairs of quadratic forms of the form (q1(x) + r1(y), q2(x) + r2(y)) . It thus suffices to prove the result

for the larger family FQ , that is, to show that F
Q
k,l has codimension ≥ 2 in FQ .

This is done by a dimension count. For P ∈ G , let ϕP be the restriction map Q → H0(P,OP (2)) . The

fiber of the projection FQ → G is the vector space (KerϕP )
⊕2 . For P general, ϕP is surjective: this is

the case for instance if P is contained in the (n+2)-plane in P2n+1 defined by yi = xi (i = 1, . . . , n− 1) .

However ϕP is not surjective for P ∈ Gk,l , because the forms r(y)|P are singular along P ∩ Pn+2 and

the forms q(x)|P are singular along P ∩ Pn−2 : this implies that the subspaces P ∩ Pn+2 and P ∩ Pn−2

are apolar for all forms in ImϕP . Therefore the corank of ϕP is ≥ (k + 1)(l + 1) , and there is equality

when P is contained in the subspace defined by x0 = . . . = xn+1−k = y1 = . . . = yn−2−l = 0 , hence for
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P general in Gk,l . Thus our assertion follows from:

codim(FQ
k,l,F

Q) = codim(Gk,l,G)− 2(k + 1)(l + 1)

= k(k + 1) + (l + 1)(l + 4)− 2(k + 1)(l+ 1)

= (k − l)(k − l − 1) + 2(l + 1)

≥ 2 if k ≥ 1 or l ≥ 0 .

2) The base locus Z ⊂ PT ∗X has codimension ≥ 2 (Corollary 3.1). Note that ψe is well-defined in

F e r Γ . If D is a divisor in F e r Γ with ψe(D) ⊂ Z , the map ψe has not maximal rank along D . This

contradicts the following Lemma:

Lemma 6.1. ψe has maximal rank on F e r Γ .

Proof : Let (x,H) be a point of T ∗X ; we view H as a hyperplane in the projective tangent space to x at

X . The fiber of ψe : F e
r Γ → PT ∗X at (x,H) is the locus

(ψe)−1(x,H) = {(P, r1, r2) ∈ G×R2 | P ∩ P
n+2 = {x} , P ∩ P

n−2 = ∅ , π(P ) = H, (2)

(qi(x) + ri(y))|P = 0 (i = 1, 2)} . (3)

The equations (2) define a smooth, locally closed subvariety Gx,H of G . Let P ∈ Gx,H , and let χP : R→ H0(P,OP (2))

be the restriction map. We will show below that the image of χP is the space of quadratic forms on P

which are singular at x . Since the forms qi|P are singular at x , this implies that the solutions of (3) form

an affine space over (KerχP )
⊕2 . Therefore (ψe)−1(x,H) admits an affine fibration over Gx,H , hence is

smooth.

Clearly the quadrics in ImχP are singular at x . To prove the opposite inclusion, choose the coordinates

(xi) so that x = (1, 0, . . . , 0) . Since P ∩ Pn+2 = {x} , there exist linear forms ℓ1, . . . , ℓn+2 in the yj so that

P is defined by xi = ℓi(y) for i = 1, . . . , n + 2 . Then a quadratic form on P2n+1 singular at x can be

written as a form in x1, . . . , xn+2; y1, . . . , yn−1 , hence its restriction to P is in ImχP . This proves the

Lemma, hence also the Proposition.

7. SYMMETRIC TENSORS: SECOND APPROACH

7.1. The cotangent bundle of a smooth quadric. We consider a smooth quadric Q ⊂ Pn+1 , defined by

an equation q = 0 . Its cotangent bundle PT ∗Q parameterizes pairs (x, P ) with x ∈ Q and P a (n − 1)-

plane tangent to Q at x . Thus we get a morphism γ from PT ∗Q to the grassmannian G of (n−1)-planes

in Pn+1 , which is the morphism defined by the linear system |OPT∗Q(1)| . It is birational onto its image,

but contracts the subvariety C ⊂ PT ∗Q consisting of pairs (x, P ) such that P is tangent to Q along a

line ℓ ⊂ Q , and x ∈ ℓ : then γ−1(P ) consists of the pairs (x, P ) with x ∈ ℓ .

Let hq ∈ H0(Q, S2Ω1
Q(2)) be the hessian form of q (§3). Choosing coordinates (xi) such that q(x) =

∑
x2i ,

we have hq =
∑

(dxi)
2 (note that this is, up to a scalar, the unique element of H0(Q, S2Ω1

Q(2)) invari-

ant under Aut(Q)). Then hq(x) is non-degenerate at each point x of Q , so hq induces an isomorphism

Ω1
Q(1)

∼−→ TQ(−1) , hence also S2Ω1
Q(2)

∼−→ S2TQ(−2) . The image in H0(Q, S2TQ(−2)) of hq by this iso-

morphism is h′q =
∑
∂2j . We will view h′q as an element of H0(PT ∗Q,OPT∗Q(2) ⊗ p∗OQ(−2)) , where

p : PT ∗Q→ Q is the projection.

Proposition 7.1. The divisor of h′q is C . The projection p|C : C → Q is a smooth quadric fibration, and C is a

prime divisor for n ≥ 3 .
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Proof : Let x ∈ Q ; the hyperplane tangent to x at Q cuts down a cone over the smooth quadric

Qx ⊂ P(Tx(Q)) defined by hq(x) = 0 (§ 3). The isomorphism Tx(Q) ∼−→ T ∗
x (Q) given by hq(x) car-

ries Qx into the dual quadric Q∗
x in P(T ∗

x (Q)) . On the other hand, a point y ∈ p−1(x) corresponds to

a hyperplane Hy ⊂ P(Tx(Q)) , and y belongs to C if and only if Hy is tangent to Qx , that is y ∈ Q∗
x .

This proves the equality C = div(h′q) . Thus the fiber of p|C : C → Q at x is Qx , which is smooth, and

connected if n ≥ 3 .

Remark 7.1. The variety C is an example of a total dual VMRT [H-L-S], for the proof of the Theorem we

will combine this tool with the birational transformation of PT ∗X defined by a double cover, cf. [A-H].

We will have to consider the following situation. Let Q′ be another quadric in Pn+1 , such that the

intersection B := Q ∩ Q′ is a smooth hypersurface in Q . The surjection TQ → NB/Q gives a section of

PT ∗Q over B , hence an embedding s : B →֒ PT ∗Q .

Lemma 7.1. The image s(B) is not contained in C .

Proof : Let x ∈ B . The point s(x) in P(T ∗
x (Q)) corresponds to the hyperplane image of Tx(B) in Tx(Q) ;

we must show that this hyperplane is not tangent to the quadric Qx := hq(x) . In terms of projective

space, this means that the projective tangent space to Q′ at x is not tangent to the cone Q ∩ PTx(Q) at a

smooth point y of Q .

Suppose this is the case, with y = (y0, . . . , yn+1) . We can assume that Q′ is defined by
∑
αix

2
i = 0 ,

with αi ∈ C distinct. Then the (projective) tangent space to Q′ at x , given by
∑

(αixi)ξi = 0 , must

coincide with the tangent space to Q at y , given by
∑
yiξi = 0 . This implies y = (α0x0, . . . , αn+1xn+1) .

Thus the point x must satisfy ∑
x2i =

∑
αix

2
i =

∑
α2
i x

2
i = 0 .

If these relations hold for all x in B , the quadric
∑
α2
i x

2
i = 0 must belong to the pencil spanned by Q

and Q′ . This means that there exist scalars λ, µ, ν such that

λα2
i + µαi + ν = 0 for all i ,

which is impossible since the αi are distinct. Therefore there exists x ∈ B such that s(x) /∈ C .

7.2. Explicit description of symmetric tensors. We keep the notation of the previous sections: X ⊂ P = Pn+2

is defined by q1 = q2 = 0 , with

q1 =
n+2∑

i=0

x2i , q2 =
n+2∑

i=0

µix
2
i with µi ∈ C distinct.

We put ∂i :=
∂

∂xi
. We have an exact sequence

0 → TX → TP|X
(dq1,dq2)

−−−−−−−→ OX(2)2 → 0 ,

where dqi maps the restriction of a vector field V on P to V ·qi . This gives an exact sequence of symmetric

tensors

(4) 0 → S
2TX → S

2TP|X
(dq1,dq2)
−−−−−−−→ TP|X(2)

2 ,

where dqi(V1V2) = (V1 · qi)V2 + (V2 · qi)V1 for V1, V2 in H0(X,TP|X) .



SYMMETRIC TENSORS ON THE INTERSECTION OF TWO QUADRICS AND LAGRANGIAN FIBRATION 13

Proposition 7.2. The quadratic vector fields si :=
∑

j 6=i

(xi∂j − xj∂i)
2

µj − µi
in H0(X, S2TP|X) belong to the image of

H0(X, S2TX) .

Proof : According to the exact sequence (4) we have to prove dq1(si) = dq2(si) = 0 .

We have (xi∂j −xj∂i) · q1 = 0 , hence dq1(si) = 0 , and (xi∂j −xj∂i)
2 · q2 = 2(µj −µi)xixj(xi∂j −xj∂i) ,

hence, using
∑
xj∂j = 0 and q1|X = 0 :

dq2(si) = 2x2i
∑

j 6=i

xj∂j − (2xi∂i)
∑

j 6=i

x2j = 0 , which proves the Proposition.

Fron now on we will consider the si as elements of H0(X, S2TX) .

7.3. The double cover. Let p : Pn+2
99K Pn+1 be the projection (x0, . . . , xn+2) 7→ (x1, . . . , xn+2) . The

image p(X) is the smooth quadric Q in Pn+1 defined by

n+2∑

i=1

(µi − µ0)x
2
i = 0 .

The restriction π : X → Q of p is a double covering, branched along the subvariety B ⊂ Q defined by

n+2∑

i=1

x2i =
n+2∑

i=1

µix
2
i = 0 .

It is a smooth complete intersection of 2 quadrics in Pn+1 . The ramification locus R ⊂ X of π (isomorphic

to B ) is the hyperplane section x0 = 0 of X .

The tangent map of π : X → Q gives a morphism

τ : TX → π∗TQ

which is an isomorphism outside of R . Consider the normal exact sequence

0 → TR → TX|R → NR/X → 0 .

The involution ι : (x0, . . . , xn+2) 7→ (−x0, x1, . . . , xn+2) acts on TX|R ; this splits the exact sequence,

giving a decomposition

TX|R = TR ⊕NR/X

into eigenspaces for the eigenvalues +1 and −1 . Let ρ : TX|R → TR be the projection on the first

summand. We deduce from ρ a sequence of homomorphisms

hk : H0(X, SkTX) −→ H0(X, SkTX|R)
S
kρ

−−−→ H0(R, SkTR) .

Since ι∗∂0 = −∂0 and ι∗∂j = ∂j for j > 0 , we have

(5) h2(s0) = 0 and h2(si) =
∑

j>0

j 6=i

(xi∂j − xj∂i)
2

µj − µi
for i > 0 ;

in other words, h2 maps s1, . . . , sn+2 to the elements ŝ1, . . . , ŝn+2 of H0(R, S2TR) constructed in Propo-

sition 7.2 applied to R .
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Let π∗PT ∗Q be the pull back under π of the projective bundle PT ∗Q → Q . The homomorphism

τ : TX → π∗TQ gives rise to a birational map g : π∗PT ∗Q 99K PT ∗X . Following the geometric descrip-

tion of the tangent map as an elementary transformations of vector bundles in the sense of Maruyama

[M1],[M2, Corollary 1.1.1], one has a commutative diagram

(6) Γ
µ

{{✈✈
✈✈
✈✈
✈✈
✈

ν

""❋
❋❋

❋❋
❋❋

❋❋

π∗PT ∗Q
g

//❴❴❴❴❴❴❴

p
##❍

❍❍
❍❍

❍❍
❍❍

PT ∗X

q
||①①
①①
①①
①①
①

X

where p and q are the canonical projections, ν : Γ → PT ∗X is the blow-up along the subspace PT ∗R ⊂ PT ∗X

defined by the projection ρ , µ : Γ → π∗PT ∗Q is the blow-up of the image B′ of the embedding

B →֒ π∗
PT ∗Q deduced from the surjective homomorphism π∗TQ → π∗NB/X .

Let Eµ be the exceptional divisor of µ . By [M2, Theorem 1.1], there is an isomorphism

(7) µ∗
Oπ∗PT∗Q(1)⊗ OΓ(−Eµ) ∼= ν∗OPT∗X(1) ,

as well as the equality

(8) ν∗Eµ = q∗R .

7.4. The divisor of s0 . We now consider the divisor C ⊂ PT ∗Q defined in (7.1), and the cartesian dia-

gram

π∗
PT ∗Q

π′

//

��

PT ∗Q

��

X
π

// Q .

Put C ′ := π′−1(C ) . The projection C ′ → X is again a smooth quadric fibration, so C ′ is smooth, and

connected for n ≥ 3 .

Recall that we have defined the element s0 :=

n+2∑

j=1

(x0∂j − xj∂0)
2

µj − µ0
∈ H0(X, S2TX) (7.2). We will view

s0 as an element of H0(PT ∗X,O(2)) .

Proposition 7.3. Assume n ≥ 3 . We have g∗C
′ = div(s0) .

Proof : We first show that g∗C
′ ∈ |OPT∗X(2)| . By Proposition 7.1 we have C ′ ∈ |Oπ∗PT∗Q(2)⊗ p∗OX(−2)| .

Using (7), (8) and the projection formula, we get the linear equivalences

ν∗µ
∗
C

′ ∼ 2ν∗µ
∗(c1(Oπ∗PT∗Q(1)− p∗R)) ∼ 2(c1(OPT∗X(1)) + q∗R)− 2q∗R = c1(OPT∗X(2)) .

Thus it is enough to prove that ν∗µ
∗C ′ is irreducible. Since C ′ is irreducible and µ is the blow-up

along B′ ⊂ π∗PT ∗Q , it suffices to show that B′ is not contained in C ′ . If this is the case, we have

π′(B′) ⊂ π′(C ′) = C . But π′(B′) = s(B) , where s : B →֒ PT ∗Q is the embedding defined by the

surjective homomorphism TQ → NB/Q . Then the result follows from Lemma 7.1.

Since g∗C
′ and div(s0) are linearly equivalent effective divisors and g∗C

′ is irreducible, it suffices to

show that their restrictions to PT ∗
xX coincide for a general point x ∈ X .
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Fix a point x = [x0, . . . , xn+2] ∈ XrR , so that x0 6= 0 . Then the tangent map Tπ(x) : Tx(X) → Tπ(x)(Q)

is an isomorphism; in the diagram (6), the maps µ, ν and g restricted over the fibers at x are all isomor-

phisms. Let us show that C ′ and Tπ(div(s0)) define the same quadric in P(Tπ(x)(Q)) .

Now C ′ ∩ P(T ∗
x (X)) = C ∩ P(T ∗

π(x)(Q)) is the quadric defined by the element h′q of (7.1). In the

coordinates (zi) defined by zi = (µi − µ0)
1/2xi , the equation of Q is

n+2∑

j=1

z2j = 0 , so

h′q =

n+2∑

j=1

( ∂

∂zj

)2
=

n+2∑

j=1

∂2j
µj − µ0

·

On the other hand, since π(x0, . . . , xn+2) = (x1, . . . , xn+2) , we have Tπ(∂0) = 0 and Tπ(∂j) = ∂j for

j > 0 , hence

Tπ(s0) = x20

n+2∑

j=1

∂2j
µj − µ0

·

Since x0 6= 0 , this proves the Proposition.

7.5. Proof of part a) of the Theorem. Suppose now that n ≥ 3 . Consider the double cover π : X → Q

and the ramification divisor R ⊂ X . The restriction maps hk defined in (7.3) yield a homomorphism of

graded C-algebras

h : S(X) := H0(X, S•TX) −→ H0(R, S•TR) =: S(R).

Proposition 7.4. The kernel I of h is the ideal generated by s0 .

Proof : Since I is a homogeneous ideal, it suffices to prove that every homogeneous element s ∈ I can

be written as s = s′s0 for some element s′ ∈ S(X) .

Fix an element s ∈ I of degree k . It corresponds to an effective Cartier divisor G in the linear system

|OPT∗X(k)| . Recall the commutative diagram (6)

Γ
µ

{{✈✈
✈✈
✈✈
✈✈
✈

ν

""❋
❋❋

❋❋
❋❋

❋❋

π∗
PT ∗Q

g
//❴❴❴❴❴❴❴

p
##❍

❍❍
❍❍

❍❍
❍❍

PT ∗X

q
||①①
①①
①①
①①
①

X

Put Ĝ := µ∗ν
∗G ⊂ π∗PT ∗Q . By (7), Ĝ belongs to the linear system |Oπ∗PT∗Q(k)| .

Here comes the key observation: since s ∈ I , the divisor Ĝ ⊂ π∗PT ∗Q contains p∗R . Indeed, since

(π∗TQ)|R is invariant under ι , the homomorphism τ|R factors as

τ|R : TX|R
ρ

−→ TR −→ (π∗TQ)|R .

Therefore we have a commutative diagram

H0(X, SkTX)
hk

//

S
kτ

��

H0(R, SkTR)

��

H0(X, Skπ∗TQ) // H0(R, Sk(π∗TQ)|R)
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so that Skτ(s) vanishes on R . But Ĝ is the divisor of Skτ(s) , viewed as a section of Oπ∗PT∗Q(k) , hence

Ĝ contains p∗R .

Now we want to show that the divisor C ′ ⊂ π∗PT ∗Q is a component of Ĝ−p∗R . Recall (7.1) that C is

the union of the lines ℓ which are contracted by the morphism γ : PT ∗Q→ G , so that c1(OPT∗Q(1))·ℓ = 0 .

Thus the curves ℓ′ := π′∗ℓ cover C ′ , and satisfy c1(Oπ∗PT∗Q(1)) · ℓ
′ = 0 . On the other hand the divisor

R ⊂ X is a hyperplane section, so p∗R · ℓ′ = R · p∗ℓ
′ > 0 . Therefore

(Ĝ− p∗R) · ℓ′ < 0 ,

so C ′ is a component of Ĝ . Thus g∗C
′ is a component of G . Since g∗C

′ = div(s0) by Proposition 7.3,

this proves the Proposition.

The following Proposition implies part a) of our main Theorem:

Proposition 7.5. Assume n ≥ 2 . For any choice of indices 0 ≤ i1 < . . . < in ≤ n + 2 , the homomorphism

C[t1, . . . , tn] → S(X) which maps tj to sij , with deg(ti) = 2 , is an isomorphism of graded C-algebras.

Proof : We argue by induction on n . The statement for n = 2 follows from [DO-L, Theorem 5.1], except

the fact that any two of the si generate H0(X, S2TX) . Up to permuting of the coordinates, it suffices to

prove that s0 and s1 are linearly independent. But h2 : H0(X, S2TX) → H0(R, S2TR) maps s0 to zero

and si , for i > 0 , to the corresponding elements ŝi of H0(R, S2TR) ; this implies our assertion.

Assume n ≥ 3 . By the induction hypothesis, the homomorphism C[t1, . . . , tn−1] → S(R) which maps

ti to ŝi is an isomorphism of graded C-algebras (with deg(ti) = 2 ). It follows that h is surjective, and that

(s0, . . . , sn−1) form a basis of H0(X, S2TX) and generate the C-algebra S(X) . Thus we have a surjective

homomorphism u : C[t0, . . . , tn−1] → S(X) , with u(ti) = si .

In particular, the Krull dimension of S(X) is at most n . On the other hand, the ring S(X) is a domain

and s0 is neither zero nor a unit. Thus, by Krull’s Hauptidealsatz, the Krull dimension of S(X) is equal

to n , hence u is an isomorphism. By permutation of the coordinates we get the same result for any choice

of n elements in {s0, . . . , sn+2} , hence the Proposition.
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[H-L-S] A. Höring, J. Liu, F. Shao : Examples of Fano manifolds with non-pseudoeffective tangent bundle. J. Lond. Math. Soc. (2)

106 (2022), no. 1, 27-59.

[K-L] H. Kim, Y. Lee : Lagrangian fibration structure on the cotangent bundle of a del Pezzo surface of degree 4 . Preprint

arXiv:2210.01317.

[M1] M. Maruyama : On a family of algebraic vector bundles, Dissertation Kyoto University,

https://doi.org/10.14989/doctor.r2072, 1972.

[M2] M. Maruyama : On a family of algebraic vector bundles. Number theory, algebraic geometry and commutative algebra, in

honor of Yasuo Akizuki, pp. 95-146. Kinokuniya, Tokyo, 1973.

[N] P. Newstead : Stable bundles of rank 2 and odd degree over a curve of genus 2 . Topology 7 (1968), 205-215.

[R] M. Reid : The complete intersection of two or more quadrics. PhD thesis, Cambridge University, 1972.

[V] P. Vanhaecke : Integrable systems in the realm of algebraic geometry. Lecture Notes in Mathematics 1638. Springer-Verlag,

Berlin, 1996.
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