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ABSTRACT. We prove all conjectures of Yves André’s book [1, Ch. 7] in the
case of products of elliptic curves. The proofs given here are simpler and more
uniform than the previous proofs in known cases.

Introduction. Two of the most famous conjectures on a smooth projective variety
X over a suitable field k are the Hodge and the Tate conjectures: k = C for
the Hodge conjecture and k finitely generated for the Tate conjecture. They are
expounded for example by Yves André in his book on motives [1, Ch. 7], where
he also describes two other similar conjectures, when k is a number field:

• The “de Rham-Betti” conjecture [1, 7.5.1.1]: it is related to a conjecture of
Grothendieck on periods [1, 7.5.2.1] which can be traced back to [12]; see
letter of Y. André to C. Bertolin in [3] for historical details.

• The Ogus conjecture [25, Introd. and §4]; it is related to another conjec-
ture of Grothendieck on algebraic solutions to differential equations [25,
p. 268].

For the readers’ convenience, I recall these lesser-known conjectures in §1.
We shall be concerned here with the case where X a product of elliptic curves.

If k = C, the Hodge conjecture is known for X: this is attributed to Tate (unpub-
lished) by Grothendieck in [13, §3 c)]; a full proof was given by Imai in [14].

Let ℓ be a prime number invertible in k, assumed to be finitely generated. The
Tate conjecture for ℓ-adic cohomology is known for X in the following cases given
in chronological order:

• k is a number field (Imai [14]);
• k is finite (Spieß [28]).
• k is finitely generated over Q: as pointed out in [20], this follows from [21,

Cor. 1.2].
(In [14] and [21], Imai and Lombardo prove the Mumford-Tate conjecture for

X , which implies the Tate conjecture from the Hodge conjecture.)
In each case, the result is stronger: the Hodge, or Tate, classes, are generated by

those of degree 2. The proofs, however, are different: for the Hodge and the Tate
conjecture over a number field, Imai uses essentially a Tannakian argument plus
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results of Shimura-Taniyama while, over a finite field, Spieß’ proof is obtained
from an inequality on elliptic Weil numbers. On the other hand, the proof of the
Hodge conjecture given by Imai involves a number of subcases and is especially
delicate when dealing with elliptic curves with complex multiplication.

This prompted me to look for a simpler and unified proof, which would also
cover the two other conjectures. This was successful:

Theorem 1. All the above-mentioned conjectures hold for X , in the strong sense
that the cohomology classes coming from algebraic cycles are generated by those
of degree 2. In particular, the Tate conjecture holds for X over any finitely gener-
ated field k.

For the Ogus conjecture, the special case k = Q, X a power of a non CM elliptic
curve is outlined in [1, 7.4.3.1]; it has inspired part of the proof here. Moreover, an
assumption on k in the first version of this article has now been dropped thanks to
a theorem of Cyril Demarche (Theorem 4.4).

The case of the de Rham-Betti conjecture in Theorem 1 implies part of a conjec-
ture of Rohrlich: if all elliptic curves involved in X have complex multiplication,
then the multiplicative relations between its periods are generated by the “obvious”
ones [1, 24.6.3.1]. Another consequence of Theorem 1 is:

Corollary 2 (see Proposition 3.2). Let X be a product of elliptic curves over any
field k. Then the algebra of cycles modulo numerical equivalence on X is gener-
ated in degree 1.

Remarks 3. a) Theorem 1 and its corollary extend to abelian varieties isogenous to
products of elliptic curves (see Proposition 3.2).
b) To avoid a false impression, recall that there are known examples of abelian
varieties X such that the Hodge or the Tate conjecture hold for all powers of X but
where their “strong form” is false, e.g. [27] or [23, Ex. 1.8].
c) It it tempting to try and deduce the full Grothendieck period conjecture in the
form of [1, 7.5.2.2] from Theorem 1, say for a product X of CM elliptic curves,
reducing to the case of one such curve (Chudnovsky). However this is doomed to
failure unless one knows something on the closure Z of the canonical C-point in
the torsor P of periods for X . Namely, a necessary condition is that Z is a sub-
torsor of P, meaning that its stabiliser in the corresponding Tannakian group has
the same dimension as Z; conversely, this condition is inductively sufficient. Can
one prove it?

Some words on the proof. The formalism developed here consists of two steps:
A) Assuming the ground field k sufficiently large, it works for any “enriched

realisation” into a Tannakian category verifying certain axioms: see Theorem 4.1.
One then needs to check the axioms case by case: this is done in Section 6. Here the
key point is that each conjecture is known in codimension 1 for abelian varieties: in
the case of the Hodge conjecture, this is due to Lefschetz and Kodaira, for the Tate
conjecture it is due to Tate, Zarhin and Faltings, and for the two other conjectures
it was deduced by André in [1] from Wüstholz’s analytic subgroup theorem for the
de Rham-Betti conjecture and from results of Bost for the Ogus conjecture.
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B) A descent argument.
To be able to use Tannakian arguments, one also needs the source category to

be Tannakian. For this, and also to tackle the “strong” form of the conjectures
conveniently, we use a category of “Chow-Lefschetz motives” (defined only for
abelian varieties) introduced by Milne in [22] and developed in [17].

As in [1, 7.6], an important part of Step A) consists of a group-theoretic argu-
ment: it starts with the special case of one elliptic curve (and its powers), and uses a
principle due to Goursat, Kolchin and Ribet to pass from there to the general case.
The special case works well provided one knows that the Tannakian group attached
to any elliptic curve is connected. This is trivial for the Hodge conjecture and easy
for the Tate conjecture; for the two other conjectures, I borrowed arguments from
Yves André (see §§6.3 and 6.4).

The general case is where elliptic curves with complex multiplication, whose
motivic Galois groups are abelian, have rendered the Goursat-Kolchin-Ribet prin-
ciple delicate in [14]. However, nobody seems to have used the full strengh of
Kolchin’s version of this principle [19]: his theorem is powerful enough to create
a streamlined proof when the coefficients K of the Weil cohomology involved are
“in good position with respect to the multiplications of the CM elliptic curves”:
see Condition (D) in Theorem 4.1. This is true, in particular, when K = Q, which
is the case for the Hodge conjecture (where this approach trivialises Imai’s argu-
ments) and the de Rham-Betti conjecture. For the two other conjectures, one needs
more sophisticated arguments to get around this condition.

Step B) is much simpler than in the first version of this paper, relying on an
elementary category-theoretic result (Proposition 5.1).

As far as I have seen, the present method remains unfortunately very special to
products of elliptic curves and not prone to generalisation. It raises nevertheless
interesting questions about the generality of the result. For example, let X be an
abelian variety of a type for which one of the conjectures is known “in the strong
sense” (for X and all its powers), e.g. one taken from the examples in [23, A.7]
lifted to characteristic 0. Can one prove the same for the other conjectures? At
least, Corollary 3.3 shows that “weak sense” implies “strong sense” for these other
conjectures.

This work was done in 2019, and was given a brief announcement in the alge-
braic geometry seminar of IMJ-PRG on June 20, 2019. Since then, Kreutz, Shen
and Vial have also proven the de Rham-Betti conjecture for products of elliptic
curves in [20]. Instead of Chow-Lefschetz motives, they use André’s category of
motivated motives and his “Hodge = motivated” theorem for abelian varieties to
reduce to the Hodge conjecture.

0.1. Notation. We write Smproj(k) = Smproj for the category of smooth pro-
jective varieties over a field k and Ab(k) = Ab for the category of abelian k-
varieties and homomorphisms of abelian varieties. We write VecK for the category
of finite-dimensional vector spaces over a field K, and RepK(G) for the Tannakian
category of finite-dimensional representations of an affine K-group G. If C is an
additive category, we write C(Z) for the category of Z-graded objects of C with
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finite support. If C is symmetric monoidal, we provide C(Z) with the commutativ-
ity constraint given by the Koszul rule. A ⊗-functor is a strong unital symmetric
monoidal functor between unital symmetric monoidal categories.

A full subcategory D of an additive category C is thick if it is additive and stable
under direct summands.

1. Review of the de Rham-Betti and the Ogus conjectures. In both conjectures,
k is a number field; let Y be a smooth projective k-variety. In the first case, we fix
an embedding k ↪→ C and define a de Rham-Betti cycle of codimension n as a pair
(α, β) ∈ H2n

dR(Y/k)×H2n
B (Y,Q) such that α⊗ 1 7→ (2πi)nβ ⊗ 1 via the period

isomorphism H2n
dR(Y/k) ⊗k C

∼−→ H2n
B (Y,Q) ⊗Q C. The cycle classes of any

algebraic cycle of codimension n yield a de Rham-Betti cycle and, conversely:

De Rham-Betti conjecture ([1, 7.5.1.1]). Any de Rham-Betti cycle on Y is alge-
braic.

In the second case, we consider de Rham cohomology of Y with extra structure:
if v is a finite unramified place of k where Y has good reduction, we have the
Berthelot isomorphism [1, 3.4.2]

H2n
dR(Yv/kv)

∼−→ H2n
cris(Y (v)/W (k(v)))⊗W (k(v)) kv

where kv (resp. k(v)) is the completion (resp. the residue field) of k at v, Yv =
Y ⊗k kv and Y (v) is the special fibre of a smooth projective model of Y at v. By
transport of structure, the Frobenius automorphism of the right hand side provides
the left hand side with an automorphism φv which is semi-linear with respect to
the absolute Frobenius of kv. An Ogus cycle is an element α of H2n

dR(Y/k) such
that, for almost all v, one has φv(α) = qnvα, where qv = |k(v)|. The cycle class of
any algebraic cycle of codimension n is an Ogus cycle and, conversely:

Ogus conjecture ([1, 7.4.1.2]). Any Ogus cycle on Y is algebraic.

2. Background. Let k be a field, and let Mot be the category of pure motives
over k modulo algebraic equivalence [1, Ch. 4], with coefficients in a field K of
characteristic 0. We shall use the notation Mot(k) when it is necessary to specify
k, but dispense from writing down coefficients K. We write L ∈ Mot for the
Lefschetz motive.

Let B be a Tannakian category [1, 2.3] over K (this means that EndB(1) = K).
Surprisingly, I could not find a proof of the following result in the literature, while
a corresponding result is available when K is of characteristic p > 0 [9, Th. 6.1]:

Proposition 2.1. In B, the tensor product and duals of two semi-simple objects
B,B′ are semi-simple.

Proof. When B is neutral, this follows from Chevalley’s theorem [6, p. 88]. In
general, one may assume that B is generated by B and B′; by [8, II, Rem. 3.10],
there exists a fibre functor with values in a finite extension L of K, that we may
assume Galois of group G. The Tannakian category B(L) of [8, pp. 155–156]
is neutralised by the canonical extension of this fibre functor along the inclusion
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B ↪→ B(L). Therefore it suffices to show that if an object M ∈ B becomes semi-
simple in B(L), it is semi-simple. Let i : M ′ ↪→ M be a monomorphism. In B(L),
the inclusion i(L) has a retraction r; the morphism 1

|G|
∑

g∈G grg−1 is another,
G-equivariant, retraction of i(L) which descends to a retraction of i. □

We can define a (generalised) Weil cohomology H∗ with values in B just as in
[1, 3.3]: see [26, VI.A.1] or [2, 4.2.1]. It induces a ⊗-functor

(2.1) H∗ : Mot → B(Z)

(see 0.1 for the notation). For A ∈ B and p ∈ Z, we write A(p) := A⊗H2(L)⊗−p.
If

ω : B → VecK

is a neutral fibre functor, then H∗ = ω(Z) ◦H∗ is a Weil cohomology in the usual
sense, and H∗ is an enrichment of H∗ in the sense of [1, 7.1.1].

For X ∈ Smproj and r ≥ 0, we are interested in the condition
F (X, r): the map

Ar
alg(X)⊗K = Mot(1, h(X)(r)) → B(1,H2r(X)(r))

is surjective.
The following is well-known, by a duality argument (cf. [1, Ch. 7]):

Lemma 2.2. Let Mot[X] be the thick rigid ⊗-subcategory of Mot generated
by the motive h(X) of some X ∈ Smproj(k). Then Condition F (Xn, r) for all
n, r ≥ 0 is equivalent to the fullness of H∗ restricted to Mot[X]. □

Suppose that H-homological equivalence agrees with numerical equivalence on
Mot[X]. Then H∗ and therefore H∗ factor through the semi-simple ⊗-category
Motnum[X] [1, 4.3]. Moreover, the Künneth projectors of X are algebraic (loc.
cit., 5.4.2.1); in (2.1), after changing the commutativity constraints of Motnum[X]

as usual and those of B(Z) and Vec
(Z)
L by removing the signs of the Koszul rule,

the composition of H∗ with the direct sum functor becomes symmetric monoidal
and H =

⊕
H∗ becomes a fibre functor. We may then study Condition F (X, r)

by Tannakian methods as in [1, Ch. 7], according to

Proposition 2.3. Let H : A → B be an exact ⊗-functor between Tannakian cate-
gories over K: in particular, H is faithful by [8, II, 1.19]. Let ω : B → VecK be a
neutral fibre functor and H = ω ◦H. Suppose that A has a ⊗-generator M and
that H is essentially surjective. Then the Tannakian groups GH and Gω of H and
ω are both subgroups of GL(H(M)); in particular, Gω ↪→ GH . Moreover, the
following are equivalent:

(i) Gω = GH ;
(ii) H is an equivalence of categories.

Proof. The first claim is clear since a ⊗-automorphism of H or ω is determined by
its value on M or H(M). This said, (ii) ⇒ (i) is trivial and (i) ⇒ (ii) follows from
Tannakian duality. □
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Remark 2.4. If A is semi-simple, the exactness of H is automatic.

Suppose that k is of characteristic 0, embeddable in C, that H∗ is a classical
Weil cohomology [1, 3.4], and that X is an abelian variety. Then homological
equivalence agrees with numerical equivalence on Mot[X] (loc. cit., 5.4.1.4) and
we can use Proposition 2.3. This approach has two drawbacks:

• it fails in positive characteristic;
• in any characteristic, it does not account for the “strong” version of the

fullness conjectures as explained in the introduction.
Our solution is to use Chow-Lefschetz motives, as explained next.

3. Chow-Lefschetz motives. When k is algebraically closed, Milne defined in
[22] a rigid ⊗-category LMot of “Lefschetz motives”1 modelled on abelian va-
rieties, for homological equivalence modulo a Weil cohomology H as above; ho-
mological and numerical equivalences agree in this category, which therefore does
not depend on the choice of H and is abelian semi-simple. In [17], its defini-
tion was extended to other adequate equivalence relations and over not necessar-
ily algebraically closed fields; as in [22], correspondences are given by sums of
intersections of divisors. In this generality, numerical equivalence even agrees
with algebraic equivalence (loc. cit., Th. 3). In particular, if we work mod-
ulo algebraic equivalence then LMot maps to Mot, becomes Tannakian after
changing the commutativity constraint as before, and H induces a fibre functor
on LMot. As above, we assume that the coefficients of Mot and LMot are
K. We write ι : LMot → Mot for the inclusion functor. The additive functor
h1 : Ab⊗K → Mot of [1, 4.3.3] or [16, §6.11] factors via ι through an additive
functor Lh1(X) : Ab⊗K → LMot [17, Cor. 4.1 and Def. 4.4].

Lemma 3.1. Let LMot1 be the thick subcategory of LMot generated by the
Lh1(X) where X runs through Ab, and define Mot1 similarly. Then the functor
ι1 : LMot1 → Mot1 induced by ι is an equivalence of categories.

Proof. First assume that K = Q. By [16, Th. 6.37], h1 is fully faithful, and
essentially surjective by Poincaré’s complete reducibility. Since ι1 is faithful, Lh1

is then fully faithful. Therefore any idempotent endomorphism of some Lh1(X)
comes from Ab⊗Q, hence Lh1 is an equivalence of categories and so is also
ι1. This remains true after tensoring morphisms with K and then taking pseudo-
abelian envelopes, which concludes the proof since LMot and Mot are pseudo-
abelian. □

If X ∈ Ab, the category LMot[X] analogous to Mot[X] (Lemma 2.2) is ⊗-
generated by the Chow-Lefschetz motive Lh1(X) [17, Cor. 4.1], just as Mot[X]
is ⊗-generated by h1(X) [1, 4.3.3]. We have a string of ⊗-functors

(3.1) LMot[X]
ι−→ Mot[X]

H−→ B[X]
ω−→ VecK

1This terminology creates an ambiguity with the name “Lefschetz motive” given to L; we hope
this will not cause any confusion.
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where B[X] is the full Tannakian subcategory of B [1, 2.3.5] generated by H1(X).
We therefore have inclusions of Tannakian groups

(3.2) Gω(X) ↪→ GHι(X) ↪→ GL(H1(X)).

Proposition 3.2. a) The categories LMot[X] and Mot[X] only depend on the
isogeny class of X . The functor LMot1[X] → Mot1[X] is an equivalence of cat-
egories, where Mot1[X] = Mot1 ∩Mot[X] and LMot1[X] = LMot1 ∩LMot[X].
b) The following are equivalent: referring to (3.1),

(i) Hι is full;
(ii) the restriction of H to Mot1[X] is full and, for any n ≥ 0, the graded

algebra
⊕

r≥0 B(1,H2r(Xn)(r)) is generated in degree 1.
(iii) F (Xn, r) holds for any n, r ≥ 0 and the graded algebra

⊕
r≥0A

r
H(Xn)

is generated in degree 1, where A∗
H denotes algebraic cycles with K coef-

ficients modulo H-homological equivalence.

They imply

(iii’) F (Xn, r) holds for any n, r ≥ 0 and the graded algebra
⊕

r≥0A
r
num(X

n)
is generated in degree 1, where A∗

num denotes algebraic cycles with Q
coefficients modulo numerical equivalence.

c) The category B[X] is semi-simple if and only if H1(X) is semi-simple. This
happens if and only if Gω(X) is reductive (not necessarily connected).
d) If H1(X) is semi-simple, Conditions (i) – (iii) are equivalent to (iii’) and imply
that Hι is an equivalence of categories.
e) If H1(X) is semi-simple, Conditions (i) – (iii) are also equivalent to

(iv) in (3.2), Gω(X) = GHι(X).

Proof. a) follows from Lemma 3.1 and its proof. b) (i) ⇒ (ii): the first part of
(ii) follows from a), and the second part follows from Lemma 2.2 and the fact
that the graded algebra

⊕
r≥0 LMot(1, Lh2r(Xn)(r)) is generated in degree 1

by definition of the morphisms in LMot. (ii) ⇒ (iii): the first claim is obvious
and the second one then follows. (iii) ⇒ (i): again by Lemma 3.1, the first part of
(iii) imples that the restriction of Hι to LMot1[X] is full, while its second part
extends this fullness to all of LMot[X]. (iii) ⇒ (iii’): this is clear for algebraic
cycles with K coefficients modulo numerical equivalence, and we deduce the case
with Q coefficients from [1, 3.2.7.1].

c) The first claim follows from Proposition 2.1, and the second one from [8, II,
Rem. 2.28].

d) (iii’) ⇒ (iii) follows from c) and [1, 7.1.1.1]. For the rest, in view of (i) it
suffices to see that Hι is essentially surjective. But an object H of B[X] is a di-
rect sum of direct summands of tensor constructions H1(X)⊗p ⊗ H1(X)∗⊗q =
H(Lh1(X)⊗p ⊗ Lh1(X)∗⊗q), and we may assume that H is a single such direct
summand. By full faithfulness, the idempotent with image H comes from an idem-
potent endomorphism of Lh1(X)⊗p ⊗Lh1(X)∗⊗q. (This reasoning was also used
in the proof of Lemma 3.1; see [2, Lemma 2.3.8] for a general context.)

e) In view of d), (i) ⇐⇒ (iv) was seen in Proposition 2.3. □
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Corollary 3.3. Let H,H′ be two enriched realisations. Suppose that H1(X) and
H′1(X) are semi-simple and that F (Xn, r) holds for any n, r ≥ 0 for both H and
H′. Then the conditions of Proposition 3.2 b) hold for H if and only if they hold
for H′.

Proof. Indeed, if (iii) holds for H, it implies (iii’) for H by Proposition 3.2 b),
hence also for H′ by hypothesis, which in turn implies (iii) for H′ by hypothesis
and Proposition 3.2 d). □

Remark 3.4. One should beware that the last claim of (iii) in Proposition 3.2 b)
becomes false if one replaces homological equivalence with algebraic equivalence,
already for k = C and X the cube of the Fermat elliptic curve, cf. [17, remarks
after Th. 3].

In all the cases given in the introduction, the first property of (ii) in Proposition
3.2 is verified (see Lemma 6.1). We draw a consequence, weaker than (iv) in
this proposition. Let K̄ be an algebraic closure of K; if G is a closed subgroup
of GLn, write K̄G for the sub-K̄-algebra of Mn(K̄) generated by G(K̄). Note
that an irreducible representation of G is also G(K̄)-irreducible because G(K̄) is
Zariski-dense in G; hence a semi-simple representation of G is also G(K̄)-semi-
simple.

Proposition 3.5. Suppose that H1(X) is semi-simple and that the restriction of H
to Mot1[X] is full. Then K̄Gω(X) = K̄GHι(X).

Proof. Both algebras are semi-simple since they admit the faithful semi-simple
module K̄ ⊗K H1(X), and they have the same centraliser by the fullness hy-
pothesis and Lemma 3.1. The conclusion now follows from the double centraliser
theorem [5, §14, no 5, th. 5 a)]. □

In the next section, we shall use

Definition 3.6. Let ks be a separable closure of k, and Xs = X ⊗k ks. The field k
is large relatively to X if Gal(ks/k) acts trivially on End0(Xs) := End(Xs)⊗Q,
or equivalently if the injection End0(X) ↪→ End0(Xs) is bijective.

From now on we simplify the notation GHι(X) to GH(X). This group comes
with a “Tate” character tX , given by the ⊗-subcategory of LMot[X] generated by
the Lefschetz motive L2. If k is large relatively to X , as a special case of [17, Th.
5] we have an isomorphism

(3.3) GH(X)
∼−→

∏
Gm

GH(Xα),

where the Xα’s are the isotypic components of X up to isogeny, and
∏

Gm
denotes

the fibre product over Gm with respect to the tXα’s. (See [17, (0.1)] for the precise
value of the GH(Xα).) Note also that k is large with respect to X if and only if it
is large with respect to Xα for each α.

2Note that L ∈ LMot[X], as a direct summand of Lh2(X) given by the class of an ample line
bundle.
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Proposition 3.7. In B[X], H1(X) is semi-simple if and only if all the H1(Xα)
are semi-simple. If this holds and if k is large with respect to X , the following are
equivalent:

(1) Condition (iv) of Proposition 3.2 e) holds for X;
(2) Condition (iv) of Proposition 3.2 e) holds for each Xα and the obvious

homomorphism

(3.4) Gω(X) →
∏
Gm

Gω(Xα),

analogous to (3.3) is bijective.

Proof. The first claim is obvious. (1) ⇒ (2): the fullness of H on LMot[X] im-
plies its fullness on LMot[Xα] for each α, hence the first condition of (2) follows
from Proposition 3.2 e); its second condition is now obvious. (2) ⇒ (1) is also
clear, thanks to (3.3). □

Remark 3.8. (3.4) is a monomorphism, as follows from comparing it with (3.3).
Moreover, under the hypotheses of Proposition 3.7 the homomorphism πα : Gω(X)
→ Gω(Xα) is faithfully flat by [8, II, Rem. 2.29], since it corresponds to a full
embedding of semi-simple Tannakian categories.

4. The case of a large ground field. We keep the notation of Sections 2 and 3:
in particular, B is a Tannakian category over a field K of characteristic 0, ω is a
neutral fibre functor on B and H =

⊕
Hn where H∗ is a ⊗-functor as in (2.1) ,

that we implicitly restrict to LMot (see (3.1)).

Theorem 4.1. Let X =
∏

i∈I Ei be a product of elliptic curves over k. Assume
that k is large relatively to X and that

(A) Gω(Ei) is connected for all i;
(B) H1(X) is semi-simple;
(C) the restriction of H1 to Mot[X] is full (equivalently, the restriction of H

to Mot1[X] is full);
(D) For all (i, j) such that Ei, Ej are non-isogenous and have complex mul-

tiplication (are ordinary if char k > 0), write Fij for the real quadratic
subfield of End(Ei)⊗ End(Ej)⊗Q. Then Fij ⊗Q K is a field.

Then, in (3.1), Hι : LMot[X] → B[X] is an equivalence of categories.

Here are some comments on this statement. The assumption that k be large is
made to be able to use (3.3). Note that the conclusion of Theorem 4.1 implies
(A), (B) and (C), because the groups GH(Ei) are connected by [17, Ex. 1] and
LMot[X] is semi-simple. So the only “mysterious” condition is (D); its relevance
will appear when we apply Kolchin’s theorem below (Case (II) in 2)).

Proof. Our strategy is to prove Condition (iv) of Proposition 3.2 by the method of
Proposition 3.7, i.e. to prove item (2) of this proposition. Thus there are two steps:

1) X is a single elliptic curve. Note that the Tate character tX factors through
det : GL(H1(X)) → Gm. The group GH(X) is connected reductive by [17, Ex.
1], and so is Gω(E) by (A) and (B). The connected reductive subgroups G of GL2
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which map surjectively to Gm by the determinant are GL2, Gm (its centre) and
maximal tori. These subgroups are distinguished by the K̄-algebras K̄G, and we
conclude by Proposition 3.5.

2) The general case. Write M1 for Ker(M → Gm), for all groups M appearing
in the picture. For simplicity, write also G = Gω(X) and Gi = Gω(Ei). Let
J ′ = {i ∈ I | G1

i = {1}}: projecting onto
∏

i∈J−J ′ Gi, we may assume that
J ′ = ∅.

It now suffices to prove that the inclusion G1 ⊆
∏

iG
1
i (see Remark 3.8) is

an equality. Assume the contrary and write π1
i : G1 → G1

i for the projection
induced by πi: since πi is faithfully flat (Remark 3.8 again), so is π1

i . By (A),
all Gi’s are connected, hence isomorphic to GL2 (no complex multiplication),
REnd(Ei)⊗K/KGm (complex multiplication/ordinary in positive characteristic) or
Gm (supersingular). This ensures that all G1

i ’s are quasi-simple (K-simple in the
terminology of [19]), so we are in a position to apply Kolchin’s result [19, Theo-
rem]. By this theorem and the remarks following it, there are two possibilities:

(I) There exist two distinct indices i ̸= j such that G1
i , G

1
j are nonabelian

(hence isomorphic to SL2), and an isomorphism φ : G1
i

∼−→ G1
j such that

the diagram

G1

π1
i

~~

π1
j

  
G1

i

φ // G1
j

commutes.
(II) There exist l distinct indices j(1), . . . , j(l) with l ≥ 2 and G1

j(1), . . . , G1
j(l),

each commutative, and l faithfully flat K-homomorphisms fλ : G1
j(λ) →

G1
j(l) (1 ≤ λ ≤ l) such that

∏
1≤λ≤l fλ ◦ π1

j(λ) = 1.

More precisely, (I) (resp. (II)) corresponds to (ii) (resp. (iii)) of loc. cit.3,
except that (ii) is stated modulo finite subgroups of G1

i and G1
j ; but the remark

in loc. cit., p. 1154 shows that one can get rid of these finite subgroups. In (II),
the only thing we are going to use is the existence of a nontrivial homomorphism
fλ : G1

j(λ) → G1
j(l) for some λ < l.

In Case (I), the image of G1 in G1
i × G1

j must be the diagonal, hence the im-
age of G in Gi ×Gm Gj must be the fibred diagonal ∆. But, inside M4(K̄), the

two subalgebras K̄∆ =

{(
u 0
0 u

)
| u ∈ M2(K̄)

}
and K̄(GL2 ×Gm GL2) ={(

u 0
0 v

)
| u, v ∈ M2(K̄)

}
are distinct, hence this case contradicts Proposition

3.5 in view of (3.3).

3(i) is excluded by Step 1).
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In Case (II), recall that 1-dimensional K-tori are classified by quadratic char-
acters of Gal(K̄/K) via Cartier duality. Let χλ be the quadratic character corre-
sponding to G1

j(λ): this is also the quadratic character corresponding to the étale
K-algebra End(Ej(λ)) ⊗ K. Suppose λ < l. Since fλ is not constant, we have
χλ = χl or equivalently χλχl = 1, which contradicts (D) since χλχl defines the
étale K-algebra Fj(λ)j(l) ⊗Q K. □

Remark 4.2. The proof of Theorem 4.1 shows that Condition (D) is only needed
when X has at least two CM/ordinary factors.

For the proof of the Tate conjecture (§6.2), we shall also need the following

Proposition 4.3. Assume that Conditions (A), (B) and (C) of Theorem 4.1 are
satisfied. Write X = X1 × X2, where X1 is the product of the CM factors of
X (ordinary factors in positive characteristic) and X2 is the product of the other
factors. Then the inclusion Gω(X) ⊆ Gω(X1)×Gm Gω(X2) is an equality.

Proof. Since the homomorphisms Gω(X) → Gω(Xi) are faithfully flat by Re-
mark 3.4, so are the homomorphisms πi : G1

ω(X) → G1
ω(Xi). Let Ni = Kerπi:

its image in G1
ω(Xj) (j ̸= i) is a normal subgroup. This time we apply Goursat’s

lemma [11]: the image of G1
ω(X) in G1

ω(X1)×G1
ω(X2) is the graph of an isomor-

phism G1
ω(X1)/N2

∼−→ G1
ω(X2)/N1. But, by Step 1) in the proof of Theorem 4.1

and Remark 3.8, G1
ω(X1)/N2 is a group of multiplicative type, and by Remark 4.2

G1
ω(X2)/N1 is a product of copies of SL2. Therefore these two groups are triv-

ial, hence G1
ω(X) contains G1

ω(X1)× {1} and {1} ×G1
ω(X2) and the conclusion

follows. □

For the proof of the Ogus conjecture, we shall need the following result of Cyril
Demarche.

Theorem 4.4. Let F be a number field and let G be a connected algebraic gerbe
over F [8, II, Appendix]4. Then, for any finite (field) extension R/F , there exists a
finite extension K/F , linearly disjoint from R/F , such that G(K) ̸= ∅.

Proof. See Proposition A.2 in the appendix. □

5. Descent. Suppose that we have an enrichment as in Definition 2.1, but don’t
assume k large. We would like to reduce Theorem 1 to Theorem 4.1; it is the aim
of this section.

The idea. Let Γ be a finite group and let f∗ : A → A′ be a Γ-equivariant functor,
where A and A′ are categories provided with a (pseudo-)action of Γ, this action
being trivial on A. Then f∗ induces a functor from A to the category A′[Γ] of
descent data with respect to the action of Γ; we say that f∗ has descent if this
functor is an equivalence of categories [18, end of §1.1]. Let l/k be a finite Galois

4Here “connected algebraic” means that, for any extension E of F such that G(E) ̸= ∅ and for
any X ∈ G(E), the affine E-group GX such that GX(K) = Aut(XK) for any extension K/E
is of finite type and connected. This is equivalent to the condition “with connected linear band” in
Proposition A.2.
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extension and Γ = Gal(l/k). As observed in the proof of [18, Prop. 7.1], it follows
from the definition of LMot [17, Def. 4.4] and the proof of Theorem 5 in loc. cit.,
§5.5 that f∗ : LMot(k) → LMot(l) has descent, where f : Spec l → Spec k
is the structural morphism. This fact restricts to the categories LMot(k)[X] and
LMot(l)[Xl] for any X ∈ Ab(k).

Suppose now that we have a naturally commutative diagram of rigid abelian
⊗-categories and ⊗-functors

(5.1)

LMot(l)
H(l) // B(l)

LMot(k)

f∗

OO

H // B

f∗
B

OO

in which H(l) restricts to an equivalence of categories on the rigid subcategories
generated by Lh1(X) and its images, as in the previous sections. If f∗

B also has
descent and H(l) is Γ-equivariant, we get the same conclusion for H.

The problem in this strategy is that, in practice, the category B(l) which is used
to formulate a given fullness conjecture fails to carry a Γ-action, so that the above
argument does not make sense. As an example, for the Tate conjecture we use
B = RepQℓ

(Gk) (continuous representations), where Gk = Gal(ks/k) is the
absolute Galois group of k relative to some separable closure ks. But the action
of Gk by conjugation on RepQℓ

(Gl), where l is supposed to be a subextension of
ks/k, does not factor through its quotient Γ. The case of de Rham-Betti realisations
is similar.

Fortunately there is a catch-all solution to this issue, which is given by the fol-
lowing proposition.

Proposition 5.1. Consider a naturally commutative diagram of categories and
functors

(5.2)
A′ H′

// B′ ρ′ // C′

A

f∗

OO

H // B

f∗
B

OO

ρ // C

f∗
C

OO

in which a finite group Γ acts on A′ and C′. We assume that
• ρ′H′ is Γ-equivariant, as well as f∗ and f∗

C for the trivial action of Γ on A
and C;

• ρ′ and f∗
B are faithful;

• the functor A → A′[Γ] induced by f∗ is fully faithful (in particular, f∗ is
faithful).

If H′ is fully faithful, so is H.

Proof. This is a standard categorical diagram chase, that we make explicit for the
benefit of the reader. For simplicity, we reason as if (5.2) were strictly commuta-
tive.
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Let A,A′ ∈ A and let w,w′ ∈ A(A,A′) be such that H(w) = H(w′). Then
H′f∗(w) = H′f∗(w′), hence w = w′ since f∗ and H′ are faithful. This proves
that H is faithful.

Let now u ∈ B(H(A),H(A′)). By hypothesis, there exists v ∈ A′(f∗A, f∗A′)
such that H′(v) = f∗

B(u). I claim that gv = v for any g ∈ Γ; by the faithfulness of
ρ′ and H′, it suffices to show this after applying ρ′H′. But ρ′H′(v) = ρ′f∗

B(u) =
f∗
Cρ(u), hence

ρ′H′(gv) = gρ′H′(v) = gf∗
Cρ(u) = f∗

Cρ(u) = ρ′H′(v)

where we used the Γ-equivariance of ρ′H′. Using now the hypothesis on f∗, we
find that v = f∗w for some w ∈ A(A,B). Hence

f∗
BH(w) = H′f∗(w) = H′(v) = f∗

B(u)

and H(w) = u by the faithfulness of f∗
B. This proves that H is full. □

Remark 5.2. Proposition 5.1 does not give the essential surjectivity of H even if
we assume it for H′. Theorem 1 does not state such essential surjectivity. Yet, one
can deduce it from Proposition 3.2 d) by the semi-simplicity of H1(X) (Lemma
6.1) if one wishes.

6. Proof of Theorem 1. First we have:

Lemma 6.1 ([1, th. 7.1.7.5]). Conditions (B) and (C) of Theorem 4.1 hold for each
conjecture of [1, Ch. 7]. □

(This was the starting point of this paper.)
We now go case by case by using Proposition 5.1 to reduce to the case where k

is large enough, so that we may apply Theorem 4.1.

6.1. The Hodge conjecture [1, 7.2]. Here k = C, H is Betti cohomology, B
is the category Hdg of pure polarisable Q-Hodge structures. Since C is alge-
braically closed, there is no descent issue. Condition (A) holds because Mumford-
Tate groups are connected, cf. [1, 7.1.2.1 1)], and Condition (D) is trivial because
K = Q.

6.2. The Tate conjecture [1, 7.3]. Here k is finitely generated over its prime field,
H is ℓ-adic cohomology for some prime number ℓ invertible in k, B is the category
of continuous representations of Gk = Gal(ks/k) on finite-dimensional Qℓ-vector
spaces, and K = Qℓ.

We may replace the latter by the equivalent Tannakian category Rℓ(k) of con-
tinuous representations of the absolute Galois groupoid Πk, as in [15, 2.2.3]. The
corresponding functor H sends h(X), for X ∈ Smproj(k), to the functor from Πk

to VecQℓ
which sends a separable algebraic closure ks of k to H∗

ét(Xks ,Qℓ). If
l/k is a finite Galois extension with group Γ, then Γ acts on Rℓ(l) by the func-
toriality of the étale fundamental groupoid. We may then apply Proposition 5.1
with A = LMot(k), A′ = LMot(l), B = C = Rℓ(k) and B′ = C′ = Rℓ(l).
The faithfulness of f∗

B is trivial and the functor H′ corresponding to H “over l”
is Γ-equivariant. To prove Theorem 1 in the case of the Tate conjecture, we may
therefore assume k large relatively to X , and further enlarge it if needed.
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For M ∈ B, Gω(M) is the Zariski closure of the action of Gk on ω(M) [1,
7.1.3]; it follows that the composition Gk → Gω(M)(k) → π0(Gω(M)) is surjec-
tive, which implies Condition (A) up to enlarging k to a finite Galois extension kℓ,
possibly depending on ℓ.

By quadratic reciprocity, Condition (D) holds for a set of prime numbers in a
suitable union of arithmetic progressions depending on X , which completes the
proof of the Tate conjecture (in its strong form) for these ℓ. We are now going to
prove it for any ℓ by avoiding Condition (D), in several steps.

6.2.1. k is finite. By the above, there exists at least one prime ℓ0 such that the
conclusion of Theorem 4.1 holds for ℓ0-adic cohomology. In particular, the ℓ0-adic
Tate conjecture holds for X , and H1

ℓ0
(X) is semi-simple. By Condition (c) of [30,

Th. 2.9], the same then holds for any ℓ. Therefore the conclusion of Theorem 4.1
holds for any ℓ thanks to Corollary 3.3.

6.2.2. k is a number field. Write X = X1 × X2, where X1 is the product of the
CM factors of X and X2 is the product of the other factors. By Theorem 4.1, we
know that Gω(X2) = GH(X2) (because Condition (D) is empty for X2), and by
Proposition 4.3 we know that Gω(X)

∼−→ Gω(X1) ×Gm Gω(X2). Therefore, by
(3.3), it suffices to prove that Gω(X1) = GH(X1). Choose an embedding σ of ks
into C, and let HB : LMot → VecQ be the corresponding Betti realisation, which

factors as LMot
HB−−→ Hdg

ω′
−→ VecQ where Hdg is as in §6.1. Recall M. Artin’s

comparison isomorphism H ≃ HB ⊗Q Qℓ. We have Gω′(X1) = GHB
(X1) by

§6.1 and Gω′(X1)⊗QQℓ = Gω(X1) by [14, p. 371] or [31, §4], which concludes
the proof.

6.2.3. The general case. Let k0 be the field of constants of k. Write X = X1×X2

as above, where “CM” means “ordinary” in positive characteristic. As in 6.2.2.,
we reduce to the case X = X1. Note that X is then defined over a finite extension
of k0, hence taking k sufficiently large we may assume that X is actually defined
over k0. Then the isomorphism Gω(X)

∼−→ GH(X) over k0 remains valid over
k, because the left and the right hand sides do not change under such extension of
scalars: the surjectivity of Gk → Gk0 implies LMot(k0)[X]

∼−→ LMot(k)[X]
on the right hand side, while on the left hand side it implies that Gk and Gk0 have
same Zariski closure in GL(H1(X)).

6.3. The de Rham-Betti conjecture [1, 7.5]. Here k is a number field embedded
in C, H is Betti cohomology, B is the category Veck,Q of [1, 7.1.6]. Here again,
let l/k be a finite Galois extension with group Γ. We apply Proposition 5.1 with
A = LMot(k), A′ = LMot(l), B = Veck,Q, C′ = Veck, ρ the forgetful functor,
and similarly for B′, C′ and ρ′ replacing k with l. As in §6.2, the faithfulness of f∗

B
is trivial and so is that of ρ′; ρ′H′ is the de Rham realisation which is Γ-equivariant.
We may therefore assume k to be large.
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Since K = Q, Condition (D) is trivial. It remains to prove Condition (A) up to
extending k. Let Q̄ ⊂ C be the set of algebraic numbers, so that k ⊂ Q̄. We start
with a lemma:

Lemma 6.2. Write GN for the Tannakian group of the full Tannakian subcategory
⟨N⟩ ⊂ Veck,Q generated by an object N = (W,V,ϖ). For an extension l of k
contained in Q̄, write Nl = (l⊗k,W, V,ϖ) for the image of N under the obvious
functor Veck,Q → Vecl,Q. Then there exists a finite extension l/k such that the
natural homomorphism GNQ̄

→ GNl
is an isomorphism.

Proof. The affine group schemes GN and GNl
are algebraic by [8, II, Prop. 2.20

(b)], and the homomorphism GNl
→ GN is a closed immersion because the crite-

rion of [8, II, Prop. 2.21 (b)] is trivially verified by the description of the objects
of ⟨N⟩ and ⟨Nl⟩ as subquotients of direct sums of tensor constructions [8, I, 3.1a].
Therefore the inverse system (GNl

), where l runs through the finite subextensions
of Q̄/k, is stationary, and it suffices to show that its inverse limit is GNQ̄

. It suffices
to verify this on R-points for any Q-algebra R (or even for R = Q̄). But this is
clear, since ⟨NQ̄⟩ is the 2-colimit of the ⟨Nl⟩’s. □

We are now left to show that any finite quotient G of the Tannakian group of
VecQ̄,Q is reduced to {1}.

The following simple argument was kindly communicated by Y. André. Let
(W,V, i) be the object of VecQ̄,Q corresponding to a representation of G. Then i is
defined over Q̄ (indeed, W,V and their tensor constructions define a torsor under
G, and i defines a complex point, hence a Q̄-point of this finite torsor). The choice
of a basis of V then identifies (W,V, i) with a sum of copies of the unit object in
VecQ̄,Q.

6.4. The Ogus conjecture. Here k is a number field embedded in C, H = HdR is
de Rham cohomology, B is the category Og(k) of [1, 7.1.5] and K = Q [1, p. 72,
footnote (4)]. Since Og(l) carries a natural action of Γ and the Ogus realisation is
Γ-equivariant, we proceed directly with this category as in §6.2, and may assume
k large.

The fibre functor ω : Og(k) → Veck is not neutral (unless k = Q), but it
becomes so after extending it to the Tannakian category over k Og(k)(k) of [8, pp.
155-156] (notation: ωk).

We prove Condition (A) for the corresponding Tannakian group Gωk
(E) of an

elliptic factor E of X , by proving directly the equality Gωk
(E) = GH(E). This

follows from the argument in [1, 7.4.3.1]. A detailed sketch: choose a prime p of
k, unramified over Q and with good and ordinary reduction for E, so that Tsuji’s
p-adic period isomorphism H1

dR(E/k) ⊗k Bpst ≃ H1
dR(Ekp/kp) ⊗kp Bpst ≃

H1
ét(Ēkp ,Qp) ⊗Qp Bpst [1, 3.4.2] is defined. The action of Gωk

(E) on the left
group is compatible with the action of Gal(k̄p/kp) on the right group. If E is not
CM, Corollary 1 of [29, p; IV-44] says that the Lie algebra of the latter action is
a Borel subalgebra of gl2(Qp). Hence Gωk

(E) = GL2(= GH(E)), since it is
reductive. If E has complex multiplication, Corollary 2 of loc. cit. says that this
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Lie algebra is a split Cartan algebra; hence Gωk
(E) contains a maximal torus; but

then it must be equal to the maximal torus GH(E) [17, Ex. 1].
Let now G be the gerbe associated to B[X]. If R denotes the compositum of

the fields Fij appearing in Condition (D), there exists by Theorem 4.4 another
fibre functor ω′ : Og(k) → VecK where K is a number field linearly disjoint
from R. Replacing Og(k) by Og(k)(K), we get a neutral fibre functor ω′

K ; since
gerbes are locally connected, Condition (A) for ωk implies Condition (A) for ω′

K .
By construction, Condition (D) is satisfied, hence H becomes fully faithful after
extending scalars from Q to K, and therefore it is fully faithful.

Acknowledgements. I thank Yves André for several discussions around this pa-
per, Giuseppe Ancona for pointing out [20], Cyril Demarche for kindly writing
up the appendix and the referee for several comments which helped improve the
exposition.

A. Appendix: sections of algebraic gerbes.
Cyril Demarche

Lemma A.1. Let F be a number field, E,F1, . . . , Fr be finite field extensions of
F . For all 1 ≤ i ≤ r, let αi ∈ Br(Fi).

Then there exists a finite field extension K/F , linearly disjoint from E and from
the Fi’s over F , and such that αi vanishes in Br(K ⊗F Fi) for all i.

Proof. For all i, let Si denote the finite set of places v of Fi such that αi,v ̸= 0 in
Br(Fi,v). For all i and all v ∈ Si, denote by ni,v the order of αi,v in Br(Fi,v).

Let S be the (finite) set of places v of F for which there exists an i and a place
w ∈ Si dividing v. For each v ∈ S, let nv denote the lcm of the ni,w[Fi,w : Fv] for
all i and w ∈ Si such that w divides v.

Let E′/F denote the Galois closure of the compositum of the fields E, F1, . . . ,
Fr, and denote its Galois group by G. By Chebotarev theorem, for all g ∈ G, there
exists a place vg of F outside S and not dividing 2 such that E′/F is unramified
at vg and the Frobenius at vg lies in the conjugacy class of g. One can assume that
vg ̸= vh if g ̸= h.

Define S′ to be the union of S and all the places vg for g ∈ G.
By the Grunwald-Wang theorem, there exists a (cyclic) field extension K/F

such that for all v ∈ S, all places w of K above v, the local degree [Kw : Fv] is
divisible by nv, and for all v ∈ S′ \ S, the extension K/F splits completely at v.

Then by construction the extensions K and E′ are linearly disjoint over F , and
for all i, the image of αi in Br(K ⊗F Fi) vanishes at all places of K ⊗F Fi by a
restriction-corestriction argument, hence it vanishes globally. □

We refer to [4] and [10] for the notions of gerbes, non-abelian H2 and k-kernels.

Proposition A.2. Let k be a number field and G be an étale (algebraic) gerbe over
k, with connected linear band (or k-kernel) L. Let E be a finite extension of k.

Then there exists a finite extension K/k linearly disjoint from E/k such that
G(K) ̸= ∅.
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Proof. Consider the class α of G in the non-abelian cohomology set H2(k, L) and
its image αF ∈ H2(F,L). Let T be the k-torus associated to the k-band L (see [4,
1.7 and 6.1] for instance) and α′ ∈ H2(k, T ) be the image of α.

By Proposition 6.5 in [4], for any totally imaginary finite field extension K/k,
G(K) ̸= ∅ if and only if α′

K = 0 in H2(K,T ).
So we are reduced to find a totally imaginary finite extension K/k linearly dis-

joint from E over k, such that α′ vanishes in H2(K,T ).
First, there exists a totally imaginary finite field extensions F/k that is linearly

disjoint from E over k (one can work as in Lemma A.1).
So we are reduced to find a finite extension K/F linearly disjoint from E′ :=

EF over F , such that α′ vanishes in H2(K,T ).
There exists an exact sequence of k-tori (a flasque resolution of T for instance,

see [7, Proposition 1.3])
0 → S → P → T → 0

such that P is quasi-trivial, i.e. isomorphic to a finite product of tori of the shape
Rki/k(Gm) for some finite field extensions ki/k. The field F is totally imagi-
nary, hence H3(F, S) = 0 by [24, Chapter I, Corollary 4.21]. Therefore, the map
H2(F, P ) → H2(F, T ) is surjective. Let β′ ∈ H2(F, P ) be a lift of the class
α′ ∈ H2(F, T ).

Writing the quasi-trivial F -torus PF as
∏r

i=1RFi/F (Gm) for some finite field
extensions Fi/F , we get that

H2(F, P ) ∼=
r⊕

i=1

Br(Fi) .

To conclude, we apply the lemma to the elements (βi)1≤i≤r ∈
⊕r

i=1 Br(Fi)
corresponding to the class β′ ∈ H2(F, P ) and we get a finite extension K/F ,
linearly disjoint of E′ and the Fi’s over F , such that the image of β′ in H2(K,P ) ∼=⊕r

i=1 Br(K ⊗F Fi) vanishes. Then K and E are linearly disjoint over k and the
proof is complete. □

REFERENCES

[1] Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et
synthèses 17, SMF, 2004.

[2] L. Barbieri-Viale, B. Kahn Universal Weil cohomology, preprint, 2024, https://arxiv.
org/abs/2401.14127.

[3] C. Bertolin Third kind elliptic integrals and 1-motives (with a letter of Y. André and an appendix
by M. Waldschmidt), J. pure appl. Algebra 224 (2020), 106396.

[4] M. Borovoi Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72
no.1, 217–239 (1993).

[5] N. Bourbaki Algèbre, ch. 8: Modules et anneaux semi-simples, Springer, 2012.
[6] C. Chevalley Théorie des groupes de Lie, tome III, Hermann 1954.
[7] J.-L. Colliot-Thélène and J.-J. Sansuc Principal homogeneous spaces under flasque tori; appli-

cations. J. Algebra 106, No. 1, 148-205 (1987).
[8] P. Deligne, J. S. Milne, A. Ogus and K. Shih Hodge cycles, motives, and Shimura varieties,

Lect. Notes in Math. 900, Springer-Verlag, 1982, 101–228.

https://arxiv.org/abs/2401.14127
https://arxiv.org/abs/2401.14127


18 BRUNO KAHN

[9] P. Deligne Semi-simplicité de produits tensoriels en caractéristique p, Invent. Math. 197 (2014),
no. 3, 587–611.

[10] C. Demarche and G. Lucchini Arteche Le principe de Hasse pour les espaces homogènes :
réduction au cas des stabilisateurs finis, Compositio Math. 158 (8), 1568-1593 (2019).

[11] E. Goursat Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci.
ÉNS 6 1889), 9–102

[12] A. Grothendieck On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS 29
(1966) 96–103.

[13] A. Grothendieck Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969),
299–303.

[14] H. Imai On the Hodge group of some abelian varieties, Kodai Math. Sem. Rep. 27 (1976),
367–372.

[15] B. Kahn Motifs et adjoints, Rend. Sem. mat. Univ. Padova 139 (2018), 77–128.
[16] B. Kahn Zeta and L-functions of varieties and motives, LMS Lect. Notes Series 462, Cambridge

Univ. Press, 2020.
[17] B. Kahn Chow-Lefschetz motives, Indag. Math. 2024 (Murre memorial volume), https://

doi.org/10.1016/j.indag.2024.04.007.
[18] B. Kahn Galois descent for motivic theories, preprint, 2024, https://arxiv.org/abs/

2312.01825.
[19] E. R. Kolchin Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151–

1164.
[20] T. Kreutz, M. Shen, C. Vial de Rham–Betti classes on products of elliptic curves over a number

field are algebraic, preprint, 2023, https://arxiv.org/abs/2206.08618.
[21] D. Lombardo On the ℓ-adic Galois representations attached to nonsimple abelian varieties,

Ann. Inst. Fourier (Grenoble) 66 (2016), 1217–1245.
[22] J.S. Milne Lefschetz motives and the Tate conjecture, Compositio Math. 117 (1999), 47–81.
[23] J.S. Milne The Tate conjecture for certain abelian varieties over finite fields, Acta Arith. 100

(2001), 135–166.
[24] J.S. Milne Arithmetic duality theorems, 2nd ed. Charleston, SC: BookSurge, LLC. viii, 339 p.

(2006).
[25] A. Ogus Hodge cycles and crystalline cohomology, in Hodge cycles, motives and Shimura

varieties, Lect. Notes in Math. 900, Springer, 1982, 357–414.
[26] N. Saavedra Rivano Catégories tannakiennes, Lect. Notes in Math. 265, Springer, 1972.
[27] T. Shioda Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1981), 65–80.
[28] M. Spieß Proof of the Tate conjecture for products of elliptic curves over finite fields, Math.

Ann. 314 (1999), 285–290.
[29] J.-P. Serre Abelian l-adic representations and elliptic curves, Benjamin, 1968.
[30] J. Tate Conjectures on algebraic cycles in l-adic cohomology, in Motives (Seattle, WA, 1991),

Proc. Sympos. Pure Math., 55 (1), Amer. Math. Soc., 1994, 71–83.
[31] C.-F. Yu A note on the Mumford-Tate conjecture for CM abelian varieties, Taiwanese J. Math.

19 (2015), 1073–1084.

CNRS, SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITÉ, IMJ-PRG, CASE 247, 4
PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE

Email address: bruno.kahn@imj-prg.fr

SORBONNE UNIVERSITÉ, CNRS AND UNIVERSITÉ PARIS CITÉ, IMJ-PRG, CASE 247, 4
PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE

Email address: cyril.demarche@imj-prg.fr

https://doi.org/10.1016/j.indag.2024.04.007
https://doi.org/10.1016/j.indag.2024.04.007
https://arxiv.org/abs/2312.01825
https://arxiv.org/abs/2312.01825
https://arxiv.org/abs/2206.08618

	References

