Several results regarding the (B)-conjecture

Dario Cordero-Erausquin*, Liran Rotem ${ }^{\dagger}$

Abstract

In the first half of this note we construct Gaussian measures on \mathbb{R}^{n} which does not satisfy a strong version of the (B)-property. In the second half we discuss equivalent functional formulations of the (B)-conjecture.

1 Introduction

By a convex body in \mathbb{R}^{n} we mean a set $K \subseteq \mathbb{R}^{n}$ which is convex, compact and has non-empty interior. Our convex bodies will always be symmetric, in the sense that $K=-K$. We will denote the standard Gaussian measure on \mathbb{R}^{n} by γ_{n}, or simply by γ if there is no possibility of confusion. The density of γ_{n} is

$$
\frac{\mathrm{d} \gamma_{n}}{\mathrm{~d} x}=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-|x|^{2} / 2},
$$

where $|\cdot|$ denotes the standard Euclidean norm.
Banaszczyk asked the following question, which was popularized by Latała ([?]): Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body and fix $a, b>0$ and $0 \leq \lambda \leq 1$. Is it true that

$$
\begin{equation*}
\gamma\left(a^{1-\lambda} b^{\lambda} K\right) \geq \gamma(a K)^{1-\lambda} \gamma(b K)^{\lambda} ? \tag{1}
\end{equation*}
$$

Recall that a nonnegative function f on \mathbb{R}^{n} is called log-concave if $f((1-\lambda) x+\lambda y) \geq f(x)^{1-\lambda} f(y)^{\lambda}$ for all $x, y \in \mathbb{R}^{n}$ and all $0 \leq \lambda \leq 1$, and that a Borel measure μ on \mathbb{R}^{n} is said to be log-concave if

$$
\mu((1-\lambda) A+\lambda B) \geq \mu(A)^{1-\lambda} \mu(B)^{\lambda}
$$

for all Borel sets $A, B \subseteq \mathbb{R}^{n}$ and all $0 \leq \lambda \leq 1$. The addition of sets in the above definition is the Minkowski addition, defined by $A+B=\{a+b: a \in A, b \in B\}$. Borell proved the following relation between logconcave functions and measures ([?], [?]): Let μ be a Borel measure on \mathbb{R}^{n} which is not supported on any affine hyperplane. Then μ is log-concave if and only if μ has a log-concave density $f=\frac{\mathrm{d} \mu}{\mathrm{d} x}$.
In particular, the Gaussian measure γ is log-concave. Choosing $A=a K$ and $B=b K$ we see that

$$
\begin{equation*}
\gamma(((1-\lambda) a+\lambda b) K) \geq \gamma(a K)^{1-\lambda} \gamma(b K)^{\lambda} \tag{2}
\end{equation*}
$$

However, this inequality is strictly weaker than (1). Moreover, inequality (2) holds for any convex body K, symmetric or not, while the symmetry of K has to be used in order to prove (1) - Nayar and Tkocz ([?]) constructed a counter-example if one replaces the assumption that K is symmetric with the weaker assumption that $0 \in K$.
In [?], Cordero-Erausquin, Fradelizi and Maurey answered Banaszczyk question positively. In fact, they proved the following stronger result. For $t_{1}, t_{2} \ldots, t_{n} \in \mathbb{R}$ let $\Delta\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ denote the $n \times n$ diagonal matrix with $t_{1}, t_{2}, \ldots t_{n}$ on its diagonal.

[^0]Theorem 1 ([?]). Let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body. Then the map

$$
\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto \gamma\left(e^{\Delta\left(t_{1}, t_{2}, \ldots, t_{n}\right)} K\right)
$$

is log-concave.
Banaszczyk's original question is answered by restricting the above function to the line $t_{1}=t_{2}=\cdots=t_{n}$.
The main goal of this paper is to discuss extensions of Theorem 1 to other log-concave measures. Let us make the following definitions:

Definition 2. Let μ be a Borel measure on \mathbb{R}^{n}.

1. We say that μ satisfies the (B)-property if the function $t \mapsto \mu\left(e^{t} K\right)$ is log-concave for every symmetric convex body K.
2. We say that μ satisfies the strong (B)-property if the function $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto \mu\left(e^{\Delta\left(t_{1}, t_{2}, \ldots, t_{n}\right)} K\right)$ is log-concave for every symmetric convex body K.

Theorem 1 states that the standard Gaussian measure has the strong (B)-property. Not many other examples are known in dimension $n \geq 3$. In [?], Eskenazis, Nayar and Tkocz proved that certain Gaussian mixtures satisfy the strong (B)-property. In particular, their result covers the case where μ has density $\frac{\mathrm{d} \mu}{\mathrm{d} x}=e^{-|x|^{p}}$ for $0<p \leq 1$ (note that unless $p=1$ these measures are not log-concave).
In dimension $n=2$ much more is known. Livne Bar-on showed ([?]) that if $T \subseteq \mathbb{R}^{2}$ is a symmetric convex body and μ is the uniform measure on T then μ satisfies the (B)-property. Saroglou later showed ([?]) that every even log-concave measure μ on \mathbb{R}^{2} satisfies the (B)-property.

Saroglou's proof uses the relation between the (B)-property and the log-Brunn-Minkowksi conjecture. In fact, at lot of the interest in the (B)-property comes from this relation. Recall that the support function h_{K} of a convex body K is defined by

$$
h_{K}(y)=\sup _{x \in K}\langle x, y\rangle .
$$

The λ-logarithmic mean of two convex bodies K and T is then defined by

$$
L_{\lambda}(K, T)=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq h_{K}(y)^{1-\lambda} h_{T}(y)^{\lambda} \text { for all } y \in \mathbb{R}^{n}\right\}
$$

In other words, $L=L_{\lambda}(K, T)$ is the largest convex body such that $h_{L} \leq h_{K}^{1-\lambda} h_{T}^{\lambda}$. We can also write

$$
L_{\lambda}(K, T)=\bigcap_{s>0}\left((1-\lambda) s^{1 /(1-\lambda)} K+\lambda s^{-1 / \lambda} T\right)
$$

since the support function of an intersection of convex bodies is the infimum of the support functions and $a^{1-\lambda} b^{\lambda}=\inf _{s>0}\left\{(1-\lambda) s^{1 /(1-\lambda)} a+\lambda s^{-1 / \lambda} b\right\}$ for $a, b \geq 0$. In [?], Böröczky, Lutwak, Yang and Zhang made the following conjecture:

Conjecture 3 (The log-Brunn-Minkowski conjecture). Let $K, T \subseteq \mathbb{R}^{n}$ be symmetric convex bodies. Then for every $0 \leq \lambda \leq 1$ we have

$$
\left|L_{\lambda}(K, T)\right| \geq|K|^{1-\lambda}|T|^{\lambda}
$$

where $|\cdot|$ denotes the Lebesgue volume.
Since $L_{\lambda}(K, T) \subseteq(1-\lambda) K+\lambda T$, the log-Brunn-Minkowski conjecture is a strengthening of the BrunnMinkowski inequality. Again, this strengthening can only hold under the extra assumption that K and T are convex and symmetric.

A considerable amount of work was done on the log-Brunn-Minkowski conjecture. In the original paper [?] it was proved by Böröczky, Lutwak, Yang and Zhang in dimension $n=2$. Saroglou ([?]) proved the conjecture when K, T are unconditional, i.e. symmetric with respect to reflections by the coordinate hyperplanes. In [?] it was observed that a more general theorem from [?] implies the conjecture when K and T are unit balls of a complex normed space. Colesanti, Livshyts and Marsiglietti ([?]) proved the conjecture when K and T are small C^{2}-perturbations of the Euclidean ball. Kolesnikov and Milman ([?]) proved a local form of the closely related L^{p}-Brunn-Minkowski inequalities for p close enough to 1 . Based on their result Chen, Huang, Li and Liu ([?]) then proved the full L^{p}-Brunn-Minkowski inequality for the same values of p.

Saroglou also proved several connections between the log-Brunn-Minkowski inequality and the (B)-property. In one direction, he proved the following:

Theorem 4 ([?]). Assume the log-Brunn-Minkowski conjecture holds in dimension n. Then

$$
\mu\left(L_{\lambda}(K, T)\right) \geq \mu(K)^{1-\lambda} \mu(T)^{\lambda}
$$

for every symmetric $K, T \subseteq \mathbb{R}^{n}$, every $0 \leq \lambda \leq 1$, and every even log-concave measure μ on \mathbb{R}^{n}. In particular, by choosing K and T to be dilates of each other one could conclude that every even log-concave measure μ on \mathbb{R}^{n} has the (B)-property.

This explains the previous claim that all even log-concave measures in dimension $n=2$ have the (B)-property.
In the opposite direction, Saroglou also proved that the strong (B)-property can imply the log-BrunnMinkowski conjecture. If Σ is an $n \times n$ positive definite matrix, let us denote by γ_{Σ} the Gaussian measure with covariance matrix Σ. More explicitly, γ_{Σ} has density

$$
\frac{\mathrm{d} \gamma_{\Sigma}}{\mathrm{d} x}=\frac{1}{(2 \pi)^{\frac{n}{2}}(\operatorname{det} \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}\left\langle\Sigma^{-1} x, x\right\rangle}
$$

Let us also denote by $C_{n}=[-1,1]^{n}$ the n-dimensional hypercube. Saroglou's result then implies:
Theorem 5 ([?]). The following are equivalent:

1. The log-Brunn-Minkowski inequality holds in every dimension n.
2. For every dimension n, every $n \times n$ covariance matrix Σ and every diagonal matrix A the function

$$
t \mapsto \gamma_{\Sigma}\left(e^{t A} \cdot C_{n}\right)
$$

is log-concave.
In fact, there is nothing special here about the Gaussian measure, and the same result holds if γ is replaced with any even log-concave measure together with all of its linear images. However, it is easy to see from Theorem 1 that the measures γ_{Σ} satisfy the (weak) (B)-property, so the Gaussian seems like the most natural choice.

In particular, Theorem 5 implies that if all mesures γ_{Σ} satisfy the strong (B)-property then the log-BrunnMinkowski conjecture is proved. One may conjecture that maybe all even log-concave measures have the strong (B)-property. However, an example of Nayar and Tkocz ([?]) shows that this is not the case. But the example from [?]) is not Gaussian, so it does not contradict the idea above.
This paper has two mostly independent sections. In Section 2 we will show that not all measures γ_{Σ} satisfy the strong (B)-property. In fact, we will prove that in every dimension n there exist Gaussian measures γ_{Σ} arbitrarily close to the standard Gaussian γ_{n}, which nonetheless don't satisfy the strong (B)-property.

Theorem 6. Fix $n \geq 2$. For every $\eta>0$ there exists a positive-definite $n \times n$ matrix Σ and a symmetric convex body $K \subseteq \mathbb{R}^{n}$ such that:

1. $\|\Sigma-I\|<\eta$, where I denotes the $n \times n$ identity matrix.
2. The function $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto \gamma_{\Sigma}\left(e^{\Delta\left(t_{1}, t_{2}, \ldots, t_{n}\right)} K\right)$ is not log-concave.

Since all norms on a finite dimensional space are equivalent, the choice of the norm in property 1 is immaterial.
In Section 3 we turn our attention to the weak (B)-property. It is still a plausible conjecture that every even log-concave measure satisfies the (B)-property. We refer to this conjecture simply as the (B)-conjecture. The main goal of Section 3 is to prove several equivalent formulations of this conjecture. For example, it turns out that the (B)-conjecture is intimately related to correlation inequalities, and we prove the following result:

Theorem 7. The following are equivalent:

1. Every even log-concave measure in any dimension satisfies the (B)-property.
2. For any dimension n, and any functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which are convex, even, C^{2}-smooth and homogeneous, one has

$$
\int \varphi \psi \mathrm{d} \mu \geq \int \varphi \mathrm{d} \mu \cdot \int \psi \mathrm{~d} \mu
$$

where μ is the probability measure with density $\frac{\mathrm{d} \mu}{\mathrm{d} x}=\frac{e^{-\varphi-\psi}}{\int e^{-\varphi-\psi}}$.
"Homogeneous" in the above theorem means homogeneous of an arbitrary degree. In other words, φ is homogeneous if there exists $p \geq 1$ such that $\varphi(\lambda x)=\lambda^{p} \varphi(x)$ for all $x \in \mathbb{R}^{n}$ and all $\lambda>0$.

2 A Gaussian Counter-Example

In this section we prove Theorem 6. Recall that we denote by γ_{Σ} the Gaussian probability measure on \mathbb{R}^{n} with covariance matrix Σ and simply write γ when $\Sigma=I$. For a convex body $K \subseteq \mathbb{R}^{n}, \gamma_{K}$ denotes the standard Gaussian measure restricted to K :

$$
\gamma_{K}(A)=\frac{\gamma(A \cap K)}{\gamma(K)}
$$

For $1 \leq i \leq n$, $\gamma_{(i)}$ denotes the 1-dimensional standard Gaussian measure supported on the i-th axis in \mathbb{R}^{n}, that is, for a test function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have $\int_{\mathbb{R}^{n}} f(x) \mathrm{d} \gamma_{(i)}(x)=\int_{\mathbb{R}} f\left(t e_{i}\right) \mathrm{d} \gamma_{1}(t)$, where e_{i} is the i-th standard unit vector. We will also need the following straighforward fact, which allows us to approximate $\gamma_{(1)}$ by measures of the form γ_{K} :
Fact 8. Define $K(\varepsilon)=\left[-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right] \times[-\varepsilon, \varepsilon]^{n-1} \subseteq \mathbb{R}^{n}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function, and assume that there exists a constant $C>0$ such that $|f(x)| \leq C e^{C|x|}$ and $|\nabla f(x)| \leq C e^{C|x|}$ for all $x \in \mathbb{R}^{n}$. Then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int f \mathrm{~d} \gamma_{K(\varepsilon)}=\int f \mathrm{~d} \gamma_{(1)}
$$

The assumptions on f in the lemma are not the minimal possible assumptions, but will more than suffice for our needs.

Proof. Let us write a general point $x \in \mathbb{R}^{n}$ as $x=(t, y)$ where $t \in \mathbb{R}$ and $y \in \mathbb{R}^{n-1}$. Define $F, G:(0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& F(\varepsilon)=\int f \mathrm{~d} \gamma_{K(\varepsilon)}=\frac{\int_{K(\varepsilon)} f(t, y) e^{-\frac{1}{2}\left(t^{2}+|y|^{2}\right)} \mathrm{d} t \mathrm{~d} y}{\int_{K(\varepsilon)} e^{-\frac{1}{2}\left(t^{2}+|y|^{2}\right)} \mathrm{d} t \mathrm{~d} y} \\
& G(\varepsilon)=\frac{\int_{K(\varepsilon)} f(t, 0) e^{-\frac{1}{2}\left(t^{2}+|y|^{2}\right)} \mathrm{d} t \mathrm{~d} y}{\int_{K(\varepsilon)} e^{-\frac{1}{2}\left(t^{2}+|y|^{2}\right)} \mathrm{d} t \mathrm{~d} y}=\frac{\int_{-1 / \varepsilon}^{1 / \varepsilon} f(t, 0) e^{-\frac{1}{2} t^{2}} d t}{\int_{-1 / \varepsilon}^{1 / \varepsilon} e^{-\frac{1}{2} t^{2}} d t} .
\end{aligned}
$$

Since $|f(x)| \leq C e^{C|x|}$ we may apply the dominated convergence theorem and conclude that $\lim _{\varepsilon \rightarrow 0^{+}} G(\varepsilon)=$ $\int f d \gamma_{(1)}$.
For every point $(t, y) \in K(\varepsilon)$ we have $|y| \leq \sqrt{n} \varepsilon$, and so $|f(t, y)-f(t, 0)| \leq C e^{C|(t, y)|} \cdot(\sqrt{n} \varepsilon)$. It follows that

$$
\begin{equation*}
|F(\varepsilon)-G(\varepsilon)| \leq \frac{\int_{K(\varepsilon)}|f(t, y)-f(t, 0)| e^{-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y}{\int_{K(\varepsilon)} e^{-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y} \leq C \sqrt{n} \varepsilon \cdot \frac{\int_{K(\varepsilon)} e^{C|(t, y)|-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y}{\int_{K(\varepsilon)} e^{-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y} . \tag{3}
\end{equation*}
$$

If we now assume further that $0<\varepsilon<1$ then $|y| \leq \sqrt{n}$ so

$$
\begin{aligned}
\int_{K(\varepsilon)} e^{C|(t, y)|-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y & \leq \int_{K(\varepsilon)} e^{C \sqrt{t^{2}+n}-\frac{1}{2} t^{2}} \mathrm{~d} t \mathrm{~d} y \\
& \leq(2 \varepsilon)^{n-1} \int_{-\infty}^{\infty} e^{C \sqrt{t^{2}+n}-\frac{1}{2} t^{2}} \mathrm{~d} t=A_{n} \cdot \varepsilon^{n-1}
\end{aligned}
$$

where A_{n} is a constant which depends on C and n, but not on ε. Similarly we have

$$
\int_{K(\varepsilon)} e^{-\frac{1}{2}|(t, y)|^{2}} \mathrm{~d} t \mathrm{~d} y \geq \int_{K(\varepsilon)} e^{-\frac{1}{2}\left(t^{2}+n\right)} \mathrm{d} t \mathrm{~d} y \geq(2 \varepsilon)^{n-1} \int_{-1}^{1} e^{-\frac{1}{2}\left(t^{2}+n\right)} \mathrm{d} t=B_{n} \varepsilon^{n-1} .
$$

Plugging these estimates into (3) we see that $|F(\varepsilon)-G(\varepsilon)| \leq C \sqrt{n} \varepsilon \cdot \frac{A_{n}}{B_{n}} \xrightarrow{\varepsilon \rightarrow 0^{+}} 0$, so $\lim _{\varepsilon \rightarrow 0^{+}} F(\varepsilon)=$ $\lim _{\varepsilon \rightarrow 0^{+}} G(\varepsilon)=\int f d \gamma_{(1)}$.

Using Fact 8 we can prove Theorem 6 .
Proof of Theorem 6. Assume by contradiction that the function

$$
\begin{equation*}
\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mapsto \gamma_{\Sigma}\left(e^{\Delta\left(t_{1}, t_{2}, \ldots, t_{n}\right)} K\right) \tag{4}
\end{equation*}
$$

is \log-concave for all symmetric convex bodies $K \subseteq \mathbb{R}^{n}$ and all positive-definite matrices Σ such that $\|\Sigma-I\|$ is small enough.
For a fixed $\eta>0$, consider the $n \times n$ block matrix $P=\left(\begin{array}{cc|c}1 & 2 \eta & 0 \\ \eta & 1 & 0 \\ \hline 0 & I_{n-2}\end{array}\right)$, where I_{n-2} denotes the $(n-2) \times(n-2)$ identity matrix. Consider also the diagonal matrix $D=\Delta(2,1,1, \ldots, 1)$. A direct computation shows that

$$
A=P^{-1} D P=\left(\begin{array}{cc|c}
\frac{2-2 \eta^{2}}{1-2 \eta^{2}} & \frac{2 \eta}{1-2 \eta^{2}} & 0 \\
-\frac{1}{1-2 \eta^{2}} & \frac{1-4 \eta^{2}}{1-2 \eta^{2}} & \\
\hline 0 & I_{n-2}
\end{array}\right) .
$$

We claim the function $F(t):=\gamma\left(e^{t A} K(\varepsilon)\right)$ is log-concave for all $\varepsilon>0$ and small enough $\eta>0$. Indeed, we have

$$
F(t)=\gamma\left(P^{-1} e^{t D} P \cdot K(\varepsilon)\right)=\gamma_{\Sigma}\left(e^{t D} P \cdot K(\varepsilon)\right),
$$

where $\Sigma=P P^{T}$. In other words, if we take $K=P \cdot K(\varepsilon)$, then the function F is a restriction of the function in (4) to a line. Since $\Sigma \rightarrow I$ as $\eta \rightarrow 0$, the claim follows.

Writing F more explicitly we have

$$
F(t)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{e^{t A} K(\varepsilon)} e^{-\frac{1}{2}|y|^{2}} \mathrm{~d} y=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{K(\varepsilon)} e^{-\frac{1}{2}\left|e^{t A} x\right|^{2}} \cdot e^{t \cdot \operatorname{Tr} A} \mathrm{~d} x .
$$

As the term $e^{t \cdot \operatorname{Tr} A}$ is log-linear, it follows that the function $G(t)=\int_{K(\varepsilon)} e^{-\frac{1}{2}\left|e^{t A} x\right|^{2}} \mathrm{~d} x$ is log-concave, so in particular

$$
\begin{equation*}
(\log G)^{\prime \prime}(0)=\frac{G^{\prime \prime}(0)}{G(0)}-\left(\frac{G^{\prime}(0)}{G(0)}\right)^{2} \leq 0 \tag{5}
\end{equation*}
$$

An explicit calculation of the derivatives gives

$$
\begin{aligned}
G^{\prime}(t) & =-\int_{K(\varepsilon)}\left\langle A e^{t A} x, e^{t A} x\right\rangle \cdot e^{-\frac{1}{2}\left|e^{t A} x\right|^{2}} \mathrm{~d} x \\
G^{\prime \prime}(t) & =\int_{K(\varepsilon)}\left(\left\langle A e^{t A} x, e^{t A} x\right\rangle^{2}-\left\langle A^{2} e^{t A} x, e^{t A} x\right\rangle-\left\langle A e^{t A} x, A e^{t A} x\right\rangle\right) \cdot e^{-\frac{1}{2}\left|e^{t A} x\right|^{2}} \mathrm{~d} x
\end{aligned}
$$

So (5) reads

$$
\int\left(\langle A x, x\rangle^{2}-\left\langle A^{2} x, x\right\rangle-\langle A x, A x\rangle\right) d \gamma_{K(\varepsilon)}(x)-\left(\int\langle A x, x\rangle d \gamma_{K(\varepsilon)}(x)\right)^{2} \leq 0
$$

Since this inequality is true for any $\varepsilon>0$, we may let $\varepsilon \rightarrow 0$. Using Fact 8 we deduce that

$$
\begin{equation*}
\int\left(\langle A x, x\rangle^{2}-\left\langle A^{2} x, x\right\rangle-\langle A x, A x\rangle\right) d \gamma_{(1)}(x)-\left(\int\langle A x, x\rangle d \gamma_{(1)}(x)\right)^{2} \leq 0 \tag{6}
\end{equation*}
$$

However, an explicit computation gives

$$
\int\langle A x, x\rangle^{2} \mathrm{~d} \gamma_{(1)}(x)=\int\left\langle A t e_{1}, t e_{1}\right\rangle^{2} \mathrm{~d} \gamma_{1}(t)=\left\langle A e_{1}, e_{1}\right\rangle^{2} \cdot \int t^{4} \mathrm{~d} \gamma_{1}(t)=3 \cdot\left(\frac{2-2 \eta^{2}}{1-2 \eta^{2}}\right)^{2}
$$

Computing the other three integrals in the same way, (6) reduces to

$$
3 \cdot\left(\frac{2-2 \eta^{2}}{1-2 \eta^{2}}\right)^{2}-\frac{4-2 \eta^{2}}{1-2 \eta^{2}}-\frac{4 \eta^{4}-7 \eta^{2}+4}{\left(1-2 \eta^{2}\right)^{2}}-\left(\frac{2-2 \eta^{2}}{1-2 \eta^{2}}\right)^{2} \leq 0
$$

or equivalently $\frac{\eta^{2}}{\left(1-2 \eta^{2}\right)^{2}} \leq 0$. Since this is impossible for every $\eta>0$, we arrived at a contradiction and the theorem is proved.

3 A Functional (B)-conjecture

In this section we discuss several equivalent formulations of the (B)-conjecture. The usual statement of the (B)-conjecture, mentioned in the introduction, involves one log-concave measure μ, and one convex body K. However, it is possible and rather standard to state equivalent conjectures dealing only with bodies, or only with functions:

Theorem 9. The following are equivalent:

1. For every dimension n and every symmetric convex bodies $K, T \subseteq \mathbb{R}^{n}$ the function $t \mapsto\left|e^{t} K \cap T\right|$ is log-concave.
2. For every dimension n, every symmetric convex body $K \subseteq \mathbb{R}^{n}$ and every even convex function φ : $\mathbb{R}^{n} \rightarrow(-\infty, \infty]$, the function

$$
t \mapsto \int_{e^{t} K} e^{-\varphi(x)} \mathrm{d} x
$$

is log-concave.
3. For every dimension n and every even convex functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$, the function

$$
t \mapsto \int_{\mathbb{R}^{n}} e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x
$$

is log-concave.
Note that formulation 2. is exactly the standard (B)-conjecture.

Proof. $(2 \Rightarrow 1)$ is obvious by taking

$$
\varphi(x)=\mathbf{1}_{T}^{\infty}(x)= \begin{cases}0 & \text { if } x \in T \\ \infty & \text { if } x \notin T\end{cases}
$$

Similarly, to see that $(3 \Rightarrow 2)$ one chooses $\psi=\mathbf{1}_{K}^{\infty}$ and applies the change of variables $t \mapsto-t$, which preserves log-concavity.
Next, we prove that $(1 \Rightarrow 2)$. Our first observation is that it is not important in 1 . for K to be compact, as long as T is compact. Indeed, let us define $F_{K, T}(t)=\left|e^{t} K \cap T\right|$. If we denote the unit Euclidean ball in \mathbb{R}^{n} by B_{n} then $F_{K \cap r B_{n}, T} \rightarrow F_{K, T}$ pointwise as $r \rightarrow \infty$. Since the pointwise limit of log-concave functions is log-concave, the claim follows.

To show that 2 . holds, we will use a standard approximation argument similar to that of [?]. Fix a convex body $K \subseteq \mathbb{R}^{n}$ and a convex function $\varphi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$. For every integer $m \geq 1$ we define

$$
\begin{aligned}
K_{m} & =K \times \mathbb{R}^{m} \subseteq \mathbb{R}^{n+m} \\
T_{m} & =\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}: \varphi(x) \leq m \text { and }|y| \leq c_{m} \cdot\left(1-\frac{\varphi(x)}{m}\right)\right\} \subseteq \mathbb{R}^{n+m}
\end{aligned}
$$

Here c_{m} is a normalization constant chosen to have $\left|c_{m} B_{m}\right|=1$. Obviously K_{m} is a symmetric convex set, and it easy to check that T_{m} is a symmetric convex body. Therefore by 1 . the function $F_{K_{m}, T_{m}}$ is log-concave. By Fubini's theorem we have

$$
\begin{aligned}
F_{K_{m}, T_{m}}(t) & =\left|e^{t} K_{m} \cap T_{m}\right|=\int_{e^{t} K \cap[\varphi \leq m]}\left|c_{m}\left(1-\frac{\varphi(x)}{m}\right) B_{m}\right| \mathrm{d} x \\
& =\int_{e^{t} K \cap[\varphi \leq m]}\left(1-\frac{\varphi(x)}{m}\right)^{m} \mathrm{~d} x=\int_{e^{t} K}\left(1-\frac{\varphi(x)}{m}\right)_{+}^{m} \mathrm{~d} x
\end{aligned}
$$

where $[\varphi \leq m]:=\left\{x \in \mathbb{R}^{n}: \varphi(x) \leq m\right\}$ and $a_{+}=\max \{a, 0\}$. The functions $g_{m}(x)=\left(1-\frac{\varphi(x)}{m}\right)_{+}^{m}$ satisfy $g_{m}(x) \leq e^{-\varphi(x)}$ for all $x \in \mathbb{R}^{n}$ and $m \geq 1$, and $g_{m} \rightarrow e^{-\varphi}$ pointwise as $m \rightarrow \infty$. Hence by the dominated convergence theorem we have

$$
\lim _{m \rightarrow \infty} F_{K_{m}, T_{m}}(t)=\int_{e^{t} K} e^{-\varphi(x)} \mathrm{d} x
$$

for every $t \in \mathbb{R}$. Since pointwise limits preserve log-concavity, 2 . follows.
The proof that $(2 \Rightarrow 3)$ is similar. We are given that for every convex body $T \subseteq \mathbb{R}^{n}$ and convex function $\psi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ the function

$$
t \mapsto \int_{e^{t} T} e^{-\psi(x)} \mathrm{d} x=\int_{T} e^{-\psi\left(e^{t} y\right)} \cdot e^{n t} \mathrm{~d} y
$$

is log-concave. As $e^{n t}$ is log-linear, we deduce that $G_{T, \psi}(t)=\int_{T} e^{-\psi\left(e^{t} x\right)} \mathrm{d} x$ is log-concave.

Given $\varphi, \psi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$, we define functions $\psi_{m}: \mathbb{R}^{n+m} \rightarrow(-\infty, \infty]$ by $\psi_{m}(x, y)=\psi(x)$. The functions ψ_{m} do not satisfy $\int e^{-\psi_{m}}<\infty$, but this does not matter for the same reason as before. Using the bodies T_{m} from before and Fubini's theorem we have

$$
\begin{aligned}
G_{T_{m}, \psi_{m}}(t) & =\int_{T_{m}} e^{-\psi_{m}\left(e^{t} x, e^{t} y\right)} \mathrm{d} x \mathrm{~d} y=\int_{[\varphi \leq m]} \int_{|y| \leq c_{m}\left(1-\frac{\varphi(x)}{m}\right)} e^{-\psi\left(e^{t} x\right)} \mathrm{d} y \mathrm{~d} x \\
& =\int e^{-\psi\left(e^{t} x\right)} \cdot\left(1-\frac{\varphi(x)}{m}\right)_{+}^{m} \mathrm{~d} x \xrightarrow{m \rightarrow \infty} \int e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x .
\end{aligned}
$$

This completes the proof.

Since the rest of this section deals with property 3 . of Theorem 9 , let us give this property a name:
Definition 10. We say that the functional (B)-conjecture holds in dimension n if for every even convex functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ the function

$$
t \mapsto \int_{\mathbb{R}^{n}} e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x
$$

is log-concave.

By Theorem 9 the functional (B)-conjecture is equivalent to the standard (B)-conjecture, but only if one considers all dimensions simultaneously. For example, we saw in the introduction that the standard (B)conjecture holds in dimension 2 , but the same is unknown for the functional conjecture.

The functional (B)-conjecture is more general than the standard one, but it has one advantage: by a standard approximation argument one may assume that φ and ψ are as smooth as needed. This allows the use of analytic tools such as integration by parts. For example, one can use such tools to show that the (B)conjecture is equivalent to a certain correlation inequality:

Definition 11. For a C^{1}-smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we define its radial derivative $\mathrm{R} f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
(\mathrm{R} f)(x)=\langle\nabla f(x), x\rangle
$$

Proposition 12. The functional (B)-conjecture in dimension n is equivalent to the following: For every C^{2}-smooth even convex functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ one has

$$
\begin{equation*}
\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu \geq \int \mathrm{R} \varphi \mathrm{~d} \mu \cdot \int \mathrm{R} \psi \mathrm{~d} \mu \tag{7}
\end{equation*}
$$

where $\frac{\mathrm{d} \mu}{\mathrm{d} x}=\frac{e^{-\varphi-\psi}}{\int e^{-\varphi-\psi}}$.
Proof. By a standard approximation argument one may assume that φ and ψ are C^{2}-smooth (or C^{∞}-smooth if desired). The functional (B)-conjecture states that the function

$$
F_{\varphi, \psi}(t)=\int e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x
$$

is log-concave, which is equivalent to

$$
\left(\log F_{\varphi, \psi}\right)^{\prime \prime}(t)=\frac{F_{\varphi, \psi}^{\prime \prime}(t)}{F_{\varphi, \psi}(t)}-\left(\frac{F_{\varphi, \psi}^{\prime}(t)}{F_{\varphi, \psi}(t)}\right)^{2} \leq 0
$$

If we define $\psi_{s}(x)=\psi\left(e^{s} x\right)$, then ψ_{s} is also an even convex function and $F_{\varphi, \psi}(t+s)=F_{\varphi, \psi_{s}}(t)$. This implies that $\left(\log F_{\varphi, \psi}\right)^{\prime \prime}(t)=\left(\log F_{\varphi, \psi_{t}}\right)^{\prime \prime}(0)$. Therefore the functional (B)-conjecture is equivalent to the inequality

$$
\begin{equation*}
\frac{F_{\varphi, \psi}^{\prime \prime}(0)}{F_{\varphi, \psi}(0)}-\left(\frac{F_{\varphi, \psi}^{\prime}(0)}{F_{\varphi, \psi}(0)}\right)^{2} \leq 0 \tag{8}
\end{equation*}
$$

holding for all smooth even convex functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Note that for every smooth $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have $\frac{\mathrm{d}}{\mathrm{d} t} f\left(e^{t} x\right)=\mathrm{R} f\left(e^{t} x\right)$. Hence we have

$$
\begin{aligned}
& F_{\varphi, \psi}^{\prime}(t)=-\int \mathrm{R} \psi\left(e^{t} x\right) \cdot e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x \\
& F_{\varphi, \psi}^{\prime \prime}(t)=\int\left((\mathrm{R} \psi)^{2}\left(e^{t} x\right)-\mathrm{R}^{2} \psi\left(e^{t} x\right)\right) e^{-\varphi(x)-\psi\left(e^{t} x\right)} \mathrm{d} x
\end{aligned}
$$

and the inequality (8) becomes

$$
\begin{equation*}
\int\left((\mathrm{R} \psi)^{2}-\mathrm{R}^{2} \psi\right) \mathrm{d} \mu-\left(\int \mathrm{R} \psi \mathrm{~d} \mu\right)^{2} \leq 0 \tag{9}
\end{equation*}
$$

To continue, we need to integrate by parts. For any smooth function f that doesn't grow too quickly we have

$$
\begin{aligned}
\int \mathrm{R} f \mathrm{~d} \mu & =\frac{\int\left\langle\nabla f, e^{-\varphi-\psi} \cdot x\right\rangle}{\int e^{-\varphi-\psi}}=-\frac{\int f \cdot \operatorname{div}\left(e^{-\varphi-\psi} \cdot x\right)}{\int e^{-\varphi-\psi}} \\
& =-\frac{\int f \cdot\left(\left\langle\nabla e^{-\varphi-\psi}, x\right\rangle+e^{-\varphi-\psi} \operatorname{div} x\right)}{\int e^{-\varphi-\psi}}=-\frac{\int f \cdot(\langle-\nabla \varphi-\nabla \psi, x\rangle+n) e^{-\varphi-\psi}}{\int e^{-\varphi-\psi}} \\
& =\int f \cdot(\mathrm{R} \varphi+\mathrm{R} \psi-n) \mathrm{d} \mu
\end{aligned}
$$

In particular, by taking $f=R \psi$ we see that

$$
\int \mathrm{R}^{2} \psi \mathrm{~d} \mu=\int(\mathrm{R} \psi)^{2} \mathrm{~d} \mu+\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu-n \int \mathrm{R} \psi d \mu
$$

so inequality (9) is equivalent to

$$
-\left(\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu-n \int \mathrm{R} \psi d \mu\right)-\left(\int \mathrm{R} \psi \mathrm{~d} \mu\right)^{2} \leq 0
$$

or

$$
\begin{equation*}
\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu \geq \int \mathrm{R} \psi \mathrm{~d} \mu \cdot\left(n-\int \mathrm{R} \psi \mathrm{~d} \mu\right) \tag{10}
\end{equation*}
$$

A second integration by parts shows that

$$
\begin{aligned}
\int \mathrm{R} \psi \mathrm{~d} \mu & =-\frac{\int\left\langle\nabla\left(e^{-\psi}\right), e^{-\varphi} \cdot x\right\rangle}{\int e^{-\varphi-\psi}}=\frac{\int e^{-\psi} \cdot \operatorname{div}\left(e^{-\varphi} x\right)}{\int e^{-\varphi-\psi}} \\
& =\frac{\int e^{-\psi}\left(\left\langle\nabla e^{-\varphi}, x\right\rangle+e^{-\varphi} \operatorname{div} x\right)}{\int e^{-\varphi-\psi}}=\int(n-\mathrm{R} \varphi) \mathrm{d} \mu .
\end{aligned}
$$

so (10) is equivalent to the correlation inequality

$$
\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu \geq \int \mathrm{R} \varphi \mathrm{~d} \mu \cdot \int \mathrm{R} \psi \mathrm{~d} \mu
$$

and the proof is complete.

As a corollary we obtain:
Corollary 13. The functional (B)-conjecture holds in dimension $n=1$.
Proof. We should prove that for every smooth, even and convex functions $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu \geq \int \mathrm{R} \varphi \mathrm{~d} \mu \cdot \int \mathrm{R} \psi \mathrm{~d} \mu
$$

where $\frac{\mathrm{d} \mu}{\mathrm{d} x}=\frac{e^{-\varphi-\psi}}{\int e^{-\varphi-\psi}}$. Since φ and ψ are even so are $\mathrm{R} \varphi$ and $\mathrm{R} \psi$, so one may replace the integrals over \mathbb{R} by integrals over $[0, \infty)$:

$$
\int_{0}^{\infty} \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \widetilde{\mu} \geq \int_{0}^{\infty} \mathrm{R} \varphi \mathrm{~d} \widetilde{\mu} \cdot \int_{0}^{\infty} \mathrm{R} \psi \mathrm{~d} \widetilde{\mu},
$$

where $\frac{d \widetilde{\mu}}{\mathrm{~d} x}=\frac{e^{-\varphi-\psi}}{\int_{0}^{\infty} e^{-\varphi-\psi}} \mathbf{1}_{[0, \infty)}$.
Since φ and ψ are convex and increasing on $[0, \infty), \mathrm{R} \varphi$ and $\mathrm{R} \psi$ are also increasing on $[0, \infty)$. The assertion follows by Chebyshev's correlation inequality (see, e.g. [?]. In fact the inequality is true for any probability measure $\widetilde{\mu}$).

In dimension $n \geq 2$ it is no longer true that $\mathrm{R} \varphi$ and $\mathrm{R} \psi$ are correlated with respect to an arbitrary probability measure μ, even if we further assume that μ is log-concave with respect to $e^{-\varphi-\psi}$. It is not clear how to use the special choice of μ in the inequality.

We conclude this section by proving Theorem 7, which can be seen as a strengthening of Theorem 9 which allows one to check (7) only for homogeneous functions φ and ψ. This may be useful since if φ is homogeneous of degree d then $\mathrm{R} \varphi=d \varphi$. Therefore for homogeneous functions the inequality (7) no longer involves any derivatives.

Proof of Theorem 7. In one direction, assume the (B)-conjecture holds in any dimension. By Theorem 9 the functional (B)-conjecture also holds in any dimension. By Proposition 12 we deduce that

$$
\int \mathrm{R} \varphi \cdot \mathrm{R} \psi \mathrm{~d} \mu \geq \int \mathrm{R} \varphi \mathrm{~d} \mu \cdot \int \mathrm{R} \psi \mathrm{~d} \mu .
$$

However, if φ is homogeneous of some degree d_{1} then $\operatorname{R} \varphi=d_{1} \varphi$. Similarly if ψ is homogeneous of degree d_{2} then $\mathrm{R} \psi=d_{2} \psi$. Hence we have

$$
d_{1} d_{2} \int \varphi \psi \mathrm{~d} \mu \geq\left(d_{1} \int \varphi \mathrm{~d} \mu\right) \cdot\left(d_{2} \int \psi \mathrm{~d} \mu\right)
$$

which is what we wanted.
In the other direction, assume property 2. in the Theorem holds. We will prove Theorem 9's formulation 1. of the (B)-conjecture. Let K and T be even convex bodies. Recall the definition of the Minkowski functional

$$
\|x\|_{K}=\inf \{\lambda>0: x \in \lambda K\}
$$

By approximating K and T, we may assume without loss of generality that $\|x\|_{K}$ and $\|x\|_{T}$ are C^{2}-smooth on $\mathbb{R}^{n} \backslash\{0\}$ (see, e.g., Section 2.5 of [?]). It follows that the functions $\varphi_{m}(x)=\|x\|_{K}^{m}$ and $\psi_{m}(x)=\|x\|_{T}^{m}$
are even, convex, C^{2}-smooth and homogeneous for all $m \geq 2$. The same is obviously true for the functions $\psi_{m, t}(x)=\psi_{m}\left(e^{t} x\right)$. By our assumption we have

$$
\begin{aligned}
\int \mathrm{R} \varphi_{m} \cdot \mathrm{R} \psi_{m, t} \mathrm{~d} \mu & =m^{2} \cdot \int \varphi_{m} \psi_{m, t} \mathrm{~d} \mu \geq m^{2} \int \varphi_{m} \mathrm{~d} \mu \cdot \int \psi_{m, t} \mathrm{~d} \mu \\
& =\int \mathrm{R} \varphi_{m} \mathrm{~d} \mu \cdot \int \mathrm{R} \psi_{m, t} \mathrm{~d} \mu .
\end{aligned}
$$

As we saw in the proof of Proposition 12, this inequality is equivalent to

$$
\left(\log F_{\varphi_{m}, \psi_{m}}\right)^{\prime \prime}(t)=\left(\log F_{\varphi_{m}, \psi_{m, t}}\right)^{\prime \prime}(0) \leq 0,
$$

so $F_{\varphi_{m}, \psi_{m}}$ is log-concave.
For any fixed $t \in \mathbb{R}$ we have

$$
\lim _{m \rightarrow \infty} e^{-\varphi_{m}(x)-\psi_{m}\left(e^{t} x\right)}=\mathbf{1}_{K \cap e^{-t} T}(x)
$$

for almost every $x \in \mathbb{R}^{n}$. More precisely, the convergence holds for every $x \notin \partial K \cup \partial\left(e^{-t} T\right)$. Moreover,

$$
e^{-\varphi_{m}(x)-\psi_{m}\left(e^{t} x\right)} \leq e^{-\varphi_{m}(x)} \leq \max \left\{\mathbf{1}_{K}, e^{-\|x\|_{K}}\right\},
$$

which is an integrable function. Hence by dominated convergence we have

$$
\lim _{m \rightarrow \infty} F_{\varphi_{m}, \psi_{m}}(t)=\left|K \cap e^{-t} T\right| .
$$

It follows that the function $t \mapsto\left|K \cap e^{-t} T\right|$ is log-concave, which is what we wanted to prove up to an immaterial change of sign.

[^0]: *Institut de Mathématiques de Jussieu, Sorbonne Université, dario. cordero@imj-prg.fr
 \dagger University of Minnesota, Irotem@umn.edu

