ALGEBRAIC GROUPS WITH GOOD REDUCTION

Igor Rapinchuk

(joint work with V. Chernousov and A. Rapinchuk)

Jussieu February 2021

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- 3 Good reduction: general case
- 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
 - 7 Overview of results
- 8 Applications to the genus problem

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K.

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K. Then the group E(K) is finitely generated.

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K. Then the group E(K) is finitely generated.

PROOF for elliptic curves *E* over $K = \mathbb{Q}$ was found by Louis Mordell in 1922.

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K. Then the group E(K) is finitely generated.

PROOF for elliptic curves E over $K = \mathbb{Q}$ was found by Louis Mordell in 1922. Important step — Weak Mordell Theorem:

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K. Then the group E(K) is finitely generated.

PROOF for elliptic curves E over $K = \mathbb{Q}$ was found by

Louis Mordell in 1922.

Important step — Weak Mordell Theorem: $E(\mathbb{Q})/2 \cdot E(\mathbb{Q})$ *is finite.*

Reduction techniques can also aid in understanding *structure* of *solution set*, i.e. set of *rational points*.

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K. Then the group E(K) is finitely generated.

PROOF for elliptic curves *E* over $K = \mathbb{Q}$ was found by

Louis Mordell in 1922.

Important step — Weak Mordell Theorem:

 $E(\mathbb{Q})/2 \cdot E(\mathbb{Q})$ is finite.

Argument heavily relies on *reduction*.

Consider an affine equation of our elliptic curve: $y^2 = f(x)$, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

f has no multiple roots. *f* has multiple roots.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

• \overline{f} has no multiple roots.

• \overline{f} has multiple roots.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

• \overline{f} has no multiple roots. Then (R) still defines an elliptic curve, and we say that (E) has good reduction at p.

• \overline{f} has multiple roots.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

- \overline{f} has no multiple roots. Then (R) still defines an elliptic curve, and we say that (E) has good reduction at *p*.
- \bar{f} has multiple roots.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

- \overline{f} has no multiple roots. Then (R) still defines an elliptic curve, and we say that (E) has good reduction at p.
- \overline{f} has multiple roots. Then (R) defines a singular rational curve, and we say that (E) has bad reduction at p.

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

- \overline{f} has no multiple roots. Then (R) still defines an elliptic curve, and we say that (E) has good reduction at *p*.
- \overline{f} has multiple roots. Then (R) defines a singular rational curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant $\Delta(f) = -4a^3 - 27b^2$

$$y^2 = f(x)$$
, where $f(x) = x^3 + ax + b$ (no multiple roots!) (E)

Assume that $a, b \in \mathbb{Z}$ and pick a prime p > 3.

Reducing modulo p, we obtain

$$y^2 = \bar{f}(x)$$
, where $\bar{f}(x) = x^3 + \bar{a}x + \bar{b}$. (R)

Two possibilities:

- \overline{f} has no multiple roots. Then (R) still defines an elliptic curve, and we say that (E) has good reduction at *p*.
- \overline{f} has multiple roots. Then (R) defines a singular rational curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant $\Delta(f) = -4a^3 - 27b^2 \Rightarrow$ constitute a finite set.

Reduction techniques in number theory

Good reduction for elliptic curves

Definition. An elliptic curve E/\mathbb{Q} has good reduction at p > 3

Definition. An elliptic curve E/\mathbb{Q} has good reduction at p > 3 if it admits an equation (E) that has good reduction at p,

Definition. An elliptic curve E/Q has good reduction at p > 3 if it admits an equation (E) that has good reduction at p, and bad reduction otherwise.

Definition. An elliptic curve E/Q has good reduction at p > 3 if it admits an equation (E) that has good reduction at p, and bad reduction otherwise.

(In more technical terms, having good reduction means that there exists an abelian scheme $E_{(p)}$ over valuation ring $\mathbb{Z}_{(p)} \subset \mathbb{Q}$ with generic fiber *E*.)

• Let $S = \{2,3\} \cup \{\text{primes of bad reduction}\}.$

• Let $S = \{2,3\} \cup \{\text{primes of bad reduction}\}.$

• Proof of Weak Mordell Theorem depends on analysis of ramification of primes outside *S* in appropriate field extensions.

• Let $S = \{2,3\} \cup \{\text{primes of bad reduction}\}.$

- Proof of Weak Mordell Theorem depends on analysis of ramification of primes outside *S* in appropriate field extensions.
- In particular, argument shows that if $E[2](\overline{\mathbb{Q}}) \subset E(\mathbb{Q})$,

• Let $S = \{2,3\} \cup \{\text{primes of bad reduction}\}$.

- Proof of Weak Mordell Theorem depends on analysis of ramification of primes outside *S* in appropriate field extensions.
- In particular, argument shows that if $E[2](\overline{\mathbb{Q}}) \subset E(\mathbb{Q})$, then

$$|E(\mathbb{Q})/2E(\mathbb{Q})| \leq 2^{2(1+|S|)}.$$

Shafarevich's Conjecture

Shafarevich's Conjecture

SHAFAREVICH (ICM, 1962): If *S* is a finite set of primes, then there are finitely many isomorphism classes of elliptic curves *E* over \mathbb{Q} having good reduction at all $p \notin S$.

Shafarevich's Conjecture

SHAFAREVICH (ICM, 1962): If *S* is a finite set of primes, then there are finitely many isomorphism classes of elliptic curves *E* over \mathbb{Q} having good reduction at all $p \notin S$.

Shafarevich felt that his theorem was an instance of a *far more general* phenomenon.
Shafarevich's Conjecture

SHAFAREVICH (ICM, 1962): If *S* is a finite set of primes, then there are finitely many isomorphism classes of elliptic curves *E* over \mathbb{Q} having good reduction at all $p \notin S$.

Shafarevich felt that his theorem was an instance of a *far more general* phenomenon.

Conjecture. Let *K* be a number field, and let *S* be a finite set of places of *K*.

Shafarevich's Conjecture

SHAFAREVICH (ICM, 1962): If *S* is a finite set of primes, then there are finitely many isomorphism classes of elliptic curves *E* over \mathbb{Q} having good reduction at all $p \notin S$.

Shafarevich felt that his theorem was an instance of a *far more general* phenomenon.

Conjecture. Let K be a number field, and let S be a finite set of places of K. Then for every $g \ge 1$, there exist only finitely many isomorphism classes of abelian varieties of dimension g that have

good reduction at all $p \notin S$.

Consequences include:

- Mordell's conjecture: a smooth projective curve of genus g ≥ 2 over a number field K has finitely many K-rational points;
- Shafarevich's conjecture for curves: for $g \ge 2$, there are only finitely many isomorphism classes of smooth projective curves over *K* of genus *g* having good reduction at all $p \notin S$.

Consequences include:

- Mordell's conjecture: a smooth projective curve of genus g ≥ 2 over a number field K has finitely many K-rational points;
- Shafarevich's conjecture for curves: for $g \ge 2$, there are only finitely many isomorphism classes of smooth projective curves over *K* of genus *g* having good reduction at all $p \notin S$.

Consequences include:

- Mordell's conjecture: a smooth projective curve of genus g ≥ 2 over a number field K has finitely many K-rational points;
- Shafarevich's conjecture for curves: for $g \ge 2$, there are only finitely many isomorphism classes of smooth projective curves over *K* of genus *g* having good reduction at all $p \notin S$.

Consequences include:

- Mordell's conjecture: a smooth projective curve of genus g ≥ 2 over a number field K has finitely many K-rational points;
- Shafarevich's conjecture for curves: for $g \ge 2$, there are only finitely many isomorphism classes of smooth projective curves over *K* of genus *g* having good reduction at all $p \notin S$.

Our goal is to find analogues of these results for *linear algebraic groups*.

Reduction techniques in number theory

- 2 Reduction of reductive algebraic groups: examples
 - 3 Good reduction: general case
 - 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
 - 7 Overview of results
- 8 Applications to the genus problem

Reduction of reductive algebraic groups: examples

Reduction of algebraic groups modulo p: SL_n

Reduction of algebraic groups modulo p: SL_n

Example 1. Let $G = SL_n$ over \mathbb{Q} .

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Viz., for any comm. ring *R*, $SL_n(R)$ identified with $Hom_{\mathbb{Z}-alg}(A, R)$.

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Viz., for any comm. ring *R*, $SL_n(R)$ identified with $Hom_{\mathbb{Z}-alg}(A, R)$.

Given a prime *p*, we can reduce modulo *p*:

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Viz., for any comm. ring *R*, $SL_n(R)$ identified with $Hom_{\mathbb{Z}-alg}(A, R)$.

Given a prime *p*, we can reduce modulo *p*:

$$A_p := A \otimes_{\mathbb{Z}} \mathbb{F}_p = \mathbb{F}_p[x_{11}, \ldots, x_{nn}]/(\det(x_{ij}) - 1).$$

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Viz., for any comm. ring *R*, $SL_n(R)$ identified with $Hom_{\mathbb{Z}-alg}(A, R)$.

Given a prime *p*, we can reduce modulo *p*:

$$A_p := A \otimes_{\mathbb{Z}} \mathbb{F}_p = \mathbb{F}_p[x_{11}, \ldots, x_{nn}] / (\det(x_{ij}) - 1).$$

Then A_p represents SL_n over \mathbb{F}_p .

Example 1. Let $G = SL_n$ over \mathbb{Q} . One can think of G as \mathbb{Z} -group scheme Spec A, where

$$A = \mathbb{Z}[x_{11},\ldots,x_{nn}]/(\det(x_{ij})-1).$$

Viz., for any comm. ring *R*, $SL_n(R)$ identified with $Hom_{\mathbb{Z}-alg}(A, R)$.

Given a prime *p*, we can reduce modulo *p*:

$$A_p := A \otimes_{\mathbb{Z}} \mathbb{F}_p = \mathbb{F}_p[x_{11}, \ldots, x_{nn}] / (\det(x_{ij}) - 1).$$

Then A_p represents SL_n over \mathbb{F}_p .

Thus, reduction of SL_n/\mathbb{Q} modulo p is SL_n/\mathbb{F}_p .

Reduction of reductive algebraic groups: examples

Reductions of algebraic group modulo p: Split tori

Example 2. The *d*-dimensional split torus \mathbb{G}_m^d is represented by $\mathbb{Z}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}].$

Example 2. The *d*-dimensional split torus \mathbb{G}_m^d is represented by $\mathbb{Z}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}].$

Reduction modulo p is $\mathbb{F}_p[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}]$,

Example 2. The *d*-dimensional split torus \mathbb{G}_m^d is represented by $\mathbb{Z}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}].$

Reduction modulo *p* is $\mathbb{F}_p[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}]$, which represents *d*-dimensional split torus \mathbb{G}_m^d over \mathbb{F}_p .

Example 2. The *d*-dimensional split torus \mathbb{G}_m^d is represented by $\mathbb{Z}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}].$

Reduction modulo *p* is $\mathbb{F}_p[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}]$, which represents *d*-dimensional split torus \mathbb{G}_m^d over \mathbb{F}_p .

In these examples, reduction modulo p of a given algebraic group/ \mathbb{Z} is an algebraic group of the same type $/\mathbb{F}_p$.

Example 2. The *d*-dimensional split torus \mathbb{G}_m^d is represented by $\mathbb{Z}[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}].$

Reduction modulo *p* is $\mathbb{F}_p[x_1, \ldots, x_d, x_1^{-1}, \ldots, x_d^{-1}]$, which represents *d*-dimensional split torus \mathbb{G}_m^d over \mathbb{F}_p .

In these examples, reduction modulo p of a given algebraic group/ \mathbb{Z} is an algebraic group of the same type / \mathbb{F}_p .

Here are examples of a different nature.

Reduction of reductive algebraic groups: examples

Reductions of algebraic group modulo p: Norm torus

Example 3. Fix a prime p > 2 and consider $L = \mathbb{Q}(\sqrt{p})$.

Example 3. Fix a prime p > 2 and consider $L = \mathbb{Q}(\sqrt{p})$.

Recall that for $z = a + b\sqrt{p} \in L$, the norm $N_{L/Q}(z) = a^2 - pb^2$.

Example 3. Fix a prime p > 2 and consider $L = \mathbb{Q}(\sqrt{p})$.

Recall that for $z = a + b\sqrt{p} \in L$, the norm $N_{L/Q}(z) = a^2 - pb^2$.

There exists algebraic Q-group $G = R_{L/Q}^{(1)}(G_m)$ (norm torus) such that

$$G(\mathbb{Q}) = \{ z \in L^{\times} \mid \mathbb{N}_{L/\mathbb{Q}}(z) = 1 \}.$$

Example 3. Fix a prime p > 2 and consider $L = \mathbb{Q}(\sqrt{p})$.

Recall that for $z = a + b\sqrt{p} \in L$, the norm $N_{L/Q}(z) = a^2 - pb^2$.

There exists algebraic Q-group $G = R_{L/Q}^{(1)}(G_m)$ (norm torus) such that

$$G(\mathbb{Q}) \;=\; \{z \in L^{\times} \mid \mathbb{N}_{L/\mathbb{Q}}(z) = 1\}.$$

Explicitly, for any Q-algebra R,

$$G(R) = \left\{ X = \left(\begin{array}{cc} a & pb \\ b & a \end{array} \right) \mid a, b \in R, \ \det(X) = 1 \right\}.$$

Example 3. Fix a prime p > 2 and consider $L = \mathbb{Q}(\sqrt{p})$.

Recall that for $z = a + b\sqrt{p} \in L$, the norm $N_{L/Q}(z) = a^2 - pb^2$.

There exists algebraic Q-group $G = R_{L/Q}^{(1)}(G_m)$ (norm torus) such that

$$G(\mathbb{Q}) = \{ z \in L^{\times} \mid \mathbb{N}_{L/\mathbb{Q}}(z) = 1 \}.$$

Explicitly, for any Q-algebra R,

$$G(R) = \left\{ X = \left(\begin{array}{cc} a & pb \\ b & a \end{array} \right) \mid a, b \in R, \ \det(X) = 1 \right\}.$$

Structurally, G is 1-dimensional (Q-anisotropic) torus.

G is given by following equations on 2×2 -matrix $X = (x_{ij})$:

$$x_{11} = x_{22}, \quad x_{12} = px_{21}, \quad x_{11}^2 - px_{21}^2 = 1.$$
 (T)

G is given by following equations on 2×2 -matrix $X = (x_{ij})$:

$$x_{11} = x_{22}, \quad x_{12} = px_{21}, \quad x_{11}^2 - px_{21}^2 = 1.$$
 (T)

Reducing modulo *p*, we obtain:

$$x_{11} = x_{22}, \quad x_{12} = 0, \quad x_{11}^2 = 1.$$

G is given by following equations on 2×2 -matrix $X = (x_{ij})$:

$$x_{11} = x_{22}, \quad x_{12} = px_{21}, \quad x_{11}^2 - px_{21}^2 = 1.$$
 (T)

Reducing modulo *p*, we obtain:

$$x_{11} = x_{22}, \quad x_{12} = 0, \quad x_{11}^2 = 1.$$

Solutions are of the form $\pm \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$.

G is given by following equations on 2×2 -matrix $X = (x_{ij})$:

$$x_{11} = x_{22}, \quad x_{12} = px_{21}, \quad x_{11}^2 - px_{21}^2 = 1.$$
 (T)

Reducing modulo *p*, we obtain:

$$x_{11} = x_{22}, \quad x_{12} = 0, \quad x_{11}^2 = 1.$$

Solutions are of the form $\pm \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$.

So, reduction of (T) modulo p defines *disconnected* \mathbb{F}_p -group whose connected component is 1-dimensional *unipotent group*!

G is given by following equations on 2×2 -matrix $X = (x_{ij})$:

$$x_{11} = x_{22}, \quad x_{12} = px_{21}, \quad x_{11}^2 - px_{21}^2 = 1.$$
 (T)

Reducing modulo *p*, we obtain:

$$x_{11} = x_{22}, \quad x_{12} = 0, \quad x_{11}^2 = 1.$$

Solutions are of the form $\pm \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$.

So, reduction of (T) modulo p defines *disconnected* \mathbb{F}_p -group whose connected component is 1-dimensional *unipotent group*!

On the other hand, reducing (T) modulo any q > 2, $q \neq p$, one still gets 1-dimensional *torus*.

Reduction of reductive algebraic groups: examples

Reductions of algebraic groups modulo p: SL_{1,D}

Reductions of algebraic groups modulo p: SL_{1,D}

Example 4. (noncommutative version of Example 3)
Example 4. (noncommutative version of Example 3) Fix a prime p > 2,

Example 4. (*noncommutative version of Example 3*) Fix a prime p > 2, and let *D* be quaternion algebra corresponding to pair (-1, p).

Example 4. (*noncommutative version of Example 3*) Fix a prime p > 2, and let *D* be quaternion algebra corresponding to pair (-1, p). So, *D* has Q-basis 1, *i*, *j*, *k* with multiplication table

Example 4. (*noncommutative version of Example 3*) Fix a prime p > 2, and let *D* be quaternion algebra corresponding to pair (-1,p). So, *D* has Q-basis 1, *i*, *j*, *k* with multiplication table

$$i^2 = -1$$
, $j^2 = p$, $k = ij = -ji$.

Example 4. (*noncommutative version of Example 3*) Fix a prime p > 2, and let *D* be quaternion algebra corresponding to pair (-1,p). So, *D* has Q-basis 1, *i*, *j*, *k* with multiplication table

$$i^2 = -1$$
, $j^2 = p$, $k = ij = -ji$.

For a quaternion $z = a + bi + cj + dk \in D$, the *reduced norm* is

$$\operatorname{Nrd}_{D/\mathbb{Q}}(z) = a^2 + b^2 - pc^2 - pd^2.$$

Example 4. (*noncommutative version of Example 3*) Fix a prime p > 2, and let *D* be quaternion algebra corresponding to pair (-1, p). So, *D* has Q-basis 1, *i*, *j*, *k* with multiplication table

$$i^2 = -1$$
, $j^2 = p$, $k = ij = -ji$.

For a quaternion $z = a + bi + cj + dk \in D$, the *reduced norm* is

$$\operatorname{Nrd}_{D/\mathbb{Q}}(z) = a^2 + b^2 - pc^2 - pd^2.$$

There exists an algebraic Q-group $G = SL_{1,D}$ with

$$G(\mathbb{Q}) = \{ z \in D^{\times} \mid \operatorname{Nrd}_{D/\mathbb{Q}}(z) = 1 \}.$$

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$.

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$.

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$.

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$.

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$. In other words, G is \mathbb{Q} -form of SL_2

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

• $G \simeq SL_2$ over $\overline{\mathbb{Q}}$. In other words, G is \mathbb{Q} -form of SL_2 (in particular, a *simple* algebraic group).

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

- $G \simeq SL_2$ over $\overline{\mathbb{Q}}$. In other words, G is \mathbb{Q} -form of SL_2 (in particular, a *simple* algebraic group).
- Group defined by reduction modulo *p* of equations defining *G* has *nontrivial* unipotent radical,

Using *regular representation* of D, one can give matrix realization of G (similar to Example 3).

One shows:

- $G \simeq SL_2$ over $\overline{\mathbb{Q}}$. In other words, G is \mathbb{Q} -form of SL_2 (in particular, a *simple* algebraic group).
- Group defined by reduction modulo *p* of equations defining *G* has *nontrivial* unipotent radical, hence is *not reductive*.

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

We say that a reductive Q-group G has good reduction at p

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

We say that a reductive Q-group *G* has *good reduction* at *p* if it can be defined by a system of equations with coefficients in $\mathbb{Z}_{(p)}$ such that reduced modulo *p* system defines reductive group;

- Reductive Q-groups in Examples 1 & 2 can be described by polynomial systems with coefficients in Z (or in Z_(p) ⊂ Q) such that their reductions modulo p still define reductive groups.
- Systems in Examples 3 & 4 *no longer* define reductive groups after reduction modulo *p*.

We say that a reductive Q-group *G* has *good reduction* at *p* if it can be defined by a system of equations with coefficients in $\mathbb{Z}_{(p)}$ such that reduced modulo *p* system defines reductive group; otherwise, it has *bad reduction*.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all* p.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all* p.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at p whenever $p \equiv 3 \pmod{4}$.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at *p* whenever *p* ≡ 3 (mod 4). If *p* ≡ 1 (mod 4), then SL_{1,D} ≃ SL₂ (over Q), hence has good reduction at *p*.

• Groups in Examples 1 & 2 have good reduction at *all p*.

- Group in Example 3 has bad reduction at p and good reduction at all odd primes $q \neq p$.
- Group in Example 4 has bad reduction at *p* whenever *p* ≡ 3 (mod 4). If *p* ≡ 1 (mod 4), then SL_{1,D} ≃ SL₂ (over Q), hence has good reduction at *p*.
 (In fact, enough to have SL_{1,D} ≃ SL₂ over Q_p.)

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- Good reduction: general case
 - 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
 - 7 Overview of results
- 8 Applications to the genus problem

Definition

Definition

A reductive K-group G has good reduction at v

Definition

A reductive *K*-group *G* has *good reduction* at *v* if there exists a reductive group scheme *G* over valuation ring $\mathcal{O}_v \subset K_v$ such that

Definition

A reductive *K*-group *G* has *good reduction* at *v* if there exists a reductive group scheme *G* over valuation ring $\mathcal{O}_v \subset K_v$ such that

generic fiber $\mathfrak{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.

Definition

A reductive *K*-group *G* has *good reduction* at *v* if there exists a reductive group scheme *G* over valuation ring $\mathcal{O}_v \subset K_v$ such that

generic fiber $\mathfrak{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.

Then special fiber (reduction)

$$\underline{G}^{(v)} = \mathfrak{G} \otimes_{\mathcal{O}_v} K^{(v)}$$

is a connected reductive group over residue field $K^{(v)}$.
0. If G is K-split then G has a good reduction at any v

0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).

- 0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).
- 1. For a central simple *K*-algebra *A*, group $G = SL_{1,A}$ has good reduction at v

- 0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).
- 1. For a central simple *K*-algebra *A*, group $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$

- 0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).
- 1. For a central simple *K*-algebra *A*, group $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$$

(in other words, A is *unramified* at v).

- 0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).
- 1. For a central simple *K*-algebra *A*, group $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$$

(in other words, A is *unramified* at v).

2. $G = \text{Spin}_n(q)$ has good reduction at v

- 0. If G is K-split then G has a good reduction at *any* v (follows from Chevalley's construction).
- 1. For a central simple *K*-algebra *A*, group $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$$

(in other words, A is *unramified* at v).

2. $G = \operatorname{Spin}_n(q)$ has good reduction at v if (over K_v) $q \sim \lambda(a_1 x_1^2 + \dots + a_n x_n^2)$ with $\lambda \in K_v^{\times}$, $a_i \in \mathcal{O}_v^{\times}$ (assuming that char $K^{(v)} \neq 2$).

Examples.

1. If A is a central simple algebra of degree n over K,

Examples. 1. If *A* is a central simple algebra of degree *n* over *K*, then $A \otimes_K \overline{K} \simeq M_n(\overline{K})$

Examples.
1. If *A* is a central simple algebra of degree *n* over *K*, then
$$A \otimes_K \overline{K} \simeq M_n(\overline{K})$$
and $G' = SL_{1,A}$ is a *K*-form of $G = SL_n$.

2. If *q* is a nondegenerate quadratic form in *n* variables over *K* (char $K \neq 2$) and

 $G = \operatorname{Spin}_n(q),$

2. If *q* is a nondegenerate quadratic form in *n* variables over *K* (char $K \neq 2$) and

 $G = \operatorname{Spin}_n(q),$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_n(q')$$

is a *K*-form of *G*.

2. If *q* is a nondegenerate quadratic form in *n* variables over *K* (char $K \neq 2$) and

 $G = \operatorname{Spin}_n(q),$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_n(q')$$

is a *K*-form of *G*.

If n is odd, then these are all K-forms.

2. If *q* is a nondegenerate quadratic form in *n* variables over *K* (char $K \neq 2$) and

 $G = \operatorname{Spin}_n(q),$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_n(q')$$

is a *K*-form of *G*.

If *n* is *odd*, then these are **all** *K*-forms.

Otherwise, there may be *K*-forms coming from hermitian forms over noncommutative division algebras.

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.
- We are interested in analyzing

Let

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.
- We are interested in analyzing

(inner) *K*-forms of *G* that have good reduction at all $v \in V$.

Let

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* a reductive *K*-group.
- We are interested in analyzing

(inner) *K*-forms of *G* that have good reduction at all $v \in V$.

To make this question meaningful, one needs to specialize K, V, and G.

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- Good reduction: general case
 - The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
- 7 Overview of results
- 8 Applications to the genus problem

 This situation was first studied in detail by G. Harder (Invent. math. 4(1967), 165-191) and J.L. Colliot-Thélène & J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

• Basic case *R* = Z: B.H. Gross (Invent. math. **124**(1996), 263-279) and B. Conrad (2012).

 This situation was first studied in detail by G. Harder (Invent. math. 4(1967), 165-191) and J.L. Colliot-Thélène & J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

• Basic case *R* = Z: B.H. Gross (Invent. math. **124**(1996), 263-279) and B. Conrad (2012).

This situation was first studied in detail by G. Harder (Invent. math. 4(1967), 165-191) and J.L. Colliot-Thélène & J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

• Basic case $R = \mathbb{Z}$: B.H. Gross (Invent. math. **124**(1996), 263-279) and B. Conrad (2012).

 This situation was first studied in detail by G. Harder (Invent. math. 4(1967), 165-191) and J.L. Colliot-Thélène & J.J. Sansuc (Math. Ann. 244 (1979), no. 2, 105-134).

• Basic case *R* = Z: B.H. Gross (Invent. math. **124**(1996), 263-279) and B. Conrad (2012).

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} .

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly in some cases and even classified.

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly in some cases and even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and assume that V contains almost all places of K.

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly in some cases and even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and assume that V contains almost all places of K. Then the number of K-forms of G that have good reduction at all $v \in V$ is finite.
$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ monic irreducible } \}.$

 $V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ monic irreducible } \}.$

Theorem (Raghunathan-Ramanathan (1984), ...)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k.

 $V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ monic irreducible } \}.$

Theorem (Raghunathan-Ramanathan (1984), ...)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$, then

$$G' = G'_0 \otimes_k K$$

for some k-form G'_0 of G_0 .

 $V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ monic irreducible } \}.$

Theorem (Raghunathan–Ramanathan (1984), ...)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$, then

$$G' = G'_0 \otimes_k K$$

for some k-form G'_0 of G_0 .

• Chernousov–Gille–Pianzola (2012) considered similar problem for $R = k[x, x^{-1}]$ and K = k(x).

- Let *C* be smooth geometrically integral affine curve over field *k*;
- R = k[C] and K = k(C);
- *V* = set of discrete valuations of *K* associated with closed points of *C*.

- We can generalize the previous examples as follows:
 - Let *C* be smooth geometrically integral affine curve over field *k*;
 - R = k[C] and K = k(C);
 - *V* = set of discrete valuations of *K* associated with closed points of *C*.

- We can generalize the previous examples as follows:
 - Let *C* be smooth geometrically integral affine curve over field *k*;
 - R = k[C] and K = k(C);
 - *V* = set of discrete valuations of *K* associated with closed points of *C*.

- Let *C* be smooth geometrically integral affine curve over field *k*;
- R = k[C] and K = k(C);
- *V* = set of discrete valuations of *K* associated with closed points of *C*.

- Let *C* be smooth geometrically integral affine curve over field *k*;
- R = k[C] and K = k(C);
- *V* = set of discrete valuations of *K* associated with closed points of *C*.

Since explicit description of *K*-forms of reductive *K*-group *G* having good reduction at all $v \in V$ not available in general, we consider a *qualitative* question:

- Let *C* be smooth geometrically integral affine curve over field *k*;
- R = k[C] and K = k(C);
- *V* = set of discrete valuations of *K* associated with closed points of *C*.

Since explicit description of *K*-forms of reductive *K*-group *G* having good reduction at all $v \in V$ not available in general, we consider a *qualitative* question:

When is number of K-isomorphism classes of K-forms of reductive K-group G having good reduction at all $v \in V$ finite?

- If G'_0 is *k*-form of a *k*-group *G*, then $G' = G'_0 \times_k K$ is *K*-form of $G = G_0 \times_k K$ having good reduction at all $v \in V$.
- **So**, need to ensure there are only *finitely* many non-isomorphic *k*-forms.
- Serre introduced condition (F) for *perfect* fields to study finiteness properties of Galois cohomology.

- If G'_0 is *k*-form of a *k*-group *G*, then $G' = G'_0 \times_k K$ is *K*-form of $G = G_0 \times_k K$ having good reduction at all $v \in V$.
- **So**, need to ensure there are only *finitely* many non-isomorphic *k*-forms.
- Serre introduced condition (F) for *perfect* fields to study finiteness properties of Galois cohomology.

- If G'_0 is *k*-form of a *k*-group *G*, then $G' = G'_0 \times_k K$ is *K*-form of $G = G_0 \times_k K$ having good reduction at all $v \in V$.
- **So**, need to ensure there are only *finitely* many non-isomorphic *k*-forms.
- Serre introduced condition (F) for *perfect* fields to study finiteness properties of Galois cohomology.

- If G'_0 is *k*-form of a *k*-group *G*, then $G' = G'_0 \times_k K$ is *K*-form of $G = G_0 \times_k K$ having good reduction at all $v \in V$.
- **So**, need to ensure there are only *finitely* many non-isomorphic *k*-forms.
- Serre introduced condition (F) for *perfect* fields to study finiteness properties of Galois cohomology.

Recall: A perfect field k is of type (F) if

- If G'_0 is *k*-form of a *k*-group *G*, then $G' = G'_0 \times_k K$ is *K*-form of $G = G_0 \times_k K$ having good reduction at all $v \in V$.
- **So**, need to ensure there are only *finitely* many non-isomorphic *k*-forms.
- Serre introduced condition (F) for *perfect* fields to study finiteness properties of Galois cohomology.

Recall: A perfect field k is of type (F) if

(F) For every $m \ge 1$, $Gal(\bar{k}/k)$ has finitely many open subgroups of index *m*.

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- *G* absolutely almost simple simply connected *K*-group.

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

Consider:

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

Conjecture 1.

If
$$\operatorname{char} k = 0$$
 and k is of type (F),

Consider:

- *C* smooth geometrically integral affine curve over field *k* with function field *K* = *k*(*C*);
- *V* = set of discrete valuations of *K* associated with closed points of *C*;
- G absolutely almost simple simply connected K-group.

Conjecture 1.

If char k = 0 and k is of type (F), then the number of K-isomorphism classes of K-forms G' of G having good reduction at all $v \in V$ is finite.

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- 3 Good reduction: general case
- 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
 - 7 Overview of results

8 Applications to the genus problem

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

Algebraically: We find $R \subset K$ such that K = Frac(R) and

- *R* is a finitely generated \mathbb{Z} -algebra (or \mathbb{F}_p -algebra);
- *R* is integrally closed in *K*.

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

Algebraically: We find $R \subset K$ such that K = Frac(R) and

• *R* is a finitely generated \mathbb{Z} -algebra (or \mathbb{F}_p -algebra);

• *R* is integrally closed in *K*.

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

Algebraically: We find $R \subset K$ such that K = Frac(R) and

- *R* is a finitely generated \mathbb{Z} -algebra (or \mathbb{F}_p -algebra);
- *R* is integrally closed in *K*.

- Let *K* be a finitely generated field.
- Pick a normal integral affine model \mathfrak{X} for K.
- Let V = set of discrete valuations of K associated with prime divisors on \mathfrak{X} (*divisorial* set).

Algebraically: We find $R \subset K$ such that K = Frac(R) and

- *R* is a finitely generated \mathbb{Z} -algebra (or \mathbb{F}_p -algebra);
- *R* is integrally closed in *K*.

Then: V corresponds to height one prime ideals of R.

• $\mathfrak{p} = (p(x))$, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1; • $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

- "geometric places" V₀;
- "arithmetic places" V_1 .

Take $K = \mathbb{Q}(x)$ and $R = \mathbb{Z}[x]$.

• $\mathfrak{p} = (p(x))$, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1; • $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

- "geometric places" V₀;
- "arithmetic places" V_1 .

Take $K = \mathbb{Q}(x)$ and $R = \mathbb{Z}[x]$.

Height one primes in *R* are principal and are of two types: • $\mathfrak{p} = (p(x))$, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1; • $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

• "geometric places" V₀;

• "arithmetic places" V_1 .

Take $K = \mathbb{Q}(x)$ and $R = \mathbb{Z}[x]$.

Height one primes in *R* are principal and are of two types: • $\mathfrak{p} = (p(x))$, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1; • $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

• "geometric places" V₀;

• "arithmetic places" V_1 .

Take $K = \mathbb{Q}(x)$ and $R = \mathbb{Z}[x]$.

Height one primes in *R* are principal and are of two types: • $\mathfrak{p} = (p(x))$, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1; • $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

• "geometric places" V₀;

• "arithmetic places" V_1 .
Take
$$K = \mathbb{Q}(x)$$
 and $R = \mathbb{Z}[x]$.

Height one primes in R are principal and are of two types:

•
$$\mathfrak{p} = (p(x))$$
, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1;

• $\mathfrak{p} = (p), p \in \mathbb{Z}$ a prime.

Two corresponding types of discrete valuations:

- "geometric places" V₀;
- "arithmetic places" V_1 .

Take
$$K = \mathbb{Q}(x)$$
 and $R = \mathbb{Z}[x]$.

Height one primes in R are principal and are of two types:

•
$$\mathfrak{p} = (p(x))$$
, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1;

•
$$\mathfrak{p} = (p)$$
, $p \in \mathbb{Z}$ a prime.

Two corresponding types of discrete valuations:

- "geometric places" V₀;
- "arithmetic places" V_1 .

Take
$$K = \mathbb{Q}(x)$$
 and $R = \mathbb{Z}[x]$.

Height one primes in R are principal and are of two types:

•
$$\mathfrak{p} = (p(x))$$
, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1;

• $\mathfrak{p} = (p)$, $p \in \mathbb{Z}$ a prime.

Two corresponding types of discrete valuations:

- "geometric places" V₀;
- "arithmetic places" V_1 .

Take
$$K = \mathbb{Q}(x)$$
 and $R = \mathbb{Z}[x]$.

Height one primes in R are principal and are of two types:

•
$$\mathfrak{p} = (p(x))$$
, with $p(x) \in \mathbb{Z}[x]$ irreducible of content 1;

•
$$\mathfrak{p} = (p)$$
, $p \in \mathbb{Z}$ a prime.

Two corresponding types of discrete valuations:

- "geometric places" *V*₀;
- "arithmetic places" V_1 .

Then $V = V_0 \cup V_1$ is divisorial set of discrete valuations associated with the model $\mathfrak{X} = \operatorname{Spec}(R)$ of *K*.

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Let:

• *K* a finitely generated field;

- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Main Conjecture for Groups with Good Reduction

If char K is "good,"

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Main Conjecture for Groups with Good Reduction

If char K is "good," then the set of K-isomorphism classes of (inner) K-forms G' of G having good reduction at all $v \in V$ is finite.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Main Conjecture for Groups with Good Reduction

If char K is "good," then the set of K-isomorphism classes of (inner) K-forms G' of G having good reduction at all $v \in V$ is finite.

(If *G* is absolutely almost simple, char K = p is "good" for *G* if p = 0 or p does not divide order of Weyl group of *G*.

Let:

- *K* a finitely generated field;
- *V* a divisorial set of places of *K*;
- *G* a (connected) reductive *K*-group.

Main Conjecture for Groups with Good Reduction

If char K is "good," then the set of K-isomorphism classes of (inner) K-forms G' of G having good reduction at all $v \in V$ is finite.

(If *G* is absolutely almost simple, char K = p is "good" for *G* if p = 0 or p does not divide order of Weyl group of *G*. For non-semisimple reductive groups only char. 0 is "good.")

- Hasse principles for algebraic groups.
- Finiteness properties of unramified cohomology.
- Study of simple algebraic groups having same isomorphism classes of maximal tori (genus problem).
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Hasse principles for algebraic groups.
- Finiteness properties of unramified cohomology.
- Study of simple algebraic groups having same isomorphism classes of maximal tori (genus problem).
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Hasse principles for algebraic groups.
- Finiteness properties of unramified cohomology.
- Study of simple algebraic groups having same isomorphism classes of maximal tori (genus problem).
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Hasse principles for algebraic groups.
- Finiteness properties of unramified cohomology.
- Study of simple algebraic groups having same isomorphism classes of maximal tori (genus problem).
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Hasse principles for algebraic groups.
- Finiteness properties of unramified cohomology.
- Study of simple algebraic groups having same isomorphism classes of maximal tori (genus problem).
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- 3 Good reduction: general case
- 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
 - 7 Overview of results

Connections to Hasse principles

Set-up: Global-to-local map in Galois cohomology

Let

- K be a field
- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

Let

• K be a field

- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

Let

- K be a field
- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

Let

- K be a field
- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

Let

- K be a field
- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

One says that the Hasse principle holds if global-to-local map $\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$

is *injective*.

Let

- K be a field
- V a set of (discrete) valuations of K
- *G* an algebraic group over *K*.

One says that the Hasse principle holds if global-to-local map $\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$

is injective.

Kernel of $\theta_{G,V}$ is called *Tate-Shafarevich set* $III(G,V) := \ker \theta_{G,V}.$

- Let k = number field, V = set of all places of k.
 - If G is simply-connected or adjoint alg. k-group, then $\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$

is injective (i.e. Hasse principle holds).

• For arbitrary alg. *k*-group *G*, the map $\theta_{G,V}$ may not be injective, but it is always *proper*; in particular, $\coprod(G,V)$ is finite.

Let k = number field, V = set of all places of k.

• If G is *simply-connected* or *adjoint* alg. *k*-group, then $\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$

is injective (i.e. Hasse principle holds).

• For arbitrary alg. *k*-group *G*, the map $\theta_{G,V}$ may not be injective, but it is always *proper*; in particular, III(G,V) is finite.

Let k = number field, V = set of all places of k.

• If *G* is *simply-connected* or *adjoint* alg. *k*-group, then $\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$

is injective (i.e. Hasse principle holds).

• For arbitrary alg. *k*-group *G*, the map $\theta_{G,V}$ may not be injective, but it is always *proper*; in particular, $\coprod(G,V)$ is finite.

Let k = number field, V = set of all places of k.

• If *G* is *simply-connected* or *adjoint* alg. *k*-group, then $\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$

is injective (i.e. Hasse principle holds).

• For arbitrary alg. *k*-group *G*, the map $\theta_{G,V}$ may not be injective, but it is always *proper*; in particular, $\coprod(G,V)$ is finite.

Our recent results strongly suggest the following properness conjecture for reductive groups over finitely generated fields.

- *K* a finitely generated field;
- V a divisorial set of places of K.

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Conjecture 2.

If G is a (connected) reductive algebraic K-group, then $\theta_{G,V}$ is proper. In particular, the Tate-Shafarevich set $\coprod(G,V)$ is finite.

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Conjecture 2.

If G is a (connected) reductive algebraic K-group, then $\theta_{G,V}$ is proper. In particular, the Tate-Shafarevich set III(G,V) is finite.

Connection to groups with good reduction:

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Conjecture 2.

If G is a (connected) reductive algebraic K-group, then $\theta_{G,V}$ is proper. In particular, the Tate-Shafarevich set III(G,V) is finite.

Connection to groups with good reduction:

Proposition 3.

Assume Main Conjecture holds for an absolutely almost simple simply connected K-group G and all divisorial sets of places of K.
Properness conjecture

Suppose

- *K* a finitely generated field;
- V a divisorial set of places of K.

Conjecture 2.

If G is a (connected) reductive algebraic K-group, then $\theta_{G,V}$ is proper. In particular, the Tate-Shafarevich set $\coprod(G,V)$ is finite.

Connection to groups with good reduction:

Proposition 3.

Assume Main Conjecture holds for an absolutely almost simple simply connected K-group G and all divisorial sets of places of K. Then $\theta_{\overline{G},V}$ is proper for corresponding adjoint group \overline{G} and any divisorial set V.

Igor Rapinchuk (Michigan State University)

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- Good reduction: general case
- 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
- Overview of results

8 Applications to the genus problem

Theorem 4.

Suppose K is a finitely generated field of char. 0, and V is a divisorial set of places.

Theorem 4.

Suppose K is a finitely generated field of char. 0, and V is a divisorial set of places. Then for any $d \ge 1$, the set of K-isomorphism classes of d-dimensional K-tori having good reduction at all $v \in V$ is finite.

Theorem 4.

Suppose K is a finitely generated field of char. 0, and V is a divisorial set of places. Then for any $d \ge 1$, the set of K-isomorphism classes of d-dimensional K-tori having good reduction at all $v \in V$ is finite.

Theorem 4.

Suppose K is a finitely generated field of char. 0, and V is a divisorial set of places. Then for any $d \ge 1$, the set of K-isomorphism classes of d-dimensional K-tori having good reduction at all $v \in V$ is finite.

• Similar result over K = k(X), with k of type (F) and char k = 0, X a normal irreducible variety over k,

Theorem 4.

Suppose K is a finitely generated field of char. 0, and V is a divisorial set of places. Then for any $d \ge 1$, the set of K-isomorphism classes of d-dimensional K-tori having good reduction at all $v \in V$ is finite.

• Similar result over K = k(X), with k of type (F) and char k = 0, X a normal irreducible variety over k, and V the set of geometric places.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal(\overline{K}/K) \rightarrow GL_d(\mathbb{Z}).
- By reduction theory, $GL_d(\mathbb{Z})$ has finitely many conjugacy classes of finite subgroups, represented by Φ_1, \ldots, Φ_r .

• Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, $GL_d(\mathbb{Z})$ has finitely many conjugacy classes of finite subgroups, represented by Φ_1, \ldots, Φ_r .

• Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, $GL_d(\mathbb{Z})$ has finitely many conjugacy classes of finite subgroups, represented by Φ_1, \ldots, Φ_r .

• Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, $\operatorname{GL}_d(\mathbb{Z})$ has finitely many conjugacy classes of finite subgroups, represented by Φ_1, \ldots, Φ_r . \Rightarrow Any cont. rep. φ is equivalent to rep. $\operatorname{Gal}(\overline{K}/K) \rightarrow \Phi_i$.
- Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, GL_d(Z) has finitely many conjugacy classes of finite subgroups, represented by Φ₁,...,Φ_r.
 ⇒ Any cont. rep. φ is equivalent to rep. Gal(K/K) → Φ_i.
- Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, $\operatorname{GL}_d(\mathbb{Z})$ has finitely many conjugacy classes of finite subgroups, represented by Φ_1, \ldots, Φ_r . \Rightarrow Any cont. rep. φ is equivalent to rep. $\operatorname{Gal}(\overline{K}/K) \rightarrow \Phi_i$.
- Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{\'et}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining V.

•
$$\pi_1^{\text{ét}}(\mathfrak{X})$$
 is of type (F)

- *K*-isomorphism classes of *d*-dimensional *K*-tori classified by equivalence classes of cont. reps. φ : Gal $(\overline{K}/K) \rightarrow$ GL_{*d*} (\mathbb{Z}) .
- By reduction theory, GL_d(Z) has finitely many conjugacy classes of finite subgroups, represented by Φ₁,...,Φ_r.
 ⇒ Any cont. rep. φ is equivalent to rep. Gal(K/K) → Φ_i.
- Assumption of good reduction implies we actually consider reps. $\varphi \colon \pi_1^{\text{ét}}(\mathfrak{X}) \to \Phi_i$, for model \mathfrak{X} defining *V*.

• $\pi_1^{\text{ét}}(\mathfrak{X})$ is of type (F) \Rightarrow finitely many possibilities for φ .

Suppose K is a finitely generated field and V is a divisorial set of places.

- Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.
- Our proof uses adelic methods.

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

is proper.

 Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.

• Our proof uses adelic methods.

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

is proper. In particular, the Tate-Shafarevich set $III(D, V) = \ker \theta_{D,V}$ is finite.

 Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.

• Our proof uses adelic methods.

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

is proper. In particular, the Tate-Shafarevich set $III(D, V) = \ker \theta_{D,V}$ is finite.

• Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.

• Our proof uses adelic methods.

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

- Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.
- Our proof uses adelic methods.

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

- Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.
- Our proof uses adelic methods. In particular, it shows that finiteness of III(T, V) for a torus *T* over a number field follows from

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

- Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.
- Our proof uses adelic methods. In particular, it shows that finiteness of III(T, V) for a torus *T* over a number field follows from finiteness of class number

Suppose K is a finitely generated field and V is a divisorial set of places. Then for any K-group D whose connected component is a torus, the global-to-local map

$$\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$$

- Classical proof for tori over number fields relies on Tate-Nakayama duality, which is not available in general.
- Our proof uses adelic methods. In particular, it shows that finiteness of III(T, V) for a torus T over a number field follows from finiteness of class number and finite generation of group of *S*-units.

Suppose K = k(X), where k is of type (F) and char k = 0, and X

is a normal irreducible variety over k.

Suppose K = k(X), where k is of type (F) and char k = 0, and X is a normal irreducible variety over k. Let V be the set of geometric places of K.

Suppose K = k(X), where k is of type (F) and char k = 0, and X is a normal irreducible variety over k. Let V be the set of geometric places of K. Then for any K-group D whose connected component is a torus, the global-to-local map $\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$

is proper.

Suppose K = k(X), where k is of type (F) and char k = 0, and X is a normal irreducible variety over k. Let V be the set of geometric places of K. Then for any K-group D whose connected component is a torus, the global-to-local map $\theta_{D,V} \colon H^1(K,D) \to \prod_{v \in V} H^1(K_v,D)$

is proper.

Suppose K is a finitely generated field, V a divisorial set of places, and $n \ge 2$ integer prime to char K.

Suppose K is a finitely generated field, V a divisorial set of places, and $n \ge 2$ integer prime to char K. Then number of K-isomorphism classes of groups of the form $SL_{1,A}$, with A central simple K-algebra of degree n, having good reduction at all $v \in V$, is finite.

Suppose K is a finitely generated field, V a divisorial set of places, and $n \ge 2$ integer prime to char K. Then number of K-isomorphism classes of groups of the form $SL_{1,A}$, with A central simple K-algebra of degree n, having good reduction at all $v \in V$, is finite.

(This resolves Main Conjecture for inner forms of type A_n over arbitrary finitely generated fields.)

Suppose K is a finitely generated field, V a divisorial set of places, and $n \ge 2$ integer prime to char K. Then number of K-isomorphism classes of groups of the form $SL_{1,A}$, with A central simple K-algebra of degree n, having good reduction at all $v \in V$, is finite.

(This resolves Main Conjecture for inner forms of type A_n over arbitrary finitely generated fields.)

We then automatically obtain properness of $\theta_{\text{PSL}_{1,A},V} \colon H^1(K, \text{PSL}_{1,A}) \longrightarrow \prod_{v \in V} H^1(K_v, \text{PSL}_{1,A})$

 $SL_{1,A}$ has good reduction at $v \Leftrightarrow A$ unramified at v.

- $SL_{1,A}$ has good reduction at $v \Leftrightarrow A$ unramified at v.
- Proof of Theorem 7 depends on analysis of unramified Brauer group of K with respect to V.

 $SL_{1,A}$ has good reduction at $v \Leftrightarrow A$ unramified at v.

Proof of Theorem 7 depends on analysis of unramified Brauer group of K with respect to V. By purity, this reduces to the following.

 $SL_{1,A}$ has good reduction at $v \Leftrightarrow A$ unramified at v.

Proof of Theorem 7 depends on analysis of unramified Brauer group of K with respect to V. By purity, this reduces to the following.

Proposition 8.

Let \mathfrak{X} be a model of a finitely generated field K.
Recall:

 $SL_{1,A}$ has good reduction at $v \Leftrightarrow A$ unramified at v.

Proof of Theorem 7 depends on analysis of unramified Brauer group of K with respect to V. By purity, this reduces to the following.

Proposition 8. Let \mathfrak{X} be a model of a finitely generated field K. Then for any $n \ge 1$ prime to char K, the n-torsion subgroup $Br(\mathfrak{X})[n]$ of $Br(\mathfrak{X})$ is finite.

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

Theorem 9.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$.

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

Theorem 9.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $\text{Spin}_n(q)$ with good reduction at all $v \in V$ is <u>finite</u>.

- *K* = *k*(*C*), with *C* smooth geometrically integral curve over number field *k*; or
- $K = \mathbb{F}_q(S)$, with *S* smooth geometrically integral surface over finite field \mathbb{F}_q .

Theorem 9.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $\text{Spin}_n(q)$ with good reduction at all $v \in V$ is <u>finite</u>.

• Similar results for groups of types A_n , C_n that split over a quadratic extension, and G_2 .

Igor Rapinchuk (Michigan State University)

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Main challenge : finiteness of $H^3(K, \mu_2)_V$.

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Main challenge : finiteness of $H^3(K, \mu_2)_V$. We give two proofs:

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Main challenge : finiteness of $H^3(K, \mu_2)_V$. We give two proofs:

• First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .

• Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Main challenge : finiteness of $H^3(K, \mu_2)_V$. We give two proofs:

- First uses Kato's and Jannsen's results on cohomological Hasse principle for H^3 .
- Second is inspired by Jannsen's argument and requires careful analysis of certain residue maps (I.R.).

Properness of $\theta_{G,V}$ for special orthogonal groups

Theorem 10.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$.

• This result follows from Theorem 9 only for odd *n*.

• Argument relies on finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Properness of $\theta_{G,V}$ for special orthogonal groups

Theorem 10.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

• This result follows from Theorem 9 only for odd *n*.

• Argument relies on finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Properness of $\theta_{G,V}$ for special orthogonal groups

Theorem 10.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Remarks:

- This result follows from Theorem 9 only for odd *n*.
- Argument relies on finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Properness of $\theta_{G,V}$ for special orthogonal groups

Theorem 10.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Remarks:

• This result follows from Theorem 9 only for odd *n*.

• Argument relies on finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Properness of $\theta_{G,V}$ for special orthogonal groups

Theorem 10.

Let K be a 2-dimensional global field of char. $\neq 2$, and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Remarks:

- This result follows from Theorem 9 only for odd *n*.
- Argument relies on finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, *A* a c.s.a/*K* of square-free degree.

For *K* a 2-dimensional global field and *V* divisorial set of valuations, we also establish properness of $\theta_{G,V}$ for:

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

Question.

Suppose K is a finitely generated field and V a divisorial set of places.

For *K* a 2-dimensional global field and *V* divisorial set of valuations, we also establish properness of $\theta_{G,V}$ for:

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

Question.

Suppose *K* is a finitely generated field and *V* a divisorial set of places. For what values of *i* and *j* are the unramified cohomology groups $H^i(K, \mu_m^{\otimes j})_V$ finite?

For *K* a 2-dimensional global field and *V* divisorial set of valuations, we also establish properness of $\theta_{G,V}$ for:

- *G* of type G₂;
- G = SU_n(L/K,h), L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2;
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

Question.

Suppose *K* is a finitely generated field and *V* a divisorial set of places. For what values of *i* and *j* are the unramified cohomology groups $H^i(K, \mu_m^{\otimes j})_V$ finite?

We have recent finiteness results for function fields of rational varieties and certain S-B varieties over number fields, but general case is wide open.

- Reduction techniques in number theory
- 2 Reduction of reductive algebraic groups: examples
- Good reduction: general case
- 4 The Dedekind case
- 5 Arbitrary finitely generated fields
- 6 Connections to Hasse principles
- Overview of results

• Let G_1 and G_2 be semisimple groups over a field K.

• Let G_1 and G_2 be semisimple groups over a field *K*. We say: $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

• Let G_1 and G_2 be semisimple groups over a field *K*. We say: $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

• Let *G* be an absolutely almost simple *K*-group.

• Let G_1 and G_2 be semisimple groups over a field *K*. We say: $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

• Let *G* be an absolutely almost simple *K*-group.

 $gen_K(G) = set$ of isomorphism classes of *K*-forms *G'* of *G* having same *K*-isomorphism classes of maximal *K*-tori as *G*.

Question 1. When does $gen_K(G)$ reduce to a single element?

Question 1. When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite? **Question 1.** When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

Question 1. When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;
Question 1. When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} , or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Question 1. When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} , or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture.

(1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|gen_K(G)| = 1$;

Question 1. When does $gen_K(G)$ reduce to a single element? **Question 2.** When is $gen_K(G)$ finite?

Theorem 11. (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} , or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture.

(1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|gen_K(G)| = 1$;

(2) If G is an absolutely almost simple group over a finitely generated field K of "good" characteristic, then $gen_K(G)$ is finite.

Igor Rapinchuk (Michigan State University)

Theorem 12.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Theorem 12.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that residue field $K^{(v)}$ is finitely generated, and G has good reduction at v.

Theorem 12.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that residue field $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then <u>every</u> $G' \in \operatorname{gen}_K(G)$ has good reduction at v, and reduction $\underline{G'}^{(v)} \in \operatorname{gen}_{K^{(v)}}(\underline{G}^{(v)}).$

Theorem 12.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that residue field $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then <u>every</u> $G' \in \operatorname{gen}_K(G)$ has good reduction at v, and reduction $\underline{G'}^{(v)} \in \operatorname{gen}_{K^{(v)}}(\underline{G}^{(v)})$.

In particular, the Main Conjecture yields finiteness results for the genus.

Applications to the genus problem

A sampling of results

Theorem 13.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$, we have $|\mathbf{gen}_K(G)| = 1$.

Theorem 13.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$, we have $|\mathbf{gen}_K(G)| = 1$.

(2) Let $G = SL_{m,D}$, where D is a central division algebra over

a finitely generated field K. Then $gen_K(G)$ is finite.

Theorem 13.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$, we have $|\mathbf{gen}_K(G)| = 1$.

(2) Let $G = SL_{m,D}$, where D is a central division algebra over

a finitely generated field K. Then $gen_K(G)$ is finite.

Theorem 14.

Let K = k(C), where C is a smooth geometrically integral curve over a number field k, and set $G = \text{Spin}_n(q)$.

Theorem 13.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$, we have $|\mathbf{gen}_K(G)| = 1$.

(2) Let $G = SL_{m,D}$, where D is a central division algebra over

a finitely generated field K. Then $gen_K(G)$ is finite.

Theorem 14.

Let K = k(C), where C is a smooth geometrically integral curve over a number field k, and set $G = \text{Spin}_n(q)$. If either $n \ge 5$ is odd, or $n \ge 10$ is even and q is isotropic, then $\text{gen}_K(G)$ is finite. Applications to the genus problem

Results (cont.)

Theorem 15.

Let G be a simple algebraic group of type G_2 .

Results (cont.)

Theorem 15.

Let G be a simple algebraic group of type G_2 .

(1) If K = k(x), where k is a number field, then $|\mathbf{gen}_K(G)| = 1$;

Results (cont.)

Theorem 15.

Let G be a simple algebraic group of type G_2 .

If K = k(x), where k is a number field, then |gen_K(G)| = 1;
If K = k(x₁,...,x_r) or k(C), where k is a number field, then gen_K(G) is finite.

- V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, On the size of the genus of a division algebra, Proc. Steklov Inst. Math. 292 (2016), 63-93.
- [2] —, On some finiteness properties of algebraic groups over finitely generated fields, C. R. Acad. Sci. Paris, Ser. I **354** (2016), 869-873.
- [3] —, Spinor groups with good reduction, Compositio Math. 155 (2019), no. 3, 484-527.
- [4] —, The finiteness of the genus of a finite-dimensional division algebra, and generalizations, Israel J. Math. **236** (2020), no. 2, 747-799.
- [5] I.A. Rapinchuk, A generalization of Serre's condition (F) with applications to the finiteness of unramified cohomology, Math. Z. 291 (2019), no. 1-2, 199-213.
- [6] I.A. Rapinchuk, *On residue maps for affine curves*, J. Pure Appl. Algebra **223** (2019), no. 3, 965-975.
- [7] A.S. Rapinchuk, I.A. Rapinchuk, Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields, submitted, arXiv:2002.01520.
- [8] A.S. Rapinchuk, I.A. Rapinchuk, *Linear algebraic groups with good reduction*, Res. Math. Sci. 7 (2020), no. 3, 28.