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Abstract

In the first half of this note we construct Gaussian measures on Rn which does not satisfy a strong
version of the (B)-property. In the second half we discuss equivalent functional formulations of the
(B)-conjecture.

1 Introduction

By a convex body in Rn we mean a set K ⊆ Rn which is convex, compact and has non-empty interior. Our
convex bodies will always be symmetric, in the sense that K = −K. We will denote the standard Gaussian
measure on Rn by γn, or simply by γ if there is no possibility of confusion. The density of γn is

dγn
dx

=
1

(2π)
n
2
e−|x|

2/2,

where |·| denotes the standard Euclidean norm.

Banaszczyk asked the following question, which was popularized by Lata la ([?]): Let K ⊆ Rn be a symmetric
convex body and fix a, b > 0 and 0 ≤ λ ≤ 1. Is it true that

γ
(
a1−λbλK

)
≥ γ(aK)1−λγ(bK)λ? (1)

Recall that a nonnegative function f on Rn is called log-concave if f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ for all
x, y ∈ Rn and all 0 ≤ λ ≤ 1, and that a Borel measure µ on Rn is said to be log-concave if

µ ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ

for all Borel sets A,B ⊆ Rn and all 0 ≤ λ ≤ 1. The addition of sets in the above definition is the Minkowski
addition, defined by A + B = {a+ b : a ∈ A, b ∈ B}. Borell proved the following relation between log-
concave functions and measures ([?], [?]): Let µ be a Borel measure on Rn which is not supported on any
affine hyperplane. Then µ is log-concave if and only if µ has a log-concave density f = dµ

dx .

In particular, the Gaussian measure γ is log-concave. Choosing A = aK and B = bK we see that

γ (((1− λ)a+ λb)K) ≥ γ(aK)1−λγ(bK)λ. (2)

However, this inequality is strictly weaker than (1). Moreover, inequality (2) holds for any convex body
K, symmetric or not, while the symmetry of K has to be used in order to prove (1) – Nayar and Tkocz
([?]) constructed a counter-example if one replaces the assumption that K is symmetric with the weaker
assumption that 0 ∈ K.

In [?], Cordero-Erausquin, Fradelizi and Maurey answered Banaszczyk question positively. In fact, they
proved the following stronger result. For t1, t2 . . . , tn ∈ R let ∆ (t1, t2, . . . , tn) denote the n × n diagonal
matrix with t1, t2, . . . tn on its diagonal.
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Theorem 1 ([?]). Let K ⊆ Rn be a symmetric convex body. Then the map

(t1, t2, . . . , tn) 7→ γ
(
e∆(t1,t2,...,tn)K

)
is log-concave.

Banaszczyk’s original question is answered by restricting the above function to the line t1 = t2 = · · · = tn.

The main goal of this paper is to discuss extensions of Theorem 1 to other log-concave measures. Let us
make the following definitions:

Definition 2. Let µ be a Borel measure on Rn.

1. We say that µ satisfies the (B)-property if the function t 7→ µ (etK) is log-concave for every symmetric
convex body K.

2. We say that µ satisfies the strong (B)-property if the function (t1, t2, . . . , tn) 7→ µ
(
e∆(t1,t2,...,tn)K

)
is

log-concave for every symmetric convex body K.

Theorem 1 states that the standard Gaussian measure has the strong (B)-property. Not many other examples
are known in dimension n ≥ 3. In [?], Eskenazis, Nayar and Tkocz proved that certain Gaussian mixtures
satisfy the strong (B)-property. In particular, their result covers the case where µ has density dµ

dx = e−|x|
p

for 0 < p ≤ 1 (note that unless p = 1 these measures are not log-concave).

In dimension n = 2 much more is known. Livne Bar-on showed ([?]) that if T ⊆ R2 is a symmetric convex
body and µ is the uniform measure on T then µ satisfies the (B)-property. Saroglou later showed ([?]) that
every even log-concave measure µ on R2 satisfies the (B)-property.

Saroglou’s proof uses the relation between the (B)-property and the log-Brunn-Minkowksi conjecture. In
fact, at lot of the interest in the (B)-property comes from this relation. Recall that the support function hK
of a convex body K is defined by

hK(y) = sup
x∈K
〈x, y〉 .

The λ-logarithmic mean of two convex bodies K and T is then defined by

Lλ(K,T ) =
{
x ∈ Rn : 〈x, y〉 ≤ hK(y)1−λhT (y)λ for all y ∈ Rn

}
.

In other words, L = Lλ(K,T ) is the largest convex body such that hL ≤ h1−λ
K hλT . We can also write

Lλ(K,T ) =
⋂
s>0

(
(1− λ)s1/(1−λ)K + λs−1/λT

)
.

since the support function of an intersection of convex bodies is the infimum of the support functions and
a1−λbλ = infs>0{(1− λ)s1/(1−λ)a+ λs−1/λb} for a, b ≥ 0. In [?], Böröczky, Lutwak, Yang and Zhang made
the following conjecture:

Conjecture 3 (The log-Brunn-Minkowski conjecture). Let K,T ⊆ Rn be symmetric convex bodies. Then
for every 0 ≤ λ ≤ 1 we have

|Lλ(K,T )| ≥ |K|1−λ |T |λ

where |·| denotes the Lebesgue volume.

Since Lλ(K,T ) ⊆ (1 − λ)K + λT , the log-Brunn-Minkowski conjecture is a strengthening of the Brunn-
Minkowski inequality. Again, this strengthening can only hold under the extra assumption that K and T
are convex and symmetric.
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A considerable amount of work was done on the log-Brunn-Minkowski conjecture. In the original paper [?] it
was proved by Böröczky, Lutwak, Yang and Zhang in dimension n = 2. Saroglou ([?]) proved the conjecture
when K, T are unconditional, i.e. symmetric with respect to reflections by the coordinate hyperplanes. In
[?] it was observed that a more general theorem from [?] implies the conjecture when K and T are unit
balls of a complex normed space. Colesanti, Livshyts and Marsiglietti ([?]) proved the conjecture when K
and T are small C2-perturbations of the Euclidean ball. Kolesnikov and Milman ([?]) proved a local form
of the closely related Lp–Brunn–Minkowski inequalities for p close enough to 1. Based on their result Chen,
Huang, Li and Liu ([?]) then proved the full Lp–Brunn–Minkowski inequality for the same values of p.

Saroglou also proved several connections between the log-Brunn-Minkowski inequality and the (B)-property.
In one direction, he proved the following:

Theorem 4 ([?]). Assume the log-Brunn-Minkowski conjecture holds in dimension n. Then

µ (Lλ(K,T )) ≥ µ(K)1−λµ(T )λ

for every symmetric K,T ⊆ Rn, every 0 ≤ λ ≤ 1, and every even log-concave measure µ on Rn. In particular,
by choosing K and T to be dilates of each other one could conclude that every even log-concave measure µ
on Rn has the (B)-property.

This explains the previous claim that all even log-concave measures in dimension n = 2 have the (B)-property.

In the opposite direction, Saroglou also proved that the strong (B)-property can imply the log-Brunn-
Minkowski conjecture. If Σ is an n × n positive definite matrix, let us denote by γΣ the Gaussian measure
with covariance matrix Σ. More explicitly, γΣ has density

dγΣ

dx
=

1

(2π)
n
2 (det Σ)

1
2

e−
1
2 〈Σ−1x,x〉.

Let us also denote by Cn = [−1, 1]
n

the n-dimensional hypercube. Saroglou’s result then implies:

Theorem 5 ([?]). The following are equivalent:

1. The log-Brunn-Minkowski inequality holds in every dimension n.

2. For every dimension n, every n× n covariance matrix Σ and every diagonal matrix A the function

t 7→ γΣ

(
etA · Cn

)
is log-concave.

In fact, there is nothing special here about the Gaussian measure, and the same result holds if γ is replaced
with any even log-concave measure together with all of its linear images. However, it is easy to see from
Theorem 1 that the measures γΣ satisfy the (weak) (B)-property, so the Gaussian seems like the most natural
choice.

In particular, Theorem 5 implies that if all mesures γΣ satisfy the strong (B)-property then the log-Brunn-
Minkowski conjecture is proved. One may conjecture that maybe all even log-concave measures have the
strong (B)-property. However, an example of Nayar and Tkocz ([?]) shows that this is not the case. But the
example from [?]) is not Gaussian, so it does not contradict the idea above.

This paper has two mostly independent sections. In Section 2 we will show that not all measures γΣ satisfy
the strong (B)-property. In fact, we will prove that in every dimension n there exist Gaussian measures γΣ

arbitrarily close to the standard Gaussian γn, which nonetheless don’t satisfy the strong (B)-property.

Theorem 6. Fix n ≥ 2. For every η > 0 there exists a positive-definite n × n matrix Σ and a symmetric
convex body K ⊆ Rn such that:
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1. ‖Σ− I‖ < η, where I denotes the n× n identity matrix.

2. The function (t1, t2, . . . , tn) 7→ γΣ

(
e∆(t1,t2,...,tn)K

)
is not log-concave.

Since all norms on a finite dimensional space are equivalent, the choice of the norm in property 1 is immaterial.

In Section 3 we turn our attention to the weak (B)-property. It is still a plausible conjecture that every even
log-concave measure satisfies the (B)-property. We refer to this conjecture simply as the (B)-conjecture. The
main goal of Section 3 is to prove several equivalent formulations of this conjecture. For example, it turns
out that the (B)-conjecture is intimately related to correlation inequalities, and we prove the following result:

Theorem 7. The following are equivalent:

1. Every even log-concave measure in any dimension satisfies the (B)-property.

2. For any dimension n, and any functions ϕ,ψ : Rn → R which are convex, even, C2-smooth and
homogeneous, one has ∫

ϕψdµ ≥
∫
ϕdµ ·

∫
ψdµ,

where µ is the probability measure with density dµ
dx = e−ϕ−ψ∫

e−ϕ−ψ
.

”Homogeneous” in the above theorem means homogeneous of an arbitrary degree. In other words, ϕ is
homogeneous if there exists p ≥ 1 such that ϕ(λx) = λpϕ(x) for all x ∈ Rn and all λ > 0.

2 A Gaussian Counter-Example

In this section we prove Theorem 6. Recall that we denote by γΣ the Gaussian probability measure on Rn
with covariance matrix Σ and simply write γ when Σ = I. For a convex body K ⊆ Rn, γK denotes the
standard Gaussian measure restricted to K:

γK(A) =
γ (A ∩K)

γ(K)
.

For 1 ≤ i ≤ n, γ(i) denotes the 1-dimensional standard Gaussian measure supported on the i-th axis in
Rn, that is, for a test function f : Rn → R we have

∫
Rn f(x)dγ(i)(x) =

∫
R f(tei)dγ1(t), where ei is the i-th

standard unit vector. We will also need the following straighforward fact, which allows us to approximate
γ(1) by measures of the form γK :

Fact 8. Define K(ε) =
[
− 1
ε ,

1
ε

]
× [−ε, ε]n−1 ⊆ Rn. Let f : Rn → R be a C1 function, and assume that there

exists a constant C > 0 such that |f(x)| ≤ CeC|x| and |∇f(x)| ≤ CeC|x| for all x ∈ Rn. Then

lim
ε→0+

∫
fdγK(ε) =

∫
fdγ(1).

The assumptions on f in the lemma are not the minimal possible assumptions, but will more than suffice
for our needs.

Proof. Let us write a general point x ∈ Rn as x = (t, y) where t ∈ R and y ∈ Rn−1. Define F,G : (0,∞)→ R
by

F (ε) =

∫
fdγK(ε) =

∫
K(ε)

f(t, y)e−
1
2 (t2+|y|2)dtdy∫

K(ε)
e−

1
2 (t2+|y|2)dtdy

G(ε) =

∫
K(ε)

f(t, 0)e−
1
2 (t2+|y|2)dtdy∫

K(ε)
e−

1
2 (t2+|y|2)dtdy

=

∫ 1/ε

−1/ε
f(t, 0)e−

1
2 t

2

dt∫ 1/ε

−1/ε
e−

1
2 t

2
dt

.
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Since |f(x)| ≤ CeC|x| we may apply the dominated convergence theorem and conclude that limε→0+ G(ε) =∫
fdγ(1).

For every point (t, y) ∈ K(ε) we have |y| ≤
√
nε, and so |f(t, y)− f(t, 0)| ≤ CeC|(t,y)| · (

√
nε). It follows that

|F (ε)−G(ε)| ≤

∫
K(ε)
|f(t, y)− f(t, 0)| e− 1

2 |(t,y)|2dtdy∫
K(ε)

e−
1
2 |(t,y)|2dtdy

≤ C
√
nε ·

∫
K(ε)

eC|(t,y)|− 1
2 |(t,y)|2dtdy∫

K(ε)
e−

1
2 |(t,y)|2dtdy

. (3)

If we now assume further that 0 < ε < 1 then |y| ≤
√
n so∫

K(ε)

eC|(t,y)|− 1
2 |(t,y)|2dtdy ≤

∫
K(ε)

eC
√
t2+n− 1

2 t
2

dtdy

≤ (2ε)
n−1

∫ ∞
−∞

eC
√
t2+n− 1

2 t
2

dt = An · εn−1,

where An is a constant which depends on C and n, but not on ε. Similarly we have∫
K(ε)

e−
1
2 |(t,y)|2dtdy ≥

∫
K(ε)

e−
1
2 (t2+n)dtdy ≥ (2ε)n−1

∫ 1

−1

e−
1
2 (t2+n)dt = Bnε

n−1.

Plugging these estimates into (3) we see that |F (ε)−G(ε)| ≤ C
√
nε · AnBn

ε→0+

−−−−→ 0, so limε→0+ F (ε) =

limε→0+ G(ε) =
∫
fdγ(1).

Using Fact 8 we can prove Theorem 6.

Proof of Theorem 6. Assume by contradiction that the function

(t1, t2, . . . , tn) 7→ γΣ

(
e∆(t1,t2,...,tn)K

)
(4)

is log-concave for all symmetric convex bodies K ⊆ Rn and all positive-definite matrices Σ such that ‖Σ− I‖
is small enough.

For a fixed η > 0, consider the n × n block matrix P =

 1 2η
η 1

0

0 In−2

, where In−2 denotes the

(n − 2) × (n − 2) identity matrix. Consider also the diagonal matrix D = ∆ (2, 1, 1, . . . , 1). A direct
computation shows that

A = P−1DP =


2−2η2

1−2η2
2η

1−2η2

− η
1−2η2

1−4η2

1−2η2

0

0 In−2

 .

We claim the function F (t) := γ
(
etAK(ε)

)
is log-concave for all ε > 0 and small enough η > 0. Indeed, we

have
F (t) = γ

(
P−1etDP ·K(ε)

)
= γΣ

(
etDP ·K(ε)

)
,

where Σ = PPT . In other words, if we take K = P ·K(ε), then the function F is a restriction of the function
in (4) to a line. Since Σ→ I as η → 0, the claim follows.

Writing F more explicitly we have

F (t) =
1

(2π)
n
2

∫
etAK(ε)

e−
1
2 |y|

2

dy =
1

(2π)
n
2

∫
K(ε)

e−
1
2 |etAx|2 · et·TrAdx.
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As the term et·TrA is log-linear, it follows that the function G(t) =
∫
K(ε)

e−
1
2 |etAx|2dx is log-concave, so in

particular

(logG)
′′

(0) =
G′′(0)

G(0)
−
(
G′(0)

G(0)

)2

≤ 0. (5)

An explicit calculation of the derivatives gives

G′(t) = −
∫
K(ε)

〈
AetAx, etAx

〉
· e−

1
2 |etAx|2dx

G′′(t) =

∫
K(ε)

(〈
AetAx, etAx

〉2 − 〈A2etAx, etAx
〉
−
〈
AetAx,AetAx

〉)
· e−

1
2 |etAx|2dx,

So (5) reads ∫ (
〈Ax, x〉2 −

〈
A2x, x

〉
− 〈Ax,Ax〉

)
dγK(ε)(x)−

(∫
〈Ax, x〉 dγK(ε)(x)

)2

≤ 0.

Since this inequality is true for any ε > 0, we may let ε→ 0. Using Fact 8 we deduce that∫ (
〈Ax, x〉2 −

〈
A2x, x

〉
− 〈Ax,Ax〉

)
dγ(1)(x)−

(∫
〈Ax, x〉 dγ(1)(x)

)2

≤ 0, (6)

However, an explicit computation gives∫
〈Ax, x〉2 dγ(1)(x) =

∫
〈Ate1, te1〉2 dγ1(t) = 〈Ae1, e1〉2 ·

∫
t4dγ1(t) = 3 ·

(
2− 2η2

1− 2η2

)2

.

Computing the other three integrals in the same way, (6) reduces to

3 ·
(

2− 2η2

1− 2η2

)2

− 4− 2η2

1− 2η2
− 4η4 − 7η2 + 4

(1− 2η2)
2 −

(
2− 2η2

1− 2η2

)2

≤ 0,

or equivalently η2

(1−2η2)2 ≤ 0. Since this is impossible for every η > 0, we arrived at a contradiction and the

theorem is proved.

3 A Functional (B)-conjecture

In this section we discuss several equivalent formulations of the (B)-conjecture. The usual statement of the
(B)-conjecture, mentioned in the introduction, involves one log-concave measure µ, and one convex body K.
However, it is possible and rather standard to state equivalent conjectures dealing only with bodies, or only
with functions:

Theorem 9. The following are equivalent:

1. For every dimension n and every symmetric convex bodies K,T ⊆ Rn the function t 7→ |etK ∩ T | is
log-concave.

2. For every dimension n, every symmetric convex body K ⊆ Rn and every even convex function ϕ :
Rn → (−∞,∞] , the function

t 7→
∫
etK

e−ϕ(x)dx

is log-concave.
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3. For every dimension n and every even convex functions ϕ,ψ : Rn → (−∞,∞] , the function

t 7→
∫
Rn
e−ϕ(x)−ψ(etx)dx

is log-concave.

Note that formulation 2. is exactly the standard (B)-conjecture.

Proof. (2⇒ 1) is obvious by taking

ϕ(x) = 1∞T (x) =

{
0 if x ∈ T
∞ if x /∈ T

.

Similarly, to see that (3⇒ 2) one chooses ψ = 1∞K and applies the change of variables t 7→ −t, which preserves
log-concavity.

Next, we prove that (1 ⇒ 2). Our first observation is that it is not important in 1. for K to be compact,
as long as T is compact. Indeed, let us define FK,T (t) = |etK ∩ T | . If we denote the unit Euclidean ball in
Rn by Bn then FK∩rBn,T → FK,T pointwise as r →∞. Since the pointwise limit of log-concave functions is
log-concave, the claim follows.

To show that 2. holds, we will use a standard approximation argument similar to that of [?]. Fix a convex
body K ⊆ Rn and a convex function ϕ : Rn → (−∞,∞]. For every integer m ≥ 1 we define

Km = K × Rm ⊆ Rn+m

Tm =

{
(x, y) ∈ Rn × Rm : ϕ(x) ≤ m and |y| ≤ cm ·

(
1− ϕ(x)

m

)}
⊆ Rn+m.

Here cm is a normalization constant chosen to have |cmBm| = 1. Obviously Km is a symmetric convex set,
and it easy to check that Tm is a symmetric convex body. Therefore by 1. the function FKm,Tm is log-concave.
By Fubini’s theorem we have

FKm,Tm(t) =
∣∣etKm ∩ Tm

∣∣ =

∫
etK∩[ϕ≤m]

∣∣∣∣cm(1− ϕ(x)

m

)
Bm

∣∣∣∣dx
=

∫
etK∩[ϕ≤m]

(
1− ϕ(x)

m

)m
dx =

∫
etK

(
1− ϕ(x)

m

)m
+

dx,

where [ϕ ≤ m] := {x ∈ Rn : ϕ(x) ≤ m} and a+ = max {a, 0}. The functions gm(x) =
(

1− ϕ(x)
m

)m
+

satisfy

gm(x) ≤ e−ϕ(x) for all x ∈ Rn and m ≥ 1, and gm → e−ϕ pointwise as m → ∞. Hence by the dominated
convergence theorem we have

lim
m→∞

FKm,Tm(t) =

∫
etK

e−ϕ(x)dx

for every t ∈ R. Since pointwise limits preserve log-concavity, 2. follows.

The proof that (2 ⇒ 3) is similar. We are given that for every convex body T ⊆ Rn and convex function
ψ : Rn → (−∞,∞] the function

t 7→
∫
etT

e−ψ(x)dx =

∫
T

e−ψ(ety) · entdy

is log-concave. As ent is log-linear, we deduce that GT,ψ(t) =
∫
T
e−ψ(etx)dx is log-concave.
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Given ϕ,ψ : Rn → (−∞,∞], we define functions ψm : Rn+m → (−∞,∞] by ψm(x, y) = ψ(x). The functions
ψm do not satisfy

∫
e−ψm < ∞, but this does not matter for the same reason as before. Using the bodies

Tm from before and Fubini’s theorem we have

GTm,ψm(t) =

∫
Tm

e−ψm(etx,ety)dxdy =

∫
[ϕ≤m]

∫
|y|≤cm(1−ϕ(x)

m )
e−ψ(etx)dydx

=

∫
e−ψ(etx) ·

(
1− ϕ(x)

m

)m
+

dx
m→∞−−−−→

∫
e−ϕ(x)−ψ(etx)dx.

This completes the proof.

Since the rest of this section deals with property 3. of Theorem 9, let us give this property a name:

Definition 10. We say that the functional (B)-conjecture holds in dimension n if for every even convex
functions ϕ,ψ : Rn → (−∞,∞] the function

t 7→
∫
Rn
e−ϕ(x)−ψ(etx)dx

is log-concave.

By Theorem 9 the functional (B)-conjecture is equivalent to the standard (B)-conjecture, but only if one
considers all dimensions simultaneously. For example, we saw in the introduction that the standard (B)-
conjecture holds in dimension 2, but the same is unknown for the functional conjecture.

The functional (B)-conjecture is more general than the standard one, but it has one advantage: by a standard
approximation argument one may assume that ϕ and ψ are as smooth as needed. This allows the use of
analytic tools such as integration by parts. For example, one can use such tools to show that the (B)-
conjecture is equivalent to a certain correlation inequality:

Definition 11. For a C1-smooth function f : Rn → R we define its radial derivative Rf : Rn → R by

(Rf) (x) = 〈∇f(x), x〉 .

Proposition 12. The functional (B)-conjecture in dimension n is equivalent to the following: For every
C2-smooth even convex functions ϕ,ψ : Rn → R one has∫

Rϕ · Rψdµ ≥
∫

Rϕdµ ·
∫

Rψdµ, (7)

where dµ
dx = e−ϕ−ψ∫

e−ϕ−ψ
.

Proof. By a standard approximation argument one may assume that ϕ and ψ are C2-smooth (or C∞-smooth
if desired). The functional (B)-conjecture states that the function

Fϕ,ψ(t) =

∫
e−ϕ(x)−ψ(etx)dx

is log-concave, which is equivalent to

(logFϕ,ψ)
′′

(t) =
F ′′ϕ,ψ(t)

Fϕ,ψ(t)
−
(
F ′ϕ,ψ(t)

Fϕ,ψ(t)

)2

≤ 0.
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If we define ψs(x) = ψ(esx), then ψs is also an even convex function and Fϕ,ψ(t+s) = Fϕ,ψs(t). This implies
that (logFϕ,ψ)

′′
(t) = (logFϕ,ψt)

′′
(0). Therefore the functional (B)-conjecture is equivalent to the inequality

F ′′ϕ,ψ(0)

Fϕ,ψ(0)
−
(
F ′ϕ,ψ(0)

Fϕ,ψ(0)

)2

≤ 0 (8)

holding for all smooth even convex functions ϕ,ψ : Rn → R.

Note that for every smooth f : Rn → R we have d
dtf(etx) = Rf(etx). Hence we have

F ′ϕ,ψ(t) = −
∫

Rψ(etx) · e−ϕ(x)−ψ(etx)dx

F ′′ϕ,ψ(t) =

∫ (
(Rψ)

2
(etx)− R2ψ(etx)

)
e−ϕ(x)−ψ(etx)dx,

and the inequality (8) becomes ∫ (
(Rψ)

2 − R2ψ
)

dµ−
(∫

Rψdµ

)2

≤ 0. (9)

To continue, we need to integrate by parts. For any smooth function f that doesn’t grow too quickly we
have ∫

Rfdµ =

∫ 〈
∇f, e−ϕ−ψ · x

〉∫
e−ϕ−ψ

= −
∫
f · div

(
e−ϕ−ψ · x

)∫
e−ϕ−ψ

= −
∫
f ·
(〈
∇e−ϕ−ψ, x

〉
+ e−ϕ−ψdivx

)∫
e−ϕ−ψ

= −
∫
f · (〈−∇ϕ−∇ψ, x〉+ n) e−ϕ−ψ∫

e−ϕ−ψ

=

∫
f · (Rϕ+ Rψ − n) dµ.

In particular, by taking f = Rψ we see that∫
R2ψdµ =

∫
(Rψ)

2
dµ+

∫
Rϕ · Rψdµ− n

∫
Rψdµ,

so inequality (9) is equivalent to

−
(∫

Rϕ · Rψdµ− n
∫

Rψdµ

)
−
(∫

Rψdµ

)2

≤ 0,

or ∫
Rϕ · Rψdµ ≥

∫
Rψdµ ·

(
n−

∫
Rψdµ

)
. (10)

A second integration by parts shows that∫
Rψdµ = −

∫ 〈
∇
(
e−ψ

)
, e−ϕ · x

〉∫
e−ϕ−ψ

=

∫
e−ψ · div (e−ϕx)∫

e−ϕ−ψ

=

∫
e−ψ (〈∇e−ϕ, x〉+ e−ϕdivx)∫

e−ϕ−ψ
=

∫
(n− Rϕ) dµ.

so (10) is equivalent to the correlation inequality∫
Rϕ · Rψdµ ≥

∫
Rϕdµ ·

∫
Rψdµ,

and the proof is complete.
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As a corollary we obtain:

Corollary 13. The functional (B)-conjecture holds in dimension n = 1.

Proof. We should prove that for every smooth, even and convex functions ϕ,ψ : R→ R we have∫
Rϕ · Rψdµ ≥

∫
Rϕdµ ·

∫
Rψdµ,

where dµ
dx = e−ϕ−ψ∫

e−ϕ−ψ
. Since ϕ and ψ are even so are Rϕ and Rψ, so one may replace the integrals over R by

integrals over [0,∞): ∫ ∞
0

Rϕ · Rψdµ̃ ≥
∫ ∞

0

Rϕdµ̃ ·
∫ ∞

0

Rψdµ̃,

where dµ̃
dx = e−ϕ−ψ∫∞

0
e−ϕ−ψ

1[0,∞).

Since ϕ and ψ are convex and increasing on [0,∞), Rϕ and Rψ are also increasing on [0,∞). The assertion
follows by Chebyshev’s correlation inequality (see, e.g. [?]. In fact the inequality is true for any probability
measure µ̃).

In dimension n ≥ 2 it is no longer true that Rϕ and Rψ are correlated with respect to an arbitrary probability
measure µ, even if we further assume that µ is log-concave with respect to e−ϕ−ψ. It is not clear how to use
the special choice of µ in the inequality.

We conclude this section by proving Theorem 7, which can be seen as a strengthening of Theorem 9 which
allows one to check (7) only for homogeneous functions ϕ and ψ. This may be useful since if ϕ is homogeneous
of degree d then Rϕ = dϕ. Therefore for homogeneous functions the inequality (7) no longer involves any
derivatives.

Proof of Theorem 7. In one direction, assume the (B)-conjecture holds in any dimension. By Theorem 9 the
functional (B)-conjecture also holds in any dimension. By Proposition 12 we deduce that∫

Rϕ · Rψdµ ≥
∫

Rϕdµ ·
∫

Rψdµ.

However, if ϕ is homogeneous of some degree d1 then Rϕ = d1ϕ. Similarly if ψ is homogeneous of degree d2

then Rψ = d2ψ. Hence we have

d1d2

∫
ϕψdµ ≥

(
d1

∫
ϕdµ

)
·
(
d2

∫
ψdµ

)
,

which is what we wanted.

In the other direction, assume property 2. in the Theorem holds. We will prove Theorem 9’s formulation 1.
of the (B)-conjecture. Let K and T be even convex bodies. Recall the definition of the Minkowski functional

‖x‖K = inf {λ > 0 : x ∈ λK} .

By approximating K and T , we may assume without loss of generality that ‖x‖K and ‖x‖T are C2-smooth
on Rn \ {0} (see, e.g., Section 2.5 of [?]). It follows that the functions ϕm(x) = ‖x‖mK and ψm(x) = ‖x‖mT
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are even, convex, C2-smooth and homogeneous for all m ≥ 2. The same is obviously true for the functions
ψm,t(x) = ψm(etx). By our assumption we have∫

Rϕm · Rψm,tdµ = m2 ·
∫
ϕmψm,tdµ ≥ m2

∫
ϕmdµ ·

∫
ψm,tdµ

=

∫
Rϕmdµ ·

∫
Rψm,tdµ.

As we saw in the proof of Proposition 12, this inequality is equivalent to

(logFϕm,ψm)
′′

(t) =
(
logFϕm,ψm,t

)′′
(0) ≤ 0,

so Fϕm,ψm is log-concave.

For any fixed t ∈ R we have

lim
m→∞

e−ϕm(x)−ψm(etx) = 1K∩e−tT (x)

for almost every x ∈ Rn. More precisely, the convergence holds for every x /∈ ∂K ∪ ∂ (e−tT ). Moreover,

e−ϕm(x)−ψm(etx) ≤ e−ϕm(x) ≤ max
{

1K , e
−‖x‖K

}
,

which is an integrable function. Hence by dominated convergence we have

lim
m→∞

Fϕm,ψm(t) =
∣∣K ∩ e−tT ∣∣ .

It follows that the function t 7→ |K ∩ e−tT | is log-concave, which is what we wanted to prove up to an
immaterial change of sign.
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