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Abstract

In this paper, we determine the motive of the classifying torsor of an algebraic torus. As a
result, we give an exact sequence describing the degree 4 cohomological invariants of algebraic
tori. Using results by Blinstein and Merkurjev, this provides a formula for the degree 4

unramified cohomology group of an algebraic torus, via a flasque resolution.

1 Introduction

Let G be an algebraic group over a field F. An invariant of G [GMS03] is a natural transfor-
mation from the functor of G-torsors over fields to a functor H from category of fields to category
of abelian groups. We denote this invariant group by Inv(G, H). We mainly consider the coho-
mological invariants, i.e. the case that H is a Galois cohomological functor Hg (—,Q/Z(3)) for
d > 0,7 >0, and denote this group by Invd(G,(@/Z(j)).

In [BM13], Blinstein and Merkurjev provide a way to compute Inv?(G, Q/Z(j)) through the
motivic cohomology of a classifying space BG of GG. For an algebraic torus 7', they provide an exact
sequence describing Inv®(T', Q/Z(2)) norm, which is the subgroup of normalized invariants, and they
give a similar exact sequence computing the unramified cohomology group H32 .(F(T),Q/Z(2)) via

a flasque resolution of T'. In particular, they provide an isomorphism
v+ HY (BT, Z(2))pat/CH*(BT) = Tnv* (T, Q/Z(2)) norm

(see [BM13], diagram before Lemma 4.2) and the exact sequence recalled below in Theorem @
Applying these results, Wei and the second author give explicit formulas in [LW24] that deter-
mine completely the third unramified cohomology group for norm 1 tori associated with abelian
field extensions. Understanding unramified cohomology of tori is a longstanding problem related
to rational points and rationality questions, and in [CT95], Colliot-Théléne asks for a formula
computing these groups for an arbitrary torus 7', in terms of the module T of characters of 7.
Following the approach in [BM13], we propose to compute the groups Inv*(T, Q/Z(3))norm and
H2 (F(T),Q/Z(3)) for all tori T. In the statement below, a classifying space of T is defined as
BT := U/T, where V is a generically free representation of 7' and U C V in an open subset on
which the action of T is free and such that the codimension of V' \ U in V is big enough. All

cohomology groups are étale or étale motivic cohomology groups.



Let I be the kernel of étale cycle map CH?(BT) — HS, (BT, Z(3)).

Theorem. Let T be a torus over a perfect field F'. Then there is a natural commutative diagram:

(f@ Kéw(Fsep)>F InV3(T, Q/Z(2)) norm @ F*
HX(F, T © Q/Z(2)) . 2 0
A%(BT, K3") — H},(BT,Z(3)) — Inv* (T, Q/Z(3)) norm I 0
~ l r
(52 (T) ® Fp) CH*(BT)0rs

H3(F, T ® Q/Z(2)) - ker (Fléﬁt(BT, 7(3)) — 53(:F)F) — HY(F,S%(T)® F5,)

where the row, the column and the column that turns to a line are exact, where v is induced by the
map o above and cup-product. This conclusion holds for char F' = 0. If char F = p > 0, then the
conclusion still holds after changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Note that the group I is also the kernel of étale cycle map CH*(BT) — HS (BT, Z(3)).

In addition, let 1 — T — P — S —— 1 be a flasque resolution of an arbitrary F-
torus S. By results of Blinstein and Merkurjev [BM13], the fourth unramified cohomology group
H? (F(S),Q/Z(3)) is isomorphic to Inv* (T, Q/Z(3)) norm, therefore the previous theorem also gives
an exact sequence computing this unramified cohomology group of S.

The key point of the proof of the main Theorem is to compute the étale motivic cohomology of
a classifying T-torsor BT as above, using the so-called slice filtration spectral sequence introduced
in [HKO6].

2 Preliminaries

In this section, we introduce notations and lemmas which will be helpful in the next sections.

2.1 Algebraic tori

Let F be a field, F,., be a separable closure of F and I' := Gal(Fsep/F). Recall that an
algebraic torus of dimension n over F' is an algebraic F-group T such that Tysep := T Xp Fyep
is isomorphic to G, as a Fse,-group. For an algebraic F-torus 7', we write T for the I-module
Hom(T', G,,) and call it the character lattice of T. The contravariant functor 7' T defines an
anti-equivalence between the category of algebraic tori over F' and the category of I'-lattices.

Let K/F be a finite Galois extension with G = Gal(K/F). We embed K to Fj,, so that the
absolute Galois group ' := Gal(Fp,/K) is a subgroup of I'.



A torus T is called flasque (resp. coflasque) if H(L, T2, ) =0 (resp. H (L, fsep) = 0) for all

sep

finite field extensions L/F. A flasque resolution of a torus T is an exact sequence of tori
1—Q—P—T—1

If T is a norm one torus R(Ll/)F (Gp,1), the degree 3 normalized cohomological invariants group of
T is isomorphic to Br(L/F) (see for instance [BM13], Example 4.14).

2.2 Cohomological invariants

Given a linear algebraic group G over a field F' and a functor H from the category of fields
over I to the category of abelian groups, an invariant of G with values in H (or an H-invariant)
is a morphism of functor:

i:HY(—,G)— H

where H'(—, Q) is the Galois cohomology functor from the category of fields over F to the cat-
egory of sets. We denote the group of H-invariants of G by Inv(G, H). An H-invariant is called
normalized if it takes the trivial torsor to 0. We denote the subgroup of normalized H-invariants

of G by Inv(G, H)norm-. There is a natural isomorphism:
Inv(G, H) 2 Inv(G, H) porm ® H(F)

where each element h in H(F') defines an H-invariant i, which takes all G-torsor over K to the
natural image of h in H(K) for every field extension K/F. Such an invariant is called a constant
invariant. We consider here the cohomological invariants, i.e. the case where H is a Galois
cohomological functor H (—, Q/Z(34)) for d > 0,5 > 0, and we denote the corresponding group by
Inv!(G, Q/Z(j)).-

A G-torsor E — X is said to be classifying if for every field extension K/F with K infinite,
every G-torsor over K is isomorphic to the fiber of E — X at a K-point of X. Classifying torsors
exist for all linear F-groups by [BM13, 2b], [GMS03, 5.3]. In [BM13], Blinstein and Merkurjev
give an approach to compute cohomological invariants of smooth linear algebraic groups and an
exact estimate of Inv® (T, Q/Z(2))norm, when T is a F-torus. We recall those results here:

Lemma 2.1. [BM13, Theorem 3.4] Let G be a smooth linear algebraic group over a field F. We
assume that G is connected if F is a finite field. Let E — X be a classifying G-torsor with E a
G-rational variety such that E(F) # 0. Then the following homomorphism

("2 H%ar(Xa 7-[TL((@/Z(]))bal — Inv”(G, Q/Z(j))norm
s an isomorphism.

Here H"™(Q/Z(j)) is the Zariski sheaf on X associated to the presheaf U — HZ (U, Q/Z(j)) and
H(X)pa is the subgroup of H(X) consists of the elements h € H(X) such that pj(h) = p5(h) for
the projections p; : E?/G — X.



Lemma 2.2. |BM13, Theorem B] Let T be an algebraic torus over a field F. Then there is an

exact sequence

0 — CH?*(BT)iors — HY(F,T°) —Inv*(T,Q/Z(2)) norm
—8%(T)' /Dec —s H?(F,T°).

Here Dec denotes the image of CH?(BT) in CH?(BTy.,) =~ S(T).

2.3 Motivic cohomology

Let F be a perfect field. We denote by DM /¥ (F) (resp. DMffeft (F")) the category of complexes
of Nisnevich (resp. étale) sheaves with transfers with homotopy invariant cohomology sheaves,
and a* the natural functor DM/ (F) — DMifeft(F) Let DM} S (F) be the category of effective
geometrical motives which was defined by Voevodsky [Voe00]. There is a functor from DM, ;Tj:lf (F)
to DM/ (F), induced by [X] — C,(X), where C,(X) is the Suslin complex of X: this complex
will be denoted by M(X).

In [HKO06], Huber and Kahn construct spectral sequences as follows, which are called slice

spectral sequences :
EyY = HP"U(cqM,Z(n — q)) = H""(M,Z(n))
EDT = HY Y (a*c,M,Z(n — q)e) = HEY(M,Z(n)s)
where
a*Z(n), n>0
D1 scnarr Q/Zi(n) [-1], n <O0.

The motives ¢, M are called the fundamental invariants of M in [HKO06]. There is an exact triangle
in DM (F):

Z(n)ét =

voM — vepni M — v, M — v, M [1].

where v, M = ¢, (M)(n) [2n] and the functors v.,, are defined in [HKO0G].

3 Main results

3.1 Motives of classifying space of algebraic tori

We assume that F' is a perfect field. In this section, we prove that the motive of the classifying
space BT of a F-torus T is a pure Tate motive, in order to write down the slice spectral sequence
for BT. As a result, we compute the étale motivic cohomology of BT in low degree.

Let 1 — T — P — Q — 1 be an exact sequence of algebraic tori such that P is quasi-split.
Since P is quasi-split, we can assume that P = [[; Rk, /r(Gm, K, ), where K;/F are finite separable
field extensions. Then the free diagonal action of G, &, on ATKtl \ {0} induces, by Weil restriction,
a free action of P on U =[], R;Q/F(AH1 \ {0}). We write X for U/T and Y for U/P.

Tt is easy to see that Y is geometrically cellular (actually it is cellular since Weil restriction
preserves cellular structure). Note that U — X is a classifying T-torsor and U — Y is a classifying



P-torsor, by [GMS03, 5.3]. In addition, X — Y is a Q-torsor. Let BT (resp. BP) be a classifying
space of T' (resp. P). Then BT (resp. BP) can be approximated by X (resp. Y') when r is large
enough (see for instance [BM13], Lemma A.4). In the following, the notation BT will mean the
classifying space X constructed here, for r big enough.

In [Kah99] and [HKOG], the authors provide a natural filtration of the motive of a cellular
variety. In particular, since Y is a geometrically cellular variety, there is a spectral sequence
E?? = HP=9(F,CH(Yyep) @ Z(n — q)) = HL (Y, Z(n)). We show below that this spectral
sequence also holds for X, even though we don’t know how to find a classifying torsor U — X

such that X is a geometrically cellular variety and X approximates BT

Proposition 3.1. The complex ¢?(X,.p) € D?(Ab) is isomorphic to the following Koszul-like
complex K(Xsep,q):

AqQ\ — Aq71© (24 CHl(}/;ep) _>AQ*2Q\ ® CHQ(YSEP) —
—>@ ® CHqil(}/sep) - CHq (Yt?ep)

where CHY (Y. ) is in degree 0, and the maps are induced by interior products and the characteristic
map 0 : @ — CHl(Ysep).

Proof. The proof is the same as Huber and Khan’s proof for split reductive groups [HK06, Propo-
sition 9.3]. Since Y, is cellular, we have an isomorphism ¢?(Y,ep) = CH?(Ysep) [0] from [HKO6,
Proposition 4.11]. Note that Xgep — Ysep is a Qs¢p torsor. Let = be the cocharacter module of Q.
Applying [HKO06, Proposition 8.10] to Xse, — Ysep and to the functor H(cp,) : TDM;,J,? — Ab,

there is a spectral sequence
BV = HY(em—q(Ysep) ® APE) = Hp+q(c7n(Xsep))

for each m. This spectral sequence is concentrated in the ¢ = 0 row and degenerates at Fs.
Therefore, we get that ¢?(Xsep) is isomorphic to the dual of the complex in E;, whence the result.
O

Lemma 3.2. K(X,.p,q) s quasi-isomorphic to S(T)[0].

Proof. Note that the sequence 1 — @ 2 P 2 T -5 1is exact and that the natural morphism
9: P — CH'(Yy,) induces isomorphisms of Galois modules CHY(Yy,,) = S4(P) for all p, by
[EG97, Lemma 2].

In addition, for all ¢, j, the diagram

Pi,j

ANQ ® §9(P) — 22 s Ni-1Q @ SIF1(P)
AQ @ CHY (Yaep) —= A71Q @ CHIT (Vi)

is commutative, where the vertical isomorphisms are induced by the aforementionned isomorphisms
Si(P) = CH(Yyep), the lower horizontal map is the one in the complex K(Xgep,i + j), and ¢;



is defined by

i (A AX) @ (&) =D (D0 A AXEA - xa) @ (a(xk)ér &) -
k=1

Therefore, the complex K (X,.p, ¢) is isomorphic to the Koszul complex K(a, ¢) defined by

NIQ 20 NG P2 720 g S3(P) L2 L 2 § g 11(P) £, 0(P).

And by [[171], Proposition 4.3.1.6, the natural morphism S%(3) : S4(P) — S4(T') induces a quasi-
isomorphism
K(a,q) = §(T),

which proves the lemma. O
Corollary 3.3. For alln > 0 there is a spectral sequence

EY? = HP9(F,SYT) ® Z(n — q)) = HY™(X,Z(n)).
Proof. The key point is to show that the motive of X,, is a pure Tate motive in the sense of

[HKOG, Definition 4.9]. That is, M (X,ep) = @20 CH (Xeep)* @ Z(p) [2p] in DML (Fiey).
Indeed, there is natural isomorphism (see [Voe00, Corollary 4.2.5]):

CHP (X ep) = Hom(M (X oep), Z(p) [2p]).-

Since CHP(Xep) is natural isomorphic to S? (T) [EG97, Lemma 2], which is a finitely generated
free abelian group, we get a natural map:

@5 M(Xoep) = €D CH (Xop)” © Z(p) 2]
p=>0
Let M = M(Xsep), M' = D,50 CH(Xsep)* @ Z(p) [2p] and we now prove that the above
morphism ¢ : M — M’ is an isomorphism. First, it is easy to see that ¢, M’ = CHP(Xp)*, and
Proposition @ and Lemma @ imply that the morphism ¢ induces isomorphisms ¢, M — ¢, M’,
and hence isomorphisms v, M = v,, M, since by definition v, M = ¢, (M)(n) [2n]. In addition, ¢

induces a natural map of exact triangles

vM —— vepy M —— vey M —— v, M [1]

I | | [

voM' —— vep M —— vy M —— v, M [1] .

We deduce by induction that for all n, the map v, M —% v.,M’ is an isomorphism, hence
@ : M — M’ itself is an isomorphism since v, M = M and v, M' = M’ for n big enough.

This gives us the required spectral sequence by pulling back the filtration to the big étale site
of Spec(F). O

We write KM for the Milnor’s K-group, K; for the general K-group and K;(—)inq for the
quotient K;/KM.



Corollary 3.4. Let T be a torus over a perfect field F' and X as above. Then we have:

0 i=0,1,2
T® H (Faep, 2(2)) = T ® K3(Foep)ina i =3

H (Xoep, Z(3)) = 4 T @ KM (Fuep) i=4
SAT) @ Fi, i=5
S3(T) i=6

Moreover, there is an exact sequence:
~ r ~ _ ~ T
(T K3 (Fop)) — HAFR,T@Q/Z(2) — HHL(X.Z(3)) — (SAD) @ B, ) —
H3(F, T ® Q/Z(2)) — ker (Hgt(x, Z(3)) — §° (:F)F) — H'(F,$*(T) @ FL,,).

This exact sequence holds for char F' = 0. If char F' = p > 0, then the conclusion still holds after
changing Q/Z(2) in the Galois cohomology groups of F' to Q/Z(2)[1/p].

Proof. For Hf (Xsep, Z(3)), it is a consequence of Corollary @ and [Kah96, Theorem 1.1] over
Fiep. As for the exact sequence of H, (X, Z(3)), from Lemma @ and the Hochschild—Serre spectral
sequence (see [BM13, Appendix B-IV] and [RS1§], (3.5)):

EYt = HP(F, Hi (Xaep, Z(3))) = HE (X Z(3)),
we obtain an exact sequence:
(T® K (Fuy)) — HA(F,T @ Ks(Faop)ina) — HG(X,2(3)) — ($*(D) @ F,) —
H*(F, T @ K(Foep)ina) — ker (HL(X, Z(3)) — SD)T) —H'(F,5*(T) @ FL,,).

Because of [MS91, Theorem 11.1] and [Weil3, VI.1.6], K3(Fiep)inag is divisible and its torsion
subgroup is Q/Z(2), therefore H(F, T ® K3(Fuep)ina) ~ H (F,T ® Q/Z(2)) (see [Weil3, VI.1.3.1]
for the case of char F' = p > 0). This proves the results. O

Lemma 3.5. K;(F) is uniquely divisible if F' is algebraically closed and i > 2.

Proof. See [BT73, Proposition 1.2]. O
Corollary 3.6. Let T be a torus over a perfect field F' and X as above. Then we have:

0 i=0,1

T @ H 2(Fyep, Z(3)) i =2,3,4

Hi (Xsep, Z(4)) = -
e S2(T) @ KM (Fup)  i=6

S3(T) ® FL, i=7
and
00— T ® K3 (Fuey) — HE(Xueps Z(4)) — S*(T) © K(Fuep)ina — 0
18 ezact.
Proof. The proof is similar to the proof of the corollary above. O



3.2 Cohomological invariants of tori

We prove here the main result describing cohomological invariants of degree 4 and 5. We use the
notation defined above. Let AP(—, KM) be the pth homology group of complex of cycle modules
[Ros96]. For any 0 < p < n, from [EG97, Lemma 2] and Kinneth formula [EKLV9E, Proposition
3.7], we have:

AP(BT, KM) — 22", AP(BT,.,, KM)'

UT QT
CHY(BT) © K (F) — ($D) 9 Ky (F.)

Let I be the kernel of étale cycle map CH*(BT) — HS (BT, Z(3)).

Theorem 3.7. Let T be a torus over a perfect field F'. Then there is a natural commutative

diagram:
(T ® K3 (Fsep))F v (T, Q/Z(2))norm ® F*
H*(F,T ® Q/Z(2)) - 2 0
A%(BT, K3") — H3,(BT,Z(3)) — Inv* (T, Q/Z(3)) norm I
~ l r
(52 (T) ® Fp) CH*(BT)0rs

H3(F, T ® Q/Z(2)) - ker (Flgt(BT,Z(?))) - 53(:F)F) — HY(F,S$%(T)

where the row, the column and the column that turns to a line are exact, and where vy is induced by
the map o in the Introduction. This conclusion holds for char F = 0. If char F' = p > 0, then the
conclusion still holds after changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Proof. First, the left column of the diagram continuing as the last line in the statement of the
theorem is well defined and is exact by Corollary @
Second, for any smooth variety X over a field F', the coniveau spectral sequence gives an exact
sequence:
0 — A2(X, K3') 25 HE (X, 2(3)) — H,, (X, HY(Q/Z(3)))
—CH*(X) — HS(X,7Z(3)).
Applying this sequence for the classifying T-torsor U? — U?/T for every i > 0, we obtain an exact
sequence
0 — A*(U'/T, K3") — HE (U /T, Z(3)) —Hy,, (U'/T. H'(Q/Z(3)))
—CH*(UY/T) — HS(U'/T,Z(3)).

® Fy,

sep

)



Those sequences for all ¢ give an exact sequence of cosimplicial groups (see [BM13, A-IV]):

0 — A*(U*/T,K3") — H} (U /T, Z(3)) —HY,,(U* /T, 1 (Q/Z(3)))
—CH*(U®/T) — HS.(U*/T,Z(3)).

Since A*(—, K}") is homotopy invariant [Ros96, Proposition 8.6], the first and fourth cosimplicial
groups in the above sequence are constant [BM13, Lemma A.4]. By Corollary @, each groups
H3 (U/T,7Z(3)) only depend on T, hence HS (U*/T,Z(3)) is also constant cosimplicial group.
Therefore [BM13, Lemma A.2] and Lemma provide an exact sequence:

0 — A*(BT,K3") — H.(BT,Z(3)) —Inv*(T,Q/Z(3))norm — CH*(BT) — HS.(U/T,Z(3)).
(3.1)

The middle line of the diagram in the Theorem comes from the exact sequence (@), from the

vanishing of the invariant group over Fj.,, and from the following commutative diagram:

CH*(BT) —— HS.(U/T,Z(3))

! l

CH?(BT4ep)t ——— S3(T)T.

Since ker(CHS(BT) — CH?’(BTSGP)) = CHg(BT)tOT by a restriction and corestriction argument,
we get the exactness of the whole middle line in the Theorem.
We now prove that the triangle involving the group Inv?(T, Q/Z(2))norm is commutative. The

~

following diagram is commutative by definition (the first line is well-defined since H*(BT, Z(2)) —
CH?*(BT) and H®(BT,Z(2)) = 0 for the Zariski topology):

(H3 (X, Z(2))bar /CH* (BT)) © H (F, Z(1)) ———— HE(X,Z(3))

¥ |

HO(X, H(Q/Z(2))oat @ F* ———— H(X,H"(Q/Z(3)))pa

k- ¥

IHV3 (T, Q/Z(Q))norm ® .Fhk % IHV4(T, Q/Z(?)))norm
Therefore, we get the required commutativity by inverting the isomorphisms. O

Similarly, for degree 5 cohomological invariants, we can also deduce from the coniveau spectral

sequence an exact sequence:

0 — A2(X, K1) L5 F5(X,2(4)) —HY,, (X, H(Q/Z(4)))
—AX, KM — H (X, Z(4)).

Combining this exact sequence and the argument in the proof above, we obtain an exact sequence

involving degree 5 cohomological invariants:

0 — A*(BT,K}") — HS (BT, Z(4)) — Inv*(T, Q/Z(4)) norm — A3(BT,K}') — HZ (BT, Z(4)).



The Hochschild—Serre spectral sequence (see [RS1§], (3.5)):
EY* = HP(F, HY (BTsep, Z(4))) = H{(BT,Z(4)),

and Corollary @ give rise to the Theorem below, taking into account that the groups H*(Flsep, Z(3))
are uniquely divisible for i = 0 and 7 = 2 (see for instance [Geil7], Theorem 1.1):

Theorem 3.8. Let T be a torus over a perfect field F. Then there is an exact commutative

diagram:

H3(F, T @ H'(Fyep, Z(3))) HY(F, T @ H'(Fyep, Z(3)))

A%(BT,KM) — HS (BT, Z(4)) — nv®(T,Q/Z(4))norm — A*(BT,KM) — HI (BT, Z(4))

HY(PSHT) © Q/ZQ)) — Q —— (S(T) @ K} (Fuy)T HA(F, (D) 0 Q/22) — R — (D) @ FL,)

where H'(F, S2(T)®Q/Z(2))’ := ker (Hl(F, S2(T) ® Q/Z(2)) = HY(F,T @ H(Fsep, 2(3)))) and
H2(F, S2(T)®Q/Z(2)) := ker (H2(F, S%T) ® Q/Z(2)) = H(F, T @ H*(Fuep, Z(S)))) J(S2(T)®
K (Fyep))

3.3 Unramified cohomology

Given a field extension L/F, the i-th unramified cohomology group of L/F is defined as the

group
H(L/F,Q/Z(j))) == (| im (H'(A,Q/Z(j)) — H'(L,Q/Z(j))),

AeP(L)

where P(L) is the set of all rank one discrete valuation rings which contain F' and have quotient
field L. They can also be defined by the intersection of the kernel of the residue maps 0,4, for
A € P(L) when char(F) =0 [CT95]. If X is a smooth integral variety over F, the i-th unramified
cohomology group of X is defined as H: (F(X)/F,Q/Z(j)).

Corollary 3.9. Let S be a torus over a perfect field F, and let

1—T—P—85—1

10



be a flasque resolution of S. Then the following commutative diagrams are exact:

(To K8 () A3, (F(S),Q/2(2))  F*
H(F,T i Q/72(2)) - 2 0
A*(BT, K3") — H(?t(B%?Z(g)) — Hp, (F(S), Q/Z(3)) I 0
(52 (T) i zaj;p)F CH® (BT )tors
\

HY(F,T ©Q/Z(2)) » ker (HS(BT, Z(3)) > S* (D)) — H'(F,$*(T) @ Fi,)

and

H3(F,T ® H'(Fuep, Z(3))) H*(F,T ® H'(Fuep, Z(3)))

| |

A%(BT, K}') < HE(BT,Z(4)) — H,,(F(S),Q/Z(4)) —— A*(BT,K}") — H{ (BT, Z(4))

J |

H(F,S%(T) @ Q/22)) — Q —— (D) ® Ky (Fuy))T HESAT) @ Q/2)) — B — (D)0 FL,)

|

0 0

where HY(F, ST ® Q/Z(2)) := ker (Hl(F, ST ® Q/Z(2)) — HYF,T @ Hl(qup,Z(?,)))) and

HA(F, $*T2Q/Z(2))’ 1= ker (H2(F, 8T © Q/2(2))/(SX(T) © K (Foep))T = HY(F, T ® H'(Fucy, Z(3))) )
This conclusion holds for char F' = 0. If char F = p > 0, then the conclusion still holds after
changing Q/Z(2) in the Galois cohomology groups of F to Q/Z(2)[1/p].

Proof. It is a consequence of Theorem 5.7 in [BM13] and of Theorems @ and @ O

4 Examples

In this section, we apply the main results to compute explicitely invariant groups for some
families of tori. In particular, we provide an example of torus with a non-trivial invariant of degree

4, and we compute the invariant groups in the case of norm tori.

Example. Let us construct a torus 7" with a non-trivial degree 4 invariant that does not come

from a lower degree invariant.

11



In [Sal22], Sala constructs a torus T over a field F such that CH?(BT ), is nontrivial, as
follows: consider the following exact sequence of QQg-modules

0—>13—>@—>f::@/13—>0,

where Q is Z[Qs] and P is Z[Qs/ {1, —1}]. Here Qg = {i,4,k|i* = j> = k* = ijk = —1} is the
quaternion group of order 8. Let e,e’,z,2’,y,1, 2z, 2/ denote the elements associated respectively
to 1,—1,4,—i, 4, —j, k, —k inside the character group Q. Then (e+e, x4+ y+y,2+2)isa
Z-basis of the sublattice P. In addition, the classes of e, x,y, z in T are a Z-basis of 7. Then we

have a decomposition as a Jg-module:
S*T)=M@ P, ® P, ® P,

where the submodules on the right hand side are defined by M := Zee & Zxx & Zyy & Zzz,
Py :=7(ex +yz) ® Llex —yz), P, :=Z(ey+x2) ® Z(ey — xz) and P, := Z(ez + xz) ® L(ez — xz).
It is easy to see that M is a rank 4 permutation Qg-module which is isomorphic to Z [Qs/{1, —1}].

Let N, := Z(ex—yz) C P, be the rank 1 submodule generated by ex—yz, and let N, := P, /N,.

Then we have an exact sequence of (Jg-modules

0—-N, P, >N, —0

and N, (resp. N,) is isomorphic to Z with the non-trivial action of Qg/(j) (resp. of Qs/(k)).

Let now L/F be a Galois extension with Galois group Qs. Let K be the subfield fixed by
{1,-1} and K, K,, K3 be the subfields of K with Galois groups {1,4}, {1,5}, {1,k} over F'
respectively.

By Shapiro Lemma and Hilbert 90, we have H!(F, M®L*) =2 H*(Qs, M®L*) = HY(L/K,L*) =
0, and exact sequences

0— HY(F,N, ® L*) — Br(F) — Br(K>)

and
0— HY(F,N, ® L*) — Br(F) — Br(K3) .

Hence, the exact sequence
0 HY(FN,®L*)— HY(F,P,® L*) - H'(F,N, ® L*)
gives rise to an exact sequence
0 — Br(Ky/F) - H'(F,P, ® L*) — Br(K3/F).
Using a similar argument for P, and P,, we get an exact sequence:

0 — Br(K; /F)@Br(K,/F)®Br(Ks/F) — H'(F, 5*(T)®F",

sep

) = Br(Ky/F)®Br(Ky/F)@Br(Ks/F) .

If we restrict to F' being the maximal abelian extension of an algebraic extension of QQ, then these
relative Brauer groups are trivial. Hence H!(F,S? (f) ® Fr

wep) = 0, since Q2 has cohomological

dimension 1, therefore the non-trivial element in CH?(BT);,, given by Sala [Sal22, Theorem 5.8]

defines a non-trivial degree 4 invariant by Theorem @, and this invariant does not come from
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degree 3 cohomological invariants by cup with F*. Note that Qg is indeed a Galois group of F' by
[Lwab3].
In particular, we proved the following;:

Proposition 4.1. There exists an explicit field F of characteristic zero and an explicit 4-dimensional
F-torus T with a non-trivial degree 4 invariant that does not come from a degree 3 invariant by

cup-product with F*.

Example. Let us consider now a torus 7" that fits into an exact sequence:
1—T —P—G), —1

where P is a quasi-trivial torus. In particular, norm one tori fit into such exact sequences with

n=1.

From the construction at the beginning of section @, the natural map BT — BP is a G],-

torsor and BP is approximated by cellular varieties.

Proposition 4.2. Let T be a torus as above over an infinite field F, then A'(BT, KM) ~ S (T)F®
KM.(F). In particular, if i = j, CH'(BT) ~ S{TT.

Proof. Let X and Y be as in the beginning of section @, approximating BT and BP respectively.
Then the map X — Y is a G]) -torsor. We may assume that Y is a cellular variety. Let d be
the dimension of X. From the arguments of [EKLV9E, 3.10-3.12] and [Sal22, Proposition 4.4], we

obtain a spectral sequence:
1 n d—p—q( P\T M d—p— M
E,,=ANZ"® S"PTUP) @ K;Z (F) = A" "X, K;").

Therefore, the second page is Ef , = Sd_q(f)r ® K]qu(F and E2 = 0 for p # 0 because of
Proposition @ and Lemma @ This proves A"(BT, K ') ~ ST ® KM (F). O

Theorefore, the group of degree 3 normalized cohomological invariants of T is isomorphic to
Inv? (T, Q/Z(2)) norm =~ H'(F,T°)

by Theorem @
If in particular T' = R(Ll/)F((G}m)7 P =Ry/r(Gy) and n = 1, we get
Inv?(T, Q/Z(2))norm ~ H'(F,T°) ~ Br(L/F).

From Proposition @, A%(BT, KM) ~ §2(T)F @ F* and A3(BT,KM) ~ $3(T)T. Therefore,

considering the commutative diagram:

S%T)' @ F* ~ A2(BT,KM) — HZ (BT, Z(3))

—

(e rz,)
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Theorem @ implies that the following exact sequence computes the group of degree 4 invariants:
~ ~ r
0 HX(F,T ©Q/2(2)/ (T K} (Foey)) = v (T, Q/Z(3)) normm
~ r -~ ~
- (UM e Fy,) /(D) @ FL,) » H(RT 2 Q/2(2).

For degree 5 invariants, assume for simplicity that, from now on, F' is of cohomological dimen-
sion < 1. Then Theorem @ can be simplified as follows:

HY(F,5%(T) ® Q/Z(2))

/

A?(BT,K}') ——— HS (BT, Z(4)) ——— Inv®(T,Q/Z(4))norm

|

(82@) & K (Fuy))

Therefore we obtain an exact sequence:

0 — ker (52 (D) @ KM(F) = S*(T) ® Ké”(Fsep)) — HY(F, S*(T) ® Q/Z(2)) — Inv® (T, Q/Z(4))norm
S ($2(0) 0 K (Fuy) /(S0 @ K3 (F)) 0.

Let K/F be a splitting field of T and G be its Galois group. The assumption that F has
dimension 1 provides an exact sequence for H'(F, Sz(f) ® Q/Z(2)) by Hochschild-Serre spectral

sequence:
0— HY(G,S*(T) ® Q/Z(2)" %) — H'(F,S*(T) ® Q/Z(2)) — H'(K,S*(T) ® Q/Z(2))°
— H*(G,S*(T) ® Q/Z(2)' %) — 0.
The proof of Lemma @ provides an exact sequence:
0— A2Z" - Z"® P — S*(P) — S*(T) — 0.

Note that the composition S2(P) — P ® P — S2(P) is multiplication by 2, where the first
homomorphism maps = -y to  ® y + y ® = and the second is the natural quotient. If we assume
that P is a direct sum of several copies of Z[G] (for instance, if T is norm one torus) and |G| is odd
(or consider the p-part of each groups, p # 2), then H'(G, S*(P) ® Q/Z(2)"x) is trivial for i > 1
because of the Shapiro’s lemma and we get H* (G, S2(T)@Q/Z(2)' ) ~ H*2(G,Q/Z(2)F )& ™5
for i > 1. Therefore, in this case, we obtain an exact sequence describing H*(F, S%(T) ® Q/Z(2)):

n(n—1)
2

0 HY(G.Q/Z2) )5 o H(F,%(D) 0 Q/2(2) » ($2T) & B (K.Q/2(2))"

n(n—1)
2

— HYG,Q/z(2)"'=)® — 0.
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