
Degree 4 cohomological invariants of algebraic tori

Cyril Demarche Hanqing Long

October 5, 2025

Abstract

In this paper, we determine the motive of the classifying torsor of an algebraic torus. As a
result, we give an exact sequence describing the degree 4 cohomological invariants of algebraic
tori. Using results by Blinstein and Merkurjev, this provides a formula for the degree 4
unramified cohomology group of an algebraic torus, via a flasque resolution.

1 Introduction
Let G be an algebraic group over a field F . An invariant of G [GMS03] is a natural transfor-

mation from the functor of G-torsors over fields to a functor H from category of fields to category
of abelian groups. We denote this invariant group by Inv(G,H). We mainly consider the coho-
mological invariants, i.e. the case that H is a Galois cohomological functor Hd

ét(−,Q/Z(j)) for
d ≥ 0, j ≥ 0, and denote this group by Invd(G,Q/Z(j)).

In [BM13], Blinstein and Merkurjev provide a way to compute Invd(G,Q/Z(j)) through the
motivic cohomology of a classifying space BG of G. For an algebraic torus T , they provide an exact
sequence describing Inv3(T,Q/Z(2))norm, which is the subgroup of normalized invariants, and they
give a similar exact sequence computing the unramified cohomology group H3

nr(F (T ),Q/Z(2)) via
a flasque resolution of T . In particular, they provide an isomorphism

γ0 : H̄4(BT,Z(2))bal/CH2(BT )
∼−→ Inv3(T,Q/Z(2))norm

(see [BM13], diagram before Lemma 4.2) and the exact sequence recalled below in Theorem 2.2.
Applying these results, Wei and the second author give explicit formulas in [LW24] that deter-
mine completely the third unramified cohomology group for norm 1 tori associated with abelian
field extensions. Understanding unramified cohomology of tori is a longstanding problem related
to rational points and rationality questions, and in [CT95], Colliot-Thélène asks for a formula
computing these groups for an arbitrary torus T , in terms of the module T̂ of characters of T .

Following the approach in [BM13], we propose to compute the groups Inv4(T,Q/Z(3))norm and
H4

nr(F (T ),Q/Z(3)) for all tori T . In the statement below, a classifying space of T is defined as
BT := U/T , where V is a generically free representation of T and U ⊂ V in an open subset on
which the action of T is free and such that the codimension of V \ U in V is big enough. All
cohomology groups are étale or étale motivic cohomology groups.

1



Let I be the kernel of étale cycle map CH3(BT ) → H̄6
ét(BT,Z(3)).

Theorem. Let T be a torus over a perfect field F . Then there is a natural commutative diagram:(
T̂ ⊗KM

2 (Fsep)
)Γ

Inv3(T,Q/Z(2))norm ⊗ F ∗

H2(F, T̂ ⊗Q/Z(2)) 0

A2(BT,KM
3 ) H̄5

ét(BT,Z(3)) Inv4(T,Q/Z(3))norm I 0

(
S2(T̂ )⊗ F ∗

sep

)Γ

CH3(BT )tors

H3(F, T̂ ⊗Q/Z(2)) ker
(
H̄6

ét(BT,Z(3)) → S3(T̂ )Γ
)

H1(F, S2(T̂ )⊗ F ∗
sep)

γ ∪

where the row, the column and the column that turns to a line are exact, where γ is induced by the
map γ0 above and cup-product. This conclusion holds for char F = 0. If char F = p > 0, then the
conclusion still holds after changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Note that the group I is also the kernel of étale cycle map CH3(BT ) → H̄6
ét(BT,Z(3)).

In addition, let 1 −→ T −→ P −→ S −→ 1 be a flasque resolution of an arbitrary F -
torus S. By results of Blinstein and Merkurjev [BM13], the fourth unramified cohomology group
H̄4

nr(F (S),Q/Z(3)) is isomorphic to Inv4(T,Q/Z(3))norm, therefore the previous theorem also gives
an exact sequence computing this unramified cohomology group of S.

The key point of the proof of the main Theorem is to compute the étale motivic cohomology of
a classifying T -torsor BT as above, using the so-called slice filtration spectral sequence introduced
in [HK06].

2 Preliminaries
In this section, we introduce notations and lemmas which will be helpful in the next sections.

2.1 Algebraic tori
Let F be a field, Fsep be a separable closure of F and Γ := Gal(Fsep/F ). Recall that an

algebraic torus of dimension n over F is an algebraic F -group T such that Tsep := T ×F Fsep

is isomorphic to Gn
m as a Fsep-group. For an algebraic F -torus T , we write T̂ for the Γ-module

Hom(T,Gm) and call it the character lattice of T . The contravariant functor T 7→ T̂ defines an
anti-equivalence between the category of algebraic tori over F and the category of Γ-lattices.

Let K/F be a finite Galois extension with G = Gal(K/F ). We embed K to Fsep, so that the
absolute Galois group ΓK := Gal(Fsep/K) is a subgroup of Γ.
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A torus T is called flasque (resp. coflasque) if H1(L, T̂ ◦
sep) = 0 (resp. H1(L, T̂sep) = 0) for all

finite field extensions L/F . A flasque resolution of a torus T is an exact sequence of tori

1 −→ Q −→ P −→ T −→ 1

If T is a norm one torus R
(1)
L/F (Gm,L), the degree 3 normalized cohomological invariants group of

T is isomorphic to Br(L/F) (see for instance [BM13], Example 4.14).

2.2 Cohomological invariants
Given a linear algebraic group G over a field F and a functor H from the category of fields

over F to the category of abelian groups, an invariant of G with values in H (or an H-invariant)
is a morphism of functor:

i : H1(−, G) → H

where H1(−, G) is the Galois cohomology functor from the category of fields over F to the cat-
egory of sets. We denote the group of H-invariants of G by Inv(G,H). An H-invariant is called
normalized if it takes the trivial torsor to 0. We denote the subgroup of normalized H-invariants
of G by Inv(G,H)norm. There is a natural isomorphism:

Inv(G,H) ∼= Inv(G,H)norm ⊕H(F )

where each element h in H(F ) defines an H-invariant ih which takes all G-torsor over K to the
natural image of h in H(K) for every field extension K/F . Such an invariant is called a constant
invariant. We consider here the cohomological invariants, i.e. the case where H is a Galois
cohomological functor Hd

ét(−,Q/Z(j)) for d ≥ 0, j ≥ 0, and we denote the corresponding group by
Invd(G,Q/Z(j)).

A G-torsor E → X is said to be classifying if for every field extension K/F with K infinite,
every G-torsor over K is isomorphic to the fiber of E → X at a K-point of X. Classifying torsors
exist for all linear F -groups by [BM13, 2b], [GMS03, 5.3]. In [BM13], Blinstein and Merkurjev
give an approach to compute cohomological invariants of smooth linear algebraic groups and an
exact estimate of Inv3(T,Q/Z(2))norm, when T is a F -torus. We recall those results here:

Lemma 2.1. [BM13, Theorem 3.4] Let G be a smooth linear algebraic group over a field F . We
assume that G is connected if F is a finite field. Let E → X be a classifying G-torsor with E a
G-rational variety such that E(F ) 6= ∅. Then the following homomorphism

φ : H̄0
Zar(X,Hn(Q/Z(j))bal → Invn(G,Q/Z(j))norm

is an isomorphism.

Here Hn(Q/Z(j)) is the Zariski sheaf on X associated to the presheaf U 7→ Hn
ét(U,Q/Z(j)) and

H(X)bal is the subgroup of H(X) consists of the elements h ∈ H(X) such that p∗1(h) = p∗2(h) for
the projections pi : E

2/G → X.
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Lemma 2.2. [BM13, Theorem B] Let T be an algebraic torus over a field F . Then there is an
exact sequence

0 −→ CH2(BT )tors −→ H1(F, T ◦) −→Inv3(T,Q/Z(2))norm
−→S2(T̂ )Γ/Dec −→ H2(F, T ◦).

Here Dec denotes the image of CH2(BT ) in CH2(BTsep) ' S2(T̂ ).

2.3 Motivic cohomology
Let F be a perfect field. We denote by DMeff

− (F ) (resp. DMeff
−,ét(F )) the category of complexes

of Nisnevich (resp. étale) sheaves with transfers with homotopy invariant cohomology sheaves,
and α∗ the natural functor DMeff

− (F ) → DMeff
−,ét(F ). Let DMeff

gm (F ) be the category of effective
geometrical motives which was defined by Voevodsky [Voe00]. There is a functor from DMeff

gm (F )

to DMeff
− (F ), induced by [X] 7→ C∗(X), where C∗(X) is the Suslin complex of X: this complex

will be denoted by M(X).
In [HK06], Huber and Kahn construct spectral sequences as follows, which are called slice

spectral sequences :

Ep,q
2 = Hp−q(cqM,Z(n− q)) =⇒ Hp+q(M,Z(n))

Ep,q
2 = Hp−q

ét (α∗cqM,Z(n− q)ét) =⇒ Hp+q
ét (M,Z(n)ét)

where

Z(n)ét =

α∗Z(n), n ≥ 0⊕
l ̸=charF Ql/Zl(n) [−1] , n < 0.

The motives cqM are called the fundamental invariants of M in [HK06]. There is an exact triangle
in DMeff

− (F ):
νnM −→ ν<n+1M −→ ν<nM −→ νnM [1] .

where νnM = cn(M)(n) [2n] and the functors ν<n are defined in [HK06].

3 Main results

3.1 Motives of classifying space of algebraic tori
We assume that F is a perfect field. In this section, we prove that the motive of the classifying

space BT of a F -torus T is a pure Tate motive, in order to write down the slice spectral sequence
for BT . As a result, we compute the étale motivic cohomology of BT in low degree.

Let 1 −→ T −→ P −→ Q −→ 1 be an exact sequence of algebraic tori such that P is quasi-split.
Since P is quasi-split, we can assume that P =

∏
i RKi/F (Gm,Ki

), where Ki/F are finite separable
field extensions. Then the free diagonal action of Gm,Ki

on Ar+1
Ki

\{0} induces, by Weil restriction,
a free action of P on U =

∏
i RKi/F (A

r+1
Ki

\ {0}). We write X for U/T and Y for U/P .
It is easy to see that Y is geometrically cellular (actually it is cellular since Weil restriction

preserves cellular structure). Note that U → X is a classifying T -torsor and U → Y is a classifying
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P -torsor, by [GMS03, 5.3]. In addition, X → Y is a Q-torsor. Let BT (resp. BP ) be a classifying
space of T (resp. P ). Then BT (resp. BP ) can be approximated by X (resp. Y ) when r is large
enough (see for instance [BM13], Lemma A.4). In the following, the notation BT will mean the
classifying space X constructed here, for r big enough.

In [Kah99] and [HK06], the authors provide a natural filtration of the motive of a cellular
variety. In particular, since Y is a geometrically cellular variety, there is a spectral sequence
Ep,q

2 = Hp−q(F,CHq(Ysep) ⊗ Z(n − q)) =⇒ Hp+q
ét (Y,Z(n)). We show below that this spectral

sequence also holds for X, even though we don’t know how to find a classifying torsor U → X

such that X is a geometrically cellular variety and X approximates BT .

Proposition 3.1. The complex cq(Xsep) ∈ Db
f (Ab) is isomorphic to the following Koszul-like

complex K(Xsep, q):

ΛqQ̂ −→ Λq−1Q̂⊗ CH1(Ysep) −→Λq−2Q̂⊗ CH2(Ysep) −→ · · ·

−→Q̂⊗ CHq−1(Ysep) −→ CHq(Ysep)

where CHq(Ysep) is in degree 0, and the maps are induced by interior products and the characteristic
map θ : Q̂ → CH1(Ysep).

Proof. The proof is the same as Huber and Khan’s proof for split reductive groups [HK06, Propo-
sition 9.3]. Since Ysep is cellular, we have an isomorphism cq(Ysep) = CHq(Ysep) [0] from [HK06,
Proposition 4.11]. Note that Xsep → Ysep is a Qsep torsor. Let Ξ be the cocharacter module of Q.
Applying [HK06, Proposition 8.10] to Xsep → Ysep and to the functor H0(cm) : TDMeff

gm → Ab,
there is a spectral sequence

Ep,q
1 = Hq(cm−q(Ysep)⊗ ΛpΞ) =⇒ Hp+q(cm(Xsep))

for each m. This spectral sequence is concentrated in the q = 0 row and degenerates at E2.
Therefore, we get that cq(Xsep) is isomorphic to the dual of the complex in E1, whence the result.

Lemma 3.2. K(Xsep, q) is quasi-isomorphic to Sq(T̂ )[0].

Proof. Note that the sequence 1 → Q̂
α−→ P̂

β−→ T̂ → 1 is exact and that the natural morphism
θ : P̂ → CH1(Ysep) induces isomorphisms of Galois modules CHq(Ysep) ∼= Sq(P̂ ) for all p, by
[EG97, Lemma 2].

In addition, for all i, j, the diagram

ΛiQ̂⊗ Sj(P̂ )
φi,j //

∼
��

Λi−1Q̂⊗ Sj+1(P̂ )

∼
��

ΛiQ̂⊗ CHj(Ysep) // Λi−1Q̂⊗ CHj+1(Ysep)

is commutative, where the vertical isomorphisms are induced by the aforementionned isomorphisms
Sj(P̂ )

∼−→ CHj(Ysep), the lower horizontal map is the one in the complex K(Xsep, i+ j), and φi,j
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is defined by

φi,j((χ1 ∧ · · · ∧ χi)⊗ (ξ1 . . . ξj)) :=

i∑
k=1

(−1)k+1(χ1 ∧ · · · ∧ χ̂k ∧ . . . χi)⊗ (α(χk)ξ1 . . . ξj) .

Therefore, the complex K(Xsep, q) is isomorphic to the Koszul complex K(α, q) defined by

ΛqQ̂
φq,0−−−→ Λq−1Q̂⊗ P̂

φq−1,1−−−−→ Λq−2Q̂⊗ S2(P̂ )
φq−2,2−−−−→ . . .

φ2,q−2−−−−→ Q̂⊗ Sq−1(P̂ )
φ1,q−1−−−−→ Sq(P̂ ) .

And by [Ill71], Proposition 4.3.1.6, the natural morphism Sq(β) : Sq(P̂ ) → Sq(T̂ ) induces a quasi-
isomorphism

K(α, q)
∼−→ Sq(T̂ ) ,

which proves the lemma.

Corollary 3.3. For all n ≥ 0 there is a spectral sequence

Ep,q
2 = Hp−q(F, Sq(T̂ )⊗ Z(n− q)) =⇒ Hp+q

ét (X,Z(n)).

Proof. The key point is to show that the motive of Xsep is a pure Tate motive in the sense of
[HK06, Definition 4.9]. That is, M(Xsep) ∼=

⊕
p≥0 CH

p(Xsep)
∗ ⊗ Z(p) [2p] in DMeff

gm (Fsep).
Indeed, there is natural isomorphism (see [Voe00, Corollary 4.2.5]):

CHp(Xsep) ∼= Hom(M(Xsep),Z(p) [2p]).

Since CHp(Xsep) is natural isomorphic to Sp(T̂ ) [EG97, Lemma 2], which is a finitely generated
free abelian group, we get a natural map:

φ : M(Xsep) →
⊕
p≥0

CHp(Xsep)
∗ ⊗ Z(p) [2p] .

Let M = M(Xsep), M ′ =
⊕

p≥0 CH
p(Xsep)

∗ ⊗ Z(p) [2p] and we now prove that the above
morphism φ : M → M ′ is an isomorphism. First, it is easy to see that cnM

′ = CHp(Xsep)
∗, and

Proposition 3.1 and Lemma 3.2 imply that the morphism φ induces isomorphisms cnM
∼−→ cnM

′,
and hence isomorphisms νnM

∼−→ νnM
′, since by definition νnM = cn(M)(n) [2n]. In addition, φ

induces a natural map of exact triangles

νnM ν<n+1M ν<nM νnM [1]

νnM
′ ν<n+1M

′ ν<nM
′ νnM

′ [1] .

≃ ≃

We deduce by induction that for all n, the map ν<nM
∼−→ ν<nM

′ is an isomorphism, hence
φ : M → M ′ itself is an isomorphism since ν<nM = M and ν<nM

′ = M ′ for n big enough.
This gives us the required spectral sequence by pulling back the filtration to the big étale site

of Spec(F ).

We write KM
i for the Milnor’s K-group, Ki for the general K-group and Ki(−)ind for the

quotient Ki/K
M
i .
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Corollary 3.4. Let T be a torus over a perfect field F and X as above. Then we have:

H̄i
ét(Xsep,Z(3)) =



0 i = 0, 1, 2

T̂ ⊗H1(Fsep,Z(2)) ' T̂ ⊗K3(Fsep)ind i = 3

T̂ ⊗KM
2 (Fsep) i = 4

S2(T̂ )⊗ F ∗
sep i = 5

S3(T̂ ) i = 6

Moreover, there is an exact sequence:(
T̂ ⊗KM

2 (Fsep)
)Γ

−→ H2(F, T̂ ⊗Q/Z(2)) −→ H̄5
ét(X,Z(3)) −→

(
S2(T̂ )⊗ F ∗

sep

)Γ

−→

H3(F, T̂ ⊗Q/Z(2)) −→ ker
(
H̄6

ét(X,Z(3)) −→ S3(T̂ )Γ
)
−→H1(F, S2(T̂ )⊗ F ∗

sep).

This exact sequence holds for char F = 0. If char F = p > 0, then the conclusion still holds after
changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Proof. For H̄i
ét(Xsep,Z(3)), it is a consequence of Corollary 3.3 and [Kah96, Theorem 1.1] over

Fsep. As for the exact sequence of H̄i
ét(X,Z(3)), from Lemma 3.5 and the Hochschild–Serre spectral

sequence (see [BM13, Appendix B-IV] and [RS18], (3.5)):

Ep,q
2 = Hp(F, H̄q

ét(Xsep,Z(3))) =⇒ H̄p+q
ét (X,Z(3)),

we obtain an exact sequence:(
T̂ ⊗KM

2 (Fsep)
)Γ

−→ H2(F, T̂ ⊗K3(Fsep)ind) −→ H̄5
ét(X,Z(3)) −→

(
S2(T̂ )⊗ F ∗

sep

)Γ

−→

H3(F, T̂ ⊗K3(Fsep)ind) −→ ker
(
H̄6

ét(X,Z(3)) −→ S3(T̂ )Γ
)
−→H1(F, S2(T̂ )⊗ F ∗

sep).

Because of [MS91, Theorem 11.1] and [Wei13, VI.1.6], K3(Fsep)ind is divisible and its torsion
subgroup is Q/Z(2), therefore Hi(F, T̂ ⊗K3(Fsep)ind) ' Hi(F, T̂ ⊗Q/Z(2)) (see [Wei13, VI.1.3.1]
for the case of char F = p > 0). This proves the results.

Lemma 3.5. Ki(F ) is uniquely divisible if F is algebraically closed and i ≥ 2.

Proof. See [BT73, Proposition 1.2].

Corollary 3.6. Let T be a torus over a perfect field F and X as above. Then we have:

H̄i
ét(Xsep,Z(4)) =


0 i = 0, 1

T̂ ⊗Hi−2(Fsep,Z(3)) i = 2, 3, 4

S2(T̂ )⊗KM
2 (Fsep) i = 6

S3(T̂ )⊗ F ∗
sep i = 7

and
0 −→ T̂ ⊗KM

3 (Fsep) −→ H̄5
ét(Xsep,Z(4)) −→ S2(T̂ )⊗K3(Fsep)ind −→ 0

is exact.

Proof. The proof is similar to the proof of the corollary above.
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3.2 Cohomological invariants of tori
We prove here the main result describing cohomological invariants of degree 4 and 5. We use the

notation defined above. Let Ap(−,KM
n ) be the pth homology group of complex of cycle modules

[Ros96]. For any 0 ≤ p ≤ n, from [EG97, Lemma 2] and Künneth formula [EKLV98, Proposition
3.7], we have:

Ap(BT,KM
n ) Ap(BTsep,K

M
n )Γ

CHp(BT )⊗KM
n−p(F )

(
Sp(T̂ )⊗KM

n−p(Fsep)
)Γ

.

αp,n

∪ ≃

Let I be the kernel of étale cycle map CH3(BT ) → H̄6
ét(BT,Z(3)).

Theorem 3.7. Let T be a torus over a perfect field F . Then there is a natural commutative
diagram: (

T̂ ⊗KM
2 (Fsep)

)Γ

Inv3(T,Q/Z(2))norm ⊗ F ∗

H2(F, T̂ ⊗Q/Z(2)) 0

A2(BT,KM
3 ) H̄5

ét(BT,Z(3)) Inv4(T,Q/Z(3))norm I 0

(
S2(T̂ )⊗ F ∗

sep

)Γ

CH3(BT )tors

H3(F, T̂ ⊗Q/Z(2)) ker
(
H̄6

ét(BT,Z(3)) → S3(T̂ )Γ
)

H1(F, S2(T̂ )⊗ F ∗
sep)

γ ∪

where the row, the column and the column that turns to a line are exact, and where γ is induced by
the map γ0 in the Introduction. This conclusion holds for char F = 0. If char F = p > 0, then the
conclusion still holds after changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Proof. First, the left column of the diagram continuing as the last line in the statement of the
theorem is well defined and is exact by Corollary 3.4.

Second, for any smooth variety X over a field F , the coniveau spectral sequence gives an exact
sequence:

0 −→ A2(X,KM
3 )

f1−→ H̄5
ét(X,Z(3)) −→H̄0

Zar(X,H4(Q/Z(3)))

−→CH3(X) −→ H̄6
ét(X,Z(3)).

Applying this sequence for the classifying T -torsor U i → U i/T for every i > 0, we obtain an exact
sequence

0 −→ A2(U i/T,KM
3 ) −→ H̄5

ét(U
i/T,Z(3)) −→H̄0

Zar(U
i/T,H4(Q/Z(3)))

−→CH3(U i/T ) −→ H̄6
ét(U

i/T,Z(3)).
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Those sequences for all i give an exact sequence of cosimplicial groups (see [BM13, A-IV]):

0 −→ A2(U•/T,KM
3 ) −→ H̄5

ét(U
•/T,Z(3)) −→H̄0

Zar(U
•/T,H4(Q/Z(3)))

−→CH3(U•/T ) −→ H̄6
ét(U

•/T,Z(3)).

Since Ai(−,KM
j ) is homotopy invariant [Ros96, Proposition 8.6], the first and fourth cosimplicial

groups in the above sequence are constant [BM13, Lemma A.4]. By Corollary 3.4, each groups
H̄5

ét(U
i/T,Z(3)) only depend on T , hence H̄5

ét(U
•/T,Z(3)) is also constant cosimplicial group.

Therefore [BM13, Lemma A.2] and Lemma 2.1 provide an exact sequence:

0 −→ A2(BT,KM
3 ) −→ H̄5

ét(BT,Z(3)) −→Inv4(T,Q/Z(3))norm −→ CH3(BT ) −→ H̄6
ét(U/T,Z(3)).

(3.1)

The middle line of the diagram in the Theorem comes from the exact sequence (3.1), from the
vanishing of the invariant group over Fsep, and from the following commutative diagram:

CH3(BT ) H̄6
ét(U/T,Z(3))

CH3(BTsep)
Γ S3(T̂ )Γ .

∼=

Since ker(CH3(BT ) → CH3(BTsep)) ∼= CH3(BT )tor by a restriction and corestriction argument,
we get the exactness of the whole middle line in the Theorem.

We now prove that the triangle involving the group Inv3(T,Q/Z(2))norm is commutative. The
following diagram is commutative by definition (the first line is well-defined since H4(BT,Z(2)) ∼−→
CH2(BT ) and H5(BT,Z(2)) = 0 for the Zariski topology):(

H̄4
ét(X,Z(2))bal/CH2(BT )

)
⊗H1

ét(F,Z(1)) H̄5
ét(X,Z(3))

H̄0(X,H3(Q/Z(2)))bal ⊗ F ∗ H̄0(X,H4(Q/Z(3)))bal

Inv3(T,Q/Z(2))norm ⊗ F ∗ Inv4(T,Q/Z(3))norm.

∼=

∪

∼=

∪

∼=

∪

Therefore, we get the required commutativity by inverting the isomorphisms.

Similarly, for degree 5 cohomological invariants, we can also deduce from the coniveau spectral
sequence an exact sequence:

0 −→ A2(X,KM
4 )

f2−→ H̄6
ét(X,Z(4)) −→H̄0

Zar(X,H5(Q/Z(4)))

−→A3(X,KM
4 ) −→ H̄7

ét(X,Z(4)).

Combining this exact sequence and the argument in the proof above, we obtain an exact sequence
involving degree 5 cohomological invariants:

0 −→ A2(BT,KM
4 ) −→ H̄6

ét(BT,Z(4)) −→ Inv5(T,Q/Z(4))norm −→ A3(BT,KM
4 ) −→ H̄7

ét(BT,Z(4)) .

9



The Hochschild–Serre spectral sequence (see [RS18], (3.5)):

Ep,q
2 = Hp(F, H̄q

ét(BTsep,Z(4))) =⇒ H̄p+q
ét (BT,Z(4)) ,

and Corollary 3.6 give rise to the Theorem below, taking into account that the groups Hi(Fsep,Z(3))
are uniquely divisible for i = 0 and i = 2 (see for instance [Gei17], Theorem 1.1):

Theorem 3.8. Let T be a torus over a perfect field F . Then there is an exact commutative
diagram:

H3(F, T̂ ⊗H1(Fsep,Z(3))) H4(F, T̂ ⊗H1(Fsep,Z(3)))

A2(BT,KM
4 ) H̄6

ét(BT,Z(4)) Inv5(T,Q/Z(4))norm A3(BT,KM
4 ) H̄7

ét(BT,Z(4))

H1(F, S2(T̂ )⊗Q/Z(2))′ Q (S2(T̂ )⊗KM
2 (Fsep))

Γ H2(F, S2(T̂ )⊗Q/Z(2))′ R
(
S3(T̂ )⊗ F ∗

sep

)Γ

0 0

where H1(F, S2(T̂ )⊗Q/Z(2))′ := ker
(
H1(F, S2(T̂ )⊗Q/Z(2)) → H4(F, T̂ ⊗H1(Fsep,Z(3)))

)
and

H2(F, S2(T̂ )⊗Q/Z(2))′ := ker
(
H2(F, S2(T̂ )⊗Q/Z(2)) → H5(F, T̂ ⊗H1(Fsep,Z(3)))

)
/(S2(T̂ )⊗

KM
2 (Fsep))

Γ.

3.3 Unramified cohomology
Given a field extension L/F , the i-th unramified cohomology group of L/F is defined as the

group
Hi

nr(L/F,Q/Z(j))) :=
⋂

A∈P (L)

im (Hi(A,Q/Z(j)) −→ Hi(L,Q/Z(j))) ,

where P (L) is the set of all rank one discrete valuation rings which contain F and have quotient
field L. They can also be defined by the intersection of the kernel of the residue maps ∂A, for
A ∈ P (L) when char(F ) = 0 [CT95]. If X is a smooth integral variety over F , the i-th unramified
cohomology group of X is defined as Hi

nr(F (X)/F,Q/Z(j)).

Corollary 3.9. Let S be a torus over a perfect field F , and let

1 −→ T −→ P −→ S −→ 1

10



be a flasque resolution of S. Then the following commutative diagrams are exact:(
T̂ ⊗KM

2 (Fsep)
)Γ

H̄3
nr(F (S),Q/Z(2))⊗ F ∗

H2(F, T̂ ⊗Q/Z(2)) 0

A2(BT,KM
3 ) H̄5

ét(BT,Z(3)) H̄4
nr(F (S),Q/Z(3)) I 0

(
S2(T̂ )⊗ F ∗

sep

)Γ

CH3(BT )tors

H3(F, T̂ ⊗Q/Z(2)) ker
(
H̄6

ét(BT,Z(3)) → S3(T̂ )Γ
)

H1(F, S2(T̂ )⊗ F ∗
sep)

γ ∪

and

H3(F, T̂ ⊗H1(Fsep,Z(3))) H4(F, T̂ ⊗H1(Fsep,Z(3)))

A2(BT,KM
4 ) H̄6

ét(BT,Z(4)) H̄5
nr(F (S),Q/Z(4)) A3(BT,KM

4 ) H̄7
ét(BT,Z(4))

H1(F, S2(T̂ )⊗Q/Z(2))′ Q (S2(T̂ )⊗KM
2 (Fsep))

Γ H2(F, S2(T̂ )⊗Q/Z(2))′ R
(
S3(T̂ )⊗ F ∗

sep

)Γ

0 0

where H1(F, S2T̂ ⊗ Q/Z(2))′ := ker
(
H1(F, S2T̂ ⊗Q/Z(2)) → H4(F, T̂ ⊗H1(Fsep,Z(3)))

)
and

H2(F, S2T̂⊗Q/Z(2))′ := ker
(
H2(F, S2T̂ ⊗Q/Z(2))/(S2(T̂ )⊗KM

2 (Fsep))
Γ → H5(F, T̂ ⊗H1(Fsep,Z(3)))

)
.

This conclusion holds for char F = 0. If char F = p > 0, then the conclusion still holds after
changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Proof. It is a consequence of Theorem 5.7 in [BM13] and of Theorems 3.7 and 3.8.

4 Examples
In this section, we apply the main results to compute explicitely invariant groups for some

families of tori. In particular, we provide an example of torus with a non-trivial invariant of degree
4, and we compute the invariant groups in the case of norm tori.

Example. Let us construct a torus T with a non-trivial degree 4 invariant that does not come
from a lower degree invariant.

11



In [Sal22], Sala constructs a torus T over a field F such that CH3(BT )tors is nontrivial, as
follows: consider the following exact sequence of Q8-modules

0 −→ P̂ −→ Q̂ −→ T̂ := Q̂/P̂ −→ 0 ,

where Q̂ is Z [Q8] and P̂ is Z [Q8/ {1,−1}]. Here Q8 =
{
i, j, k|i2 = j2 = k2 = ijk = −1

}
is the

quaternion group of order 8. Let e, e′, x, x′, y, y′, z, z′ denote the elements associated respectively
to 1,−1, i,−i, j,−j, k,−k inside the character group Q̂. Then (e + e′, x + x′, y + y′, z + z′) is a
Z-basis of the sublattice P̂ . In addition, the classes of e, x, y, z in T̂ are a Z-basis of T̂ . Then we
have a decomposition as a Q8-module:

S2(T̂ ) = M ⊕ Px ⊕ Py ⊕ Pz ,

where the submodules on the right hand side are defined by M := Zee ⊕ Zxx ⊕ Zyy ⊕ Zzz,
Px := Z(ex+ yz)⊕Z(ex− yz), Py := Z(ey+ xz)⊕Z(ey− xz) and Pz := Z(ez+ xz)⊕Z(ez− xz).
It is easy to see that M is a rank 4 permutation Q8-module which is isomorphic to Z [Q8/{1,−1}].

Let Nx := Z(ex−yz) ⊂ Px be the rank 1 submodule generated by ex−yz, and let N̄x := Px/Nx.
Then we have an exact sequence of Q8-modules

0 → Nx → Px → N̄x → 0

and Nx (resp. N̄x) is isomorphic to Z with the non-trivial action of Q8/〈j〉 (resp. of Q8/〈k〉).
Let now L/F be a Galois extension with Galois group Q8. Let K be the subfield fixed by

{1,−1} and K1, K2, K3 be the subfields of K with Galois groups {1, ī}, {1, j̄}, {1, k̄} over F

respectively.
By Shapiro Lemma and Hilbert 90, we have H1(F,M⊗L∗) ∼= H1(Q8,M⊗L∗) ∼= H1(L/K,L∗) =

0, and exact sequences
0 → H1(F,Nx ⊗ L∗) → Br(F ) → Br(K2)

and
0 → H1(F, N̄x ⊗ L∗) → Br(F ) → Br(K3) .

Hence, the exact sequence

0 → H1(F,Nx ⊗ L∗) → H1(F, Px ⊗ L∗) → H1(F, N̄x ⊗ L∗)

gives rise to an exact sequence

0 → Br(K2/F ) → H1(F, Px ⊗ L∗) → Br(K3/F ) .

Using a similar argument for Py and Pz, we get an exact sequence:

0 → Br(K1/F)⊕Br(K2/F)⊕Br(K3/F) → H1(F, S2(T̂ )⊗F ∗
sep) → Br(K1/F)⊕Br(K2/F)⊕Br(K3/F) .

If we restrict to F being the maximal abelian extension of an algebraic extension of Q, then these
relative Brauer groups are trivial. Hence H1(F, S2(T̂ ) ⊗ F ∗

sep) = 0, since Qab has cohomological
dimension 1, therefore the non-trivial element in CH3(BT )tor given by Sala [Sal22, Theorem 5.8]
defines a non-trivial degree 4 invariant by Theorem 3.7, and this invariant does not come from
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degree 3 cohomological invariants by cup with F ∗. Note that Q8 is indeed a Galois group of F by
[Iwa53].

In particular, we proved the following:

Proposition 4.1. There exists an explicit field F of characteristic zero and an explicit 4-dimensional
F -torus T with a non-trivial degree 4 invariant that does not come from a degree 3 invariant by
cup-product with F ∗.

Example. Let us consider now a torus T that fits into an exact sequence:

1 −→ T −→ P −→ Gn
m −→ 1

where P is a quasi-trivial torus. In particular, norm one tori fit into such exact sequences with
n = 1.

From the construction at the beginning of section 3.1, the natural map BT → BP is a Gn
m-

torsor and BP is approximated by cellular varieties.

Proposition 4.2. Let T be a torus as above over an infinite field F , then Ai(BT,KM
j ) ' Si(T̂ )Γ⊗

KM
j−i(F ). In particular, if i = j, CHi(BT ) ' Si(T̂ )Γ.

Proof. Let X and Y be as in the beginning of section 3.1, approximating BT and BP respectively.
Then the map X → Y is a Gn

m-torsor. We may assume that Y is a cellular variety. Let d be
the dimension of X. From the arguments of [EKLV98, 3.10-3.12] and [Sal22, Proposition 4.4], we
obtain a spectral sequence:

E1
p,q = ΛpZn ⊗ Sd−p−q(P̂ )Γ ⊗KM

j−q(F ) =⇒ Ad−p−q(X,KM
j ).

Therefore, the second page is E2
0,q = Sd−q(T̂ )Γ ⊗ KM

j−q(F ) and E2
p,q = 0 for p 6= 0 because of

Proposition 3.1 and Lemma 3.2. This proves Ai(BT,KM
j ) ' Si(T̂ )Γ ⊗KM

j−i(F ).

Theorefore, the group of degree 3 normalized cohomological invariants of T is isomorphic to

Inv3(T,Q/Z(2))norm ' H1(F, T ◦)

by Theorem 2.2.
If in particular T = R

(1)
L/F (Gm), P = RL/F (Gm) and n = 1, we get

Inv3(T,Q/Z(2))norm ' H1(F, T ◦) ' Br(L/F ) .

From Proposition 4.2, A2(BT,KM
3 ) ' S2(T̂ )Γ ⊗ F ∗ and A3(BT,KM

3 ) ' S3(T̂ )Γ. Therefore,
considering the commutative diagram:

S2(T̂ )Γ ⊗ F ∗ ' A2(BT,KM
3 ) H̄5

ét(BT,Z(3))

(
S2(T̂ )⊗ F ∗

sep

)Γ

,
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Theorem 3.7 implies that the following exact sequence computes the group of degree 4 invariants:

0 → H2(F, T̂ ⊗Q/Z(2))/
(
T̂ ⊗KM

2 (Fsep)
)Γ

→ Inv4(T,Q/Z(3))norm

→
(
S2(T̂ )⊗ F ∗

sep

)Γ

/
(
S2(T̂ )Γ ⊗ F ∗

sep

)
→ H3(F, T̂ ⊗Q/Z(2)) .

For degree 5 invariants, assume for simplicity that, from now on, F is of cohomological dimen-
sion ≤ 1. Then Theorem 3.7 can be simplified as follows:

H1(F, S2(T̂ )⊗Q/Z(2))

A2(BT,KM
4 ) H̄6

ét(BT,Z(4)) Inv5(T,Q/Z(4))norm

(
S2(T̂ )⊗KM

2 (Fsep)
)Γ

Therefore we obtain an exact sequence:

0 → ker
(
S2(T̂ )Γ ⊗KM

2 (F ) → S2(T̂ )⊗KM
2 (Fsep)

)
→ H1(F, S2(T̂ )⊗Q/Z(2)) → Inv5(T,Q/Z(4))norm

→
(
S2(T̂ )⊗KM

2 (Fsep)
)Γ

/
(
S2(T̂ )Γ ⊗KM

2 (F )
)
→ 0 .

Let K/F be a splitting field of T and G be its Galois group. The assumption that F has
dimension 1 provides an exact sequence for H1(F, S2(T̂ ) ⊗ Q/Z(2)) by Hochschild-Serre spectral
sequence:

0 → H1(G,S2(T̂ )⊗Q/Z(2)ΓK ) → H1(F, S2(T̂ )⊗Q/Z(2)) → H1(K,S2(T̂ )⊗Q/Z(2))G

→ H2(G,S2(T̂ )⊗Q/Z(2)ΓK ) → 0.

The proof of Lemma 3.2 provides an exact sequence:

0 → Λ2Zn → Zn ⊗ P̂ → S2(P̂ ) → S2(T̂ ) → 0.

Note that the composition S2(P̂ ) → P̂ ⊗ P̂ → S2(P̂ ) is multiplication by 2, where the first
homomorphism maps x · y to x⊗ y + y ⊗ x and the second is the natural quotient. If we assume
that P̂ is a direct sum of several copies of Z[G] (for instance, if T is norm one torus) and |G| is odd
(or consider the p-part of each groups, p 6= 2), then Hi(G,S2(P̂ )⊗Q/Z(2)ΓK ) is trivial for i ≥ 1

because of the Shapiro’s lemma and we get Hi(G,S2(T̂ )⊗Q/Z(2)ΓK ) ' Hi+2(G,Q/Z(2)ΓK )⊕
n(n−1)

2

for i ≥ 1. Therefore, in this case, we obtain an exact sequence describing H1(F, S2(T̂ )⊗Q/Z(2)):

0 → H3(G,Q/Z(2)ΓK )⊕
n(n−1)

2 → H1(F, S2(T̂ )⊗Q/Z(2)) →
(
S2(T̂ )⊗H1(K,Q/Z(2))

)G

→ H4(G,Q/Z(2)ΓK )⊕
n(n−1)

2 → 0.
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