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Abstract
Motivated by a recent work of Malliaris, Melbourne, Roberto and Roysdon,

we review some techniques, old and new, allowing to pass from geometric to
functional inequalities of Brunn-Minkowski type.

Functional inequalities in Brunn-Minkowski theory have a long story, with early,
sometimes implicit, contributions by Busemann, Berwald, Henstock-Macbeath, Kno-
the. After Prékopa and Leindler, a somehow definitive form appears in the works of
Borell and Brascamp-Lieb, although such form was partly anticipated by Dinghas1

Whereas functional versions generalize geometric ones, the converse implication
is less direct and was often treated by ad-hoc methods depending on the inequality.
The standard procedure is of course to apply the geometric inequality to super-levels
sets of functions. However, until now this led often to some change in the inequality
under study. Recently, Malliaris, Melbourne, Roberto and Roysdon2 stated a general
equivalence. So we have now a very handy reference for this question.

This question regained interest when it was realized that measures other than the
Lebesgue measure can verify a dimensional Brunn-Minkowski inequality. However,
by a celebrated classification due to C. Borell, such inequality cannot hold for all
sets, but only for a class of set. In the sequel, we fix some class C of measurable
sets of Rn; we have in mind the following two situations: the class of all measurable
sets, and the class of all symmetric convex sets. The natural question is whether
a measure satisfying a Brunn-Minkwoski inequality satisfy a Borell-Brascamp-Lieb
inequality. To this aim, we recall the following classical notation: we fix λ ∈ (0, 1)
and for p ∈ R we set

Mp(a, b) =
(
(1− λ)ap + λbp

)1/p when a > 0, b > 0,

and Mp(a, b) = 0 otherwise. The limit cases are given for a, b > 0 by M−∞(a, b) =
min(a, b), M0(a, b) = a1−λbλ and M∞(a, b) = max(a, b).

It is important to set the value 0 when one of the number is zero, as there is no
hope to lower bound the measure of A+ ∅ = ∅ by the measure of A; for instance M1

is not exactly the convex combination. In the functional statements, this property is
crucial as it allows to restrict ourselves to the support of the functions. That being
said, these Mp means satisfy the same Hölder inequality as the corresponding Lp-
norms (on a two-point space) and homogeneity.

The next statement is a particular case of Malliaris, Melbourne, Roberto and
Roysdon’s result.

Theorem 1. Let p ≥ −1 and let ν be a Borel measure on a finite dimensional Euclidean
space E which satisfies the following Brunn-Minkowski inequality:

ν((1− λ)A+ λB) ≥ Mp(ν(A), ν(B))

for all A,B belonging to some class C of measurable sets of E.
Then ν verifies the following BBL inequality. For any q ≥ −p and f, g, h : E → R+,

with f and g having their super-level sets in the class C, if we have

∀x, y ∈ E h((1− λ)x+ λy) ≥ Mq(f(x), g(y)),

then
∫
h dν ≥ M qp

q+p
(
∫
f dν,

∫
g dν).

1Über eine Klasse superadditiver Mengenfunkionale von Brunn-Minkowski-Lusternikschen Typus,
Math. Z. 68 (1957), pp. 111-129.

2Functional Liftings of Restricted Geometric Inequalities, arXiv:2508.15247, 2025.
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The classical (dimensional) Brunn-Minkowski inequality on Rn corresponds to
p = 1

n , which therefore imply the usual BBL inequality. Note however that the
previous statement is dimension free, and should not be confused with the Borell
(Brascamp-Lieb) correspondence between properties of the measure and properties
of the density of the measure. As we will see, the previous result is somehow formal
and does not encode any geometry.

Note that if the class C consists of (symmetric) convex sets, we are asking that the
functions f, g are (even) quasi-concave; this includes (even) log-concave functions.

The goal of this note is two-fold: first we explain how this result of Malliaris,
Melbourne, Roberto and Roysdon can be obtained by a simple, old, method, and
then we try to provide a different point of view on their work.

1 First proof: the Borell-Ball approach

In his p.h.d. dissertation, Keith Ball3 presented a way to reduce functional in-
equalities to some one dimensional inequality for the measure of the level sets. He
was considering a rather particular case: the Prékopa-Leindler inequality and the
Lebesgue measure. Let us see how to adapt this to the Theorem above.

So we are given a measure ν as in the Theorem. As is well known, it obviously
suffices to treat the case q = −p, as this case imply the result for all the other
q > −p, by Hölder’s inequality. So we assume we are given three functions f, g, h
as in the theorem with q = −p. The conclusion on the integrals is for the mean
M qp

q+p
= M−∞ = min.

Introduce the notation νu(t) := ν({u ≥ t}) for a nonnegative function u and t ≥ 0,
so that

∫
u dν =

∫∞
0 νu(t) dt.

By assumption we have for s, t > 0

{h ≥ M−p(s, t)} ⊃ (1− λ){f ≥ s}+ λ{g ≥ t}

and so according to the geometric inequality we have

∀s, t > 0, νh(M−p(s, t)) ≥ Mp(νf (s), νg(t)).

We then readily conclude to
∫
h dν ≥ min(

∫
f dν,

∫
g dν) thanks to the following Fact:

Fact 2 (Borell). Let p ≥ −1, u, v, w :]0,∞[→ R+ such that

∀s, t > 0, w(M−p(a, b)) ≥ Mp(u(s), v(t)).

Then
∫∞
0 w ≥ min(

∫∞
0 u,

∫∞
0 v).

For the proof of this fact, one has three possibilities: one can try to extract it from
the general statement of Borell4, Theorem 2.1 (with the Lebesgue measure on R+),
or else prove it with the standard and simple (in dimension one) monotone trans-
port method, or finally deduce it from the usual Borell-Brascamp-Lieb inequality in

3See also: K. Ball, Some remarks on the geometry of convex sets., GAFA seminar (1986/87), Springer
Lecture Notes in Math., Vol. 1317, (1988), 224-231.

4Convex set functions in d-space, Periodica Mathematica Hungarica VoL 6 (2), (1975), pp. 111–136
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dimension one for the Lebesgue measure. Let us detail this last approach, which
is reminiscent of Ball’s argument. Actually, the case p = 0 corresponds to the case
treated by Ball, so we will assume that p ̸= 0.

Let us be given three functions as in the Fact, and let us agree on the notation

z̃(s) =
1

|p|
z(s

− 1
p )s

− 1
p
−1

, s > 0,

for any given function z :]0,∞[→ R+ so that
∫∞
0 z̃ =

∫∞
0 z. We have, for all s, t > 0,

w̃((1− λ)s+ λt) ≥ 1

|p|
Mp(u(s

−1/p), v(t−1/p))M− p
p+1

(s
− 1

p
−1

, t
− 1

p
−1

)

≥ M−1(ũ(s), ṽ(t)),

where the first inequality follows from the condition on the functions, and the second
from Hölder’s inequality (noting that p − p

p+1 ≥ 0), together with homogeneity. But
we can now call upon the classical Borell-Brascamp-Lieb inequality in dimension 1,
on R+ with the Lebesgue measure.

2 Second proof: rewriting Malliaris, Melbourne, Roberto
and Roysdon

Malliaris, Melbourne, Roberto and Roysdon do not explicitely reduce the problem to
a one-dimensional functional inequality, although their argument is reminiscent of
a one dimensional transport argument of such one dimensional inequality. Let us
rewrite their argument in a somehow simpler or more ’conceptual’ way.

For the sake of variety, let us illustrate this in the particular case λ = 1
2 and

p = 0, corresponding to the Prékopa-Leindler or Prékopa inequality; it is clear that
the same method works for more general Mp means as in the previous Theorem.

Theorem 3. Let ν be a Borel measure on a finite dimensional Euclidean space E such
that

ν(
A+B

2
) ≥

√
ν(A)ν(B)

for all A,B belonging to some class C of measurable sets of E.
Then, if f, g, h : E → R+, with f and g having their super-level sets in the class C,

satisfy
∀x, y ∈ E, h(

x+ y

2
) ≥

√
f(x)g(y),

it holds that
∫
h dν ≥

√∫
f dν

∫
g dν.

For any nonnegative Borel function u on E, denote Λu(t) = {u ≥ t} and as before
νu(t) = ν(Λu(t)), so that u =

∫∞
0 1Λu(t) dt and

∫
u dν =

∫∞
0 νu(t) dt, by Fubini. The idea

in Malliaris, Melbourne, Roberto and Roysdon’s work is to rearrange these level sets
so that their measures ’match’. So let us be given three functions f, g, h as in the
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Theorem above. By homogeneity, we can assume that
∫
f =

∫
g = 1. Let T : R+ → R+

be the increasing continuous function such that for all s ≥ 0,∫ s

0
νf (t) dt =

∫ T (s)

0
νg(t) dt

Equivalently, we have T = R−1
g ◦Rf with the notation Ru(t) =

∫ t
0 νu(s) ds and R−1(y) =

max {x ; R(x) ≤ y}. The function T is almost-everywhere differentiable with

νf (t) = T ′(t) νg(T (t)).

Besides this pointwise equation, we will use that

g ≥
∫ ∞

0
1Λg(T (s)) T

′(s) ds;

A slightly deeper analysis could probably ensure equality there, but the inequality,
which is a direct consequence of

∫ b
a T ′ ≤ T (b)− T (a), is sufficient for our purposes.

Let us fix z ∈ E. Since we have an non-increasing family Λf (s)+Λg(T (s))
2 of sets,

there is some t = t(z) such that

∀s < t, z ∈
Λf (s) + Λg(T (s))

2
, and ∀s > t, z /∈

Λf (s) + Λg(T (s))

2
.

Fix an arbitrary t0 < t (this would not be necessary if we assume the functions
are lower-semi-continuous, for instance, for then one can take t0 = t). Then z ∈
Λf (t0)+Λg(T (t0))

2 so there exists x ∈ Λf (t0), y ∈ Λg(T (t0)) such that z = x+y
2 and accord-

ingly, again by monotonicity of the sets, we have

∀s < t0, 1 = 1Λf (s)+Λg(T (s))

2

(z) =
√
1Λf (s)(x)1Λg(T (s))(y).

Therefore∫ t0

0
1Λf (s)+Λg(T (s))

2

(z)
√
T ′(s) ds =

∫ t0

0

√
1Λf (s)(x)1Λg(T (s))(y)

√
T ′(s) ds

≤

√∫ t0

0
1Λf (s)(x) ds

∫ t0

0
1Λg(T (s))(y)T ′(s) ds

≤

√∫ ∞

0
1Λf (s)(x) ds

∫ ∞

0
1Λg(T (s))(y)T ′(s) ds

≤
√

f(x) g(y)

≤ h(z)

We can let t0 → t in the obtained inequality, and by the definition of t this implies
that, for every z ∈ Rn, ∫ ∞

0
1Λf (s)+Λg(T (s))

2

(z)
√
T ′(s) ds ≤ h(z).
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Integrating and using the geometric inequality we find∫
h dν ≥

∫ ∞

0
ν(

Λf (s) + Λg(T (s))

2
)
√

T ′(s) ds

≥
∫ ∞

0

√
νf (s)νg(T (s))T ′(s) ds =

∫ ∞

0
νf (s) ds = 1,

as wanted.
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