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Abstract. We provide a complete proof of a duality theorem for the fppf cohomology
of either a curve over a finite field or a ring of integers of a number field, which extends
the classical Artin-Verdier Theorem in étale cohomology. We also prove some finiteness
and vanishing statements.
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1 Introduction

Let K be a number field or the function field of a smooth, projective, geometrically
integral curve X over a finite field. In the number field case, set X = Spec O, where
Ok is the ring of integers of K. Let U be a non empty Zariski open subset of X
and denote by N a commutative, finite and flat group scheme over U with Cartier
dual NP. Assume that the order of N is invertible on U (in particular N is étale).
The classical ”étale” Artin-Verdier Theorem (cf. [Mi2], Corollary I1.3.3.) is a duality
statement between étale cohomology HE (U, N) and étale cohomology with compact
support HS, .(U, N D). It has been known for a long time that this theorem is especially
useful in view of concrete arithmetic applications : for example it yields a very nice
method to prove deep results like Cassels—Tate duality for abelian varieties and schemes
([Mi2], section II.5) and their generalizations to 1-motives ([HS], section 4); Artin-
Verdier’s Theorem also provides a ”canonical” path to prove Poitou—Tate’s Theorem
and its extension to complex of tori ([Dem1]), which in turn turns out to be very fruitful
to deal with local-global questions for (non necessarily commutative) linear algebraic
groups ([Dem?2]).

It is of course natural to try to remove the condition that the order of N is invertible
on U. A good framework to do this is provided by fppf cohomology of finite and flat
group schemes over U, as introduced by J.S. Milne in the third part of his book [Mi2].
This includes the case of group schemes of order divisible by p := Char K in the function
field case.

Such a fppf duality theorem has been first announced by B. Mazur! ([Maz], Prop.
7.2), relying on work by Artin and himself. Special cases have also been proved by
Artin and Milne ([AM]). The precise statement of the theorem is as follows (see [Mi2],
Corollary I11.3.2. for the number field case and Theorem II1.8.2 for the function field
case):

!Thanks to A. Schmidt for having pointed this out to us.



Theorem 1.1 Let j: U — X be a non-empty open subscheme of X. Let N be a finite
flat commutative group scheme over U with Cartier dual NP. For all integers v with
0 <r <3, the canonical pairing

H™(U,NP) x H3"(U,N) = H3(U,G,) = Q/Z

(where H™ (U, NP) is a fppf cohomology group and H3~"(U, N) a fppf cohomology group
with compact support) induces a perfect duality between the profinite group H3~"(U, N)
and the discrete group H" (U, NP). Besides all groups are finite in the number field
case.

For example this extension of the étale Artin-Verdier Theorem is needed to prove
Poitou-Tate exact sequence over global fields of characteristic p ([Gon], Th. 4.8. and
4.11) as well as Poitou-Tate Theorem over a global field without restriction on the
order ([Ces2], Th. 5.1, which in turn is used in [Ros], §6.4 and 6.5). Results of [Mi2],
section I11.9. (which rely on the fppf duality Theorem) are also a key ingredient in
the proof of the Birch and Swinnerton-Dyer conjecture for abelian varieties over a
global field of positive characteristic, in [Bau], §4 and [KT], §2 for instance. Our initial
interest in Theorem 1.1 was to try to extend it to complexes of tori in the function
field case, following the same method as in the number field case [Deml]. Such a
generalization should then provide results (known in the number field case) about
weak and strong approximation for linear algebraic groups defined over a global field
of positive characteristic.

However, as K. Cesnavi¢ius pointed out to us?, it seems necessary to add details to
the proof in [Mi2], sections III.3. and IIL.8, for two reasons :

e the functoriality of flat cohomology with compact support and the commutativity
of several diagrams is not explained in [Mi2]. Even in the case of an imaginary
number field, a definition of H] (U, F) as H"(X, jiF) for a fppf sheaf F (which
works for the étale Artin-Verdier Theorem) would not be the right one, because it
does not provide the key exact sequence [Mi2] Prop. I11.0.4.a) in the fppf setting
(the analogue of [Mi2], Prop II.1.1, does not stand anymore). It is therefore
necessary to work with an adhoc definition of compact support cohomology as in
loc. cit., §III.0. Since this definition involves mapping cones, commutativities of
some diagrams have to be checked in the category of complexes and not in the
derived category (where there is no good functoriality for the mapping cones).
Typically, the isomorphisms that compute C*(b), C*(boa) and C*(coboa) in loc.
cit., Prop. II1.0.4.c) are not canonical a priori. Hence the required compatibilities
in loc. cit., proof of Theorem II1.3.1. and Lemma II1.8.4. have to be checked
carefully.

e in the positive characteristic case, it is necessary (as explained in [Mi2], §II1.8.) to
work with a definition of cohomology with compact support involving completions
of the local rings of points in X \ U instead of their henselizations. The reason is
that a local duality statement (loc. cit., Th. I11.6.10), which only works in the
context of complete valuation fields, is needed. It turns out that some properties

In particular, he observed that the analogue of [Mi2], Prop. III.0.4.c) is by no means obvious
when henselizations are replaced by completions. This analogue is actually false without additional
assumptions, as shown by T. Suzuki in [Suz], Rem 2.7.9



of compact support cohomology (in particular loc. cit., Prop. I111.0.4.c)) are more
difficult to establish in this context : for example the comparison between coho-
mology of the completion (/9\1, and of the henselization O, is not as straightforward
as in the étale case.

The goal of this article is to present a detailed proof of Theorem 1.1 with special
regards to the two issues listed above. Section 2 is devoted to general properties of
fppf cohomology with compact support (Prop. 2.1), which involves some homological
algebra (Lemma 2.3) as well as comparison statements between cohomology of O, and
0, (Lemma 2.6).

We also define a natural topology on the fppf compact support cohomology groups
(see section 3). In section 4, we follow the method of [Mi2], §II1.8. to prove Theorem 1.1
in the function field case. As a corollary, we get a finiteness statement (Cor. 4.3),
which apparently has not been observed before this paper. The case of a number field
is simpler once the functorial properties of section 2 have been proved; it is treated in
section 5.

One week after the first draft of this article was released, Takeshi Suzuki kindly
informed us that in his preprint [Suz|, he obtained (essentially at the same time as
us) fipf duality results similar to Theorem 1.1 in a slightly more general context. His
methods are somehow more involved than ours, they use the rational étale site, which
he developed in earlier papers.

Notation. Let X be either a smooth projective curve over a finite field k of
characteristic p, or the spectrum of the ring of integers Ok of a number field K. Let
K := k(X) be the function field of X. Throughout the paper X is endowed with the
(big) fppf site, and cohomology is fppf cohomology unless stated otherwise.

For any closed point v € X, let O, (resp. C/’)\v) be the henselization (resp. the
completion) of the local ring Ox , of X at v. Let K, (resp. I/(\U) be the fraction field
of O, (resp. (/9\7,) Let U be a non empty Zariski open subset of X and denote by
j : U — X the corresponding open immersion. By [Mat], §34, the local ring Ox,, of
X at v is excellent (indeed Ox, is either of characteristic zero or the localization of
a ring of finite type over a field); hence so are O, (by [EGA4], Cor. 18.7.6) as the
henselization of an excellent ring, and O, as a complete d.v.r. ([Mat], §34).

The piece of notation ”v € U” means that we consider all places v corresponding
to closed points of X \ U plus the real places in the number field case. If v is a real
place, we set K, = K, = O, = (9 for the completion of K at v, and we denote by
H*(K,, M) the Tate (:modzﬁed) cohomology groups of a Gal( U/KU) module M.

If F is a fppf sheaf on U, define the Cartier dual F? to be the fppf sheaf FP :=
Hom(F,G,,). Notation as I'(U, F) stands for the group of sections of F over U, and
I'z(U,F) for the group of sections with support in Z. If E is a field (e.g. £ = K, or
E= I/(\U) and i : Spec F — U is an E-point of U, we will frequently write H" (E, F) for
H"(Spec E,i*F). Similarly for an open subset V' C U, the piece of notation H" (V| F)
(resp. H[(V,F)) stands for H"(V, Fjy) (resp. H.(V,Fy)).

A finite group scheme N over a field E of characteristic p > 0 is local if it is
connected (in particular this implies H?(E’, N) = 0 for every field extension E’ of E).
Examples of such group schemes are (1, (defined by the affine equation ¢ = 1) and «,
(defined by the equation y? = 0).



For any topological abelian group A, let A* := Homeont. (A, Q/Z) be the group
of continuous homomorphisms from A to Q/Z (the latter equipped with the discrete
topology). A continuous morphism f : A — B of topological groups is strict if the
restriction f : A — f(A) is an open map (where the topology on f(A) is induced
by B). This is equivalent to saying that f induces an isomorphism of the topological
quotient A/ ker f with the topological subspace f(A) C B.

2 Fppf cohomology with compact support

Define Z := X \ U and Z’" :=[],, Spec (.f(\v) (disjoint union).

Then we have a natural morphism i : 2/ — X.

Let F be a sheaf on U (for the fppf topology). Let I*(F) be an injective resolution
of F over U.

Denote by F, and I*(F), their respective pullbacks to Spec K.

As noticed by A. Schmidt, the definition of the modified fppf cohomology groups
in the number field case in [Mi2], II1.0.6 (a), has to be written more precisely, because
of the non-canonicity of the mapping cone in the derived category. We are grateful to
him for the following alternative definition. Let 2g denote the set of real places of K.
For v € QR, let €¥ : Spec (Ky)ppr — Spec (Ky )¢, be the natural morphism of sites, then
e?I*(F), is a flasque resolution of e F,. Following [GS] §2, there is a natural acyclic
resolution D®(eVF,) — VF, of the Gal(K,/K,) = Z/2Z-module 'F, (identified with
Fu(Spec (K,))). Splicing the resolutions D®(e?F,) and eVI°(F), together, one gets a
complete acyclic resolution 1°(F,) of the Gal(K,/K,)-module c'F,, which computes
the Tate cohomology of ¢YF,. And by construction, there is a natural morphism
Ty €VI(F)y — I°(F).

As suggested by [Mi2], section II1.0, define I'.(U, I*(F)) to be the following object
in the category of complexes of abelian groups:

To(U.I*(F)) := Cone [ D(U,I*(F)) = T(Z',i" I*(F)) @ €D DK, I*(F) | [-1],

vEQR

and H.(U,F) = H"(I'.(U,I*(F))). From now on, we will abbreviate Cone(...) in

Proposition 2.1 1. There is a natural exact sequence, for all v > 0,

c = HJ(U,F) = H'(U,F) - @ H" (Ko, F) = HP (U, F) — ...
vgU

2. For any short exact sequence
0F -F—=>F =0

of sheaves on U, there is a long exact sequence

o HI(U,F) = H(U,F) = H/(U,F" - H ™Y U,F) - ...



3. For any flat affine commutative group scheme F locally of finite type on U, and
any non empty open subscheme V C U, there is a canonical exact sequence

= H{(V,F) = HL(U,F) - @ H (0w, F) = HNV,F) - ...,
veU\V

and the following natural diagram commutes:

Dogy H (Ko, F) <= @ g (K, F)

Doeony H 1Oy, F) Docv\v H' (O, F)

/

Hi(V,F) Hi (U, F)

H"(V,F) Res H™(U, F)

®v¢\/ HT(I/{:M}—) Y @u¢U HT(EM}-)

where i1 (resp. ia) is obtained by puting 0 at the places v € U (resp. v € U\V)
and p is the natural projection.

4. If F is represented by a smooth group scheme locally of finite type, then forr # 1,
HI(U,F) =2 H (U, F), where H, . stands for étale cohomology with compact
support as deﬁnéd in [Mi2], §11.2. In particular those groups are just Hy (X, j1F)
in the function field case. If in addition the generic fiber Fg is a finite K-group

scheme, then HX (U, F) = Hélt’c(U, F) (=H} (X, 51 F) in the function field case).

Remark 2.2 Unlike what happens in étale cohomology, the groups H!(O,, F) and
Hl((/’)\v,}') cannot in general be identified with the group H!(k(v), F(v)), where k(v)
is the residue field at v and F'(v) the fiber of F over k(v). For example this already
fails for F = p,, and 0, = F,[[t]], because by Kummer exact sequence

O—>Mp—>Gm'—p>Gm—>0
— ~% —~—xP
in fppf cohomology, the group H'(O,,F) = O, /O, is an infinite dimensional F,-
vector space, while H'(k(v), F(v)) = k(v)*/k(v)*" = 0. The situation is better for the
groups H", r > 2 ([Toe|, Cor. 3.4).

Before proving Proposition 2.1, we need the following lemmas.
We start by a lemma in homological algebra:

Lemma 2.3 Let A be an abelian category with enough injectives and let C(A) (resp.
D(A)) denote the category (resp. the derived category) of bounded below cochain com-
plezes in A.



Consider a commutative diagram in C(A):

A—% BaoFE
fl J«(id’g)
A—<XBaoFE,

and denote by pg (resp. pgr) the projection B@® E — B (resp. B® E' — B).
Assume that the natural morphism C(f) — C(g) in C(A) is a quasi-isomorphism.
Then there exists a canonical commutative diagram in D(A):

(id,g) ,

(B E)[-1] <— B[-1] B®F——=Bo®EF
E of
C(a")[-1] ——C(pz o a)[1] K C(a)
]
A - A © -~BaoFE
o PEox
BoE —— B ;

where the second line and the first two columns are exact triangles.

Proof: The assumption that C(f) — C(g) is a quasi-isomorphism implies that
C(a) = C(d) is a quasi-isomorphism (see for instance Proposition 1.1.11 in [BBD] or
Corollary A.14 in [PS]).

Functoriality of the mapping cone in the category C(A) gives a diagram in C(A),
where the second line (by [Mi2], Prop. I1.0.10, or [KS], proof of Theorem 11.2.6) and
the columns are exact triangles in the derived category:

(B® E)[-1]<= B[-1] —— B[~1]
(B & E’)[j]/C(a)[l] —C(pepoa)[-1] —=C(pp)[-1] —= C(a)
C(a')[~1] A = A ® _.Be EPX o
f
Al B®E e B = B
)

!
“ %

Ba& FE

As usual, notation as pp, pg denotes projections and ip, ig are given by puting 0 at
the missing piece.

This diagram is commutative in C(A), except the square % which is commutative
up to homotopy. Indeed, this square defines two maps f, g : C(pg)[—1] — C(«), which



are given in degree n by two maps f*, ¢" : B" ' @ (B" @ E") — (B" @ E") @ A"t
where f™(V/,b,e) := (b,e,0) and ¢"(¥',b,e) := (0,e,0). Consider now the maps s" :
B" 1a(B"®E™) — (B" 1@ E" 1)@ A" defined by s™(V, e, b) := (—1)"(¥/,0,0). Then
the collection (s™) is a homotopy between f and g. Hence the square x is commutative
up to the homotopy (s™).

Since the map C(«a) — C(d’) is a quasi-isomorphism, and since the natural map
C(pg)[—1] — E is a homotopy equivalence, the lemma follows from the commutativity
and the exactness of the previous diagram. O

We now need the following result, for which we didn’t find a suitable reference:

Lemma 2.4 Let A be a henselian valuation ring with fraction field K. Assume that
the completion K 1is separable over K.

1. Let G be a K-group scheme locally of finite type.
Then the map H'(K,G) — HY(K,G) has dense image.

2. Assume A is henselian. Let G be a flat A-group scheme locally of finite presen-
tation.

Then the map H'(A,G) — H'(A,G) has dense image.

Here the topology on the pointed sets Hl(ﬁ, G) and HI(IA(,G) are provided by
[Ces1], §3.

Remark 2.5 e The assumption that K is separable over K is satisfied if the ring
A is excellent.

e In the second statement, the assumption that A is henselian is satisfied if the
valuation on A has height 1. This assumption is used in the proof below to apply
[Cesl], Theorem B.5.

Proof:  We prove both statements at the same time. Let R be either A or K.
Let BG denote the classifying R-stack of G-torsors. We need to prove that BG(R)
is dense in BG(R).
It is a classical fact that BG is an algebraic stack (see [LMB], Proposition 10.13.1).
Let 2 € BG(R) and U C BG(R) be an open subcategory (in the sense of [Cesl],
2.4) contaning . We need to find an object 2/ € BG(R) that maps to U C BG(R).
Using [Cesl], Theorem B.5 and Remark B.6, there exists an affine scheme Y, a

A~

smooth R-morphism 7 : Y — BG and y € Y(R) such that m5(y) = z, where 7 :

Y (R) — BG(R) is the map induced by 7.

In particular, Y — Spec R is smooth because so are m and BG — Spec R (the latter
by [Cesl], Prop. A.3). Hence Y is locally of finite presentation over Spec R.

By assumption, W]:?I(U ) C Y(R) is an open subset containing y. Hence [MB],
Corollary 1.2.1 (in the d.v.r. case, it is Greenberg’s approximation Theorem) implies
that Y/(R) N wél(U) # (). Applying 7g, we get that BG(R) N U # (), which proves the
required result. O

The previous lemma is useful to prove the following crucial (in the function field
case) statement. For a local integral domain A with maximal ideal m, fraction field



K and residue field x, and F a fppf sheaf on Spec A with injective resolution I°*(F),
define

I'm(A, I*(F)) := Cone (I'(Spec A, I*(F)) — I'(Spec K, I*(F))) [-1]

and Hy (A, F) = H (I'm(A,F)) (the cohomology with compact support in Spec k).
We have a localization long exact sequence ([Mi2], Prop. II1.0.3)

.= HI (A, F)— H" (A, F) = H'(K,F) = H." (A, F) —

Lemma 2.6 Let A be an excellent henselian discrete valuation ring, with mazimal ideal
m. Let F be a flat affine commutative group scheme locally of finite type on Spec (A)
and I*(F) be an injective resolution of F.

Then the natural morphism T(A, I*(F)) — Twn(A,I*(F)) is an isomorphism in
the derived category.

Remark 2.7 In the previous statement, the injective resolution I°(F) can be replaced
by any complex of acyclic fppf sheaves that is quasi-isomorphic to F. Also note that
Lemma 2.6 is slightly more general than [Suz], Prop. 2.6.2., and answers a question
raised page 26 of loc. cit.

Proof of the lemma: By definition, it is sufficient to prove that for all » > 0, the
morphism Hy (A, F) — Hj (A, F) is an isomorphism.

o r=0:

Since F is separated (as an affine scheme), the morphisms H°(A, F) — H°(K, F)
and HO(A, F) — H(K, F) are injective, which implies that

HY(A,F)=HYA,F)=0.

o r=1:

Consider the following commutative diagram with exact rows:

HY(A, F) —= H(K,F) — Hy(A, F) —= H' (A, F) —= H'(K, F)

| i | l |

HO(;{wF) HHO(I?vf)HHél(ZvF) HHI(A\vf);)Hl(I?MF)
(1)
By Artin approximation (see [Art], Theorem 1.12), the morphism H'(A,F) —

H! (ﬁ F) is injective: indeed, given a Spec A-torsor P under F, P is locally of
finite presentation, and Artin approximation ensures that P(A ) # () implies that

P(A) # 0.
Since (Spec g, Spec K) is a fpqc covering® of Spec A with E@A K=K (Ais a
dvr, hence K = A[1/x], where 7 is a uniformizing parameter for both A and A)
and F is a fpqc sheaf (since it is representable), the square on the left hand side
in (1) is cartesian.

3Working with fpgc topology is needed here because the map Specg — Spec A is not of finite
presentation.



Hence an easy diagram chase implies that H} (A, F) — H&I(A\, F) is injective.
By Proposition A.6 in [GP], the right hand side square in (1) is cartesian. In
addition, HY(A,F) c HY(K,F) is open ([GGM], Prop. 3.3.4), and H°(K,F) C
HO(K,F) is dense by [GGM], proposition 3.5.2 (weak approximation for F).
Therefore, an easy diagram chase implies that the map HL (A, F) — Hr%l(g, F) is
surjective.

o r =2

Consider the commutative diagram with exact rows:

HI(A,]:)HHl(K7F)HH&(A,I)HHz(A,f)*)H2(K7.F)

| i | i |

HY(A, F) —= H'(K,F) — H3(A, F) — H*(A, F) —= H*(K, F).
(2)
By [Toe], Corollary 3.4, the map H2(A, F) — H%(A, F) is an isomorphim. And
we already explained (in the case r = 1) that the left hand side square in (2) is
cartesian. Hence a diagram chase proves that the map H2(4,F) — Hn%(g, F) is
injective.
Using [GGM], Proposition 3.5.3.(3), the map H2(K, F) — H2(K,F) is also an
isomorphism. By [Cesl], Proposition 3.10, the map H(A, F) — HY(K,F) is
open. Lemma 2.4 implies that the map H'(K,F) — H! (I?, F) has dense image.
By diagram chase, we get that the map H2 (A, F) — H%(/T, F) is surjective.

e r>3:

Corollary 3.4 in [Toc] implies that the morphisms H"™X(A, F) — H""1(A,F)
and H"(A,F) — H"(A,F) are isomorphisms. Proposition 3.5.3.(3) in [GGM]
implies that the maps H" (K, F) — H" Y K,F) and H"(K,F) — H"(K,F)
are isomorphisms. Therefore, the five-lemma proves that H (A, F) — Hf{l(f/l\, F)
is an isomorphism.

Remark 2.8 We will apply the previous lemma to a finite and flat group scheme N.
As was pointed out to us by K. Cesnavicius, it is then possible to argue without using
Corollary 3.4 in [Toe] (whose proof is quite involved) : indeed there exists (cf. [Mi2],
Th. III.A.5) an exact sequence

0—-N—-G1—-Gy—0

of affine A-group schemes such that Gi and Gz are smooth. Now for i > 0 we have
HY(A,G;) 2 HY(A,Gj) (j = 1,2) by [Mil], Rem. IIL3.11 because A and A are
henselian, and fppf cohomology coincides with étale cohomology for smooth group
schemes. It remains to apply the five-lemma.



Proof of Proposition 2.1:
1. cf. [Mi2], III, Proposition 0.4.a) and Remark 0.6. b).
2. cf. [Mi2], III, Proposition 0.4.b) and Remark 0.6. b).
3. Asin the proof of [Mi2], III, Proposition 0.4.c), let I*(F) be an injective resolution
of F.

Consider the following natural commutative diagram of complexes in the category
of bounded below complexes of abelian groups:

D(U, I*(F)) = @ g DKo, I*(F)) & By T(On, I*(F) =2 B T (Ko, I(F))

s l(idy) /

(V. I*(F)) —*> @, DKy, I*(F)) & D epny TE I (F)),

where the maps are the natural ones.

Functoriality of the mapping cone in the category of complexes gives natural
morphisms

FU\V(UV[.(‘F)) - @ Fv(ovaj.(f)) - @ Fv((/l)\ml.(}—))v
veU\V veU\V

where Ty (U, I°(F)) i= C(f)[~1], y(Oy, I*(F)) i= T, (O, I*(F)) and T (O, I*(F)) 1=
L, (O, I*(F)).

Excision property for fppf cohomology and for étale morphisms (see [Mil], Propo-

sition II1.1.27, where étale cohomology can be replaced by fppf cohomology)

implies that the first morphism 'y (U, I°(F)) = @,epny [o(Ov, I°(F)) is a

quasi-isomorphism.

Since for all v € X, the ring O, is an excellent henselian discrete valuation ring,
Lemma 2.6 ensures that the second map

P 10, 1°F) = P Tu(0,,1°(F))

veU\V veU\V

is a quasi-isomorphism. Therefore, the natural morphism C(f) — C(g) is a
quasi-isomorphism.

Apply now Lemma 2.3: one gets a natural commutative diagram in the derived
category of abelian groups:
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(Bugr T(Ew 1°(F))) (1] = (B DKo 1°(F))) 1]

Bogv V(Ko I*(F)) & By IO, I°(F) 2L @,y DK, 1*(F))

-/
ZOT

L. (V,I°(F)) Le(U I*(F))
D(V, I*(F)) ; DU I*(F) —*
o pooa

Doy Ty, I*(F) ———— By DKo, I*(F))

Doy T(O, I*(F))
Po

Do DKo, I*(F)) & Bperny T(O, I°(F))

Le(V I (F))[1]

(3)

where the first two columns and the second lines are exact triangles.

Now the cohomology of this diagram gives the following canonical commutative
diagram, with an exact second line (and the two first columns exact):

@v¢\/ HT?I(va]:) -~ @vg{U Hril(f{\v,}-)

Do H (Ko, F) & B peinyy H' (O, F) —= By H' (K, F)

| |

HE(V, F)

HE (U, F)

1 (V, F) <=

H™(U,F)

D,y H' (Ko, F) —— B,y H' (K, F)

Dcvy H' (O, F) HIYY(V, F)

T

Dogv H (Ko, F) & @ perny H' (00, F)

which prove the required exactness and commutativity.

4. Consider the following commutative diagram with exact rows:

Hgtil(Uv F)— @ugU Hgtil

| |

(Ko, F) —=Hg (U, F) —— HL (U, F) — @UgéU H (Ky, F)

| | |

H YU, F) —= @, gy H 1Ky, F) ——= HI{ (U, F) —= H'(U, F) —> @,y H' (Ko, F).

Here Hg; stands for étale cohomology and Hy; . for étale cohomology with compact
support (as defined in [Mi2], §II1.2; recall that in the number field case, the piece
of notation v € U means that we consider the places corresponding to closed
points of Spec (Ok ) \ U and the real places).

By [GGM], Lemma 3.5.3, and [Mil] II1.3, we have

HE(Ky, F) = Hy (Ko, F) S H(K,, F)

for all » > 1 (resp. for all » > 0 if Fg is finite) and all places v of K, and
HY(U,F) = H"(U,F) for all r > 0, therefore the five-lemma gives the result.
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a

Remark 2.9 The definition of fppf compact support cohomology and its related prop-
erties are specific to schemes of dimension 1. To the best of our knowledge, there is no
good analogue in higher dimension, unlike what happens for étale cohomology.

We will need the following complement to Proposition 2.1 :

Proposition 2.10 Let F be a flat affine commutative group scheme locally of finite
type over U. Let V. C U be a non empty open subset. Then there is a long exact
sequence

= P HYO,F) = H'(UF) = H'(V,.F) - P H T (O0F) = .. (4)
veU\V veU\V

Proof:  The map EBUGU\V HZ;((T);,}') — H"(U,F) is given by the identification of
the first group with H7 (U, F) via excision, where Z = U \ V (see proof of Prop. 2.1,
3. and Lemma 2.6). By the localization exact sequence ([Mi2], Prop. II1.0.3. ¢), this
identification yields the required long exact sequence.

O

3 Topology on cohomology groups with compact support

With the previous notation, let us define a natural topology on the groups H}(U, N),
where N is a finite flat U-group scheme. Th. 1.1 will actually show that H2(U, N) is
profinite, but this result will not be used in this paragraph. This ”a priori” approach
answers a question raised by Milne ([Mi2], Problem III.8.8.).

We restrict ourselves to the function field case, because when K is a number field
all groups are finite (cf. [Mi2], Th. III.3.2; see also section 5 of this article).

Recall that as usual, the groups H*(U, N) are endowed with the discrete topology.
Similarly, we endow the groups H:(U, N) with the discrete topology, for i # 2.

Let us now focus on the case i = 2. Given an exact sequence of abelian groups

0>A—-B—->C—=0,

such that the group A is a topological group, there exists a natural topology on B
such that B is a topological group, A is an open subgroup of B, and C is discrete
when endowed with the quotient topology. Indeed, the topology on B is generated
by the subsets b 4+ U, where b € B and U is an open subset of A. In addition, given
another abelian group B’ with a subgroup A’ C B’ that is a topological group, and a
commutative diagram of abelian groups

A——= B

ok

Al(—> Bl ,

then f is continuous if and only if g is continuous, for the aforementioned topologies.
And f is open if and only if g is.

12



Consider now the exact sequence (see Proposition 2.1, 1.)

HYU,N) - @ H'(K,,N) = H2(U,N) — H*(U,N). (5)
vgU

and for i = 1,2, set (cf. loc. cit.)

DY(U,N) =Im [H.(U,N) — H'(U,N)] = Ker [H (U, N) — @H(K, N)J.
vgU

By loc. cit., there is an exact sequence

P H (K., N) — HI(U,N) — D'(U,N) — 0. (6)
vgU

The following result has been proved by Cesnavicius ([Ces3], Th. 2.9).4

Theorem 3.1 (Cesnavicius) The map H'(U,N) — Doev HY(K,,N) is a strict
morphism of topological groups, that is: the image of HY(U,N) is a discrete subgroup
of Dgv H'(K,,N). Besides the group D'(U, N) is finite.

Corollary 3.2 The group H(U, N) is finite.

Proof:  The group ,¢y HO(I/(\U,N) is finite (N being a finite U-group scheme).
Thus the finiteness of H!(U, N) is equivalent to the finiteness of D' (U, N) by (6).
w

Put the quotient topology on (B, HY(K,,N))/ImH'(U,N). Using Th. 3.1,
the previous facts define a natural topology on H2(U, N), so that morphisms in the
exact sequence (5) are continuous (and even strict). This topology makes H2(U, N) a
Hausdorff and locally compact group.

Lemma 3.3 Let V. C U be a non-empty open subset. Then the natural map u :
H2(V,N) — H2(U,N) is continuous.

Proof:  Since (by definition of the topology) the image I of A := P,y Hl(f{\v, N)
is an open subgroup of H2(V,N), it is sufficient to show that the restriction of u
to I is continuous. As [ is equipped with the quotient topology (induced by the
topology of A), this is equivalent to showing that the natural map s : A — H2(U, N) is
continuous. Now we observe that A is the direct sum of Ay := @, 4, H I(I/(\U, N) and
Az =By H! (I/(\v, N). The restriction of s to A; is continuous by the commutative
diagram of Prop. 2.1, 3. Therefore it only remains to show that the restriction s3 of s
to Ag is continuous. By loc. cit., the restriction of s3 to @i\ H(O,, N) is zero.
Since D ,ecin\v Hl(@,N) is an open subgroup of @,ciny Hl(f(\v,N) ([Ces1], Prop.
3.10), the result follows.

O

Proposition 3.4 The topology on H2(U, N) is profinite.

4Proposition 2.3 of loc. cit. uses the fppf duality Theorem 1.1, but this proposition is actually
not needed to prove Theorem 3.1 because a discrete subgroup of a Hausdorff topological group is
automatically closed.
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Proof: By Proposition 2.1, 2., [Ces1], Propositions 4.2 and 4.3(d), and [Mi2], corol-
lary I1.3.3, one can assume that the order of IV is a power of p. The generic fiber Ng
of N is a finite group scheme over K. By [DG], IV, §3.5, N admits a composition
series whose quotients are étale (with a dual of height one), local (of height one) with
étale dual, or ay. The schematic closure in N of this composition series provides a
composition series defined over U.

Using Proposition 2.1, 2. and [Ces1], Propositions 4.2 and 4.3(d), one can therefore
reduce to the case where the generic fiber Nk or its dual N I[{) has height one.

Proposition B.4 and Corollary B.5 in [Mi2] now imply that there exists a non-empty
open subset V' C U such that Ny extends to a finite flat group scheme N over X.

Then Proposition 2.1, 3. gives an exact sequence

HY(X,N)— @ H'(O,,N)— HXV,N)— H2(X,N). (7)
veX\V

By Proposition 2.1, 3., the map ,cx\v HY(O,,N) — H2(V,N) factors through
Dy H 1(I?U,N ), hence it is continuous. Therefore all maps in (7) are continuous.

In addition, the group H2(X,N) is finite and Doex\v HY(O,,N) is profinite, hence

H2(V, N) is profinite. Since H2(O,, N) = 0 for every v € U ([Mi2], §1IL7), Prop. 2.1,
3. gives an exact sequence of topological groups

P H#'(O,,N)— H2(V,N) = H2(U,N) — 0,
veU\V

which implies that H2(U, N) is profinite, the map H2(V, N) — H2(U, N) being con-
tinuous by Lemma 3.3, hence strict because H2(V,N) is compact and H2(U,N) is
Hausdorff.

O

Proposition 3.5 Assume that F = N is a finite and flat group scheme over U. Then
all maps in Proposition 2.1 are strict.

Proof: For the maps in assertion 1. of Prop. 2.1, this follows from the definition of
the topology and Th. 3.1.

Let us consider the maps in assertion 2. The finiteness of the H! groups (Cor. 3.2)
implies that it only remains to prove that the maps between H2’s and the map
H?(U,F") — H3(U,F') are strict. The former are continuous by [Cesl], Prop. 4.2.
and the definition of the topology, hence they are strict because the H? groups are
compact. The latter is also continuous (thus it is strict by compactness of H2(U, F"))
by the same argument, the maps Hl(I/(\U,}"”) — HQ(I/(\U,}") being continuous by loc.
cit.

Finally, it has already been proven (cf. proof of Prop. 3.4) that the maps in the
exact sequence of assertion 3. are continuous. They are strict because H} (U, F) is finite,
H2(U, F) (resp. Doeconv Hl(@, F)) is profinite, and the other groups are discrete.

|
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4 Proof of Theorem 1.1 in the function field case

In this section K is the function field of a projective, smooth and geometrically integral
curve X defined over a finite field k of characteristic p. The proof follows the same lines
as the proof of [Mi2], Theorem 8.2, replacing Proposition II1.0.4 in [Mi2] by Proposition
2.1 and using the results of section 2.

For every non empty open subset V C U, the natural map H3(V, G,,) — H3(U, G,)
is an isomorphism, and the trace map identifies H>(U, G,,) with Q/Z. Indeed since
G, is a smooth group scheme we can apply Prop 2.1, 4. and [Mi2], §I1.3.

For a fppf sheaf F on U, let us first define precisely the pairing

H™(U,FP) x H3"(U,F) = H3(U,Gn) = Q/Z.

Let A and B be two fppf sheaves.

Let P — A be a flat resolution, and let P — G be the truncated Godement
resolution of the complex P (see for instance [SGA4], XVII, 4.2.9; Godement resolutions
exist on the fppf site because this site has enough points, see Remark 1.6. of [GK]).
Let B — J, Tot(G ® J) — R be injective resolutions. Then the natural morphisms

Tot(T'(U,G) @ I'(U, J)) — I'(U, Tot (G ® J)) — I'(U, R)
define a map of complexes
Tot(I'(U,G) @ T'(U, J)) —» T'(U, R) ,
hence a canonical morphism in the derived category of abelian groups
L(U,G) & T(U,J) = T(U,R).

Since G is acyclic (in small degrees) and quasi-isomorphic to A, I'(U, G) computes the
cohomology of A (in small degrees), and since R is an injective resolution of Tot(P ® B)
(as a consequence of flatness for P and (), we get the canonical cup-product pairing

H"(U,A) x H*(U,B) — H™ (U, A@" B).

Considering the local versions of the previous pairings, one gets a commutative
diagram of complexes of abelian groups

Tot(D(U, G) @ T(U, J)) (U, R)

| l

TTogv Tot(D(U, G) @ N(Ky, J)) —= [Ty DK, R) |

and functoriality of cones gives a canonical morphism of complexes
Tot(T'(U,G) @ T'.(U,J)) - T'(U,R) .
Hence one gets a canonical morphism in the derived category

I(U,G) @“T.(U,J) = T(U,R).

15



Computing cohomology of this morphism gives pairings
H"(U,A) x H:(U, B) — HI (U, A®" B),
whence we deduce the required canonical pairings
H"(U,FP) x H(U,F) = H**(U,Gy,) (8)

using the canonical map FP = Hom(F, G,,) — RHom(F, G,,).

The pairings above are deﬁned via the cup-product on U and via the local duality
pairings H"(K,,F) x H*"Y(K,, FP) — H"""1(K,, G,,) which are continuous (see
[Cesl], Theorem 5.11 and [Mi2], Lemma 6.5 (e)). Hence if N is a finite and flat U-
group scheme of order n, the pairings

H"(U,NP) x Hi(U,N) = H.**(U, pn)
induced by (8) are continuous for the topologies defined in section 3.

Remark 4.1 In [Mi2] (see for example Th. II1.3.1), the pairings are defined via the
Ext groups, which is quite convenient for the definition itself but makes the required
commutativities of diagrams more difficult to check. Nevertheless, Proposition V.1.20
in [Mil] provides a comparison between both definitions.

We now want to show that the induced map H3~"(U,N) — H"(U,NP)* is an
isomorphism (of topological groups) for every finite flat group scheme N over U and
every r € {0,1,2,3} (recall that the groups H" (U, N?) are equipped with the discrete
topology).

We first note that [Mi2], Lemma II1.8.3 is correct, taking into account Prop. 3.5
and that duality Homcent (., Q/Z) is exact for discrete groups. In particular, given a
short exact sequence of finite flat group schemes:

0N —+N->N' =0,

then Theorem 1.1 for N is a consequence of Theorem 1.1 for both N’ and N”.

In order to prove Lemma II1.8.4 in [Mi2] (which shows that to prove Theorem 1.1,
it is equivalent to prove it for a smaller open subset V' C U), we need to check the
compatibility of the pairing in Theorem 1.1 with restriction to an open subset of U
and with the local duality pairing. For every fppf sheaf 7 on U and every non-empty
open subset V' C U, we have (Prop 2.1, 3.) a map (which is continuous if F is a finite
and flat group scheme) H2~" (U, F) — Doconv H?’_’”((/Q:,, F) and, assuming F is a flat
affine commutative group scheme locally of finite type, (Prop. 2.10) a map of discrete
groups ®WGU\V H ((/’)\U,}" ) — H"(U,F), which appears in the long exact sequence
(4). Besides Prop. 2.1, 1. gives a map of discrete groups €, ey H2(Ky, Gm) —

H3(V,Gy,). Finally, the canonical map Doeconv H%(K,, Gp,) — Doecvnv H3(0,,Gp,)
is an isomorphism thanks to the localization exact sequence because by smoothness of
G, the group H'(Oy, Gp,) = H. (0, Gp) ~ H'(k(v), Gy,) is zero for i > 2 (indeed
the finite field k(v) is of cohomological dimension 1).

Lemma 4.2 Let F be a flat affine commutative group scheme locally of finite type on
U. Let V C U be a non-empty open subscheme:
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1. the natural diagram
H™(U, FP) x H3"(U,F) — H3(U,Gp,)
H"(V,FP) x HZ"(V,F) —— H3(V,Gn)
1s commutative.

2. the natural diagram

~

H"™(U, FP) x H>" (U, F) H3(U,G) H3(V,Gp,)

o T T

Doecnv H (O, FP) x Doecnv H?7(0,, F) —— @,eny Hy (00, Gin) <=— @ ,cpnv H* (Ko, Gin)

1s commutative.

Proof:

1. Let A := FP and B := F. Let P — A be a flat resolution, and P — G be
the truncated Godement resolution of P. Let also B — J and Tot(G ® J) —
R be injecti/\ie resolutions. Let I'(U, J) := Cone(I'(U,J) = @ gy I'(Ky, J) @
@Docony I'(Ov, J))[—1]. Then functoriality of the cone gives a commutative di-
agram (similar to (3), where I*(F) is replaced by J and by R) of complexes of

abelian groups:
Tot(I'U,G) @ T'.(U, J)) ——=T(U, R)

| T

Tot(D(U, G) @ T(U, J)) — I'(U, R)
L X
Tot(T'(V,G) @ Te(V,J)) ——=T(V,R) .
Here the maps denoted by ¢ are quasi-isomorphisms (see Remark 2.7 and the proof
of the third point in Proposition 2.1, which uses Lemma 2.4). This diagram gives

a commutative diagram in the derived category of abelian groups (where all the
maps are either the natural ones or the ones constructed above):

I(U,G) @ To(U, J) — T(U, R)
F(V> G) ®L Fc(‘/: J) - Fc(Va R) :

Taking cohomology of this diagram gives a commutative diagram of abelian
groups:
H"(U,A) x H:(U,B) — H'T5(U, A @™ B)

. |

H'(V, A) x H:(V, B) —> HI+*(V, A®" B),
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which implies the required commutativity.
. First, the commutativity of the right hand side square is easy using functoriality
of the cone for complexes.

We now prove the remaining commutativity. Let A and B be two fppf sheaves
over U. Let P — A be a flat resolution, and P — G be the truncated Godement
resolution of P. Let also B — J and Tot(G®J) — R be injective resolutions. Us-
ing functoriality of cones, one proves that there is a natural commutative diagram
of complexes:

Tot(I'U,G) @ T'.(U, J)) ——=T'(U, R)

| |

Tot(De(U, G) @ T(U, J)) —= Lo(U, R) .

Hence the following diagram

I'U,G)@"T.(U,J) —=T.(U,R)

o

I (U,G) @1 (U,J) —=T.(U,R)

commutes in the derived category. Computing cohomology gives a commutative
diagram of abelian groups:

H"™(U,A) x H:(U, B) — H!™5(U, A®" B)

] |

HI(U,A) x H*(U,B) — H'"$(U, A" B).

Let T'z(U,G) := Cone(I'(U,G) — T'(V,G))[—1]. In order to prove the required
commutativity, it is enough to prove that the natural diagram

T.(U,G) &L T(U,J) —=T.(U, R)

| |

I'2(U,G) @V T(U,J) —=T2(U,R)

commutes in the derived category. To do this, consider the following diagram in
the category of complexes:

Tot(D(U, G) ® T(U, J)) (U, R)

\ \

Tot(I'(V,G) @ T'(U, J))

/ /

[Togv Tot(I'(Ky, G) @ T(U, J)) [T.gv T(Ko, R)
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This diagram is commutative, hence it induces a natural commutative diagram
of complexes at the level of cones:

Tot (U,G)&T(U, J)) T.(U,R)
Tot(T2(U,G) ® F(U J)) L I'z(U,R)
Tot G)®T(U,J)) T'(U,R).

The commutativity of the upper face of this last diagram concludes the proof.
0

Now Lemma 4.2, Prop. 2.1, 3., [Mi2], Theorem II1.7.1. (local duality) and exact
sequence (4) immediately imply Lemma I11.8.4 in [Mi2], which tells us that Theorem 1.1
holds for N on U if and only if it holds for Ny, on V.

The end of the proof of Theorem 1.1 is exactly the same as the end of the proof of
Theorem II1.8.2 in [Mi2].

O

As observed in [Mi2], §I11.8 (remark before Lemma 8.9), the group H'(U, N) is in
general infinite if U # X and by duality, the same is true for H2(U, N). However, the
situation is better for H% and H} :

Corollary 4.3 Let N be a finite and flat group scheme over U. The groups H*(U, N)
and HL(U, N) are finite.

Proof:  The statement about H!(U, N) is Corollary 3.2. The finiteness of H?(U, N)
follows by the duality Theorem 1.1.
]

The previous corollary can be refined in some cases :

Proposition 4.4 Let N be a finite and flat group scheme over an affine open subset
U C X, such that the generic fiber Ni is local. Then H} (U, N) = 0.

Proof: It is well known that the restriction map H'(U,N) — H'(K,N) is injec-
tive (the proof is as in [Mi2], Lemma III.1.1.). Now the proposition is an immediate
consequence of the main theorem of [GT], which means that if we choose v ¢ U,
the restriction map H'(K,N) — H'(K,, N) is injective when Ny is local. Indeed
this implies that D'(U, N) = 0, hence H}(U, N) = 0 by exact sequence (6) because
H°(K,,N) = 0 for every completion K, of K.

O

Remark 4.5 The finiteness of H!(U, N) (Cor. 3.2) relies on the finiteness of D!(U, N)
proven in [CesB], Th. 2.9. An alternative argument is actually available. By [Mi2],
Lemma II1.8.9., we can assume that U # X, namely that U is affine. By loc. cit., Th.
11.3.1. and Prop. 2.1, 4., we can also assume that the order of N is a power of p. Let
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Ng be the generic fiber of N, it is a finite group scheme over K. By [DG], IV, §3.5,
and Prop. 2.1, 2., it is sufficient to prove the required finiteness in the following cases :
Nk is étale, N is local with étale dual, Nx = o,,. The last two cases are taken care
of by Prop. 4.4, so we can suppose that N is étale. Let V C U be a non empty open
subset. By Prop. 2.1, we have an exact sequence

HY(V,N)— H}(U,N) » @ H'(O,,N).
veU\V

Since the generic fiber of N is étale, the group Hl((/’);, N) is finite by [Mi2], Rem. IIL.7.6.
(this follows from the fact that H 1(@, N) is a compact subgroup of the discrete group
H'(K,, N)), hence the finiteness of H} (U, N) is equivalent to the finiteness of H}(V, N),
which in turn is equivalent to the finiteness of D'(V,N). The latter holds for V
sufficiently small: either apply [Gon|, Lemma 4.3. (which relies on an embedding of
Nk into an abelian variety) or reduce (as in [Mi2], Lemma II1.8.9.) to the case when
NP is of height one. Indeed by loc. cit., Cor. II1.B.5., the assumption that NP is of
height one implies that for V' sufﬁ(nently small, the restriction of N to V extends to a
finite and flat group scheme N over X. Then the finiteness of H!(X, N ) 1mphes the
finiteness of H!(V,N) = HX(V,N) by Prop 2.1, 3., because the groups HO(O ,N) are
finite.

Remark 4.6 The main result of [GT] also relies on an embedding of Nk into an
abelian variety. Another approach is available to prove Prop. 4.4 in the critical cases
Nk = ap and N2 étale. For N = o, one checks directly that H'(K,N) = K/KP
injects into H'(K,, N) = K,/ K, using the fact that K, does not contain any insepa-
rable algebraic element over K because the local ring Oy, is excellent. If N ]? is étale,
one first reduces by devissage to the case when N is of height one. Then we choose a
non empty open subset V' C U such that the restriction NlD of NP to V is étale with
dual of height one. We can also assume that PicV = 0 by finiteness of the ideal class
group of K. By [Mi2], Th. IIL.5.1., there is an exact sequence of fppf sheaves

0= NP - F—=G—0,

where F and G are coherent locally free sheaves (for Zariski topology) over the affine
Dedekind scheme V. Since Pic V' = 0, these sheaves are free and of finite type, hence
the corresponding fppf sheaves are represented by groups isomorphic to G/, for some
r. In particular H (V,F) = HY(V,G) = 0 for i > 0 and H (V, NP) = H{(V,NP) =0
for ¢ > 1. We now have a commutative diagram with exact rows

G(V) — HY(V,NP) — 0

! l

Doevy G(Kw) —— Dperny H' (Ko, NP) —— 0.

By the strong approximation theorem on the affine Dedekind scheme U, the left ver-
tical map has dense image. Since NZ is étale, the group Doeonv HY(K,, NP) is dis-
crete ([Mi2], §I11.6). As the bottom horizontal map is continuous ([Cesl], Prop. 4.2),
this implies that the right vertical map is surjective. Finally we find that the map
HY(V,NP) — Doconv Hl(l/(\v,ND) is surjective. A fortiori the map H(V, NP) —
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Docnv Hg(@\v, NP) is surjective because Hg(@, ND) = Hl(I/(\U, ND)/Hl(@, ND)
([Mi2], §I11.7). Dualizing this statement thanks to Theorem IIL.7.1. of loc. cit. and
Theorem 1.1, we obtain that the map

P H'(O,,N)— H2(V,N)
veU\V

is injective; by Proposition 2.1, 3., this means that the map H}(V,N) — H}(U,N) is
surjective. Since H!(V, N) = 0 (by duality to H2(V, NP)), we have H}(U, N) = 0.

5 The number field case

Assume now that K is a number field and set X = Spec Og. Let U be a non empty
Zariski open subset of X. Let n be the order of the finite and flat group scheme
N. To prove Theorem 1.1 in this case, one follows exactly the same method as in
[Mi2], Th. III.3.1. and Cor. III.3.2. once Proposition 2.1 has been proved. Namely
Proposition 2.1, 4., shows that on U[1/n], Theorem 1.1 reduces to the étale Artin-
Verdier Theorem ([Mi2], I1.3.3). Now Proposition 2.1, 3., gives a commutative diagram
as in the end of the proof ot [Mi2], Th. IIL3.1. (with completions O, instead of
henselizations O,). Theorem 1.1 follows by the five-lemma, using the result on U[1/n]
and the local duality statement [Mi2], Th. III.1.3.

Remark 5.1 In the number field case, one can as well (as in [Mi2], §II1.3) work from
the very beginning with henselizations O, and not with completions O, to define co-
homology with compact support. Indeed the local theorem (loc. cit., Th. III.1.3) still
holds with henselian (not necessarily complete) d.v.r. with finite residue field when the
fraction field is of characteristic zero. Hence the only issue here is commutativity of di-
agrams. Nevertheless, we felt that it was more convenient to have a uniform statement
(Proposition 2.1) in both Char0 and Char p situations.
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