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Reduction techniques in number theory

Since antiquity, reduction techniques have been used to show
that equations have no integral or rational solutions.

Reduction techniques can also aid in understanding structure
of solution set, i.e. set of rational points.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K.

Then the group E(K) is finitely generated.

PROOF for elliptic curves E over K = Q was found by

Louis Mordell in 1922.

Important step — Weak Mordell Theorem:

E(Q)/2 · E(Q) is finite.

Argument heavily relies on reduction.
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Reduction techniques in number theory

Consider an affine equation of our elliptic curve:

y2 = f (x), where f (x) = x3 + ax + b (no multiple roots!) (E)

Assume that a, b ∈ Z and pick a prime p > 3.

Reducing modulo p, we obtain

y2 = f̄ (x), where f̄ (x) = x3 + āx + b̄. (R)

Two possibilities:

f̄ has no multiple roots.

Then (R) still defines an elliptic
curve, and we say that (E) has good reduction at p.

f̄ has multiple roots.

Then (R) defines a singular rational
curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant

∆(f ) = −4a3 − 27b2

⇒ constitute a finite set.
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Two possibilities:

f̄ has no multiple roots.

Then (R) still defines an elliptic
curve, and we say that (E) has good reduction at p.

f̄ has multiple roots.

Then (R) defines a singular rational
curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant

∆(f ) = −4a3 − 27b2

⇒ constitute a finite set.

Igor Rapinchuk (Michigan State University) Jussieu February 2021 4 / 57



Reduction techniques in number theory

Consider an affine equation of our elliptic curve:

y2 = f (x), where f (x) = x3 + ax + b (no multiple roots!) (E)

Assume that a, b ∈ Z and pick a prime p > 3.

Reducing modulo p, we obtain

y2 = f̄ (x), where f̄ (x) = x3 + āx + b̄. (R)
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Reduction techniques in number theory

Good reduction for elliptic curves

Definition. An elliptic curve E/Q has good reduction at p > 3

if it admits an equation (E) that has good reduction at p,

and bad reduction otherwise.

(In more technical terms, having good reduction means that there
exists an abelian scheme E(p) over valuation ring Z(p) ⊂ Q with
generic fiber E.)
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Reduction techniques in number theory

Let E be an elliptic curve over Q.

• Let S = {2, 3} ∪ {primes of bad reduction}.

• Proof of Weak Mordell Theorem depends on analysis
of ramification of primes outside S in appropriate field
extensions.

• In particular, argument shows that if E[2](Q) ⊂ E(Q),

then

|E(Q)/2E(Q)| 6 22(1+|S|).
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Reduction techniques in number theory

Shafarevich’s Conjecture

SHAFAREVICH (ICM, 1962): If S is a finite set of primes, then
there are finitely many isomorphism classes of elliptic curves E
over Q having good reduction at all p /∈ S.

Shafarevich felt that his theorem was an instance of a far
more general phenomenon.

Conjecture.

Let K be a number field, and let S be a finite set of places

of K.

Then for every g > 1, there exist only finitely many iso-

morphism classes of abelian varieties of dimension g that have

good reduction at all p /∈ S.
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Reduction techniques in number theory

Proof found by G. Faltings in 1982 was culmination of work

in Diophantine geometry.

Consequences include:

Mordell’s conjecture: a smooth projective curve of genus

g > 2 over a number field K has finitely many K-rational

points;

Shafarevich’s conjecture for curves: for g > 2, there are

only finitely many isomorphism classes of smooth pro-

jective curves over K of genus g having good reduction

at all p /∈ S.

Our goal is to find analogues of these results for linear

algebraic groups.

Igor Rapinchuk (Michigan State University) Jussieu February 2021 8 / 57
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Reduction of reductive algebraic groups: examples

Reduction of algebraic groups modulo p: SLn

Example 1. Let G = SLn over Q.

One can think of G as

Z-group scheme Spec A, where

A = Z[x11, . . . , xnn]/(det(xij)− 1).

Viz., for any comm. ring R, SLn(R) identified with HomZ-alg(A, R).

Given a prime p, we can reduce modulo p:

Ap := A⊗Z Fp = Fp[x11, . . . , xnn]/(det(xij)− 1).

Then Ap represents SLn over Fp.

Thus, reduction of SLn/Q modulo p is SLn/Fp.
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Reduction of reductive algebraic groups: examples

Reductions of algebraic group modulo p: Split tori

Example 2. The d-dimensional split torus Gd
m is represented by

Z[x1, . . . , xd, x−1
1 , . . . , x−1

d ].

Reduction modulo p is Fp[x1, . . . , xd, x−1
1 , . . . , x−1

d ],

which

represents d-dimensional split torus Gd
m over Fp.

In these examples, reduction modulo p of a given algebraic

group/Z is an algebraic group of the same type /Fp.

Here are examples of a different nature.
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Reduction of reductive algebraic groups: examples

Reductions of algebraic group modulo p: Norm torus

Example 3. Fix a prime p > 2 and consider L = Q(
√

p).

Recall that for z = a + b
√

p ∈ L, the norm NL/Q(z) = a2 − pb2.

There exists algebraic Q-group G = R(1)
L/Q

(Gm) (norm torus)

such that

G(Q) = {z ∈ L× | NL/Q(z) = 1}.

Explicitly, for any Q-algebra R,

G(R) =

{
X =

(
a pb
b a

)
| a, b ∈ R, det(X) = 1

}
.

Structurally, G is 1-dimensional (Q-anisotropic) torus.
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Reduction of reductive algebraic groups: examples

Norm torus (cont.)

G is given by following equations on 2× 2-matrix X = (xij):

x11 = x22, x12 = px21, x2
11 − px2

21 = 1. (T)

Reducing modulo p, we obtain:

x11 = x22, x12 = 0, x2
11 = 1.

Solutions are of the form ±
(

1 0
u 1

)
.

So, reduction of (T) modulo p defines disconnected Fp-group

whose connected component is 1-dimensional unipotent group!

On the other hand, reducing (T) modulo any q > 2, q 6= p,

one still gets 1-dimensional torus.
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Reduction of reductive algebraic groups: examples

Reductions of algebraic groups modulo p: SL1,D

Example 4. (noncommutative version of Example 3) Fix a prime

p > 2, and let D be quaternion algebra corresponding to pair

(−1, p). So, D has Q-basis 1, i, j, k with multiplication table

i2 = −1, j2 = p, k = ij = −ji.

For a quaternion z = a + bi + cj + dk ∈ D, the reduced norm is

NrdD/Q(z) = a2 + b2 − pc2 − pd2.

There exists an algebraic Q-group G = SL1,D with

G(Q) = {z ∈ D× | NrdD/Q(z) = 1}.
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Reduction of reductive algebraic groups: examples

SL1,D (cont.)

Using regular representation of D, one can give matrix

realization of G (similar to Example 3).

One shows:

G ' SL2 over Q.

In other words, G is Q-form of SL2

(in particular, a simple algebraic group).

Group defined by reduction modulo p of equations

defining G has nontrivial unipotent radical,

hence is not

reductive.
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Reduction of reductive algebraic groups: examples

To summarize:

Reductive Q-groups in Examples 1 & 2 can be described

by polynomial systems with coefficients in Z (or in

Z(p) ⊂ Q) such that their reductions modulo p still define

reductive groups.

Systems in Examples 3 & 4 no longer define reductive

groups after reduction modulo p.

We say that a reductive Q-group G has good reduction at p

if it can be defined by a system of equations with

coefficients in Z(p) such that reduced modulo p system

defines reductive group; otherwise, it has bad reduction.

Igor Rapinchuk (Michigan State University) Jussieu February 2021 16 / 57
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Reduction of reductive algebraic groups: examples

Thus:

Groups in Examples 1 & 2 have good reduction at all p.

One can show:

Group in Example 3 has bad reduction at p and good

reduction at all odd primes q 6= p.

Group in Example 4 has bad reduction at p whenever

p ≡ 3 (mod 4).

If p ≡ 1 (mod 4), then SL1,D ' SL2 (over Q),

hence has good reduction at p.

(In fact, enough to have SL1,D ' SL2 over Qp.)
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Good reduction: general case
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Good reduction: general case

Let K be a field equipped with discrete valuation v.

Definition

A reductive K-group G has good reduction at v if there exists

a reductive group scheme G over valuation ring Ov ⊂ Kv

such that

generic fiber G⊗Ov Kv is isomorphic to G⊗K Kv.

Then special fiber (reduction)

G(v) = G⊗Ov K(v)

is a connected reductive group over residue field K(v).
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Good reduction: general case

Examples.

0. If G is K-split then G has a good reduction at any v

(follows from Chevalley’s construction).

1. For a central simple K-algebra A, group G = SL1,A has good
reduction at v

if there exists an Azumaya algebra A over
Ov such that

A⊗K Kv ' A⊗Ov Kv

(in other words, A is unramified at v).

2. G = Spinn(q) has good reduction at v

if (over Kv)

q ∼ λ(a1x2
1 + · · ·+ anx2

n) with λ ∈ K×v , ai ∈ O×v
(assuming that char K(v) 6= 2).
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Good reduction: general case

A K-group G′ is a K-form (or K/K-form) of G if

G′ ⊗K K ' G ⊗K K (where K is a sep. closure of K).

Examples.

1. If A is a central simple algebra of degree n over K, then

A⊗K K ' Mn(K)

and G′ = SL1,A is a K-form of G = SLn.
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Good reduction: general case

Examples (cont.).

2. If q is a nondegenerate quadratic form in n variables over

K (char K 6= 2) and

G = Spinn(q),

then for any other nondegenerate quadratic form q′ in n

variables,

G′ = Spinn(q
′)

is a K-form of G.

If n is odd, then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.
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Good reduction: general case

General problem

Let

K be a field equipped with a set V of discrete
valuations;

G a reductive K-group.

We are interested in analyzing

(inner) K-forms of G that have good reduction at all v ∈ V.

To make this question meaningful, one needs to specialize

K, V, and G.
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The Dedekind case

Previous work has dealt mainly with the case where K

is fraction field of Dedekind ring R, and V consists of

valuations associated with maximal ideals of R.

This situation was first studied in detail by G. Harder

(Invent. math. 4(1967), 165-191) and J.L. Colliot-Thélène &

J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

Basic case R = Z: B.H. Gross (Invent. math. 124(1996),

263-279) and B. Conrad (2012).
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J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

Basic case R = Z: B.H. Gross (Invent. math. 124(1996),

263-279) and B. Conrad (2012).
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The Dedekind case

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q.

Then G has good reduction at all primes p if
and only if G is split over all Qp.

Then nonsplit groups with good reduction can be constructed

explicitly in some cases and even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic

group over a number field K, and assume that V contains almost

all places of K.

Then the number of K-forms of G that have
good reduction at all v ∈ V is finite.
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The Dedekind case

• Case R = k[x], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] monic irreducible }.

Theorem (Raghunathan–Ramanathan (1984), ...)

Let k be a field of characteristic zero, and let G0 be a connected

reductive group over k.

If G′ is a K-form of G0 ⊗k K that has

good reduction at all v ∈ V, then

G′ = G′0 ⊗k K

for some k-form G′0 of G0.

• Chernousov–Gille–Pianzola (2012) considered similar prob-

lem for R = k[x, x−1] and K = k(x).
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The Dedekind case

We can generalize the previous examples as follows:

Let C be smooth geometrically integral affine curve over

field k;

R = k[C] and K = k(C);

V = set of discrete valuations of K associated with closed

points of C.

Since explicit description of K-forms of reductive K-group G

having good reduction at all v ∈ V not available in general,

we consider a qualitative question:

When is number of K-isomorphism classes of K-forms of reductive

K-group G having good reduction at all v ∈ V finite?
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The Dedekind case

A condition on k

If G′0 is k-form of a k-group G, then G′ = G′0 ×k K is

K-form of G = G0 ×k K having good reduction at all

v ∈ V.

So, need to ensure there are only finitely many

non-isomorphic k-forms.

Serre introduced condition (F) for perfect fields to study

finiteness properties of Galois cohomology.

Recall: A perfect field k is of type (F) if

(F) For every m > 1, Gal(k̄/k) has finitely many open
subgroups of index m.
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The Dedekind case

A finiteness conjecture

Consider:

C smooth geometrically integral affine curve over field k

with function field K = k(C);

V = set of discrete valuations of K associated with closed

points of C;

G absolutely almost simple simply connected K-group.

Conjecture 1.

If char k = 0 and k is of type (F),

then the number of

K-isomorphism classes of K-forms G′ of G having good reduction

at all v ∈ V is finite.
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Arbitrary finitely generated fields

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups: examples

3 Good reduction: general case

4 The Dedekind case
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6 Connections to Hasse principles
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8 Applications to the genus problem
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Arbitrary finitely generated fields

We initiated the analysis of the following higher-dimensional

situation.

Let K be a finitely generated field.
Pick a normal integral affine model X for K.
Let V = set of discrete valuations of K associated with
prime divisors on X (divisorial set).

Algebraically: We find R ⊂ K such that K = Frac(R) and

R is a finitely generated Z-algebra (or Fp-algebra);

R is integrally closed in K.

Then: V corresponds to height one prime ideals of R.
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Arbitrary finitely generated fields

Divisorial valuations: Example

Take K = Q(x) and R = Z[x].

Height one primes in R are principal and are of two types:

p = (p(x)), with p(x) ∈ Z[x] irreducible of content 1;

p = (p), p ∈ Z a prime.

Two corresponding types of discrete valuations:

“geometric places” V0;

“arithmetic places” V1.

Then V = V0 ∪V1 is divisorial set of discrete valuations

associated with the model X = Spec(R) of K.
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Arbitrary finitely generated fields

Main Finiteness Conjecture

Let:

K a finitely generated field;

V a divisorial set of places of K;

G a (connected) reductive K-group.

Main Conjecture for Groups with Good Reduction

If char K is “good,”

then the set of K-isomorphism classes of

(inner) K-forms G′ of G having good reduction at all v ∈ V is

finite.

(If G is absolutely almost simple, char K = p is “good” for G if
p = 0 or p does not divide order of Weyl group of G.

For non-

semisimple reductive groups only char. 0 is “good.”)
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Arbitrary finitely generated fields

Connections and applications of the Main Conjecture

This conjecture has close connections to:

Hasse principles for algebraic groups.

Finiteness properties of unramified cohomology.

Study of simple algebraic groups having same isomor-

phism classes of maximal tori (genus problem).

Analysis of weakly commensurable Zariski-dense subgps

and applications to classical problems on locally

symmetric spaces (G. Prasad-A. Rapinchuk).
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Connections to Hasse principles

Set-up: Global-to-local map in Galois cohomology

Let

K be a field

V a set of (discrete) valuations of K

G an algebraic group over K.

One says that the Hasse principle holds if global-to-local map

θG,V : H1(K, G)→ ∏
v∈V

H1(Kv, G)

is injective.

Kernel of θG,V is called Tate-Shafarevich set

X(G, V) := ker θG,V.
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Connections to Hasse principles

Hasse principle over number fields

Let k = number field, V = set of all places of k.

If G is simply-connected or adjoint alg. k-group, then

θG,V : H1(k, G)→ ∏
v∈V

H1(kv, G)

is injective (i.e. Hasse principle holds).

For arbitrary alg. k-group G, the map θG,V may not be

injective, but it is always proper; in particular, X(G, V) is

finite.

Our recent results strongly suggest the following properness

conjecture for reductive groups over finitely generated fields.
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Connections to Hasse principles

Properness conjecture

Suppose

K a finitely generated field;

V a divisorial set of places of K.

Conjecture 2.

If G is a (connected) reductive algebraic K-group, then θG,V is

proper. In particular, the Tate-Shafarevich set X(G, V) is finite.

Connection to groups with good reduction:

Proposition 3.

Assume Main Conjecture holds for an absolutely almost simple

simply connected K-group G and all divisorial sets of places of

K.

Then θG,V is proper for corresponding adjoint group G and

any divisorial set V.
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Overview of results

We have resolved all conjectures for algebraic tori.

Theorem 4.
Suppose K is a finitely generated field of char. 0, and V is a

divisorial set of places.

Then for any d > 1, the set of K-isomor-

phism classes of d-dimensional K-tori having good reduction at all

v ∈ V is finite.

Similar result over K = k(X), with k of type (F) and

char k = 0,

X a normal irreducible variety over k, and V

the set of geometric places.
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Overview of results

Key points of the proof:

K-isomorphism classes of d-dimensional K-tori classified by

equivalence classes of cont. reps. ϕ : Gal(K/K)→ GLd(Z).

By reduction theory, GLd(Z) has finitely many conjugacy

classes of finite subgroups, represented by Φ1, . . . , Φr.

⇒ Any cont. rep. ϕ is equivalent to rep. Gal(K/K)→ Φi.

Assumption of good reduction implies we actually

consider reps. ϕ : πét
1 (X)→ Φi, for model X defining V.

πét
1 (X) is of type (F)

⇒ finitely many possibilities for ϕ.
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Overview of results

Theorem 5.
Suppose K is a finitely generated field and V is a divisorial set

of places.

Then for any K-group D whose connected component

is a torus, the global-to-local map

θD,V : H1(K, D)→ ∏
v∈V

H1(Kv, D)

is proper.

In particular, the Tate-Shafarevich set X(D, V) =

ker θD,V is finite.

Classical proof for tori over number fields relies on

Tate-Nakayama duality, which is not available in general.

Our proof uses adelic methods.

In particular, it shows

that finiteness of X(T, V) for a torus T over a number

field follows from

finiteness of class number

and finite

generation of group of S-units.
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Overview of results

Theorem 6.
Suppose K = k(X), where k is of type (F) and char k = 0, and X

is a normal irreducible variety over k.

Let V be the set of

geometric places of K. Then for any K-group D whose connected

component is a torus, the global-to-local map

θD,V : H1(K, D)→ ∏
v∈V

H1(Kv, D)

is proper.

Argument depends on purity results of Nisnevich (for

reductive groups over DVRs) and Colliot-Thélène and

Sansuc (for tori).
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Overview of results

Theorem 7.
Suppose K is a finitely generated field, V a divisorial set of

places, and n > 2 integer prime to char K.

Then number of

K-isomorphism classes of groups of the form SL1,A, with A central

simple K-algebra of degree n, having good reduction at all v ∈ V,

is finite.

(This resolves Main Conjecture for inner forms of type An over

arbitrary finitely generated fields.)

We then automatically obtain properness of

θPSL1,A,V : H1(K, PSL1,A) −→ ∏
v∈V

H1(Kv, PSL1,A)

for K, V, A as above.
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Overview of results

Recall:

SL1,A has good reduction at v ⇔ A unramified at v.

Proof of Theorem 7 depends on analysis of unramified Brauer

group of K with respect to V.

By purity, this reduces to

the following.

Proposition 8.

Let X be a model of a finitely generated field K.

Then for any

n > 1 prime to char K, the n-torsion subgroup Br(X)[n] of Br(X)

is finite.
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Overview of results

Following Kato, we say K is a 2-dimensional global field if

K = k(C), with C smooth geometrically integral curve

over number field k; or

K = Fq(S), with S smooth geometrically integral surface

over finite field Fq.

Theorem 9.
Let K be a 2-dimensional global field of char. 6= 2, and V

divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spinn(q) with good

reduction at all v ∈ V is finite.

• Similar results for groups of types An, Cn that split over a
quadratic extension, and G2.
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Overview of results

Proof of Theorem 9 consists of two main parts:

Using Milnor’s conjecture, we reduce the argument to

finiteness of unramified cohomology Hi(K, µ2)V, for i > 1,

where µ2 = {±1}.

We establish finiteness of Hi(K, µ2)V for all i > 1.

Main challenge : finiteness of H3(K, µ2)V. We give two proofs:

First uses Kato’s and Jannsen’s results on cohomological

Hasse principle for H3.

Second is inspired by Jannsen’s argument and requires

careful analysis of certain residue maps (I.R.).
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Overview of results

Properness of θG,V for special orthogonal groups

Theorem 10.
Let K be a 2-dimensional global field of char. 6= 2, and V
divisorial set of places. Fix n > 5.

Then for G = SOn(q), the
map

θG,V : H1(K, G)→ ∏
v∈V

H1(Kv, G)

is proper.

Remarks:

This result follows from Theorem 9 only for odd n.

Argument relies on finiteness of Hi(K, µ2)V for all i > 1.
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Overview of results

Further results and a question

For K a 2-dimensional global field and V divisorial set of

valuations, we also establish properness of θG,V for:

G of type G2;

G = SUn(L/K, h), L/K quadratic extension, h nondegenerate

hermitian form of dim > 2;

G = SL1,A, A a c.s.a/K of square-free degree.

Question.
Suppose K is a finitely generated field and V a divisorial
set of places.

For what values of i and j are the unramified
cohomology groups Hi(K, µ

⊗j
m )V finite?

We have recent finiteness results for function fields of rational varieties and

certain S-B varieties over number fields, but general case is wide open.
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certain S-B varieties over number fields, but general case is wide open.
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Applications to the genus problem

Main definitions

• Let G1 and G2 be semisimple groups over a field K.

We say: G1 & G2 have same isomorphism classes of maximal

K-tori if every maximal K-torus T1 of G1 is K-isomorphic

to a maximal K-torus T2 of G2, and vice versa.

• Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori as G.
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Applications to the genus problem

Question 1. When does genK(G) reduce to a single element?

Question 2. When is genK(G) finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1, or E6, then |genK(G)| = 1.

Conjecture.

(1) For K = k(x), k a number field, and G an absolutely almost
simple simply connected K-group with |Z(G)| 6 2, we have
|genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic, then genK(G) is
finite.
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Applications to the genus problem

Connections to groups with good reduction

Theorem 12.
Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that residue field K(v) is finitely generated, and G

has good reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).

In particular, the Main Conjecture yields finiteness results for

the genus.
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Applications to the genus problem

A sampling of results

Theorem 13.
(1) Let D be a central division algebra of exponent 2 over

K = k(x1, . . . , xr) where k is a number field or a finite

field of characteristic 6= 2. Then for G = SLm,D (m > 1),

we have |genK(G)| = 1.

(2) Let G = SLm,D, where D is a central division algebra over

a finitely generated field K. Then genK(G) is finite.

Theorem 14.
Let K = k(C), where C is a smooth geometrically integral curve

over a number field k, and set G = Spinn(q).

If either n > 5 is

odd, or n > 10 is even and q is isotropic, then genK(G) is finite.
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Applications to the genus problem

Results (cont.)

Theorem 15.
Let G be a simple algebraic group of type G2.

(1) If K = k(x), where k is a number field, then |genK(G)| = 1;

(2) If K = k(x1, . . . , xr) or k(C), where k is a number field,

then genK(G) is finite.
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Applications to the genus problem
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