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31 janvier 2026

Dans ce chapitre, après quelques généralités sur les anneaux et les idéaux, nous
étudions les anneaux euclidiens et les anneaux principaux. Au passage, nous revoyons
les propriétés cruciales des anneaux Z et K[X], qui seront fondamentales dans les
chapitres d’arithmétique et d’algèbre linéaire, respectivement.

1 Généralités et premiers exemples

1.1 Anneaux

Commençons par définir le principal objet d’étude de ce chapitre.

Définition 1.1. Un anneau est un triplet (A,+, ·) où A est un ensemble muni de deux

lois de composition interne A×A
·−→ A, notée + et ·, vérifiant

1. (A,+) est un groupe abélien.

2. la loi · est associative.
3. pour tous x, y, z, t ∈ A, (x+ y) · (z + t) = x · z + x · t+ y · z + y · t.

Le dernier axiome est appelé ”distributivité”.

Exemples 1.2. — (Z,+, ·) est un anneau.
— (Mn(K),+, ·) et (L(V ),+, ◦) (où K est un corps et V est un espace vectoriel)

sont des anneaux.
— (2Z,+, ·) est un anneau.
— l’ensemble des fonctions holomorphes sur C, muni de l’addition et de la multi-

plication, est un anneau.
— si K est un corps (et même un anneau commutatif), K[X] et K[[X]] sont des

anneaux.
— si n ∈ N, l’ensemble Z/nZ des entiers modulo n, muni de l’addition et de la

multiplication des entiers modulo n, est un anneau.

Lemme 1.3. Soit A un anneau. Alors 0 · x = x · 0 = 0 pour tout x ∈ A. On dit que 0
est un élément absorbant.

Démonstration. On a 0 · x = (0 + 0) · x = 0 · x+ 0 · x, donc en simplifiant par 0 · x, il
reste 0 · x = 0.

Cette définition est trop générale pour nous. Tous les anneaux que nous croiserons
seront unitaires :
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Définition 1.4. Soit A un anneau.
On dit que A est unitaire s’il existe un élément 1 ∈ A qui est un élément neutre

pour la loi ·, i.e. tel que pour tout x ∈ A, 1 · x = x · 1 = x.

À partir de maintenant, ”anneau” signifie ”anneau unitaire”.
Rappelons qu’un tel élément est nécessairement unique. On l’appelle ”élément

unité” ou ”unité” de A.

Définition 1.5. Un anneau A est dit commutatif si la loi · est commutative.

Définition 1.6. Soit A un anneau unitaire.
Un élément x ∈ A est dit inversible s’il existe y ∈ A (nécessairement unique) tel

que x · y = y · x = 1. Dans ce cas, y est noté x−1.
L’ensemble des éléments inversibles de A est noté A×.

Proposition 1.7. L’ensemble A× muni de la loi · est un groupe.

Remarque 1.8. Attention, si A est unitaire non nul, (A, ·) n’est jamais un groupe car 0
n’est pas inversible.

Exemples 1.9. — Z× = {±1}.
— A[X]× = A×.
— A[[X]]× = {

∑
n≥0 anX

n : a0 ∈ A×}.
— Mn(K)× = GLn(K).
— Z[i]× = {±1,±i}.
— Z[

√
3]× = {a+ b

√
3 : (a, b) ∈ Z2 tels que a2 − 3b2 = 1} = {±(2 +

√
3)k, k ∈ Z}.

Définition 1.10. Un anneau non nul A est une algèbre à division (ou un corps gauche,
ou corps non commutatif) si tout élément non nul est inversible.

Un anneau non nul A est un corps si A est commutatif et tout élément non nul est
inversible.

Exemples 1.11. — les anneaux Z/2Z, Q, R, C, Q(X) sont des corps.
— la R-algèbre des quaternions H est une algèbre à division.

Définition 1.12. Soit A un anneau. Un élément x ∈ A est un diviseur de 0 (à gauche)
si x ̸= 0 s’il existe y ̸= 0 tel que x · y = 0.

Définition 1.13. Soit A un anneau commutatif.
On dit que A est intègre si A est non nul et A n’a pas de diviseur de 0, c’est-à-dire

si pour tous x, y ∈ A, x · y = 0 implique x = 0 ou y = 0.

Exemples 1.14. — Z, K[X] sont des anneaux intègres.
— Z/4Z et Z/6Z ne sont pas des anneaux intègres.

Proposition 1.15. Un anneau intègre fini est un corps.

Démonstration. Soit A un tel anneau. Soit x ∈ A non nul. L’application A → A définie
par y 7→ x · y est injective (car A est intègre), donc surjective (car A est fini), donc il
existe y ∈ A tel que xy = 1, donc x est inversible.

Théorème 1.16. Soit n ≥ 1. Les assertions suivantes sont équivalentes :

1. l’anneau Z/nZ est intègre.
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2. l’anneau Z/nZ est un corps.

3. l’entier n est premier.

Démonstration. On donnera une preuve plus générale de cet énoncé un peu plus loin.
— La proposition 1.15 assure que 1 et 2 sont équivalents.
— Si n n’est pas premier, alors n = kd, avec k, d ≥ 2, alors k̄, d̄ ̸= 0̄ dans Z/nZ, et

k̄d̄ = 0̄, donc Z/nZ n’est pas intègre.
— Si n est premier et si k̄, d̄ ∈ Z/nZ tels que k̄d̄ = 0̄ avec k̄ ̸= 0̄. Alors n divise kd,

et n ne divise pas k, donc n divise d (lemme d’Euclide), i.e. d̄ = 0̄, donc Z/nZ
est intègre.

Définition 1.17. Soit A un anneau.
Un élément a ∈ A est dit nilpotent s’il existe n ≥ 1 tel que an = 0.

Définition 1.18. Soit A un anneau commutatif. On dit que A est réduit si A ne
contient aucun élément nilpotent non nul.

Définition 1.19. Soit A un anneau commutatif. Un élément a ∈ A est dit irréductible
si a /∈ A× et pour tous b, c ∈ A tels que a = b · c, on a a ∈ A× ou b ∈ A×.

Exemple 1.20. Dans Z, les éléments irréductibles sont exactement les nombres pre-
miers.

Dans K[X], les éléments irréductibles sont exactement les polynômes irréductibles
non constants.

1.2 Sous-anneaux

Intéressons-nous maintenant à la notion de sous-objet :

Définition 1.21. Soit A un anneau. Un sous-anneau de A est une partie B de A telle
que

1. (B,+) est un sous-groupe de (A,+).

2. B est stable par · (et contient 1 si A est unitaire).

Exemples 1.22. 1. Pour tout anneau A, {0} et A sont des sous-anneaux de A.

2. Z[i], Z[j], Q(i), Q[
√
2] sont des sous-anneaux de C.

1.3 Morphismes

Maintenant que nous avons défini les objets (à savoir les anneaux), il s’agit de définir
un moyen de comparer ces objets, à savoir les morphismes entre objets.

Définition 1.23. Soient A et B deux anneaux unitaires. Une application φ : A → B
est un morphisme d’anneaux seulement si φ est un morphisme de groupes additifs,
φ(1A) = 1B et pour tous x, y ∈ A, φ(x · y) = φ(x) · φ(y).

Définition 1.24. On dit qu’un morphisme d’anneaux φ : A → B est un
— isomorphisme si φ est une bijection.
— endomorphisme si A = B.
— automorphisme si A = B et φ est un isomorphisme.
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Proposition 1.25. Soit φ : A → B un isomorphisme. Alors φ−1 : H → G est un
morphisme d’anneaux.

Définissons deux sous-anneaux naturellement associés à un morphisme d’anneaux :

Définition 1.26. Soit φ : A → B un morphisme d’anneaux.
Le noyau de φ, noté ker(φ), est φ−1({0B}). L’image de φ, notée im (φ), est φ(A).

Proposition 1.27. Soit φ : A → B un morphisme d’anneaux.
Alors ker(φ) (resp. im (φ)) est un sous-anneau de A (resp. B).

1.4 Algèbre sur un anneau

Définition 1.28. Soit A un anneau commutatif. Une A-algèbre est un anneau B muni
d’un morphisme d’anneaux A → B tel que l’image de A soit contenue dans le centre
de B.

Intuitivement, c’est un mélange entre la notion d’anneau et celle d’espace vectoriel
(sur l’anneau A).

En particuler, une A-algèbre commutative est exactement la donnée d’un anneau
commutatif B et d’un morphisme d’anneaux A → B.

Exemples 1.29. 1. A est naturellement une A-algèbre.

2. Tout anneau B est naturellement une Z-algèbre.

3. Si A = K est un corps, une K-algèbre est un K-espace vectoriel muni d’une
structure d’anneau compatible à celle de K.

4. Si I est un ensemble, l’algèbre des polynômes A[(Xi)i∈I ] est naturellement une
A-algèbre commutative.

5. L’ensemble des matrices carrées Matn(A) est une A-algèbre, non commutative
en général.

6. Si K ⊂ L est un sous-corps d’un corps L (on parle d’extension de corps), alors
L est une K-algèbre.

7. L’algèbre des quaternions de Hamilton, notée H, est une R-algèbre, non com-
mutative, de dimenson 4.

8.

On dispose d’une notion naturelle de morphisme de A-algèbres : si B et C sont
deux A-algèbres, un morphisme de A-algèbres φ : B → C est un morphisme d’anneaux
tel que le diagramme évident

B
φ // C

A

__ ??

soit commutatif.
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2 Idéaux d’un anneau

La notion de sous-anneau est trop faible pour pouvoir faire des quotients qui soient
naturellement des anneaux. La bonne notion est celle d’idéal.

Définition 2.1. Soit A un anneau commutatif. Une partie I ⊂ A est un idéal si
— I est un sous-groupe de (A,+).
— Pour tout a ∈ A et tout x ∈ I, on a a · x ∈ I.

Exemples 2.2. — {0} et A sont des idéaux de A.
— Pour tout a ∈ A, l’ensemble aA := {a ·x, x ∈ A} est un idéal de A, noté (a). Un

tel idéal est dit principal.
— Si n ∈ Z, nZ est un idéal de Z.
— Dans l’anneau K[X,Y ], l’ensemble {XP + Y Q,P,Q ∈ K[X,Y ]} est un idéal.

Définition 2.3. Soit A un anneau commutatif. Pour toute partie P ⊂ A, on note (P )
l’idéal engendré par la partie P , i.e. le plus petit idéal (pour l’inclusion) contenant P .

Concrètement, (P ) peut être décrit comme l’intersection de tous les idéaux de A
contenant P (une intersection d’idéaux est un idéal), ou alors comme l’ensemble des
combinaisons linéaires

∑n
i=1 aipi, avec ai ∈ A et pi ∈ P .

Par exemple, dans K[X,Y ], (X,Y ) = {XP + Y Q,P,Q ∈ K[X,Y ]}.

Lemme 2.4. Soit A un anneau commutatif et I un idéal de A.
— Si I contient un élément inversible de A, alors I = A.
— On suppose A intègre. Soient a, b ∈ A. Alors (a) = (b) si et seulement s’il existe

u ∈ A× tels que b = u · a. On dit alors que a et b sont associés.

Démonstration. — Si a ∈ I est inversible, alors a−1a ∈ I, donc 1 ∈ I, donc pour
tout a ∈ A, a = a · 1 ∈ I. Donc I = A.

— Si a = u · b, alors clairement (b) ⊂ (a). Comme u est inversible, on a b = u−1 · a,
donc (a) ⊂ (b). Donc finalement (a) = (b).

Réciproquement, supposons que (b) = (a). Alors a divise b et b divise a, donc
il existe u, v ∈ A tels que a = bv et b = au. Donc a = auv, donc a(uv − 1) = 0.
Puisque A est intègre, on a donc a = 0 ou uv = 1. Dans le premier cas, on a
aussi b = 0, donc a = b. Dans le second cas, on a b = ua et uv = 1, donc u ∈ A×.

Proposition 2.5. Soit f : A → B un morphisme d’anneaux commutatifs.
Alors ker(f) est un idéal de A.

Démonstration. Vérification facile.

Théorème 2.6. Les idéaux (resp. les sous-groupes) de Z sont exactement les nZ, avec
n ∈ N.

Démonstration. cf chapitre précédent. Il suffit seulement de vérifier en plus que tout
sous-groupe de Z est un idéal (cela résulte de la définition de la multiplication dans Z
à partir de l’addition).
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Définition 2.7. Soit A un anneau commutatif.
Considérons l’unique morphisme d’anneaux φ : Z → A, défini par φ(n) = n1A :=

1A + · · ·+ 1A (n fois) si n ≥ 0. Le noyau de φ est un idéal de Z, de la forme nZ pour
un certain n ∈ N unique. Cet entier n est appelé la caratéristique de A.

Autrement dit, c’est le plus petit entier (s’il existe) n ≥ 1 tel que n1A = 0A. Si un
tel entier n’existe pas, la caractéristique de A est nulle.

La notion d’idéal est cruciale pour parler de quotients d’anneaux commutatifs.

Proposition 2.8. Soit A un anneau commutatif et I un idéal de A.
Alors il existe une unique structure d’anneau sur l’ensemble A/I de sorte que le

morphisme canonique π : A → A/I soit un morphisme d’anneaux.

Démonstration. La structure d’anneau recherchée est unique, car π est surjective et on
doit avoir, pour tout a, b ∈ A, π(a) + π(b) = π(a+ b) et π(a) · π(b) = π(a · b).

Pour l’existence, il faut vérifier que ces formules sont bien définies. Pour l’addition,
il s’agit du quotient d’un groupe abélien par un sous-groupe, donc la vérification a
été faite dans le chapitre précédent. Vérifions la multiplication. Pour que la formule
π(a) · π(b) = π(a · b) soit une définition d’une multiplication sur A/I, il faut et il
suffit que pour tous a, b ∈ A, et i, j ∈ I, on ait π(a · b) = π((a + i) · (b + j)). Or
(a+i)·(b+j) = a·b+a·j+b·i+i·j, donc il suffit de montrer que a·j+b·i+i·j ∈ I = kerπ.
Ceci résulte de la définition d’un idéal (et on voit que l’on a vraiment besoin de la
stabilité de I par multiplication par tout élément de A et pas seulement par un élément
de I).

Théorème 2.9. Soit f : A → B un morphisme d’anneaux commutatifs et I un idéal
de A. L’idéal I est contenu dans ker(f) si et seulement s’il existe un unique morphisme
f : A/I → B tel que f = f ◦ π, autrement dit le diagramme suivant

A
f //

π

!!

B

A/I
f

==

.

Démonstration. La propriété universelle du quotient par un sous-groupe assure l’existe
d’un unique morphisme de groupes additifs f : A/I → B tel que f = f ◦ π. Montrons
que f est un morphisme d’anneaux. Soient ā, b̄ ∈ A/I, et a, b ∈ A tels que π(a) = ā et
π(b) = b̄. Alors par définition de la multiplication sur A/I, on a π(a · b) = ā · b̄, donc
f(ā · b̄) = f(a · b) = f(a) · f(b) = f(ā) · f(b̄).

Corollaire 2.10. Soit f : A → B un morphisme d’anneaux commutatifs. Alors f
induit un isomorphisme d’anneaux

f : A/ ker(f)
∼−→ im (f) .

Démonstration. Preuve identique au résultat analogue de théorie des groupes.

Définition 2.11. Soit A un anneau commutatif, I et J deux idéaux de A. On définit
les idéaux suivants :

— I + J := {i+ j : (i, j) ∈ I × J} est l’idéal engendré par I et J .
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— IJ := {
∑r

k=0 ikjk, r ∈ N, ik ∈ I, jk ∈ J} est l’idéal engendré par les produits
d’un élément de I et d’un élément de J .

Proposition 2.12 (Théorème chinois, version générale). Soit A un anneau commutatif,
I et J deux idéaux de A tels que I + J = A.

Alors I∩J = IJ et le morphisme naturel A → A/I×A/J induit un isomomrphismes
d’anneaux

A/IJ = A/(I ∩ J)
∼−→ A/I ×A/J .

Démonstration. Notons π : A → A/I × A/J . Un élément a ∈ A est dans kerπ si et
seulement si a ∈ I et a ∈ J , donc kerπ = I ∩ J . En général, on a l’inclusion d’idéaux
IJ ⊂ I ∩ J .

Puisque I + J = A, il existe i ∈ I et j ∈ J tels que i + j = 1 (analogue d’une
relation de Bézout). Donc pour tout x ∈ I ∩ J , on a x = 1 · x = (i+ j) · x = i · x+ j · x,
donc x ∈ IJ . Donc on a bien IJ = I ∩ J = kerπ.

Donc en passant au quotient, π induit un morphisme injectif π̄ : A/IJ → A/I×A/J .
Montrons pour finie que π̄ est surjectif. Soit (ā, b̄) ∈ A/I × A/J , et on choisit a (resp.
b) dans A des représentants de ā et b̄. Alors π(ib+ ja) = (ja, ib). Comme i+ j = 1, on
a j̄ = 1 dans A/I et ī = 1 dans A/J . Donc finalement π(ib+ ja) = (a, b), ce qui assure

que π est surjective. Donc π̄ est bien un isomorphisme A/IJ
π̄−→ A/I ×A/J .

Définition 2.13. Un idéal I d’un anneau commutatif A est dit
— premier si l’anneau quotient A/I est intègre.
— maximal si l’anneau quotient A/I est un corps.

En particulier, tout idéal maximal est premier.

Exemple 2.14. Soit n ≥ 1. Le théorème ?? assure que dans Z, l’idéal I = (n) est
premier si et seulement si (n) est maximal si et seulement si n est un nombre premier.

Proposition 2.15. Soit I un idéal de A.
— l’idéal I est premier si et seulement si pour tout a, b ∈ A, si a · b ∈ I, alors a ∈ I

ou b ∈ I.
— l’idéal I est maximal si et seulement si I est maximal (pour l’inclusion) parmi

les idéaux de A distincts de A.

Démonstration.

Proposition 2.16. Soit A un anneau commutatif intègre et p ∈ A.
Si (p) est premier, alors p est irréductible.

Démonstration. On suppose (p) premier. Soient x, y ∈ A tels que p = xy. Alors xy ∈
(p), donc comme (p) est premier, x ou y est dans (p), par exemple x. Alors p divise x,
donc x = pz pour un z ∈ A. Donc p = pzy, donc puisque A est intègre, zy = 1, donc y
est inversible. Donc p est irréductible.

Remarque 2.17. La réciproque de cet énoncé est fausse en général. Par exemple, dans
l’anneau A = Z[i

√
5], on a les égalités suivantes :

(1 + i
√
5) · (1− i

√
5) = 6 = 2 · 3 .
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En particulier, l’élément 2 est irréductible, car si on a a+ib
√
5 divise 2, alors en calculant

les modules au carré, on en déduit que a2+5b2 divise 4, donc a2+5b2 ∈ {1, 2, 4}, donc
b = 0, et a = ±1,±2. Donc a+ ib

√
5 = ±1,±2, ce qui assure que 2 est irrédutible dans

A. En revanche, (1 + i
√
5) · (1 − i

√
5) = 6 est dans l’idéal (2), mais (1 ± i

√
5) /∈ (2)

de façon évidente. Donc (2) n’est pas premier. De façon équivalente, le quotient A/(2)
s’identifie à

(
Z[X]/(X2 + 5)

)
/(2) ∼= F2[X]/(X2 +1) ∼= F2[X]/((X +1)2) qui n’est pas

intègre, car X + 1 est nilpotent. Donc (2) n’est pas premier.

3 Anneaux principaux et euclidiens

3.1 Généralités

Les anneaux principaux et euclidiens sont les anneaux idéaux pour faire de l’arithmétique.
Ils sont cruciaux en théorie des nombres, mais aussi en algèbre linéaire.

Définition 3.1. Soit A un anneau commutatif.
On dit que A est principal si A est intègre et tout idéal de A est principal.

Exemples 3.2. — Z est principal.
— K[X] est principal.
— Z[X], K[X,Y ], Z[i

√
3], Z[

√
5], Z[i

√
5] ne sont pas principaux.

Dans les deux cas, la preuve repose sur la division euclidienne.

Proposition 3.3. Soit A un anneau principal et p ∈ A. Les assertions suivantes sont
équivalentes :

— p est irréductible.
— (p) est premier.
— (p) est maximal.

Démonstration. — On suppose p irréductible. Puisque p n’est pas inversible, (p)
n’est pas égal à A. Soit I un idéal de A contenant (p). Puisque A est principal,
il existe a ∈ A tel que I = (a). Comme (p) ⊂ (a), l’élément a divise p. Puisque
p est irréductible, soit a est inversible, soit a = up, avec u ∈ A×. Donc I = (a)
est égal à A ou à (p), ce qui assure que (p) est maximal.

— L’affirmation ”maximal” implique ”premier” est évidente.
— L’affirmation ”premier” implique ”irréductible” est vraie en général, et démontrée

en proposition 2.16.

Corollaire 3.4 (lemme d’Euclide). Pour tout p ∈ A irréductible, pour tous a, b ∈ A,
si p divise ab, alors p divise a ou p divise b.

Démonstration. C’est eaxctement l’affirmation ”irréductible” implique ”premier”.

Définition 3.5. Soit A un anneau commutatif. On dit que A est euclidien si A est
intègre et il existe une application (appelée stathme) φ : A \ {0} → N telle que pour
tout a, b ∈ A avec b ̸= 0, il existe q, r ∈ A tels que{

a = b · q + r
r = 0 ou φ(r) < φ(b) .
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Exemples 3.6. — Z est euclidien avec φ(n) := |n|.
— Z[i] est euclidien φ = | · |2.
— K[X] est euclidien avec φ(P ) := deg(P ).

Démonstration. — Pour Z, soient a, b ∈ Z avec b ̸= 0. Si b > 0, notons q ∈ Z
l’entier maximal tel que q ≤ a

b (i.e. q est la partie entière de a
b ). Alors r := a−bq

convient. Si b < 0, on note q ∈ Z l’entier minimal tel que q ≥ a
b (i.e. q est la

partie entière supérieure de a
b ). Alors r := a − bq convient. Notez que l’on n’a

pas besoin de distinguer ces deux cas en fait (puisqu’on n’exige pas que le reste
soit positif).

— Pour Z[i], pour tout a, b ∈ Z avec b ̸= 0, on considère a
b ∈ Q[i]. il existe q ∈ Z[i]

tel que |ab − q| ≤
√
2
2 (faire un dessin). On en déduit que |a − bq|2 ≤ |b|2

2 , donc
en posant r := a− bq, on a le résultat souhaité.

— Pour tout A =
∑n

i=0 aiX
i, B =

∑m
j=0 bjX

j ∈ K[X], avec B ̸= 0 (donc on peut
supposer bm ̸= 0), on a deg(A) < deg(B) ou (deg(A) > deg(B) et deg(A −
B an

bm
Xn−m) < deg(A)). Dans le premier cas, on pose Q = 0 et R = A. Dans

le second, on sait par récurrence sur le degré qu’il existe Q′, R′ tels que A −
B an

bm
Xn−m = BQ′+R′ avec deg(R′) < deg(B). Alors A = B( anbmXn−m+Q′)+R′,

donc Q = an
bm

Xn−m +Q′ et R = R′ conviennent.

Remarque 3.7. Soit S un anneau commutatif. L’algorithme de division euclidienne
des polynômes dans K[X] s’adapte dans S[X], pourvu que le coefficient dominant du
diviseur soit inversible dans R. Plus précisément :

Pour tout A,B ∈ S[X], si le coefficient dominant de B est inversible dans S, alors
il existe un unique couple (Q,R) dans S[X] tel que A = BQ+R et deg(R) < deg(B).

En particulier, si un polynôme P ∈ S[X] s’annule en un élément α ∈ S, alors on a
une factorisation P = (X − α)Q dans S[X], avec degQ = degP − 1.

Une conséquence utile de cette dernière remarque :

Proposition 3.8. Soit A un anneau commutatif et P ∈ A[X]. Pour tout a ∈ A, on a
P (a) = 0 si et seulement si X − a divise P dans A[X].

Démonstration. Soit a ∈ A. Si X − a divise P , alors clairement P (a) = 0. Montrons
maintenant la réciproque. Notons P = (X − a)Q + R la division euclidienne (au sens
généralisé de la dernière remarque) dans A[X], avec R polynôme constant. Alors P (a) =
0 si et seulement si R(a) = 0 si et seulement si R = 0 si et seulement si X − a divise
P .

Proposition 3.9. Soit A un anneau commutatif intègre. Soit P ∈ A[X] un polynôme
de degré d.

Alors P a au plus d racines distinctes dans A.

Démonstration. Soient a1, . . . , ar ∈ A des racines distinctes de P . Par la proposition
précédente, il existe P1 ∈ A[X] tel que P = (X − a1)P1. Montrons que a2, . . . , ar
sont racines de P1. Pour tout i ≥ 2, on a 0 = P (ai) = (ai − a1)P1(ai). Or ai ̸= a1
et A est intègre, donc P1(ai) = 0. Donc par récurrence, il existe Q ∈ A[X] tel que
P = (X − a1) . . . (X − ar)Q. En calculant les degrés, on a d = r+ deg(Q), donc r ≤ d,
ce qui conclut la preuve.
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Théorème 3.10. Un anneau euclidien est principal.

Démonstration. Soit I un idéal de A, non nul. Il existe un élément a ∈ I \ {0} de
valuation minimale. Soit alors α ∈ I. On effectue la division euclidienne de α par a : il
existe (q, r) ∈ A2 tels que α = aq + r avec r = 0 ou φ(r) < φ(a). Dans le second cas,
on a r = α− q, donc r ∈ I, et φ(r) < φ(a), donc r = 0. Dans tous les cas, r = 0, donc
α = aq, donc I ⊂ (a). L’inclusion réciproque est évidente.

Exemples 3.11. Les anneaux Z
[
1+i

√
19

2

]
et R[X,Y ]/(X2 + Y 2 + 1) sont principaux

non euclidiens.

Les anneaux euclidiens ont d’excellentes propriétés arithmétiques, que nous allons
explorer maintenant. On commence par rappeler la définition suivante :

Définition 3.12. Soit A un anneau commutatif et a, b ∈ A.
Un pgcd de a et b est un élément d ∈ A tel que d|a et d|b, et pour tout k ∈ A

divisant a et b, on a k|d.

Cette définition ce généralise sans difficultés au pgcd d’une famille quelconque
d’éléments de A.

Proposition 3.13. Soit A un anneau principal.
Pour toute famille (ai)i∈I d’élements de A, il existe un pgcd de cette famille, unique

à multiplication près par un inversible. On note ”le” pgcd de cette famille par pgcd((ai)).
Plus précisément, un élément d ∈ A est un pgcd des (ai) si et seulement si on a

l’égalité d’idéaux (d) = (ai, i ∈ I).

Démonstration. Soit d ∈ A tel que (d) = (ai, i ∈ I). Montrons que d est un pgcd des
ai.

Soit k ∈ A tel que k divise ai pour tout i ∈ I. Alors (k) ⊂ (ai, i ∈ I) = (d), donc d
divise k. Cela assure que d est un pgcd des ai.

Théorème 3.14 (Bézout). Soit A un anneau principal et (ai)i∈I des éléments de A.
Si d est un pgcd des (ai), alors il existe une famille (ui)i∈I à support fini, telle que

d =
∑
i∈I

uiai .

Plus concrètement, pour tout a, b ∈ A, il existe u, v ∈ A tels que

pgcd(a, b) = au+ bv .

Démonstration. C’est évident.

Corollaire 3.15 (Lemme de Gauss). Soit A un anneau principal.
Pour tout a, b, c ∈ A, si a divise bc et (a, b) = 1, alors a divise c.

Démonstration. Par Bézout, il existe u, v ∈ A tels que au+ bv = 1. On multiplie par c
pour obtenir acu+ bcv = c. Or a divise acu et bcv par hypothèse, donc a divise c.
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Corollaire 3.16 (Théorème chinois dans un anneau principal). Soit A un anneau
principal, et a, b ∈ A deux éléments premiers entre eux (i.e. tels que pgcd(a, b) = 1).

Alors le morphisme naturel

A/(ab)
∼−→ A/(a)×A/(b)

est un isomorphisme d’anneaux, dont on peut expliciter la réciproque à l’aide d’une
relation de Bézout entre a et b : si au+ bv = 1, l’antécédent de (x̄, ȳ) ∈ A/(a)×A/(b)
par ce morphisme est la classe de auy + bvx dans A/(ab).

Par récurrence, on peut étendre ce résultat à a1, . . . , an deux-à-deux premiers entre
eux.

Démonstration. Il s’agit seulement d’adapter la preuve du théorème chinois général
(voir proposition 2.12) dans ce contexte.

Exemples 3.17. On utilisera souvent le théorème chinois dans Z ou dans K[X].

1. sim,n ∈ Z sont premiers entre eux, on a un isomorphisme d’anneaux Z/(mn)Z
∼−→

Z/mZ × Z/nZ dont on peut expliciter la réciproque à l’aide d’une relation de
Bézout entre m et n.

2. si P,Q ∈ K[X] sont premiers entre eux, on a un isomorphisme d’anneaux
K[X]/(PQ)

∼−→ K[X]/(P ) × K[X]/(Q) dont on peut expliciter la réciproque
à l’aide d’une relation de Bézout entre P et Q.

3.2 Indicatrice d’Euler

On étudie quelques propriétés classiques de l’anneau Z/nZ, en lien également avec
la structure de groupe de Z/nZ.

Théorème 3.18. Soit n ≥ 1 et k ∈ Z. On note k la classe de k dans Z/nZ. Les
assertions suivantes sont équivalentes :

1. k est un générateur du groupe (Z/nZ,+).

2. il existe d ∈ Z tel que dk = 1 dans Z/nZ (on dit que k est inversible dans
l’anneau Z/nZ).

3. k et n sont premiers entre eux.

Démonstration. — On suppose que k est un générateur du groupe (Z/nZ,+). Alors
il existe d ∈ Z tel que dk̄ = 1, donc d̄k̄ = 1, donc k̄ est inversible.

— On suppose que k̄ est inversible. Alors il existe d ∈ Z tel que d̄k̄ = 1 dans Z/nZ.
Donc il existe a ∈ Z tel que dk = 1 + an dans Z. Donc dk − an = 1, donc k et
n sont premiers entre eux.

— On suppose k et n premiers entre eux. Par Bézout, il existe u, v ∈ Z tels que
uk + vn = 1. Donc uk̄ = 1 dans Z/nZ, donc 1 ∈ ⟨k̄⟩. Or 1 est clairement
générateur de Z/nZ, donc k̄ aussi.

Définition 3.19. Soit n ≥ 2.
On note φ(n) le nombre d’entiers 1 ≤ k < n tels que k est premier avec n. La

fonction φ est appelée l’indicatrice d’Euler.
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Grâce au théorème précédent, on a donc φ(n) = |(Z/nZ)×|.

Corollaire 3.20. Le groupe Z/nZ (et donc tout groupe cyclique d’ordre n) admet
exactement φ(n) générateurs.

Corollaire 3.21. Soit n ≥ 1.
Alors n =

∑
d|n φ(d).

Démonstration. On partitionne Z/nZ selon l’ordre des éléments. Par le théorème de
Lagrange, Z/nZ est la réunion disjointe des Gd, pour d divisant n, où Gd est l’ensemble
(ce n’est pas un sous-groupe) des éléments d’ordre d dans Z/nZ.

Donc |Z/nZ| =
∑

d|n |Gd|. Or pour tout d divisant n, le groupe Z/nZ admet un
unique sous-groupe (cyclique) de cardinal d, qui contient Gd. Donc |Gd| est égal au
nombre de générateurs de Z/dZ, qui vaut φ(d) par la théorème précédent.

Donc finalement n =
∑

d|n φ(d).

Une conséquence importante de cette égalité est le résultat suivant :

Théorème 3.22. Soit K un corps (ou même un anneau intègre) et G < K× un
sous-groupe fini.

Alors G est cyclique.
En particulier, le groupe des inversibles d’un corps fini est cyclique.

Démonstration. Notons n := |G|, et pour tout d divisant n, Gd l’ensemble des éléments
d’ordre d dans G.

Soit d divisant n et x ∈ Gd. Alors x est racine de Xd − 1, comme tout élément de
⟨x⟩. On a donc d racines distinctes de Xd − 1 dans ⟨x⟩. Or le polynôme Xd − 1 a au
plus d racines dans K, donc ses racines sont exactement les éléments de ⟨x⟩ ∼= Z/dZ.
En particulier, les éléments de Gd sont exactement les générateurs de ⟨x⟩, au nombre
de φ(d) par le corollaire 3.20. FInalement, pour tout d divisant n, soit Gd est vide, soit
|Gd| = φ(d). Finalement, dans tous les cas, |Gd| ≤ φ(d), donc

n = |G| =
∑
d|n

|Gd| ≤
∑
d|n

φ(d) = n ,

ce qui assure que pour tout d|n, |φ(d)| = φ(d), donc en particulier |Gn| = φ(n) ≥ 1,
donc G est cyclique.

Poursuivons avec les propriétés de l’indicatrice d’Euler :

Corollaire 3.23. La fonction indicatrice d’Euler est multiplicative, au sens suivant :
si m,n ∈ N sont deux entiers premiers entre eux, alors φ(mn) = φ(m)φ(n).

Démonstration. Le lemme chinois assure que l’on a un isomorphisme d’anneaux Z/mnZ
∼−→

Z/mZ×Z/nZ, donc un isomorphisme de groupes d’inversibles (Z/mnZ)×
∼−→ (Z/mZ)××

(Z/nZ)×. Donc en calculant les cardinaux, φ(mn) = φ(m)φ(n).

En particulier, pour connâıtre la fonction φ, il suffit de connâıtre φ(pk), pour k ≥ 1
et p premier.

Corollaire 3.24. — Pour tout p premier et k ≥ 1, φ(pk) = pk−1(p− 1).
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— pour tout n ≥ 1, si n =
∏r

i=1 p
ki
i est la décomposition de n en facteurs premiers,

alors

φ(n) =

r∏
i=1

pki−1
i (pi − 1) ,

ou autrement dit
φ(n)

n
=

r∏
i=1

(
1− 1

pi

)
.

Démonstration. Il suffit de compter les entiers premiers à p entre 1 et pk (ce qui revient à
calculer le nombre de multiples de p) pour calculer φ(pk) = pk−pk−1 = pk−1(p−1).

Plus précisément, on peut montrer :

Théorème 3.25. Soit p un nombre premier et k ≥ 1. Alors on a les isomorphismes
suivants :

— si p ≥ 3, (Z/pkZ)× ∼= Z/pk−1(p − 1)Z, i.e. (Z/pkZ)× est cyclique d’ordre
pk−1(p− 1).

— si p = 2, (Z/2Z)× ∼= {1}, et si k ≥ 2, (Z/2kZ)× ∼= Z/2k−2Z× Z/2Z.

Démonstration. Voir le livre de Perrin par exemple.

3.3 Algorithme d’Euclide

Dans un anneau principal, cet énoncé est essentiellement théorique, puisque le calcul
du pgcd et celui d’une relation de Bézout ne sont pas effectifs a priori (ce sont seulement
des résultats d’existence, on ne dispose pas d’algorithme efficace ou évident pour faire
ces calculs explicitement). Dans le cas d’un anneau euclidien, la situation est nettement
meilleur d’un point de vue algorithmique.

Théorème 3.26 (Algorithme d’Euclide). Soit A un anneau euclidien et (a, b) ∈ A2.
L’algorithme suivant calcule un pgcd de a et b :

1. si b = 0, renvoyer a.

2. si b ̸= 0, effectuer la division euclidienne de a par b, à savoir a = bq + r, et
appliquer l’algorithme au couple (b, r).

Démonstration. Évident.

On peut également le formuler en terme de suite récurrente : on pose r0 := a, r1 := b,
et pour tout i ≥ 1, on écrit la division euclidienne de ri−1 par ri : ri−1 = riqi + ri+1.
L’algorithme s’arrête au premier entier n tel que rn+1 = 0, et le pgcd est rn (le dernier
reste non nul).

Théorème 3.27. Si φ(b) ≤ φ(a), l’algorithme précédent calcule le pgcd de (a, b) en
au plus φ(b) + 1 divisions euclidiennes dans A.

Démonstration. C’est clair.

Remarque 3.28. Dans Z, un théorème plus précis dû à Lamé assure que si b < Fk+1,
où (Fn) désigne la suite de Fibonacci, alors l’algorithme d’Euclide effectue au plus k
divisions euclidiennes. Et c’est optimal car si a = Fk+2 et b = Fk+1, l’algorithme fait
appel à exactement k divisions euclidiennes. On en déduit que l’algorithme d’Euclide
pour deux entiers positifs (a, b) avec a > b dans Z, nécessite au maximum O(logΦ(b))
divisions euclidiennes, où Φ désigne le nombre d’or.

13



Théorème 3.29 (Algorithme d’Euclide étendu). Soit A un anneau euclidien et (a, b) ∈
A2.

L’algorithme suivant calcule un pgcd de a et b, ainsi qu’une relation de Bézout.
On pose u0 = 1, v0 = 0, u1 = 0, v1 = 1, r0 := a, r1 := b, et on définit par récurrence

les suites (ri), (qi), (ui) et (vi) via
— division euclidienne : ri = ri+1qi+1 + ri+2.
— ui+2 = ui − qi+1ui+1.
— vi+2 = vi − qi+1vi+1.

On s’arrête au premier entier n tel que rn+1 = 0. Alors une relation de Bézout est
donnée par

aun + bvn = rn .

Dans Z (resp. K[X]), cet algorithme fait au plus O(log(b)) (resp O(deg b)) appels
récursifs.

Démonstration. Récurrence simple.

3.4 Quotients d’anneaux principaux

Soit A un anneau principal. Nous avons vu plus haut que pour tout élément p ∈ A,
on a l’équivalence entre ”p est irréductible”, ”l’idéal (p) est premier”, ”l’idéal (p) est
maximal”, ”A/(p) est un corps”.

L’exemple principal d’application de cette remarque est le suivant : si P ∈ K[X]
est un polynôme irréductible, le quotient K[X]/(P ) est un corps contenant K, et de
dimension deg(P ) comme K-espace vectoriel.

3.5 Factorisation en irréductibles

Proposition 3.30. Soit A un anneau principal et K un ensemble non vide.
Alors tout famille (Ik)k∈K d’idéaux de A admet un élément maximal.

Démonstration. On raisonne par l’absurde : supposons qu’un tel élément maximal
n’existe pas. Il existe un idéal I1 dans cette famille. Comme I1 n’est pas maximal, il
existe I2 dans cette famille tel que I1 ⫋ I2. On poursuit et on construit par récurrence
une suite infinie Ik ⫋ Ik+1 d’idéaux de A. On vérifie alors que I :=

⋃
k≥1 Ik est un idéal

de A. Puisque A est principal, il existe a ∈ I tel que I = (a). Alors il existe k ≥ 1 tel
que a ∈ Ik, donc I = (a) ⊂ Ik, donc Ik+1 = Ik, ce qui est contradictoire.

Théorème 3.31. Soit A un anneau principal. Pour tout a ∈ A \ {0}, il existe u ∈ A×

et p1, . . . , pn ∈ A irréductibles, tels que

a = up1 . . . pn .

De plus, cette décomposition est unique, à l’ordre près des facteurs et à multiplication
près par des inversibles de A.

Démonstration. Montrons d’abord l’existence. Par l’absurde, si l’existence n’est pas
vérifiée, l’ensemble E des éléments non nuls deA n’admettant pas de telle décomposition
est non vide. Considérons la famille des idéaux (a), avec a décrivant E. Par la proposi-
tion précédente, cette famille admet un élément maximal (a0) avec aO ∈ E. En parti-
culier, a0 est non nul, non inversible, non irréductible, donc il existe une décomposition
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a0 = b0c0, avec b0, c0 ∈ A non inversibles. Puisque (a0) ⫋ (b0), (c0), la maximalité de
(a0) assure que b0, c0 /∈ E, donc b0 et c0 admettent une décomposition en irréductibles.
En les concaténant, on voit donc que a0 admet une décomposition en irréductibles, ce
qui est contradictoire.

Montrons ensuite l’unicité, via le lemme d’Euclide : supposons que up1 . . . pn =
vq1 . . . qr, avec des notations évidentes. Alors pn divise q1 . . . qr, donc par le lemme
d’Euclide, il existe i tel que pn divise qi. Quitte à permuter les qj , on peut supposer
que pn divise qr. Comme pn et qr sont irréductibles, ils sont associés. Donc p1 . . . pn−1

et q1 . . . qr−1 sont associés, et on conclut par récurrence sur le nombre de facteurs.

Nous reviendrons plus tard (après l’algèbre linéaire) sur l’arithmétique des anneaux,
avec notamment la notion d’anneau factoriel, puis celle d’extension de corps.
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