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Philippe Caldero et Jérôme Germoni : Nouvelles Histoires hédonistes d’algèbre et de
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Dans tout ce chapitre, la notation K désigne un corps.

1 Géométrie affine

1.1 Espaces affines

Commençons par définir le principal objet d’étude de cette partie. La définition est
très peu intuitive la première fois. Nous allons essayer de la motiver par la suite.

Définition 1.1. Un K-espace affine est un triplet (E , E, φ), où E est un ensemble non
vide, E est un K-espace vectoriel, et φ : E × E → E est une action (à droite) libre et
transitive du groupe (E,+) sur l’ensemble E .

Pour simplifier la notation, si v ∈ E et P ∈ E , on note

P + v := φ(P, v) ∈ E .

On peut donc reformuler la définition précédente de la façon suivante :

Proposition 1.2. Un K-espace affine est une paire (E , E), où E est un K-espace
vectoriel et E un ensemble non vide, muni d’une application :

E × E → E

notée (P, v) 7→ P + v, telle que

1. pour tous P ∈ E, pour tous u, v ∈ E, P + (u+ v) = (P + u) + v.

2. pour tous P,Q ∈ E, il existe un unique v tel que Q = P + v.

On note alors
−−→
PQ := v l’unique vecteur v permettant de passer de P àQ. L’équivalence

entre les deux définitions est claire. La seeconde propriété peut se reformuler en disant
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que pour tout P ∈ E , l’application ψP : E → E définie par Q 7→
−−→
PQ est une bijec-

tion. Autrement dit, tout choix d’un point de E permet d’identifier canoniquement E à
l’espace vectoriel E. Mais cette identification dépend du choix du point, que l’on peut
appeler ”origine”.

On propose une troisième version :

Proposition 1.3. Un K-espace affine est un couple (E , E), où E est un ensemble non
vide et E un K-espace vectoriel, muni d’une application

E × E → E ,

notée (P,Q) 7→
−−→
PQ, telle que

1. pour tous P,Q,R ∈ E,
−→
PR =

−−→
PQ+

−−→
QR.

2. pour tous (P, v) ∈ E × E, il existe un unique Q ∈ E tel que
−−→
PQ = v.

La dernière propriété peut se reformuler en disant que pour tout P ∈ E , l’application
naturelle φP : E → E définie par Q 7→

−−→
PQ est une bijection. Autrement dit, tout choix

d’un point de E permet d’identifier canoniquement E à l’espace vectoriel E. Mais cette
identification dépend du choix du point, que l’on peut appeler ”origine”. On peut
noter que l’application φP est la réciproque de l’application ψP issue de la définition
précédente.

Remarque 1.4. On trouve parfois la notation Q − P pour le vecteur
−−→
PQ. C’est une

notation commode permettant de faire la différence de deux points, mais elle peut
être un peu glissante au début (car on ne peut pas faire n’importe quelle somme ou
combinaison linéaire de points). Par exemple Q − P a bien un sens, alors que P + Q
n’en a pas. On peut faire des combinaisons linéaires quelconques de vecteurs de E, mais
pas de points de E . Nous y reviendrons dans la partie consacrée au barycentre.

En résumé, et informellement, un espace affine, c’est un ensemble de points et un
ensemble de vecteurs, avec une façon d’associer raisonnablement un vecteur à un couple
de points (ou d’une façon de translater raisonnablement un point par un vecteur).

Définition 1.5. Soit (E , E) un K-espace affine. Les éléments de E sont appelés des
points de l’espace affine, et l’espace vectoriel E est appelé ”direction de l’espace affine”,
et ses éléments sont appelés des vecteurs. La dimension de E est appelée la dimension
de l’espace affine E .

Construisons les premiers exemples d’espaces affines :

Exemples 1.6. 1. Soit E un K-espace vectoriel. Alors E := E est canoniquement

un espace affine de direction E, via
−−→
PQ := Q − P . L’action de E sur E est

simplement donnée par l’addition dans E.

2. Soit E un espace affine et H ⊂ E un sous-espace vectoriel. Alors E/H (quotient
pour l’action évidente de H sur E) est canoniquement un espace affine de direc-
tion E/H, dont les points correspondent aux sous-espaces affines (voir plus bas)
de E de direction H.

3. Soient E et F deux K-espaces vectoriels et f : E → F une application linéaire.
Pour tout b ∈ im (f), l’ensemble Eb := f−1(b) = {x ∈ E : f(x) = b} est
canoniquement un espace affine de direction E = ker(f). Autrement dit, toute
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solution de l’équation linéaire f(x) = b s’écrit de façon unique comme somme
d’une solution particulière et d’une solution homogène. De façon plus concrète,
pour toute matrice A ∈ Matn,p(K) et tout vecteur colonne B ∈ im (A) ⊂ Kn,
l’ensemble EB des solutions de l’équation linéaire AX = B est canoniquement
un espace affine de direction ker(A).

4. De façon similaire, si A : R → Matn,p(R) est continue, B : R → Rn est continue,
l’ensemble des solutions de l’équation différentielle linéaire avec second membre
X ′(t) = A(t)X(t) + B(t) est canoniquement un R-espace affine de direction
l’espace vectoriel des solutions du système homogène associé X ′(t) = A(t)X(t).

5. Soit F ⊂ E un sous-espace vectoriel. Alors l’ensemble des supplémentaires de F
dans E est naturellement un K-espace affine de direction L(E/F, F ).

6. Pour tout ensemble I non vides et toute famille (Ei)i∈I d’espaces affines, le pro-
duit cartésien

∏
i∈I Ei est naturellement un espace affine, de direction

∏
i∈I Ei.

Définition 1.7. Soit E un K-espace affine de direction E. Une partie F de E est un

sous-espace affine si F est non vide et pour tout P ∈ F , l’ensemble F := {
−−→
PQ,Q ∈ F}

est un sous-K-espace vectoriel de E.
De façon équivalente, F ⊂ E est un sous-espace affine si et seulement s’il existe un

sous-espace vectoriel F ⊂ E et un point P ∈ F tels que F = P + F .

Proposition 1.8. Soit F ⊂ E un sous-espace affine. Alors F est un espace affine, de

direction F := {
−−→
PQ,P,Q ∈ F}. De plus, pour tout P ∈ F , on a F = FP := {

−−→
PQ,Q ∈

F}.

Démonstration. Soient P, P ′ ∈ F . Alors FP = FP ′ = F : en effet, l’inclusion FP , FP ′ ⊂
F est évidente ; en outre, pour tout v ∈ F , il existe Q,R ∈ F tels que v =

−−→
QR, alors

v =
−→
PR −

−−→
PQ, et

−→
PR,

−−→
PQ ∈ FP , donc v ∈ FP car FP est un sous-espace vectoriel par

définition. Donc F = FP = FP ′ .
Montrons maintenant que F est un espace affine de direction F . La restriction de

l’action de E sur E induit une action de F sur F , car pour tout P ∈ F et v ∈ F , il

existe (un unique) Q ∈ F tel que v =
−−→
PQ, et donc P + v = P +

−−→
PQ = Q est dans

F . Comme l’action de E sur E est libre, celle de F sur F l’est aussi, et la transitivité

résulte du fait que pour tout P,Q ∈ F , on a
−−→
PQ ∈ F .

Proposition 1.9. Soit I un ensemble et (Fi)i∈I une famille de sous-espaces affines de
E, de directions respectives (Fi)i∈I .

Alors
⋂

i∈I Fi est soit vide, soit un sous-espace affine de E, de direction
⋂

i∈I Fi.

Démonstration. Supposons
⋂

i∈I Fi non vide et choisissons P ∈
⋂

i∈I Fi. Pour tout

Q ∈ E , on a
−−→
PQ ∈

⋂
i∈I Fi si et seulement si pour tout i ∈ I,

−−→
PQ ∈ Fi si et seulement

si pour tout i ∈ I, Q ∈ Fi (car P ∈ Fi) si et seulement si Q ∈
⋂

i∈I Fi. D’où le
résultat.

Exemple 1.10. Si E, F sont des K-espaces vectoriels et f ∈ L(E,F ), alors pour toute
partie P ⊂ F rencontrant im (f), l’ensemble f−1(P ) ⊂ E est un sous-espace affine.

On dispose donc notamment d’une notion de sous-espace affine engendré par une
partie non vide, défini par exemple comme l’intersection des sous-espaces affines conte-
nant cette partie. Si P ⊂ E est une partie non vide, on notera ⟨P ⟩ le sous-espace affine
de E engendré par P .
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Définition 1.11. Soient F ,G ⊂ E des sous-espaces affines. On dit que F et G sont
parallèles (resp. faiblement parallèles) si leurs directions sont égales (resp. si la direction
de l’un est contenue dans la direction de l’autre).

En particulier, deux sous-espaces affines parallèles sont confondus ou disjoints.

Proposition 1.12. Soient F ,G ⊂ E des sous-espaces affines, P ∈ F , Q ∈ G.
Alors F ∩G ̸= ∅ si et seulement si

−−→
PQ ∈ F +G. En particulier, F ∩G est non vide

dès que F +G = E.

Démonstration. Supposons F ∩ G non vide et choisissons R ∈ F ∩ G. Alors
−−→
PQ =−→

PR+
−−→
RQ =

−→
PR−

−−→
QR, avec

−→
PR ∈ F et

−−→
QR ∈ G. Donc

−−→
PQ ∈ F +G.

Réciproquement, si
−−→
PQ ∈ F + G, on écrit

−−→
PQ = f + g, avec f ∈ F et g ∈ G.

Alors Q = P + (f + g), donc Q + (−g) = P + f . Notons R ce point. Alors on a
R = Q+ (−g) ∈ G et R = P + f ∈ F . Donc R ∈ F ∩ G, donc F ∩ G ̸= ∅.

Corollaire 1.13. Soit E un espace affine de dimension finie, et F ,G ⊂ E des sous-
espaces affines.

Si F ∩ G = ∅, alors

dim (⟨F ∪ G⟩) = dim (F) + dim (G) + 1− dim (F ∩G) .

Si F ∩ G ̸= ∅, alors

dim (⟨F ∪ G⟩) = dim (F) + dim (G)− dim (F ∩ G) .

Démonstration. C’est une conséquence des propositions 1.9 et 1.12, ainsi que la formule
de Grassmann sur la dimension d’une somme de deux sous-espaces vectoriels.

Corollaire 1.14. Soient F ,G ⊂ E des sous-espaces affines. Si F ⊕G = E, alors F ∩G
est un point.

1.2 Repères affines et coordonnées

La notion de repère d’un espace affine est directement reliée à la notion de base
d’un espace vectoriel.

Définition 1.15. Soit E un K-espace affine de direction E et de dimension n. Un

repère affine de E est un n + 1-uplet A0, . . . , An ∈ E tel que (
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0An)

est une base de E.
Cela équivaut à la donnée d’une origine O ∈ E et d’une base B = (e1, . . . , en) de E,

en posant A0 := O et Ai := O + ei.

On peut alors introduire les coordonnées d’un point dans un repère affine :

Définition 1.16. Soit E un espace affine muni d’un repère affine R := (A0, . . . , An).
Pour tout P ∈ E , les coordonnées de P dans le repèreR sont les scalaires (x1, . . . , xn)

tels que
−−→
A0P =

∑n
i=1 xi

−−−→
A0Ai. Autrement dit, les coordonnées de P dans le repère R

sont les coordonnées du vecteur
−−→
A0P dans la base (

−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0An).

On dispose naturellement de formules affines de changement de repères affines, qui
se déduisent des formules de changement de bases usuelles :
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Proposition 1.17. Soient R = (O,B) et R′ = (O′,B′) deux repères affines de E, et
M ∈ E. Notons X (resp. X ′) le vecteur colonne des coordonnées de M dans R (resp.
R′), et Y le vecteur colonne des coordonnées de O′ dans R. Alors

X = PB,B′X ′ + Y ,

où PB,B′ = MatB,B′(idE) est la matrice de changement de bases, dont les colonnes sont
les coordonnées des vecteurs de B′ dans la base B.

Démonstration. Écrire
−−→
OM =

−−−→
O′M +

−−→
OO′ et appliquer les formules de changement de

bases usuelles en algèbre linéaire.

1.3 Applications affines

La notion d’application affine est elle aussi inspirée de la notion d’application
linéaire :

Définition 1.18. Soit E ,F deux K-espaces affines et f : E → F . On dit que f est une
application affine s’il existe O ∈ E et ϕ ∈ L(E,F ) tels que pour tout v ∈ E,

f(O + v) = f(O) + ϕ(v) .

Autrement dit, f est affine s’il existe O ∈ E tel que l’application ϕ : E → F définie par
−−→
OP 7→

−−−−−−→
f(O)f(P ) est une application linéaire.

L’application ϕ est uniquement déterminée par f , on l’appelle la partie linéaire ou

la direction de f et on la note
−→
f .

On notera Aff(E ,F) l’ensemble des applications affines de E dans F .

Exemples 1.19. 1. Une application linéaire f entre deux espaces vectoriels est

une application affine avec
−→
f = f .

2. Si E est un espace affine, pour tout v ∈ E, l’application tv : E → E définie par
P 7→ P + v est affine, de partie linéaire

−→
tv = idE . L’application tv est appelée

translation de vecteur v.

Proposition 1.20. L’ensemble Aff(E ,F) est canoniquement un espace affine, de di-
rection l’espace vectoriel Aff(E , F ).

Démonstration. L’ensemble FE est clairement un espace affine de direction F E , et
Aff(E , F ) ⊂ F E est un sous-espace vectoriel. Soient f ∈ Aff(E ,F) et φ ∈ F E , considérons
l’application f + φ : E → F définie par (f + φ)(P ) = f(P ) + φ(P ). Alors pour tout
P ∈ E , tout v ∈ E, on a

(f + φ)(P + v) = f(P + v) + φ(P + v) = f(P ) +
−→
f (v) + φ(P + v)

= (f + φ)(P ) + (
−→
f (v) + φ(P + v)− φ(P )) ,

donc l’application f + φ est affine si et seulement si l’application E → F définie par

v 7→ (
−→
f (v) + φ(P + v) − φ(P )) est linéaire et indépendante de P , si et seulement si

l’application v 7→ φ(P + v)− φ(P ) est linéaire et indépendante de P si et seulement si
φ : E → F est une application affine.

Cela assure que Aff(E ,F) est bien un sous-espace affine de FE , de direction le
sous-espace vectoriel Aff(E , F ) ⊂ F E .
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Proposition 1.21. Une composée d’applications affines est affine, de partie linéaire

la composée des parties linéaires. Autrement dit, si E g−→ F f−→ G sont affines, alors f ◦g
est affine et

−−→
f ◦ g =

−→
f ◦ −→g .

Démonstration. Soient P ∈ E et v ∈ E. Alors

(f◦g)(P+v) = f(g(P+v)) = f(g(P )+−→g (v)) = f(g(P ))+
−→
f (−→g (v)) = (f◦g)(P )+(

−→
f ◦−→g )(v) ,

ce qui assure le résultat.

On a donc une application Aff(E ,F) → L(E,F ) définie par f 7→
−→
f , qui est com-

patible à la composition.

Proposition 1.22. Soit f : E → F une application affine. Alors l’image par f d’un

sous-espace affine G de E est un sous-espace affine de F de direction
−→
f (G), et l’image

réciproque d’un sous-espace affine H de F est soit vide, soit un sous-espace affine de

E de direction
−→
f −1(H).

En particulier, une application affine préserve l’alignement.

Démonstration. Choisissons P ∈ G. Alors G = P + G, donc f(G) = f(P ) +
−→
f (G) car

f est affine, donc f(G) est bien un sous-espace affine, de direction
−→
f (G).

Dans l’autre sens, si f−1(H) est non vide, choisissons P ∈ f−1(H). Alors, pour tout

Q ∈ E , on a Q ∈ f−1(H) si et seulement si f(Q) ∈ H si et seulement si f(P )+
−→
f (

−−→
PQ) ∈

H si et seulement si
−→
f (

−−→
PQ) ∈ H (car f(P ) ∈ H) si et seulement si

−−→
PQ ∈

−→
f −1(H).

Cela assure que f−1(H) = P +
−→
f −1(G), donc f−1(H) est bien un sous-espace affine de

E de direction
−→
f −1(H).

Remarque 1.23. Réciproquement, une bijection qui préserve l’alignement est ”presque”
une application affine. C’est le théorème fondamental de la géométrie affine.

Proposition 1.24. Soient E ,F deux K-espaces affines, et R = (A0, . . . , An) un repère
affine de E.

Alors l’application de restriction Aff(E ,F) → F{A0,...,An} est un isomorphisme d’es-
paces affines. En particulier, une application affine est entièrement déterminée par
l’image d’un repère affine.

Démonstration.

Le résultat suivant sera très utile dans l’étude et la classification des isométries
affines :

Proposition 1.25. Soit f : E → E une application affine. Alors l’ensemble Fix(f) des
points fixes de f est soit vide, soit un sous-espace affine de direction l’espace propre

ker(
−→
f − idE) ⊂ E.

Démonstration. Supposons Fix(f) non vide et choisissons P ∈ Fix(f). Alors pour tout

Q ∈ E , on a Q ∈ Fix(f) si et seulement si f(Q) = Q si et seulement si f(P )+
−→
f (

−−→
PQ) =

Q si et seulement si
−→
f (

−−→
PQ) =

−−→
PQ si et seulement si

−−→
PQ ∈ ker(

−→
f − idE), ce qui conclut

la preuve.
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Corollaire 1.26. Soit f : E → E une application affine avec E de dimension finie.
Alors f a un unique point fixe dans E si et seulement si 1 n’est pas valeur propre

de
−→
f .

Démonstration. Le sens direct et l’unicité dans le sens réciproque sont conséquences de
la proposition précédente. Reste à montrer l’existence sous l’hypothèse que 1 n’est pas

valeur propre de
−→
f . Fixons P ∈ E , et soit v ∈ E. Alors f(P+v) = P+v si et seulement

si f(P )+
−→
f (v) = P +v si et seulement si −→v −v =

−−−−→
f(P )P . Or l’endomorphisme

−→
f − id

est injectif par hypothèse, donc bijectif car E est de dimension finie, donc il existe un

unique v ∈ E tel que −→v − v =
−−−−→
f(P )P , donc il existe un unique point fixe pour f .

On peut écrire les applications affines en coordonnées dans un repère affine, comme
on pouvait décrire les applications linéaires comme des matrices, une fois une base
fixée :

Proposition 1.27. Soit R = (O,B) (resp. R′ = (O′, C)) un repère affine de E (resp.
F) et f : E → F une application affine. Soit P ∈ E de coordonnées (x1, . . . , xp) dans

R, et notons (y1, . . . , yn) les coordonnées de f(P ) dans R′. Notons A := MatC,B(
−→
f ) et

(b1, . . . , bn) les coordonnées de f(O) dans R′. Alors on a :y1...
yn

 = A

x1...
xp

+

b1...
bn

 .

La proposition suivante caractérise les translation, et elle est utile dans plusieurs
applications :

Proposition 1.28. Une application affine f : E → E est une translation si et seulement

si
−→
f = idE.

Démonstration. On a déjà vu que pour tout v ∈ E,
−→
tv = idE . Réciproquement, soit

f : E → F affine telle que
−→
f = idE . Choissons P ∈ E et notons v :=

−−−−→
Pf(P ). Alors pour

tout Q ∈ E , f(Q) = f(P+
−−→
PQ) = f(P )+

−→
f (

−−→
PQ) = f(P )+

−−→
PQ = (Q+

−−−−→
Qf(P ))+

−−→
PQ =

Q+
−−−−→
Pf(P ) = Q+ v, donc f = tv est bien une translation.

Proposition 1.29. L’ensemble des translations de E est un groupe abélien (pour la
composition) canoniquement isomorphe à (E,+).

Définition 1.30. Soit λ ∈ K. L’homothétie de centre O et de rapport λ hO,λ : E → E
est définie par hO,λ(M) := O + λ

−−→
OM . C’est une application affine de partie linéaire

−−→
hO,λ = λidE .

On peut montrer qu’une application affine f : E → E qui vérifie
−→
f = λidE avec

λ ̸= 1, a un unique point fixe O et que f est l’homothétie de centre O et de rapport λ.

Définition 1.31. Soient F ⊂ E un sous-espace affine, et G un supplémentaire de F
dans E (i.e. E = F ⊕G).

Pour tout M ∈ E , il existe un unique p(M) ∈ F tel que
−−−−−→
Mp(M) ∈ G. Alors l’ap-

plication p : E → F est une application affine, appelée projection sur F parallèlement
à G.
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Comme en algèbre linéaire, on a p ◦ p = p. La partie linéaire de p est le projection
vectorielle sur F parallèlement à G.

Définition 1.32. On suppose la caractéristique de K différente de 2. Avec les nota-

tions précédentes, l’application s : E → E définie par s(M) := M + 2
−−−−−→
Mp(M) est une

application affine, appelée symétrie par rapport à F parallèlement à G.

Comme en algèbre linéaire, on a s ◦ s = idE . La partie linéaire de s est la symétrie
vectorielle par rapport à F parallèlement à G.

Une conséquence du fait que les projections sont des applications affines est le
fameux :

Théorème 1.33 (Thalès). Soit E un espace affine de dimension ≥ 2, H ⊂ E un
hyperplan, H1,H2,H3 trois hyperplans affines de direction H, deux à deux distincts, et
D,D′ deux droites affines non faiblement parallèles à H. Alors

1. Pour tout i, la droite D (resp. D′) coupe l’hyperplan Hi en un unique point Pi

(resp. Qi).

2. On a
−−−→
P1P2−−−→
P1P3

=
−−−→
Q1Q2−−−→
Q1Q3

.

3. Si en outre D et D′ sont concourantes en P1 = Q1, alors
−−−→
P1P2−−−→
P1P3

=
−−−→
P1Q2−−−→
P1Q3

=
−−−→
P2Q2−−−→
P3Q3

.

Démonstration. 1. Comme D et D′ ne sont pas faiblement parallèles à H, D et D′

ne sont pas contenus dans H, donc H⊕D = H⊕D′ = E, et il suffit d’appliquer
le corollaire 1.14.

2. Considérons la projection (affine) p : E → D′ sur D′ parallèlement à H. Alors

p(Pi) = Qi pour tout i. Il existe un unique λ :=
−−−→
P1P2−−−→
P1P3

∈ K tel que
−−−→
P1P2 = λ

−−−→
P1P3.

Comme p est affine, on a

−−−→
Q1Q2 =

−−−−−−−→
p(P1)p(P2) =

−→p (
−−−→
P1P2) =

−→p (λ
−−−→
P1P3) = λ−→p (

−−−→
P1P3) = λ

−−−−−−−→
p(P1)p(P3) = λ

−−−→
Q1Q3 ,

ce qui assure que
−−−→
P1P2−−−→
P1P3

= λ =
−−−→
Q1Q2−−−→
Q1Q3

.

3. Notons O := P1 = Q1 et considérons l’homothétie h de centre O et de rapport

λ :=
−−−→
P1P2−−−→
P1P3

. Alors le point précédente assure que h(P3) = P2 et h(Q3) = Q2.

Comme h est affine de partie linéaire
−→
h = λidE , on a donc

−−−→
P2Q2 =

−−−−−−−−→
h(P3)h(Q3) =

−→
h (

−−−→
P3Q3) = λ

−−−→
P3Q3 ,

ce qui assure le résultat.

Remarque 1.34. Notez que le théorème de Thalès est un énoncé affine, et non euclidien.
Pas besoin de notion de distance pour l’énoncer.

Remarque 1.35. Une autre preuve possible consiste à considérer le quotient E/H (qui
est une droite affine) de E par l’action naturelle de H. Alors la projection π : E → E/H
est affine, et π(Pi) = π(Hi) = π(Qi), donc

−−−→
P1P2
−−−→
P1P3

=

−−−−−−−−→
π(H1)π(H2)
−−−−−−−−→
π(H1)π(H3)

=

−−−→
Q1Q2
−−−→
Q1Q3

,

ce qui prouve le théorème.
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1.4 Groupe affine et sous-groupes

Soit E unK-espace affine de direction E. On note GA(E) l’ensemble des applications
affines bijectives de E dans lui-même.

Proposition 1.36. Muni de la composition, (GA(E), ◦) est un groupe, appelé groupe
affine de E, et l’application ”partie linéaire” induit un morphisme de groupes surjectif

GA(E) → GL(E) ,

dont le noyau est exactement le sous-groupe T (E) de GA(E) (isomorphe à (E,+)) formé
des translations de E.

Intuitivement, les applications affines, ce sont essentiellement les applications linéaires
auxquelles on ajoute les translations.

Démonstration. Le fait que ce soit un groupe, et le calcul du noyau du morphisme

f 7→
−→
f , résultent des propositions 1.21 et 1.28.

Pour la surjectivité, on choisit un point O ∈ E . Et pour tout φ ∈ GL(E), on
définie f : E → E de la façon suivante : pour tout P ∈ E , f(P ) := O + φOP . Il est

alors immédiat que f est affine, bijective, de partie linéaire
−→
f = φ, ce qui conclut la

preuve.

Remarque 1.37. On peut même vérifier que le choix d’une origine dans E induit un
isomorphisme entre GA(E) et le produit semi-direct naturel (E,+)⋊GL(E).

Le groupe GA(E) admet un autre sous-groupe utile : le sous-groupe HT (E) des
homothéties-translations, formé des homothéties et des translations. C’est l’image in-
verse par le morphisme précédent du sous-groupe des homothéties de GL(E). On re-
marque que T (E) est un sous-groupe (abélien) distingué de HT (E), et le quotient est
isomorphe à (K×, ·). Plus précisément, le choix d’une origine induit un isomorphisme
HT (E) ∼= (E,+)⋊ (K×, ·)

1.5 Barycentre

Définition 1.38. Soit E un K-espace affine, P1, . . . , Pn ∈ E , et λ1, . . . , λn ∈ K.

1. Si
∑

i λi ̸= 0, alors il existe un unique point G ∈ E tel que pour tout M ∈ E ,

∑
i

λi
−−→
MPi =

(∑
i

λi

)
−−→
MG.

Ce point est appelé le barycentre du système de points pondérés (Pi, λi), et
parfois noté G = Bar((P1, λ1), . . . , (Pn, λn)).

2. Si
∑

i λi = 0, alors le vecteur
∑

i λi
−−→
MPi est indépendant du point M ∈ E .

Démonstration. 1. Choisissons O ∈ E . Alors la formule

−−→
OG =

1∑
i λi

∑
i

λi
−−→
OPi

9



définit un unique point G ∈ E . Donc l’unicité est claire. Montrons maintenant
que le point ainsi défini ne dépend pas du point O choisi. Soit M ∈ E . Alors∑

i λi
−−→
MPi =

∑
i λi(

−−→
MO +

−−→
OPi) = (

∑
i λi)

−−→
MO +

∑
i λi

−−→
OPi

= (
∑

i λi)
−−→
MO + (

∑
i λi)

−−→
OG = (

∑
i λi)

−−→
MG,

ce qui conclut la preuve de l’existence de G.

2. Supposons
∑

i λi = 0 et soient M,N ∈ E . Alors on a

∑
i

λi
−−→
MPi =

∑
i

λi(
−−→
MN +

−−→
NPi) =

(∑
i

λi

)
−−→
MN +

∑
i

λi
−−→
NPi =

∑
i

λi
−−→
NPi ,

d’où le résultat.

Remarque 1.39. Si
∑

i λi = 1, le barycentre G est parfois noté

G =
∑
i

λiPi .

Cette notation intuitive peut être pratique, mais elle est probablement à éviter à
l’agrégation.

La propriété suivante est élémentaire, mais utile :

Proposition 1.40. Soit E un K-espace affine, P1, . . . , Pn ∈ E, et λ1, . . . , λn ∈ K tels
que

∑
i λi ̸= 0.

Alors le barycentre G des (Pi, λi) est caractérisé par∑
i

λi
−−→
GPi = 0 .

Démonstration. Si un point G vérifie∑
i

λi
−−→
GPi = 0 ,

alors pour tout M ∈ E , on a∑
i λi

−−→
MPi =

∑
i λi(

−−→
MO +

−−→
OPi) = (

∑
i λi)

−−→
MO +

∑
i λi

−−→
OPi

= (
∑

i λi)
−−→
MO + (

∑
i λi)

−−→
OG = (

∑
i λi)

−−→
MG,

donc G est bien le barycentre recherché.

Exemples 1.41. — Si n ̸= 0 dans K (i.e. si la caractéristique de K ne divise pas
l’entier n), et si pour tout i, λi = 1

n , on dit que G est l’isobarycentre (ou le
centre de gravité) des Pi.

— En caractéristique différente de 2, l’isobarycentre de deux points est appelé le
milieu de ces deux points. En caractéristique 2, le milieu d’un segment n’est pas
défini !
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Lemme 1.42. Dans un repère affine, les coordonnées du barycentre d’un système de
points pondérés sont les moyennes pondérées des coordonnées des points : si G =
Bar((P1, λ1), . . . , (Pk, λk)) avec

∑
i λi = 1, et si chaque Pi a pour coordonnées (xi,0, . . . , xi,n),

alors G a pour coordonnées (
∑

i λixi,0, . . . ,
∑

i λixi,n).

La propriété suivante est appelée l’associativité du barycentre :

Théorème 1.43. Soit E un K-espace affine, P1, . . . , Pn ∈ E, et λ1, . . . , λn ∈ K tels que∑
i λi ̸= 0. Soit {1, . . . , n} = I ⨿ J une partition, avec λI :=

∑
I λi et λJ :=

∑
j∈J λj

non nuls.
Alors

Bar((P1, λ1), . . . , (Pn, λn)) = Bar((Bar((Pi, λi)i∈I), λI), (Bar((Pj , λj)j∈J), λJ)) .

Démonstration. On note GI := Bar((Pi, λi)i∈I) et GJ := Bar((Pj , λj)j∈J), et G :=
Bar((GI , λI), (GJ , λJ)).

Alors ∑
i

λi
−−→
GPi =

∑
i∈I

λi
−−→
GPi +

∑
j∈J

λj
−−→
GPj = λI

−−→
GGI + λJ

−−→
GGJ = 0

ce qui assure que G est le barycentre des (Pi, λi).

Corollaire 1.44. On suppose le corps K de caractéristique différente de 2. Soit E un
espace affine et A,B,C ∈ E un triangle non aplati (i.e. trois points non alignés). On
définit les médianes de ce triangle comme trois droites joignant un sommet du triangle
au milieu du côté opposé.

1. Si la caractéristique de K n’est pas égale à 3, alors les trois médianes sont
concourrantes en un unique point G, qui est l’isobarycentre du triangle (en outre,
G est situé au tiers de chaque médiane, en partant de la base de celle-ci).

2. Si la caractéristique de K est 3, alors les trois médianes sont parallèles.

Démonstration. On considère A′ (resp. B′, resp. C ′) le milieu du segment [BC] (resp.
[AC], resp. [AB]).

1. Si la caractéristique de K n’est pas 3, on définit G comme étant l’isobarycentre
de A, B, C. Alors par associativité du barycentre,

G = Bar((A, 1), (A′, 2)) = Bar((B, 1), (B′, 2)) = Bar((C, 1), (C ′, 2)) .

En particulier, G ∈ (AA′)∩(BB′)∩(CC ′), donc les trois médianes sont concour-
rantes en G. Elles ne sont pas confondues car sinon les trois points A, B et C

seraient alignés. En outre, l’égalité
−→
GA+ 2

−−→
GA′ = 0 (et ses analogues) assure le

résultat supplémentaire.

2. Supposons maintenant la caractéristique de K égale à 3. Alors le vecteur
−−→
MA+−−→

MB +
−−→
MC est indépendant du point M ∈ E . Notons v ∈ E ce vecteur. Par

construction, on a
−−→
MA+

−−→
MB = 2

−−−→
MC ′ (et symétriquement), donc

v =
−−→
MA+ 2

−−→
MA′ =

−−→
MB + 2

−−−→
MB′ =

−−→
MC + 2

−−−→
MC ′ .
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Appliquons ces formules à M = A′, puis à M = B′, puis à M = C ′. Il vient

v =
−−→
A′A =

−−→
B′B =

−−→
C ′C

ce qui assure que les trois médianes sont parallèles (et définissent même le même
vecteur).

Proposition 1.45. Soit E un espace affine et F une partie de E.
Alors F est un sous-espace affine si et seulement si F ̸= ∅ et F est stable par

barycentre.

Démonstration. L’unicité du barycentre et le fait qu’un sous-espace affine est un espace
affine assurent qu’un sous-espace affine est stable par barycentre.

Soit maintenant une partie non vide F de E stable par barycentre. Soit P ∈ F .

Montrons que FP := {
−−→
PQ,Q ∈ F} est un sous-espace vectoriel de E.

D’abord FP est non vide, car il contient
−−→
PP = 0.

Soient u, v ∈ FP et λ ∈ K. Alors il existe Q,R ∈ F tels que u =
−−→
PQ et

v =
−→
PR. Alors λu + v = λ

−−→
PQ +

−→
PR + (−λ)

−−→
PP . Alors λu + v =

−−→
PG, où G =

Bar((Q,λ), (R, 1), (P,−λ)). Par hypothèse, G ∈ F , donc
−−→
PG ∈ FP , i.e. λu + v ∈ FP .

Donc FP est un sous-espace vectoriel, donc F est un sous-espace affine.

Remarque 1.46. On peut aussi montrer facilement que le sous-espace affine engendré
par une partie P non vide de E est exactement l’ensemble des barycentres de points de
P .

Proposition 1.47. Soit f : E → F une application entre deux espaces affines.
Alors f est affine si et seulement si f préserve le barycentre.

Démonstration. La démonstration est similaire à la précédente.

Introduisons maintenant les coordonnées barycentriques d’un point dans un repère
affine :

Définition 1.48. Soit E un espace affine et (P0, . . . , Pn) un repère affine.
Pour tout point M ∈ E , il existe un unique (λ0, . . . , λn) ∈ Kn+1 tel que

∑
i λi = 1

et
M = Bar((P0, λ0), . . . , (Pn, λn)) .

Les scalaires (λ0, . . . , λn) ∈ Kn+1 sont appelés les coordonnées barycentriques de
M dans le repère (P0, . . . , Pn).

Démonstration.

On peut affaiblir la condition
∑

i λi = 1 en
∑

i λi ̸= 0. Dans ce cas les coordonnées
barycentriques d’un point ne sont plus uniques, mais définies à un scalaire non nul près.
C’est exactement le même phénomème qu’avec les coordonnées homogènes d’un point
dans un espace projectif.
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Remarque 1.49. Les coordonnées barycentriques sont souvent plus naturelles et plus
élégantes que les coordonnées cartésiennes, car elles font jouer un rôle symétrique à
tous les points du repère, alors que les coordonées cartésiennes privilégient l’un des
n+ 1 points du repère (le premier) qui est pris comme origine des coordonnées.

On peut exprimer un hyperplan affine via une équation linéaire en coordonnées
barycentriques :

Proposition 1.50. Soit E un espace affine de dimension n et H un hyperplan affine
de E.

1. Il existe une forme affine non constante f : E → K telle que H = f−1(0).
De plus, deux formes affines f et g définissent le même hyperplan affine si et
seulement s’il existe λ ∈ K× tel que f = λg.

2. Soit R = (P0, . . . , Pn) un repère affine de E. Alors il existe a1, . . . , an, b ∈ K,
avec (a1, . . . , an) non tous nuls, tels que une équation de H dans le repère R
soit a1x1 + · · · + anxn + b = 0. De plus, la famille (a1, . . . , an, b) est unique à
multiplication près par un élément de K×.

3. Soit R = (P0, . . . , Pn) un repère affine de E. Alors il existe (a0, . . . , an) ∈ Kn+1

non tous nuls tels qu’une équation de H en coordonnées barycentriques dans
R soit a0λ0 + · · · + anλn = 0. De plus, la famille (a0, . . . , an) est unique à un
scalaire non nul près.

Démonstration. 1. Fixons un point P ∈ H. Puisque H ⊂ E est un hyperplan, il
existe une forme linéaire non nulle g ∈ E∗, unique à un scalaire près, telle que

H = ker(g). On définit alors f : E → K par la formule f(M) := g(
−−→
PM). Il est

clair que f est affine non constante, et pour tout M ∈ E , on a f(M) = 0 si et

seulement si
−−→
PM ∈ H si et seulement si M ∈ P +H = H. L’unicité de f résulte

de celle de g.

2. Il suffit d’écrire la preuve précédente en coordonnées cartésiennes dans le repère
R : si on note (x1, . . . , xn) les coordonnées d’un pointM de E , (b1, . . . , bn) celles
de P , la forme linéaire g ∈ E∗ s’écrit, dans la base (

−−−→
A0A1, . . . ,

−−−→
A0An), sous la

forme g(y1, . . . , yn) = a1y1 + · · · + anyn, donc f(M) = g(
−−→
PM) = a1(x1 − b1) +

· · ·+ an(xn − bn). On obtient l’équation souhaitée en posant b := −
∑

i aibi.

3. Comme au point précédent, il suffit d’écrire la preuve du premier point en co-
ordonnées barycentriques.

En dimension 2, les droites affines dans un plan affine admettent donc, dans un
repère affine, une équation en coordonnées cartésiennes de la forme ax+ by+ c = 0, et
en coordonnées barycentriques ax+ by + cz = 0.

Proposition 1.51. Soient D1, D2, D3 trois droites deux à deux distinctes d’un plan
affine E, et R un repère affine de E. Notons aix+ biy+ ciz = 0 une équation de Di en
coordonnées barycentriques. Alors les trois droites Di sont parallèles ou concourrantes
si et seulement si ∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = 0 .
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Démonstration.

On peut faire le lien entre les coordonnées barycentriques et des coordonnées dans
un espace vectoriel de dimension un de plus :

Théorème 1.52. Soit E un espace affine de dimension n.
Alors il existe un espace vectoriel canonique F de dimension n + 1 et une forme

linéaire non nulle canonique φ ∈ F ∗ tels que E est l’hyperplan affine de F défini par
l’équation φ = 1.

Démonstration. On sait que Aff(E , E) est canoniquement un K-espace vectoriel, et on
définit F ⊂ Aff(E , E) comme le sous-espace vectoriel engendré par les applications

affines fP : M 7→
−−→
PM , où M décrit E . Alors E s’identifie au sous-espace vectoriel de

F formé des applications constantes.
On dispose d’une application injective naturelle j : E → F définie par j(P ) := fP .

Considérons la forme linéaire φ : F → K définie par φ(f) :=
∑

P λP , si f s’écrit
f =

∑
P λP fP (somme à support fini). Montrons que cette application est bien définie :

si
∑

P λP fP =
∑

Q µQfQ, alors pour tout M ∈ E ,
∑

P λP
−−→
PM −

∑
Q µQ

−−→
QM = 0, donc

par propriété du barycentre, cela implique que
∑

P λP =
∑

Q µQ. Donc φ est bien
définie, et sa linéarité est claire.

On montre ensuite que E = ker(φ) et E = φ−1(1), ce qui conclut la preuve.

Le corollaire suivant est instructif (faire un dessin !) :

Corollaire 1.53. Avec les notations précédentes, on a une bijection canonique entre
l’ensemble des points de E et l’ensemble des droites de F non contenue dans E, et tout
repère affine de E s’identifie à une base de F , faisant ainsi correspondre les coordonnées
barycentriques d’un point dans un repère affine avec les coordonnées usuelles du vecteur
correspondant dans la base associée, et identifiant ainsi E à l’hyperplan de F donné par
”(somme des coordonnées dans cette base) = 1”, alors que E est identifié à l’hyperplan
E donné par ”(somme des coordonnées dans cette base) = 0”.

Démonstration.

Proposition 1.54. Soit E un plan affine et (A,B,C) un repère affine.
Soient P , Q, R trois points de E de coordonnées barycentriques respectives (x1, y1, z1),

(x2, y2, z2) et (x3, y3, z3).
Alors P , Q et R sont alignés si et seulement si∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ = 0 .

Démonstration. Il existe un espace vectoriel Ê de dimension 3 et φ ∈ Ê∗ tels que E ⊂ Ê
soit le plan affine d’équation φ = 1. Alors le repère affine (A,B,C) correspond à une

base (
−→
OA,

−−→
OB,

−−→
OC) de Ê et les vecteurs

−−→
OP ,

−−→
OQ,

−−→
OR ont pour coordonnées (xi, yi, zi)

dans cette base.
Alors P,Q,R sont alignés si et seulement si la famille (

−−→
OP,

−−→
OQ,

−−→
OR) est liée si et

seulement si le déterminant formé par leurs coordonnées dans la base précédente est
nul. Ce qui conclut la preuve.

14



Une généralisation évidente, avec la même preuve :

Proposition 1.55. Soit E un espace affine de dimension n et R = (A0, . . . , An) un
repère affine.

Soient (P0, . . . , Pn) n + 1 points de E de coordonnées barycentriques respectives
(λ0,0, . . . , λ0,n), . . ., (λn,0, . . . , λn,n) (x2, y2, z2) dans R. Notons Λ la matrice de taille
n+ 1 définie par Λ := (λi,j).

Alors P0, . . . , Pn sont contenus dans un hyperplan affine de E si et seulement si

det(Λ) = 0 .

Deux applications classiques des coordonnées barycentriques :

Théorème 1.56 (Menelaüs). Soit E un plan affine sur un corps K, A,B,C trois points
non alignés (i.e. un triangle non aplati). Soient A′ ∈ (BC), B′ ∈ (AC) et C ′ ∈ (AB)
trois points distincts de A, B et C.

Alors les points A′, B′ et C ′ sont alignés si et seulement si

−−→
A′B
−−→
A′C

B′C
−−→
B′A

−−→
C ′A
−−→
C ′B

= 1 .

Démonstration. Par hypothèse, (A,B,C) forment un repère affine de E . Si l’on note

a :=
−−→
A′B−−→
A′C

, b := B′C−−→
B′A

et c :=
−−→
C′A−−→
C′B

, on voit que les points A′, B′ et C ′ ont pour coordonnées

barycentriques respectives (0, 1,−a), (−b, 0, 1) et (1,−c, 0).
Alors la proposition 1.54 assure que les trois points A′, B′, C ′ sont alignés si et

seulement si ∣∣∣∣∣∣
0 −b 1
1 0 −c
−a 1 0

∣∣∣∣∣∣ = 0 ,

si et seulement si 1− abc = 0, ce qui assure le résultat.

Une variante :

Théorème 1.57 (Ceva). Soit E un plan affine sur un corps K, A,B,C trois points
non alignés (i.e. un triangle non aplati). Soient A′ ∈ (BC), B′ ∈ (AC) et C ′ ∈ (AB)
trois points distincts de A, B et C.

Alors les droites (AA′), (BB′) et (CC ′) sont parallèles ou concourrantes si et seule-
ment si −−→

A′B
−−→
A′C

B′C
−−→
B′A

−−→
C ′A
−−→
C ′B

= −1 .

Démonstration. Par hypothèse, (A,B,C) forment un repère affine de E . Si l’on note

a :=
−−→
A′B−−→
A′C

, b := B′C−−→
B′A

et c :=
−−→
C′A−−→
C′B

, on voit que les points A′, B′ et C ′ ont pour coordonnées

barycentriques respectives (0, 1,−a), (−b, 0, 1) et (1,−c, 0). Alors les droites (AA′),
(BB′) et (CC ′) ont pour équation respective ay + z = 0, x + bz = 0, cx + y = 0.
Alors la proposition 1.51 assure que les droites (AA′), (BB′) et (CC ′) sont parallèles
ou concourrantes si et seulement si∣∣∣∣∣∣

0 a 1
1 0 b
c 1 0

∣∣∣∣∣∣ = 0 ,
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si et seulement si 1 + abc = 0, ce qui assure le résultat.

Remarque 1.58. Ces deux énoncés (et leurs preuves) très similaires sont en fait in-
timement liés. Plus précisément, il existe une formulation de ces deux théorèmes en
géométrie projective, et dans ce cas, les deux énoncés deviennent duaux l’un de l’autre,
au sens de la dualité en géométrie projective (qui est une incarnation géométrique de
la dualité en algèbre linéaire).

Exemple 1.59. Une autre application des coordonnées barycentriques : la preuve du
théorème du point fixe de Brouwer à partir du lemme de Sperner sur les coloriages des
triangulations d’un triangle (ou d’un simplexe).

1.6 Théorèmes classiques de la géométrie affine

Nous avons déjà vu le théorème de Thalès. Nous allons maintenant nous intéresser
à deux autres résultats historiques : les théorèmes de Pappus (antiquité grecque) et de
Désargues (mathématicien français du 17ème siècle).

Théorème 1.60 (Pappus). Soit P un plan affine, D,D′ deux droites distinctes de P.
Soient P,Q,R ∈ D et P ′, Q′, R′ ∈ D′ deux triplets de points distincts (et différents de
l’éventuel point de concours de D et D′). Si (PQ′) et (P ′Q) sont parallèles, et si (QR′)
et (Q′R) sont parallèles, alors (PR′) et (P ′R) sont parallèles.

Démonstration. On a deux cas à considérer :

1. si D et D′ ne sont pas parallèles. Alors ces deux droites sont sécantes en un point
O. Considérons l’homothétie h : E → E de centre O qui envoie P sur Q (i.e. de

rapport λ :=
−−→
OQ
−−→
OP

). Puisque l’image d’une droite par un homothétie est une droite

parallèle (car
−→
h = λidE), on sait que h((PQ′)) = (QR′), donc h(Q′) est à la fois

sur D′ (car h(D′) = D′ puisque O ∈ D) et sur (QR′), donc h(Q′) = R′. Notons
h′ l’homothétie de centre O envoyant Q sur R. Alors par le même raisonnement

que plus haut, on a h(R′) = Q′. Considérons f := h′ ◦ h. Alors
−→
f est une

homothétie vectorielle et f(O) = O, donc f est est une homothétie de centre
O. En outre, f(P ) = R et f(R′) = P ′. Donc f((PR′)) = (P ′R), donc (PR′) et
(P ′R) sont parallèles.

2. si D et D′ sont parallèles. Considérons la translation t = t−−→
PQ

: E → E de vecteur
−−→
PQ. Puisque l’image d’une droite par une translation est une droite parallèle
(car

−→
t = idE), on sait que t((PQ′)) = (QR′), donc t(Q′) est à la fois sur D′

(car h(D′) = D′ puisque D et D′ sont parallèles) et sur (QR′), donc t(Q′) = R′.

Notons t′ = t−→
QR

la translation de vecteur
−−→
QR. Alors par le même raisonnement

que plus haut, on a t(R′) = Q′. Considérons f := t′ ◦ t. Alors
−→
f = idE et

f(P ) = R, donc f est une translation. En outre, f(P ) = R et f(R′) = P ′. Donc
f((PR′)) = (P ′R), donc (PR′) et (P ′R) sont parallèles.

Remarque 1.61. Les deux cas traités dans la preuve sont très similaires. Ils peuvent
être unifiés dans une version projective du théorème de Pappus.
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Théorème 1.62 (Désargues). Soit P un plan affine, P,Q,R, P ′, Q′, R′ six points dis-
tincts de P, tels que P,Q,R (resp. P ′, Q′, R′) ne soient pas alignés.

On suppose les droites (PP ′), (QQ′) et (RR′) deux à deux distinctes, (PQ) et (P ′Q′)
parallèles et (PR) et (P ′R′) parallèles.

Alors : (QR) et (Q′R′) sont parallèles si et seulement si les trois droites (PP ′),
(QQ′) et (RR′) sont parallèles ou concourrantes.

Démonstration. Par hypothèse, il existe λ, µ ∈ K× tels que
−−→
P ′Q′ = λ

−−→
PQ et

−−→
P ′R′ =

µ
−→
PR. Alors on a

−−→
Q′R′ =

−−→
Q′P ′ +

−−→
P ′R′ = λ

−−→
QP + µ

−→
PR et évidemment

−−→
QR =

−−→
QP +

−→
PR.

Or P , Q et R ne sont pas alignés, donc la famille (
−−→
QP,

−→
PR) est libre, donc

−−→
QR et

−−→
Q′R′

sont colinéaires si et seulement si λ = µ.
En outre, puisque (PQ) et (P ′Q′) sont parallèles, on a (PP ′) et (QQ′) parallèles

si et seulement si PP ′Q′Q est un parallélogramme si et seulement si
−−→
P ′Q′ =

−−→
PQ si et

seulement si λ = 1. De même, (PP ′) et (RR′) sont parallèles si et seulement si µ = 1.
Par conséquent, les trois droites (PP ′), (QQ′) et (RR′) sont parallèles si et seule-

ment si λ = µ = 1.
Supposons maintenant λ ̸= 1. Alors (PP ′) et (QQ′) sont sécantes en un point O,

et le théorème de Thalès assure que
−−→
OP ′ = λ

−−→
OP , donc

−−→
PO = 1

1−λ

−−→
PP ′. De même, si

µ ̸= 1, alors (PP ′) et (RR′) sont sécantes en un point O′, tel que
−−→
PO′ = 1

1−µ

−−→
PP ′.

Par conséquent, les trois droites (PP ′), (QQ′) et (RR′) sont concourrantes si et
seulement si λ ̸= 1, µ ̸= 1 et O = O′ si et seulement si λ = µ ̸= 1.

Finalement, on a bien montré que les trois droites (PP ′), (QQ′) et (RR′) sont
parallèles ou concourrantes si et seulement si λ = µ si et seulement si (QR) et (Q′R′)
sont parallèles.

Remarque 1.63. On peut donner une autre preuve de ce résultat, dans l’esprit de la
preuve de Pappus présentée plus haut : dans le cas des droites parallèles, considérer une

translation de vecteur
−−→
PP ′, et dans le cas des droites concourrantes en O, considérer

l’homothétie de centre O qui envoie P sur P ′.

Remarque 1.64. De nouveau, les cas ”parallèles” et ”concourrantes” peuvent être unifiés
dans une version projective du résultat.

1.7 Convexité dans un espace affine réel

Dans cette section, le corps K est le corps R des nombres réels. Cette hypothèse
permet de définir la notion de convexité. Si E est un espace affine réel de dimension
finie, on munira E de la topologie induite par un (donc par tout) isomorphisme affine
E ∼−→ Rn.

Définition 1.65. Soit E un espace affine réel. Si P,Q ∈ E , on définit le segment [PQ]
comme l’ensemble des barycentres à coefficients poistifs ou nuls de P et Q, i.e.

[PQ] := {Bar((P, λ), (Q, 1− λ)), λ ∈ [0, 1]} .

Définition 1.66. Soit E un espace affine réel, et C une partie de E . On dit que C est
convexe si pour tout P,Q ∈ C, le segment [PQ] est contenu dans C.

On dit de plus qu’un convexe C est strictement convexe si son bord ∂C := C \ C̊
ne contient aucun segment non réduit à un point.
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Exemples 1.67. 1. Tout sous-espace affine est convexe.

2. Un segment est convexe.

3. Les parties convexes de R sont les intervalles.

4. Soit f : C → R une fonction définie sur un convexe C d’un espace affine réel
E (par exemple, C est un intervalle de R). Alors la fonction f est convexe (au
sens où, pour tout a, b ∈ C et t ∈ [0, 1], f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b)) si
et seulement si l’épigraphe de f , défini par {(a, y) ∈ C ×R : f(a) ≤ y}, est un
convexe de E ×R.

Lemme 1.68. Une partie C de E est convexe si et seulement si elle est stable par
barycentre à coefficients positifs ou nuls.

Proposition 1.69. Une intersection de parties convexes est convexe.

Proposition 1.70. Soit f : E → F une application affine entre espaces affines réels.
Pour toute partie convexe C ⊂ E (resp. C ′ ⊂ F), l’ensemble f(C) (resp. f−1(C ′)) est
convexe.

Définition 1.71. Soit P une partie de E .
L’enveloppe convexe de P , notée Conv(P ), est la plus petite partie convexe de E

contenant P . C’est à la fois l’intersection de tous les convexes de E contenant P , et
aussi l’ensemble des barycentres à coefficients positifs de points de P .

Exemples 1.72. — L’enveloppe convexe de deux points P et Q est le segment
[PQ].

— L’enveloppe convexe de trois points A,B,C est le triangle ABC ”plein”.

Voici un exemple d’énoncé faisant usage de la notion d’enveloppe convexe :

Théorème 1.73 (Gauss-Lucas). On identifie C avec un plan affine réel. Soit P ∈ C[X]
un polynôme non constant.

Alors les racines de P ′ sont situeés dans l’enveloppe convexe des racines de P .

Démonstration. Scinder P , puis calculer la décomposition en éléments simples de P ′

P .

Évaluer en une racine de P ′ et conjuguer.

Remarque 1.74. On peut montrer également que les racines de P ′ ont même isobary-
centre que celles de P . Par conséquent, si P est de degré n, alors l’unique racine de
P (n−1) est l’isobarycentre des racines de P .

Le théorème suivant est utile notamment pour ses applications aux propriétés de
l’enveloppe convexe.

Théorème 1.75 (Carathéodory). Soit E un espace affine réel de dimension n et P ⊂ E
non vide. l’enveloppe convexe de P est exactement l’ensemble des barycentres à coeffi-
cients positifs de n+ 1 points de P .

Démonstration. Fixons un point O ∈ E .
Soit M ∈ Conv(P ). Alors il existe k ≥ 1, P1, . . . , Pk ∈ P , λ1, . . . , λk > 0 avec∑

i λi = 1 tels que P = Bar((P1, λ1), . . . , (Pk, λk)). On a donc
−−→
OM =

∑
i λi

−−→
OPi.

Supposons k ≥ n+ 2.
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Alors la famille (
−−−→
P1P2, . . . ,

−−−→
P1Pk) est formé d’au moins n + 1 vecteurs, donc elle

est liée : il existe (µ2, . . . , µk) ∈ Kk−1 \ {0} tels que
∑

i≥2 µi
−−→
P1Pi = O. Posons µ1 :=

−(µ2 + · · ·+ µk), alors on a
∑

i µi = 0 et
∑

i µi
−−→
P1Pi = O.

Pour tout t ∈ R, on a donc

−−→
OM =

∑
i λi

−−→
OPi − t

∑
i µi

−−→
P1Pi =

∑
i λi

−−→
OPi − t (

∑
i µi)

−−→
P1O − t

∑
i µi

−−→
OPi

=
∑

i(λi − tµi)
−−→
OPi .

On cherche un réel t tel que

1. pour tout i, λi − tµi ≥ 0.

2. il existe 1 ≤ j ≤ n tel que λj − tµj = 0.

Puisque
∑

i µi = 0 et les µi ne sont pas tous nuls, il existe i tel que µi > 0. Notons
M := {λi

µi
, µi > 0} et t := minM . Définissons λ′i := λi − tµi.

Alors
∑

i λ
′
i = 1 et il existe j tel que λ′j = 0. Pour tout i tel que µi > 0, on a t ≤ λi

µi
,

donc λ′i = λi − tµi ≥ 0. Enfin, si µi ≤ 0, on a λ′i ≥ λi ≥ 0, car t > 0.
Par conséquent, les deux conditions précédentes sont satisfaites pour cette valeur

de t, donc M est le barycentre à coefficients positifs de k − 1 points, à savoir M =
Bar((Pi, λ

′
i)i̸=j).

On conclut alors par récurrence sur k.

Corollaire 1.76. Soit E un espace affine réel et K ⊂ E. Si K est conpact, alors
Conv(K) est compact.

Remarque 1.77. Dans le même contexte, l’enveloppe convexe d’une partie bornée est
clairement bornée, car les boules sont convexes. Mais l’enveloppe convexe d’une partie
fermée n’est pas nécessairement fermée.

Le lemme suivant peut être utile dans la suite :

Lemme 1.78. Un convexe d’un espace affine réel de dimension finie est d’intérieur
vide si et seulement s’il est contenu dans un hyperplan.

Démonstration. Le sens réciproque est évident. Montrons le sens direct. Supposons que
le convexe C ne soit pas contenu dans un hyperplan. Alors C contient un repère affine
R. Puisque C est convexe, C contient l’enveloppe convexe Conv(R) (qui est appelée
un ”simplexe”). Or un tel simplexe est d’intérieur non vide (preuve par récurrence sur
la dimension).

Nous allons maintenant démontrer des variantes du théorème de Hahn-Banach (en
dimension finie !), et en déduire des applications à l’étude des convexes d’un espace
affine réel.

On commence par définir et étudier la jauge d’un convexe :

Définition 1.79. Soit E un R-espace vectoriel et C un convexe ouvert de E contenant
0.

On définit la jauge de C comme l’application jC : E → R+ définie par

jC(x) := inf{λ > 0 :
x

λ
∈ C} .

Cette application vérifie les propriétés suivantes :
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