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Dans tout ce chapitre, la notation K désigne un corps.

1 Géométrie affine

1.1 Espaces affines

Commencons par définir le principal objet d’étude de cette partie. La définition est
trés peu intuitive la premiere fois. Nous allons essayer de la motiver par la suite.

Définition 1.1. Un K-espace affine est un triplet (£, E, ), ou £ est un ensemble non
vide, E est un K-espace vectoriel, et ¢ : £ x E — & est une action (& droite) libre et
transitive du groupe (E,+) sur 'ensemble £.

Pour simplifier la notation, si v € E et P € £, on note
P+v:=¢(Pv)ef.
On peut donc reformuler la définition précédente de la fagon suivante :

Proposition 1.2. Un K-espace affine est une paire (€, F), ou E est un K-espace
vectoriel et £ un ensemble non vide, muni d’une application :

ExXE —E

notée (P,v) — P + v, telle que
1. pour tous P € &, pour tous u,v € E, P+ (u+v) = (P +u) +v.
2. pour tous P,Q € &, il existe un unique v tel que Q = P + v.

On note alors P-Cﬁ := v 'unique vecteur v permettant de passer de P a (). L’équivalence
entre les deux définitions est claire. La seeconde propriété peut se reformuler en disant



que pour tout P € &, I'application ¢¥p : £ — E définie par @ — I@ est une bijec-
tion. Autrement dit, tout choix d’un point de £ permet d’identifier canoniquement & a
I’espace vectoriel E. Mais cette identification dépend du choix du point, que I'on peut
appeler ”origine”.

On propose une troisieme version :

Proposition 1.3. Un K-espace affine est un couple (£, E), ou € est un ensemble non
vide et E un K-espace vectoriel, muni d’une application

EXESE,

notée (P, Q) ]@, telle que
1. pour tous P,QQ,R € &, P—})BI f@JrCﬁ
2. pour tous (P,v) € € x E, il existe un unique Q € & tel que ]@ = .

La derniere propriété peut se reformuler en disant que pour tout P € £, application
naturelle pp : £ — E définie par Q — J@ est une bijection. Autrement dit, tout choix
d’un point de £ permet d’identifier canoniquement £ a ’espace vectoriel . Mais cette
identification dépend du choix du point, que I'on peut appeler ”origine”. On peut
noter que I’application ¢p est la réciproque de 'application ¢ p issue de la définition
précédente.

Remarque 1.4. On trouve parfois la notation ¢ — P pour le vecteur ]@ C’est une
notation commode permettant de faire la différence de deux points, mais elle peut
étre un peu glissante au début (car on ne peut pas faire n’importe quelle somme ou
combinaison linéaire de points). Par exemple ) — P a bien un sens, alors que P + @
n’en a pas. On peut faire des combinaisons linéaires quelconques de vecteurs de F, mais
pas de points de £. Nous y reviendrons dans la partie consacrée au barycentre.

En résumé, et informellement, un espace affine, c¢’est un ensemble de points et un
ensemble de vecteurs, avec une fagon d’associer raisonnablement un vecteur a un couple
de points (ou d’une fagon de translater raisonnablement un point par un vecteur).

Définition 1.5. Soit (£, F) un K-espace affine. Les éléments de & sont appelés des
points de ’espace affine, et I’espace vectoriel E est appelé ”direction de ’espace affine”,
et ses éléments sont appelés des vecteurs. La dimension de E est appelée la dimension
de l'espace affine £.

Construisons les premiers exemples d’espaces affines :

Exemples 1.6. 1. Soit F un K-espace vectoriel. Alors £ := FE est canoniquement
un espace affine de direction F, via PQ := @ — P. L’action de F sur £ est
simplement donnée par ’addition dans F.

2. Soit £ un espace affine et H C E un sous-espace vectoriel. Alors £/H (quotient
pour laction évidente de H sur &) est canoniquement un espace affine de direc-
tion E//H, dont les points correspondent aux sous-espaces affines (voir plus bas)
de £ de direction H.

3. Soient E et I deux K-espaces vectoriels et f : £ — F une application linéaire.
Pour tout b € im(f), I'ensemble & = f~1(b) = {z € E : f(x) = b} est
canoniquement un espace affine de direction E = ker(f). Autrement dit, toute



solution de I’équation linéaire f(x) = b s’écrit de fagon unique comme somme
d’une solution particuliere et d’une solution homogene. De fagon plus concrete,
pour toute matrice A € Mat,, ,(K) et tout vecteur colonne B € im (A) C K",
I’ensemble £ des solutions de ’équation linéaire AX = B est canoniquement
un espace affine de direction ker(A).

4. De fagon similaire, si A : R — Mat,, ,(R) est continue, B : R — R" est continue,
I’ensemble des solutions de I’équation différentielle linéaire avec second membre
X'(t) = A(t)X(t) + B(t) est canoniquement un R-espace affine de direction
lespace vectoriel des solutions du systéeme homogene associé X'(t) = A(t) X (¢).

5. Soit F' C E un sous-espace vectoriel. Alors I’ensemble des supplémentaires de F'
dans E est naturellement un K-espace affine de direction L(E/F, F).

6. Pour tout ensemble I non vides et toute famille (&;);c; d’espaces affines, le pro-
duit cartésien [, ;& est naturellement un espace affine, de direction [, ; E;.

Définition 1.7. Soit £ un K-espace affine de direction E. Une partie F de £ est un
sous-espace affine si F est non vide et pour tout P € F, 'ensemble F' := {fﬁ, Qe F}
est un sous-K-espace vectoriel de E.

De facon équivalente, F C £ est un sous-espace affine si et seulement s’il existe un
sous-espace vectoriel F' C F et un point P € F tels que F = P+ F.

Proposition 1.8. Soit F C £ un sous-espace affine. Alors F est un espace affine, de
direction F := {@,P,Q € F}. De plus, pour tout P € F, on a F = Fp := {I@,Q €
F}.

Démonstration. Soient P, P’ € F. Alors Fp = Fp: = F : en effet, 'inclusion Fp, Fpr C
F est évidente ; en outre, pour tout v € F, il existe @, R € F tels que v = QR, alors
v = ﬁ — PQ), et PR,P() € Fp, donc v € Fp car Fp est un sous-espace vectoriel par
définition. Donc F' = Fp = Fpr.

Montrons maintenant que F est un espace affine de direction F'. La restriction de
I'action de F sur £ induit une action de F sur JF, car pour tout P € F et v € F, il
existe (un unique) @ € F tel que v = ]@, et donc P+v =P+ ]@ = (Q est dans
F. Comme 'action de F sur £ est libre, celle de F' sur F l'est aussi, et la transitivité
résulte du fait que pour tout P,Q) € F, on a ]@ cF. O

Proposition 1.9. Soit I un ensemble et (F;)icr une famille de sous-espaces affines de
&, de directions respectives (F;);cy-
Alors (e Fi est soit vide, soit un sous-espace affine de £, de direction (;c; F;.

Démonstration. Supposons (,c; F; non vide et choisissons P € [;c; F;. Pour tout

Qe ona 1@ € ;e Fi si et seulement si pour tout i € I, ]@ € F; si et seulement
si pour tout i € I, Q € F; (car P € F;) si et seulement si Q € [);c; Fi. D’ou le
résultat. [

Exemple 1.10. Si E, F sont des K-espaces vectoriels et f € L(E, F), alors pour toute
partie P C F rencontrant im (f), 'ensemble f~1(P) C E est un sous-espace affine.

On dispose donc notamment d’une notion de sous-espace affine engendré par une
partie non vide, défini par exemple comme 'intersection des sous-espaces affines conte-
nant cette partie. Si P C & est une partie non vide, on notera (P) le sous-espace affine
de £ engendré par P.



Définition 1.11. Soient F,G C & des sous-espaces affines. On dit que F et G sont
paralleles (resp. faiblement paralléles) si leurs directions sont égales (resp. si la direction
de I'un est contenue dans la direction de l'autre).

En particulier, deux sous-espaces affines paralleles sont confondus ou disjoints.

Proposition 1.12. Soient F,G C £ des sous-espaces affines, P € F,Q € G.
Alors FNG # () si et seulement si PQ) € F + G. En particulier, F NG est non vide
des que FF+ G = FE.

Démonstration. Supposons F N G non vide et choisissons R € F N G. Alors f@ =
P?—l—@zﬁ—@?, avecﬁéFetQ?EG. Donc]@éF%—G.
Réciproquement, si 1@ € '+ G, on écrit 1@ = f+4+g,avec f € Fet g € G.
Alors @ = P+ (f + g), donc Q + (—g) = P + f. Notons R ce point. Alors on a
R=Q+(-g9g)€eGet R=P+ feF.Donc Re FNG, donc FNG # 0. O

Corollaire 1.13. Soit £ un espace affine de dimension finie, et F,G C £ des sous-
espaces affines.
St FNG =0, alors

dim ((FUG)) =dim (F) +dim(G) +1 —dim (FNG).
Si FNG+#0, alors
dim ((FUG)) = dim (F) + dim (G) — dim (F N G).

Démonstration. C’est une conséquence des propositions[I.9et ainsi que la formule
de Grassmann sur la dimension d’une somme de deux sous-espaces vectoriels. ]

Corollaire 1.14. Soient F,G C £ des sous-espaces affines. St F®&G = E, alors FNG
est un point.

1.2 Reperes affines et coordonnées

La notion de repere d’un espace affine est directement reliée a la notion de base
d’un espace vectoriel.

Définition 1.15. Soit £ un K-espace affine de direction E et de dimension n. Un
repere affine de £ est un n + l-uplet Ay,..., A, € &£ tel que (ApA1, ApAz, ..., AgA,)
est une base de E.

Cela équivaut a la donnée d’une origine O € £ et d’une base B = (ey,...,e,) de E,
en posant Ay := O et A; := O +¢;.

On peut alors introduire les coordonnées d’un point dans un repere affine :

Définition 1.16. Soit £ un espace affine muni d’un repere affine R := (4o, ..., Ay).

Pour tout P € &, les coordonnées de P dans le repére R sont les scalaires (z1, ..., xy)
tels que m =>", azzm Autrement dit, les coordgnnées de P dans le repere R
sont les coordonnées du vecteur m dans la base (AgA1, AgAa, ..., AgAy).

On dispose naturellement de formules affines de changement de reperes affines, qui
se déduisent des formules de changement de bases usuelles :



Proposition 1.17. Soient R = (0,B) et R' = (O’,B') deux repéres affines de &, et
M € &. Notons X (resp. X') le vecteur colonne des coordonnées de M dans R (resp.
R'), et Y le vecteur colonne des coordonnées de O’ dans R. Alors

X = PB,B’X/ +Y,

ou Pgp = Matp g (idg) est la matrice de changement de bases, dont les colonnes sont
les coordonnées des vecteurs de B' dans la base B.

Démonstration. Ecrire OM = O'M + OO’ et appliquer les formules de changement de
bases usuelles en algebre linéaire. O

1.3 Applications affines

La notion d’application affine est elle aussi inspirée de la notion d’application
linéaire :
Définition 1.18. Soit &£, F deux K-espaces affines et f : £ — F. On dit que f est une
application affine sl existe O € £ et ¢ € L(E, F) tels que pour tout v € E,

f(O+v)=f(O)+o(v).

Autrement dit, f est affine s’il existe O € £ tel que 'application ¢ : ' — F définie par
OP — f(O)f (Pb est une application linéaire.

L’application ¢ est uniquement déterminée par f, on ’appelle la partie linéaire ou

la direction de f et on la note f.
On notera Aff(€, F) 'ensemble des applications affines de £ dans F.

Exemples 1.19. 1. Une application linéaire f entre deux espaces vectoriels est
une application affine avec f = f.

2. Si &£ est un espace affine, pour tout v € E, I'application ¢, : £ — £ définie par
P — P + v est affine, de partie linéaire t, = idg. L’application ¢, est appelée
translation de vecteur v.

Proposition 1.20. L’ensemble Aff(E,F) est canoniquement un espace affine, de di-
rection l’espace vectoriel Aff(E, F).

Démonstration. L’ensemble F¢ est clairement un espace affine de direction F¢, et
Aff(€, F) C F¢ est un sous-espace vectoriel. Soient f € Aff(E, F) et p € F¢, considérons
Papplication f + ¢ : £ — F définie par (f + ¢)(P) = f(P) + ¢(P). Alors pour tout
Pe& toutwv e E,ona

(F+@)(P+v)= FP+v)+o(P+v)=F(P)+ f @) +p(P+0v)
(f +9)(P) + (F (v) + (P +v) — o(P)),

donc lapplication f 4 ¢ est affine si et seulement si 'application £ — F' définie par
v = (f(v)+ (P +v) —¢(P)) est linéaire et indépendante de P, si et seulement si
Papplication v — (P + v) — ¢(P) est linéaire et indépendante de P si et seulement si
@ : £ = F est une application affine.

Cela assure que Aff(£,F) est bien un sous-espace affine de F¢, de direction le
sous-espace vectoriel Aff(€, F) C F¢. O



Proposition 1.21. Une composée d’applications affines est affine, de partie linéaire

la composée des gm‘ties linéaires. Autrement dit, si € % F i> G sont affines, alors fog
est affine etfog:7o

Démonstration. Soient P € £ et v € E. Alors

(fog)(P+v) = F(g(P+v)) = F(g(P)+F () = F@(P)+ f (G () = (fog)(P)+(FoF)(v),

ce qui assure le résultat. O

On a donc une application Aff(€,F) — L(E, F) définie par f — ?, qui est com-
patible a la composition.

Proposition 1.22. Soit f : € — F une application affine. Alors l'image par f d’un
sous-espace affine G de £ est un sous-espace affine de F de direction f (G), et l’image
réciproque d’un sous-espace affine H de F est soit vide, soit un sous-espace affine de

& de direction ?_I(H).
En particulier, une application affine préserve lalignement.

Démonstration. Choisissons P € G. Alors G = P + G, donc f(G) = f(P) + ?(G) car
f est affine, donc f(G) est bien un sous-espace affine, de direction f (G).
Dans l'autre sens, si f~(#) est non vide, choisissons P € f~!(#). Alors, pour tout

Q€& onaQ € f1(H)siet seulement si f(Q) € H si et seulement si f(P)+?(Pﬁ) €
H si et seulement si 7(P ) € H (car f(P) € H) si et seulement si PQ) € ?_I(H).
Cela assure que f~1(H) = P+ f }(G), donc f~(H) est bien un sous-espace affine de
& de direction ?/_1(H). O

Remarque 1.23. Réciproquement, une bijection qui préserve l'alignement est ”presque”
une application affine. C’est le théoreme fondamental de la géométrie affine.

Proposition 1.24. Soient £, F deux K -espaces affines, et R = (Ag, ..., An) un repére
affine de .

Alors lapplication de restriction Aff(E, F) — FlAoAnt est un isomorphisme d’es-
paces affines. En particulier, une application affine est entierement déterminée par
limage d’un repére affine.

Démonstration. O

Le résultat suivant sera trés utile dans 1’étude et la classification des isométries
affines :

Proposition 1.25. Soit f : £ — £ une application affine. Alors l’ensemble Fix(f) des
points fives de f est soit vide, soit un sous-espace affine de direction l’espace propre
ker( f —idg) C E.

Démonstration. Supposons Fix(f) non vide et choisissons P € Fix(f). Alors pour tout

Q € &, ona@ € Fix(f) si et seulement si f(Q) = @ si et seulement si f(P) —1—?(1@) =
Q si et seulement si f (PQ) = PQ si et seulement si PQ) € ker( f —idg), ce qui conclut
la preuve. O



Corollaire 1.26. Soit f : £ — £ une application affine avec £ de dimension finie.
Alors f a un unique point fixe dans £ si et seulement si 1 n’est pas valeur propre
de

Démonstration. Le sens direct et I'unicité dans le sens réciproque sont conséquences de
la proposition précédente. Reste a montrer I’existence sous I’hypothese que 1 n’est pas
valeur propre de 7 Fixons P € &, et soit v € E. Alors f(P+v) = P+wv si et seulement
si f(P)+ 7(1}) = P+usi et seulement si ¥ —v = f(P)P. Or I'endomorphisme 7 —id
est injectif par hypothese, donc bijectif car E est de dimension finie, donc il existe un
unique v € E tel que ¥ — v = f(P)P, donc il existe un unique point fixe pour f. [

On peut écrire les applications affines en coordonnées dans un repere affine, comme
on pouvait décrire les applications linéaires comme des matrices, une fois une base
fixée :

Proposition 1.27. Soit R = (O, B) (resp. R' = (0',C)) un repére affine de € (resp.
F) et f:E— F une application affine. Soit P € € de coordonnées (z1,...,xp) dans

R, et notons (y1,...,Yyn) les coordonnées de f(P) dans R'. Notons A := Matc,g(?) et
(b1,...,by) les coordonnées de f(O) dans R'. Alors on a :

Y1 T b1
Yn Lp by,

La proposition suivante caractérise les translation, et elle est utile dans plusieurs
applications :

Proposition 1.28. Une application affine f : £ — £ est une translation si et seulement
St = idE.

Démonstration. On a déja vu que pour tout v € F, t_> = idg. Récipro uement, soit
f: & — F affine telle que f =idg. Ch01ssons Pe 6' et notons v := Pf(P). Alors pour
tout Q € €, £(Q) = f(P+PQ) = f(P)+ f (PO) = f(P)+PQ = Q+Q (P)) +1@—

Q+ Pf(P)=Q +wv,donc f = tv est bien une translation.

Proposition 1.29. L’ensemble des translations de £ est un groupe abélien (pour la
composition) canoniquement isomorphe a (E,+).

Définition 1.30. Soit A € K. L’ homothetle de centre O et de rapport A hp y : &€ = &
est définie par ho (M) = O + )\OM C’est une application affine de partie linéaire
H .

ho7 A= Aid E-

On peut montrer qu'une application affine f : &€ — £ qui vérifie 7 = Aidg avec
A # 1, a un unique point fixe O et que f est ’homothétie de centre O et de rapport .

Définition 1.31. Soient F C £ un sous-espace affine, et G un supplémentaire de F'
dans F (i.e. E=F ®G).

Pour tout M € &, il existe un unique p(M) € F tel que Mp(M) € G. Alors l'ap-
plication p : £ — F est une application affine, appelée projection sur F parallelement
aG.



Comme en algebre linéaire, on a p o p = p. La partie linéaire de p est le projection
vectorielle sur F' parallelement a G.

Définition 1.32. On suppose la caractéristique de K différente de 2. Avec les nota-
tions précédentes, application s : £ — & définie par s(M) := M + 2Mp(M ) est une
application affine, appelée symétrie par rapport a F parallelement a G.

Comme en algebre linéaire, on a s o s = idg. La partie linéaire de s est la symétrie
vectorielle par rapport a F' parallelement a G.

Une conséquence du fait que les projections sont des applications affines est le
fameux :

Théoréme 1.33 (Thales). Soit & un espace affine de dimension > 2, H C E un
hyperplan, H1, Ho, Hs trois hyperplans affines de direction H, deux a deux distincts, et
D, D' deux droites affines non faiblement paralléeles a H. Alors
1. Pour tout i, la droite D (resp. D') coupe Uhyperplan H; en un unique point P,
(resp. Q;).
PP _ Q1Q
2. Ona B ool
3. Si en outre D et D' sont concourantes en P, = Q1, alors FZP%) = P\Q; = m.
PP P1Qs P3Q3
Démonstration. 1. Comme D et D’ ne sont pas faiblement paralleles & H, D et D’
ne sont pas contenus dans H, donc H® D = H® D' = E, et il suffit d’appliquer
le corollaire [[.14l
2. Considérons la projection (affine) p : &€ — D' sur D’ parallelement & H. Alors
s T
p(P;) = Q; pour tout i. Il existe un unique A := %L% € K tel que PLP> = AP, P;.

Comme p est affine, on a

Q1G5 = p(P)p(Ps) = T (PiPy) = T(APLE) = AP (PLPS) = Ap(P)p(Ps) = AQ1Qs,

— —
ce qui assure que 222 = \ = 1@

PP Q1Q3"
3. Notons O := P; = Q1 et considérons I’homothétie h de centre O et de rapport
A == B2 Alors le point précédente assure que h(P3) = Py et h(Q3) = Qo.
143

%
Comme h est affine de partie linéaire h = Aidg, on a donc

\

PoQ = h(Po)h(Qs) = 7 (PsQ3) = APsQs,

ce qui assure le résultat.
O

Remarque 1.34. Notez que le théoreme de Thales est un énoncé affine, et non euclidien.
Pas besoin de notion de distance pour 1’énoncer.

Remarque 1.35. Une autre preuve possible consiste a considérer le quotient £/H (qui
est une droite affine) de £ par l'action naturelle de H. Alors la projection 7 : &€ — £/H
est affine, et 7(P;) = w(H;) = 7(Q;), donc

PPy _ n(Hi)n(Hy) _ QiQs

PPy n(Hi)w(Hs)  Q1Q3

ce qui prouve le théoreme.



1.4 Groupe affine et sous-groupes

Soit £ un K-espace affine de direction E. On note GA(E) ’ensemble des applications
affines bijectives de £ dans lui-méme.

Proposition 1.36. Muni de la composition, (GA(E),0) est un groupe, appelé groupe
affine de &, et Uapplication "partie linéaire” induit un morphisme de groupes surjectif

GA(E) — GL(E),

dont le noyau est exactement le sous-groupe T'(E) de GA(E) (isomorphe a (E,+)) formé
des translations de £.

Intuitivement, les applications affines, ce sont essentiellement les applications linéaires
auxquelles on ajoute les translations.

Démonstration. Le fait que ce soit un groupe, et le calcul du noyau du morphisme
i1.28

f— 7, résultent des propositions et
Pour la surjectivité, on choisit un point O € £. Et pour tout ¢ € GL(E), on

définie f : &€ — &€ de la fagon suivante : pour tout P € &, f(P) := O 4+ pOP. 1l est

alors immédiat que f est affine, bijective, de partie linéaire f = ¢, ce qui conclut la
preuve. ]

Remarque 1.37. On peut méme vérifier que le choix d’une origine dans £ induit un
isomorphisme entre GA(E) et le produit semi-direct naturel (E,+) x GL(E).

Le groupe GA(E) admet un autre sous-groupe utile : le sous-groupe HT(E) des
homothéties-translations, formé des homothéties et des translations. C’est I'image in-
verse par le morphisme précédent du sous-groupe des homothéties de GL(E). On re-
marque que T'(€) est un sous-groupe (abélien) distingué de HT (), et le quotient est
isomorphe a (K*,-). Plus précisément, le choix d’une origine induit un isomorphisme

HT(E) = (E,+) x (K*,-)

1.5 Barycentre

Définition 1.38. Soit £ un K-espace affine, P;,..., P, € £, et A\1,..., A\, € K.
1. Si ) ; A # 0, alors il existe un unique point G € £ tel que pour tout M € &,

;Aiz\ﬁ: (ZA) MG .

Ce point est appelé le barycentre du systeme de points pondérés (P, \;), et
parfois noté G = Bar((P1, A1), ..., (Pn, A\n))-

2. 8i) ;A\ =0, alors le vecteur ), )\legl est indépendant du point M € £.

Démonstration. 1. Choisissons O € £. Alors la formule

1
(ﬁ: Zz)‘zzz:/\l(ﬁ




définit un unique point G € £. Donc 'unicité est claire. Montrons maintenant
que le point ainsi défini ne dépend pas du point O choisi. Soit M € £. Alors

S AMP. = 52, M(MO + OF) = (£, \) MO + 33, AP,
= (S M) MO+ (£,0) 0G = (5, 0) M
ce qui conclut la preuve de 'existence de G.
2. Supposons ) ; A; = 0 et soient M, N € €. Alors on a

ZA—ﬁ Z)\ MN + NP, (ZA)T\ﬂZA? ZA?,

d’ou le résultat.
O

Remarque 1.39. Si )", \; =1, le barycentre G est parfois noté
G=> MNP
i

Cette notation intuitive peut étre pratique, mais elle est probablement a éviter a
I’agrégation.

La propriété suivante est élémentaire, mais utile :

Proposition 1.40. Soit £ un K-espace affine, Py,..., P, € E, et A\1,..., \p € K tels
que Y ; N\i # 0.

Alors le barycentre G des (Py, \;) est caractérisé par

STANGP = 0.

Démonstration. Si un point G vérifie

S AGP =0,

alors pour tout M € &, on a

S NMP, =Y, M(MO +0B) = (3, A T ZAO‘ﬁ
(ZA)W++ZA_8: +

donc G est bien le barycentre recherché. O

Exemples 1.41. — Sin # 0 dans K (i.e. si la caractéristique de K ne divise pas
Pentier n), et si pour tout i, A\; = %, on dit que G est 'isobarycentre (ou le
centre de gravité) des P;.

— En caractéristique différente de 2, I'isobarycentre de deux points est appelé le
milieu de ces deux points. En caractéristique 2, le milieu d’un segment n’est pas
défini!
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Lemme 1.42. Dans un repére affine, les coordonnées du barycentre d’un systeme de
points pondérés sont les moyennes pondérées des coordonnées des points : si G =
Bar((Pi, M), ..., (P, Ak)) avec Y, N\j = 1, et si chaque P; a pour coordonnées (x;0, ..., %in),
alors G a pour coordonnées (D, Nixio, .., ; NiTin)-

La propriété suivante est appelée I’associativité du barycentre :

Théoréme 1.43. Soit £ un K-espace affine, Py,..., P, € £, et A,...,\p € K tels que

YA #0. Soit {1,...,n} = I 11 J une partition, avec A\ ==Y ;A\ et A\j := Zje] Aj
non nuls.

Alors

Bar((P1, A1), - .., (Pa, An)) = Bar((Bar((Ps, Ai)ier), Ar), (Bar((Pj, Aj)jer), A)) -
Démonstration. On note Gy := Bar((FP;, \i)icr) et Gy = Bar((Pj,\j)jes), et G :=
Bar((Gr, A1), (G, Ag)).

Alors

STANGE =S NGB + 3 NGP = MGGr 4+ AGGy =0
7 el jeJ

ce qui assure que G est le barycentre des (F;, \;). O

Corollaire 1.44. On suppose le corps K de caractéristique différente de 2. Soit £ un
espace affine et A, B,C € £ un triangle non aplati (i.e. trois points non alignés). On
définit les médianes de ce triangle comme trois droites joignant un sommet du triangle
au, milieu du coté opposé.

1. Si la caractéristique de K n’est pas égale & 3, alors les trois médianes sont
concourrantes en un unique point G, qui est l’isobarycentre du triangle (en outre,
G est situé au tiers de chaque médiane, en partant de la base de celle-ci).

2. Si la caractéristique de K est 3, alors les trois médianes sont paralléles.
Démonstration. On considere A’ (resp. B’, resp. C”) le milieu du segment [BC| (resp.
[AC], resp. [AB]).

1. Si la caractéristique de K n’est pas 3, on définit G comme étant I’isobarycentre
de A, B, C. Alors par associativité du barycentre,

G = Bar((4,1), (4',2)) = Bar((B, 1), (B',2)) = Bar((C, 1), (C", 2)).

En particulier, G € (AA")N(BB')N(CC"), donc les trois médianes sont concour-

rantes en GG. Elles ne sont pas confondues car sinon les trois points A, B et C
— =
seraient alignés. En outre, 1’égalité GA + 2G A’ = 0 (et ses analogues) assure le

résultat supplémentaire.

o
2. Supposons maintenant la caractéristique de K égale a 3. Alors le vecteur M A +
M § 4+ MC est indépendant du point M € £. Notons v € E ce vecteur. Par
e —
construction, on a M A + M B—oMC (et symétriquement), donc

— — —
v=MA+2MA = ME +2MB = MC +2MC' .

11



Appliquons ces formules & M = A, puis & M = B’, puis & M = C’. 1l vient
VA i
v=AA=BB=CC

ce qui assure que les trois médianes sont paralleles (et définissent méme le méme
vecteur).

O]

Proposition 1.45. Soit £ un espace affine et F une partie de £.
Alors F est un sous-espace affine si et seulement si F # 0 et F est stable par
barycentre.

Démonstration. L’unicité du barycentre et le fait qu’un sous-espace affine est un espace
affine assurent qu'un sous-espace affine est stable par barycentre.

Soit maintenant une partie non vide F de & stable par barycentre. Soit P € F.
Montrons que Fp := {PQ,Q € F} est un sous-espace vectoriel de E.

D’abord Fp est non vide, car il contient PP = 0.

Soient u,v € Fp et X € K. Alors il existe Q,R € F tels que u = 1@ et
v = PL. Alors A+ v = )\@+P‘}>B+(—)\)ﬁ. Alors A\u+v = 1@, on G =
Bar((Q,\), (R,1),(P,—\)). Par hypothese, G € F, donc ﬁ € Fp,ie. Au+wv € Fp.
Donc Fp est un sous-espace vectoriel, donc F est un sous-espace affine.

O

Remarque 1.46. On peut aussi montrer facilement que le sous-espace affine engendré
par une partie P non vide de £ est exactement I’ensemble des barycentres de points de
P.

Proposition 1.47. Soit f : £ — F une application entre deux espaces affines.
Alors f est affine si et seulement si f préserve le barycentre.

Démonstration. La démonstration est similaire a la précédente. O

Introduisons maintenant les coordonnées barycentriques d’un point dans un repere
affine :

Définition 1.48. Soit £ un espace affine et (Pp, ..., P,) un repere affine.
Pour tout point M € &, il existe un unique (Ao, ..., \,) € K" tel que Y, N =1
et
M = Bar((Po, )\0), ey (Pn, An)) .

Les scalaires (Mg, ..., \,) € K"! sont appelés les coordonnées barycentriques de
M dans le repere (P, ..., P,).

Démonstration. O

On peut affaiblir la condition ), A\; =1 en ) ; \; # 0. Dans ce cas les coordonnées
barycentriques d’un point ne sont plus uniques, mais définies & un scalaire non nul pres.
C’est exactement le méme phénomeme qu’avec les coordonnées homogenes d’un point
dans un espace projectif.
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Remarque 1.49. Les coordonnées barycentriques sont souvent plus naturelles et plus
élégantes que les coordonnées cartésiennes, car elles font jouer un role symétrique a
tous les points du repere, alors que les coordonées cartésiennes privilégient I'un des
n + 1 points du repére (le premier) qui est pris comme origine des coordonnées.

On peut exprimer un hyperplan affine via une équation linéaire en coordonnées
barycentriques :

Proposition 1.50. Soit £ un espace affine de dimension n et H un hyperplan affine
de £.

1. Il existe une forme affine non constante f : €& — K telle que H = f~1(0).
De plus, deux formes affines f et g définissent le méme hyperplan affine si et
seulement s’il existe A € K* tel que f = \g.

2. Soit R = (Py,...,P,) un repére affine de £. Alors il existe ay,...,an,b € K,
avec (ai,...,an) non tous nuls, tels que une équation de H dans le repére R
soit ajx1 + -+ + apxy + b = 0. De plus, la famille (ai,...,an,b) est unique a
multiplication prés par un élément de K.

3. Soit R = (Py, ..., P,) un repére affine de £. Alors il existe (ay, ..., a,) € K"
non tous nuls tels qu’une équation de H en coordonnées barycentriques dans
R soit agho + -+ - + apAp, = 0. De plus, la famille (ag,...,a,) est unique a un
scalaire non nul pres.

Démonstration. 1. Fixons un point P € H. Puisque H C E est un hyperplan, il
existe une forme linéaire non nulle ¢ € E*, unique a un scalaire pres, telle que
H = ker(g). On définit alors f : £ — K par la formule f(M) := g(PM). 1l est
clair que f est affine non constante, et pour tout M € £, on a f(M) = 0 si et
seulement si ﬁ\?f € H si et seulement si M € P+ H = H. L’unicité de f résulte
de celle de g.

2. Il suffit d’écrire la preuve précédente en coordonnées cartésiennes dans le repere
R :sion note (z1,...,x,) les coordonnées d'un point M de &, (by, ..., by,) celles
de P, la forme linéaire g € E* s’écrit, dans la base (ApA1,...,AgAy), sous la
forme g(y1,...,yn) = a1y1 + -+ + anyn, donc f(M) = g(PM) = a1(x1 — b1) +
-+ + an(r, — by). On obtient I’équation souhaitée en posant b:= — >, a;b;.

3. Comme au point précédent, il suffit d’écrire la preuve du premier point en co-

ordonnées barycentriques.
O

En dimension 2, les droites affines dans un plan affine admettent donc, dans un
repere affine, une équation en coordonnées cartésiennes de la forme ax + by + ¢ =0, et
en coordonnées barycentriques ax + by + cz = 0.

Proposition 1.51. Soient D1, Dy, D3 trois droites deux o deuz distinctes d’un plan
affine €, et R un repére affine de £. Notons a;x + by + c;z = 0 une équation de D; en
coordonnées barycentriques. Alors les trois droites D; sont paralléles ou concourrantes
st et seulement si

a1 b1
as bg Co =0.
az bz c3
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Démonstration. O

On peut faire le lien entre les coordonnées barycentriques et des coordonnées dans
un espace vectoriel de dimension un de plus :

Théoreme 1.52. Soit £ un espace affine de dimension n.

Alors il existe un espace vectoriel canonique F de dimension n + 1 et une forme
linéaire non nulle canonique ¢ € F* tels que £ est Uhyperplan affine de F défini par
léquation ¢ = 1.

Démonstration. On sait que Aff(E, E) est canoniquement un K-espace vectoriel, et on
définit F' C Aff(€, F) comme le sous-espace vectoriel engendré par les applications
affines fp : M — PM, ou M décrit £. Alors E s’identifie au sous-espace vectoriel de
F formé des applications constantes.

On dispose d’une application injective naturelle j : & — F définie par j(P) := fp.
Considérons la forme linéaire ¢ : F' — K définie par o(f) := > pAp, si f sécrit
f=>_pApfp (somme & support fini). Montrons que cette application est bien définie :
sid pApfp= ZQ po fg, alors pour tout M € £, > p )\pm - EQ MQQT/[ = 0, donc
par propriété du barycentre, cela implique que ) pAp = ZQ pg. Donc ¢ est bien
définie, et sa linéarité est claire.

On montre ensuite que E = ker(¢) et € = ¢~ 1(1), ce qui conclut la preuve. O

Le corollaire suivant est instructif (faire un dessin!) :

Corollaire 1.53. Avec les notations précédentes, on a une bijection canonique entre
l’ensemble des points de £ et l’ensemble des droites de F' non contenue dans E, et tout
repere affine de € s’identifie a une base de F, faisant ainsi correspondre les coordonnées
barycentriques d’un point dans un repere affine avec les coordonnées usuelles du vecteur
correspondant dans la base associée, et identifiant ainsi £ a Uhyperplan de F' donné par
”(somme des coordonnées dans cette base) = 17, alors que E est identifié a ’hyperplan
E donné par ”(somme des coordonnées dans cette base) = 0.

Démonstration. O

Proposition 1.54. Soit £ un plan affine et (A, B,C') un repére affine.
Soient P, Q, R trois points de £ de coordonnées barycentriques respectives (x1,y1, 21),

(72,2, 22) et (z3,Y3,23)-
Alors P, Q et R sont alignés si et seulement si

xr1 X2 T3
i Y2 ys | =0.
Z1 k2 Z3

Démonstration. 1l existe un espace vectoriel & de dimension 3 et Y E E* tels que £ C g
soit le plan affine d’équation ¢ = 1. Alors le repere affine (A, B,C') correspond a une
04,08, 00) do £ o8, 06, OF :

base (OA,OB,0C) de & et les vecteurs OP, OQ), OR ont pour coordonnées (x;, y;, ;)
dans cette base.

Alors P, (@, R sont alignés si et seulement si la famille (O?, Oﬁ, O.R>) est liée si et
seulement si le déterminant formé par leurs coordonnées dans la base précédente est
nul. Ce qui conclut la preuve.

O]
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Une généralisation évidente, avec la méme preuve :

Proposition 1.55. Soit £ un espace affine de dimension n et R = (Ag,...,An) un
repéere affine.

Soient (Py,...,P,) n+ 1 points de £ de coordonnées barycentriques respectives
(A0,05---52A0m)5 -5 (An0se-os Anm) (22,92, 22) dans R. Notons A la matrice de taille
n+ 1 définie par A := (N ;).

Alors Py, ..., P, sont contenus dans un hyperplan affine de £ si et seulement si

det(A) =0.

Deux applications classiques des coordonnées barycentriques :

Théoréme 1.56 (Menelaiis). Soit & un plan affine sur un corps K, A, B, C trois points
non alignés (i.e. un triangle non aplati). Soient A’ € (BC), B' € (AC) et C' € (AB)
trois points distincts de A, B et C.

Alors les points A', B" et C' sont alignés si et seulement si

— —
A'BB'CC'A
A'CB'AC'B
Démonstration. Par hypothese, (A, B,C) forment un repere affine de £. Si l'on note
B / A
a:= %, = % et c:= %A, on voit que les points A’, B’ et C’ ont pour coordonnées

barycentriques respectives (0,1, —a), (=b,0,1) et (1, —c,0).
Alors la proposition assure que les trois points A’, B/, C’ sont alignés si et
seulement si

-b 1
1 0 —c|=0,
—a 1 0
si et seulement si 1 — abc = 0, ce qui assure le résultat. O

Une variante :

Théoréme 1.57 (Ceva). Soit £ un plan affine sur un corps K, A, B,C trois points
non alignés (i.e. un triangle non aplati). Soient A’ € (BC), B' € (AC) et C' € (AB)
trois points distincts de A, B et C.

Alors les droites (AA"), (BB') et (CC") sont paralléles ou concourrantes si et seule-
ment si

— —
ABBCCA
e e—
A'C BAC'B
Démonstration. Par hypothese, (A, B,C) forment un repere affine de £. Si I'on note
B / a4
a:= %, b:= %i et c:= %, on voit que les points A’, B et C’ ont pour coordonnées

barycentriques respectives (0,1, —a), (=b,0,1) et (1,—c,0). Alors les droites (AA’),
(BB') et (CC") ont pour équation respective ay +z = 0, x + bz = 0, cx +y = 0.
Alors la proposition assure que les droites (AA"), (BB’) et (CC’) sont paralleles
ou concourrantes si et seulement si

o = O
— o

1
b|=0,
0
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si et seulement si 1 + abc = 0, ce qui assure le résultat.

O]

Remarque 1.58. Ces deux énoncés (et leurs preuves) tres similaires sont en fait in-
timement liés. Plus précisément, il existe une formulation de ces deux théoremes en
géométrie projective, et dans ce cas, les deux énoncés deviennent duaux I'un de 'autre,
au sens de la dualité en géométrie projective (qui est une incarnation géométrique de
la dualité en algebre linéaire).

Exemple 1.59. Une autre application des coordonnées barycentriques : la preuve du
théoreme du point fixe de Brouwer a partir du lemme de Sperner sur les coloriages des
triangulations d’un triangle (ou d’un simplexe).

1.6 Théoremes classiques de la géométrie affine

Nous avons déja vu le théoreme de Thales. Nous allons maintenant nous intéresser
a deux autres résultats historiques : les théoremes de Pappus (antiquité grecque) et de
Désargues (mathématicien frangais du 17eme siecle).

Théoréme 1.60 (Pappus). Soit P un plan affine, D, D’ deuz droites distinctes de P.
Soient P,Q,R € D et P',Q',R' € D' deux triplets de points distincts (et différents de
léventuel point de concours de D et D'). Si (PQ') et (P'Q) sont paralléles, et si (QR')
et (Q'R) sont paralléles, alors (PR') et (P'R) sont paralléles.

Démonstration. On a deux cas a considérer :

1. si D et D’ ne sont pas paralleles. Alors ces deux droites sont sécantes en un point
O. Considérons I’homothétie h : £ — & de centre O qui envoie P sur @ (i.e. de

rapport A := (Oﬁ). Puisque I'image d’une droite par un homothétie est une droite
parallele (car h = Aidg), on sait que h((PQ")) = (QR’), donc h(Q') est & la fois
sur D’ (car h(D') = D’ puisque O € D) et sur (QR'), donc h(Q') = R'. Notons
R Thomothétie de centre O envoyant Q) sur R. Alors par le méme raisonnement
que plus haut, on a h(R') = @’'. Considérons f := h’ o h. Alors ? est une
homothétie vectorielle et f(O) = O, donc f est est une homothétie de centre
O. En outre, f(P) = R et f(R') = P'. Donc f((PR’)) = (P'R), donc (PR') et
(P'R) sont paralleles.

2. si D et D’ sont paralleles. Considérons la translation ¢t = t@ : & — & de vecteur

]@. Puisque I'image d’une droite par une translation est une droite parallele
(car 7 = idg), on sait que t((PQ")) = (QR’), donc t(Q’) est & la fois sur D’
(car h(D') = D’ puisque D et D’ sont paralleles) et sur (QR’), donc t(Q") = R'.
Notons t' = tcﬁ la translation de vecteur ﬁ Alors par le méme raisonnement
que plus haut, on a t(R') = Q. Considérons f := t' ot. Alors 7 = idg et
f(P) = R, donc f est une translation. En outre, f(P) = R et f(R') = P’. Donc
f((PR")) = (P'R), donc (PR') et (P'R) sont paralleles.

O

Remarque 1.61. Les deux cas traités dans la preuve sont trés similaires. Ils peuvent
étre unifiés dans une version projective du théoreme de Pappus.
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Théoréme 1.62 (Désargues). Soit P un plan affine, P,Q, R, P',Q’, R’ six points dis-
tincts de P, tels que P,Q, R (resp. P',Q', R') ne soient pas alignés.

On suppose les droites (PP'), (QQ') et (RR') deuz a deux distinctes, (PQ) et (P'Q’)
paralléles et (PR) et (P'R') paralléles.

Alors : (QR) et (Q'R') sont paralléles si et seulement si les trois droites (PP'),
(QQ) et (RR') sont paralléles ou concourrantes.

— —
Démonstration. Par hypothese, il existe A\, u € K* tels que P'Q’ = )\]@ et PPR' =
MJ?I%. Alorson a Q'R = Q'P'+ P'R = )\Cﬁ’ + uﬁ et évidemment Cﬁ = Q? + PL.
Or P, @ et R ne sont pas alignés, donc la famille (Q?, ﬁ) est libre, donc Cﬁ et Q’—R>’
sont colinéaires si et seulement si A = p.

En outre, puisque (PQ) et (P'Q’) sont paralleles, on a (PP’) et %2’ ) paralleles
si et seulement si PP'Q’'Q est un parallélogramme si et seulement si P'Q’ = PQ si et
seulement si A = 1. De méme, (PP’) et (RR’') sont paralléles si et seulement si p = 1.

Par conséquent, les trois droites (PP’), (QQ’) et (RR’) sont paralleles si et seule-
ment si A = p = 1.

Supposons maintenant A # 1. Alors (PP’) et (QQ’) sont sécantes en un point O,
et le théoreme de Thales assure que (_)—ﬁ = AOP, donc P? = ﬁPP’ . De méme, si

R -
w# 1, alors (PP’) et (RR’) sont sécantes en un point O’, tel que PO' = ﬁPP’.
Par conséquent, les trois droites (PP'), (QQ’) et (RR’) sont concourrantes si et
seulement si A # 1, u # 1 et O = O’ si et seulement si A = p # 1.
Finalement, on a bien montré que les trois droites (PP’), (QQ') et (RR') sont
paralléles ou concourrantes si et seulement si A = p si et seulement si (QR) et (Q'R’)
sont paralleles. O

Remarque 1.63. On peut donner une autre preuve de ce résultat, dans 'esprit de la
preuve de Pappus présentée plus haut : dans le cas des droites paralleles, considérer une
translation de vecteur PP’, et dans le cas des droites concourrantes en O, considérer
I’homothétie de centre O qui envoie P sur P’.

Remarque 1.64. De nouveau, les cas ”paralleéles” et ” concourrantes” peuvent étre unifiés
dans une version projective du résultat.

1.7 Convexité dans un espace affine réel

Dans cette section, le corps K est le corps R des nombres réels. Cette hypothese
permet de définir la notion de convexité. Si £ est un espace affine réel de dimension
finie, on munira &£ de la topologie induite par un (donc par tout) isomorphisme affine
&S R

Définition 1.65. Soit £ un espace affine réel. Si P,@Q € &, on définit le segment [PQ)]
comme ’ensemble des barycentres a coefficients poistifs ou nuls de P et @, i.e.

[PQ] := {Bar((P,A),(Q,1—X)),A€[0,1]}.

Définition 1.66. Soit £ un espace affine réel, et C' une partie de £. On dit que C est
convexe si pour tout P, Q € C, le segment [PQ)] est contenu dans C.

On dit de plus qu'un convexe C' est strictement convexe si son bord 9C := C'\ C
ne contient aucun segment non réduit a un point.
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Exemples 1.67. 1. Tout sous-espace affine est convexe.
2. Un segment est convexe.
3. Les parties convexes de R sont les intervalles.

4. Soit f : C — R une fonction définie sur un convexe C' d'un espace affine réel
& (par exemple, C' est un intervalle de R). Alors la fonction f est convexe (au
sens o, pour tout a,b € C et t € [0,1], f(ta+ (1 —t)b) < tf(a)+ (1 —1¢)f(b)) si
et seulement si ’épigraphe de f, défini par {(a,y) € C x R : f(a) < y}, est un
convexe de £ x R.

Lemme 1.68. Une partie C' de £ est convezxe si et seulement si elle est stable par
barycentre 4 coefficients positifs ou nuls.

Proposition 1.69. Une intersection de parties convexes est conveze.

Proposition 1.70. Soit f : £ — F une application affine entre espaces affines réels.
Pour toute partie convere C C € (resp. C' C F), l'ensemble f(C) (resp. f~1(C")) est
conveze.

Définition 1.71. Soit P une partie de &.

L’enveloppe convexe de P, notée Conv(P), est la plus petite partie convexe de &
contenant P. C’est a la fois l'intersection de tous les convexes de £ contenant P, et
aussi 'ensemble des barycentres a coefficients positifs de points de P.

Exemples 1.72. — L’enveloppe convexe de deux points P et () est le segment
[PQ).
— L’enveloppe convexe de trois points A, B, C est le triangle ABC "plein”.

Voici un exemple d’énoncé faisant usage de la notion d’enveloppe convexe :

Théoréme 1.73 (Gauss-Lucas). On identifie C avec un plan affine réel. Soit P € C[X]
un polynéme non constant.
Alors les racines de P’ sont situeés dans l’enveloppe conveze des racines de P.

7 . . . 7 . . 71 7 . /
Démonstration. Scinder P, puis calculer la décomposition en éléments simples de %.
Evaluer en une racine de P’ et conjuguer. ]

Remarque 1.74. On peut montrer également que les racines de P’ ont méme isobary-
centre que celles de P. Par conséquent, si P est de degré n, alors I'unique racine de
P(=1) egt I'isobarycentre des racines de P.

Le théoreme suivant est utile notamment pour ses applications aux propriétés de
I’enveloppe convexe.

Théoréme 1.75 (Carathéodory). Soit £ un espace affine réel de dimensionn et P C €
non vide. [’enveloppe convexe de P est exactement ’ensemble des barycentres a coeffi-
cients positifs de n+ 1 points de P.

Démonstration. Fixons un point O € €.
Soit M € Conv(P). Alors il existe k > 1, P,..., P, € P, A1,...,\x > 0 avec

> Ai =1 tels que P = Bar((P1, A1), .., (P, A)). On a donc OM = o AZ@
Supposons k > n + 2.
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— =
Alors la famille (P Ps, ..., PiP;) est formé d’au moins n + 1 vecteurs, donc elle
est liée : il existe (ug,...,ux) € K1\ {0} tels que D iso Ml 131 = O. Posons p; =

—(p2+ -+ pg), alorsona d , u;=0et >, u; Py 131 =0.
Pour tout t € R, on a donc

s
OM =¥, MOB — t 3, juPiP, = Yo, OB — t (¥, i) PLO — t 32, miOP,
=N = tﬂi)@~

On cherche un réel t tel que

1. pour tout 7, \; — tu; > 0.

2. il existe 1 < j < n tel que \; —tu; = 0.
Puisque ), s = 0 et les p; ne sont pas tous nuls, il existe ¢ tel que p; > 0. Notons
M = {%,,ui > 0} et ¢ := min M. Définissons A, := \; — tp;.

Alors ), A = 1 et il existe j tel que A} = 0. Pour tout i tel que y; >0, onat < %,
donc A, = \; — tp; > 0. Enfin, si g; <0, ona X, > \; >0, car t > 0.

Par conséquent, les deux conditions précédentes sont satisfaites pour cette valeur
de t, donc M est le barycentre a coefficients positifs de k — 1 points, a savoir M =
Bar((F;, A)iz;)-

On conclut alors par récurrence sur k. O

Corollaire 1.76. Soit £ un espace affine réel et K C £. St K est conpact, alors
Conv(K) est compact.

Remarque 1.77. Dans le méme contexte, I’enveloppe convexe d’une partie bornée est
clairement bornée, car les boules sont convexes. Mais I’enveloppe convexe d’une partie
fermée n’est pas nécessairement fermée.

Le lemme suivant peut étre utile dans la suite :

Lemme 1.78. Un convere d’un espace affine réel de dimension finie est d’intérieur
vide st et seulement s’il est contenu dans un hyperplan.

Démonstration. Le sens réciproque est évident. Montrons le sens direct. Supposons que
le convexe C' ne soit pas contenu dans un hyperplan. Alors C' contient un repere affine
R. Puisque C est convexe, C' contient I’enveloppe convexe Conv(R) (qui est appelée
un ”simplexe”). Or un tel simplexe est d’intérieur non vide (preuve par récurrence sur
la dimension). O

Nous allons maintenant démontrer des variantes du théoréme de Hahn-Banach (en
dimension finie!), et en déduire des applications & I’étude des convexes d'un espace
affine réel.

On commence par définir et étudier la jauge d’un convexe :

Définition 1.79. Soit E un R-espace vectoriel et C' un convexe ouvert de E contenant
0.

On définit la jauge de C' comme D'application jc : E — R définie par
x

jo(x) :=inf{\>0: 3

€C}.

Cette application vérifie les propriétés suivantes :
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