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Abstract. A concavity estimate is derived for interpolations between L1(M)
mass densities on a Riemannian manifold. The inequality sheds new light
on the theorems of Prékopa, Leindler, Borell, Brascamp and Lieb that it
generalizes from Euclidean space. Due to the curvature of the manifold, the
new Riemannian versions of these theorems incorporate a volume distor-
tion factor which can, however, be controlled via lower bounds on Ricci
curvature. The method uses optimal mappings from mass transportation
theory. Along the way, several new properties are established for optimal
mass transport and interpolating maps on a Riemannian manifold.
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1 Introduction and main results

Functional versions of geometric inequalities have often proved fruitful in
geometric analysis. A celebrated example is the functional version of the
Brunn-Minkowski inequality, discovered by Prékopa [29,30] and Leind-
ler [23]. Given three non-negative functions f, g, h : Rn → R+ and t ∈
[0, 1], Prékopa and Leindler proved that when

h((1− t)x + ty) ≥ f 1−t(x) gt(y)

holds for every x, y ∈ Rn, then
∫

Rn
h ≥

(∫
Rn

f

)1−t (∫
Rn

g

)t

.

Applying this inequality to indicator functions of sets A, B ⊂ Rn one
recovers, after suitable scaling, the Brunn-Minkowski inequality:

vol1/n[(1− t)A+ tB] ≥ (1− t) vol 1/n A+ t vol1/n B. (1)

First derived in connection with the isoperimetric theorem, applications
of (1) pervade convex geometry; see e.g. Schneider [34] or Gardner [18].
But the Prékopa-Leindler inequality has many other implications, includ-
ing the preservation of logarithmic concavity under convolutions, noticed
by Brascamp and Lieb [12] in connection with their proof that diffusion
in a convex potential preserves log-concavity [11]. It has similarly been
used in the setting of Gaussian-like measures by Maurey [24], Bobkov and
Ledoux [8] to derive concentration of measure, Poincaré and logarithmic
Sobolev inequalities.

Independently, Borell [10], Brascamp and Lieb [12] obtained general-
izations of the Prékopa-Leindler inequality to other means. For p ∈ R,
t ∈ [0, 1], and non-negative reals a, b, introduce the p-mean

M p
t (a, b) := ((1− t)ap + tbp

)1/p

if ab �= 0 and M p
t (a, b) = 0 if ab = 0. The cases p ∈ {0,±∞} are

defined as limits: M−∞
t (a, b) := min{a, b}, M+∞

t (a, b) := max{a, b},
while M0

t (a, b) := a1−tbt coincides with the geometric mean. The Borell-
Brascamp-Lieb inequality asserts that whenever p ≥ −1/n, t ∈ [0, 1], and
non-negative functions f, g, h : Rn → R+ satisfy

h((1− t)x + ty) ≥M p
t

(
f(x), g(y)

)
(2)

for every x, y ∈ Rn, then∫
Rn

h ≥M
p/(1+n p)
t

(∫
Rn

f ,
∫

Rn
g

)
.

In one-dimension, similar inequalities were anticipated by Henstock and
Macbeath [21]; (the reviews by Das Gupta [15] or Gardner [18] offer more
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historical commentary). If p = 0 one recovers the Prékopa-Leindler in-
equality. Brascamp and Lieb also observed that (2) need only to be satisfied
almost everywhere in the sense that it can be replaced by

h(z) ≥ ess sup
z=(1−t)x+ty

M p
t

(
f(x), g(y)

)
. (3)

The strongest inequality is obtained when p = −1/n. Indeed, the in-
equalities for other p-means can be derived from this extremal case by
using elementary properties of M p

t . It is convenient to formulate the case
p = −1/n in the following way, for which we give a physical interpretation
after (7). Given t ∈ [0, 1] and three non-negative functions f, g and h on
Rn with

∫
f = ∫ g = 1, if

1

h((1− t)x + ty)1/n
≤ (1− t)

1

f(x)1/n
+ t

1

g(y)1/n
(4)

for every x, y ∈ Rn, then
∫

Rn
h ≥ 1.

The aim of our work is to generalize the above inequalities to curved
geometries. The first named author previously obtained [13] such gener-
alizations for spherical and hyperbolic geometries. His proof, based on
McCann’s optimal mass transport on manifolds [27], assumed various
properties of mass transport that will be established in the present pa-
per. As in the Euclidean case [25] [26], the strategy here and there was
to use an optimal map to localize geometrical inequalities under an in-
tegral, thus reducing them to algebraic relations such as the concavity
of det1/n( · ) on positive matrices, or equivalently, domination of the ge-
ometric by the arithmetic mean. We stress that the functional inequalities
discussed in this paper are interpolation inequalities: aside from taking
place on more general manifolds, they have quite different content from
the set enlargement and isoperimetric inequalities by Schmidt [33] on
the hyperbolic space and by Gromov [20] on compact positively curved
manifolds.

Unless otherwise stated, M or Mn denote a complete, connected, n-
dimensional manifold equipped with a Riemannian metric tensor given by
C2-smooth functions gij in coordinates. We abbreviate all these hypothe-
sis by saying M is continuously curved, since the C2-smoothness implies
its Riemann curvature tensor varies continuously from point to point. The
geodesic distance between x and y ∈ M is denoted by d(x, y) and the Rie-
mannian element of volume by d vol(x) (= √det gij(x)dnx in coordinates).
For x ∈ M, the scalar product and the norm on the tangent space Tx M will
be denoted by 〈·, ·〉 and | · |, respectively; we hope the implicit dependence
on x will always be clear from context.

The first task is to define a notion of barycenter to play the role of
(1− t)x + ty. For fixed t ∈ [0, 1], define the locus of points

Zt(x, y) := {z ∈ M | d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)}
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lying partway between x and y ∈ M. When the minimal geodesic γ :
[0, 1] −→ M linking x to y is unique, then Zt(x, y) = {γ(t)} consists of
the single point dividing this geodesic into segments with ratio t : (1 − t).
Extend the definition to sets Y ⊂ M analogously:

Zt(x,Y ) :=
⋃
y∈Y

Zt(x, y). (5)

Letting Br(y) ⊂ M denote the open ball of radius r > 0 centered at y ∈ M,
for t ∈ (0, 1] we introduce the ratio which plays a crucial role in our study:

vt(x, y) := lim
r→0

vol [Zt(x, Br(y))]
vol [Btr(y)] > 0. (6)

This ratio measures the volume distortion due to curvature along the shortest
path joining x to y; the limit (6) always exists, though it will be infinite when
x and y are conjugate points. In any case v1(x, y) = 1. If light travels on
geodesics, then v0(x, y) := limt→0 vt(x, y) represents the area magnification
observed at x of a small light source located near y, due to the lensing effects
of curvature. Thus vt(x, y) ≥ 1 if the curvature is non-negative, while the
opposite inequality holds in spaces of non-positive curvature. By Thales
theorem, vt(x, y) = 1 in Euclidean space.

Main Theorem (A Riemannian Borell-Brascamp-Lieb inequality) Let
M be a continuously curved, n-dimensional Riemannian manifold. Fix t ∈
[0, 1]. Let f, g, h ≥ 0 be non-negative functions on M, and A, B be Borel
subsets of M for which

∫
A f = ∫

B g = 1. Assume that for every (x, y) ∈
A × B and every z ∈ Zt(x, y),

1

h(z)1/n
≤ (1− t)

[
v1−t(y, x)

f(x)

]1/n

+ t

[
vt(x, y)

g(y)

]1/n

. (7)

Then
∫

M
h ≥ 1.

Condition (7) should be compared to (4). The non-Euclidean character of
M enters through the volume distortion coefficients vt . Note that vt(x, y)1/n

is a geometric mean of the linear magnification factors, while h−1/n scales
linearly with distance. Imagining f, g and h to represent densities of three
compressible fluids on the manifold, our Main Theorem specifies a local
upper bound for the mean separation of the molecules of h to conclude their
aggregate mass exceeds the total amount of f and g; (to pack molecules of
h tightly throughout space requires that lots of them be present).

As in the Euclidean case, algebraic inequalities relating the different
p-means lead to immediate generalizations of the whole family of Borell-
Brascamp-Lieb inequalities:
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Corollary 1.1 (Riemannian p-Mean inequalities) Let M be a continu-
ously curved, n-dimensional Riemannian manifold. Fix p ≥ −1/n and
t ∈ [0, 1]. Let f, g, h ≥ 0 be non-negative functions, and A, B be Borel
subsets of M carrying the full mass of f and g, respectively. Assume that
for every (x, y) ∈ A× B and every z ∈ Zt(x, y),

h(z) ≥M
p
t

(
f(x)

v1−t(y, x)
,

g(y)

vt(x, y)

)
. (8)

Then ∫
M

h ≥M p/(1+n p)
t

(∫
M

f ,
∫

M
g

)
. (9)

For p = 0 we obtain a Riemannian version of the Prékopa-Leindler
inequality. One is free to take A = B = M, but since A and B may merely
be sets of full measure, it is interesting to note that hypothesis (8) need
only be satisfied almost everywhere; the essential supremum condition (3)
of Brascamp and Lieb comes built into our formulation automatically. It
must also be noted that in Euclidean space, one can go back and deduce the
inequality for the mean M−1/n

t from the inequality for any other p > −1/n.
This is done by exploiting the homogeneity of Lebesgue measure. In the
Riemannian setting, the lack of homogeneity presumably implies that the
inequality for p = −1/n is genuinely stronger than the inequalities for
other p-means.

The hypotheses of these theorems become easier to check if one is
able to compute the coefficients vt explicitly, or at least provide explicit
bounds from below. This can be achieved whenever the Ricci curvature is
known to be bounded below: Ric ≥ (n − 1)k, an abbreviation signifying
non-negativity of the quadratic form Ric(·, ·) − k(n − 1)〈·, ·〉. Denote by
Sn and Hn the n-dimensional sphere and hyperbolic space, respectively, of
constant sectional curvature ±1, hence Ricci curvature ±(n− 1). Introduce
for k ∈ R,

Sk(d) := sin(
√

k d)√
k d

=
{
(sin d)/d for k = 1 (Sn)

1 for k = 0 (Rn)
(sinh d)/d for k = −1 (Hn)

. (10)

If Mn
k has constant sectional curvature k ∈ R, we easily verify

vt(x, y) =
(

Sk(td(x, y))

Sk(d(x, y))

)n−1

.

If Mn satisfies Ric ≥ (n−1)k then, as explained below, Bishop’s comparison
theorem [7] yields a bound for the volume distortion along any geodesic of
length d(x, y):

vt(x, y) ≥
(

Sk(td(x, y))

Sk(d(x, y))

)n−1

. (11)
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It asserts that this distortion is minimized in the model space Sn, Rn or
Hn of constant sectional curvature k. One can therefore rewrite the Borell-
Brascamp-Lieb inequalities more quantitatively by assuming a lower bound
for the Ricci curvature. For instance in the Prékopa-Leindler case:

Corollary 1.2 (A Riemannian Prékopa-Leindler inequality) Let M be
a continuously curved, n-dimensional Riemannian manifold on which Ric ≥
(n − 1)k holds for some k ∈ R. Fix t ∈ [0, 1]. Let f, g, h : M −→ R+ be
non-negative functions on M, and A, B be Borel subsets of M carrying the
full mass of f and g, respectively. If every (x, y) ∈ A× B, z ∈ Zt(x, y) and
d := d(x, y) satisfy

h(z) ≥
(

Sk(d)

S1−t
k ((1− t)d) St

k(td)

)n−1

f 1−t(x) gt(y), (12)

then ∫
M

h ≥
(∫

M
f

)1−t (∫
M

g

)t

. (13)

For the sphere and hyperbolic space, Cordero -Erausquin’s inequali-
ties [13] are recovered. If k instead bounds the sectional curvatures of M
from above, Gunther’s comparison theorem implies the reverse of (11) –
but this inequality is not particularly useful in the present context.

The idea behind our proof admits a physical interpretation, which has
roots in the work of McCann [25,26] on Rn and Cordero -Erausquin [13]
on the sphere and hyperbolic space. Imagining ρ0 := f and ρ1 := g to
represent the initial and final distributions of a compressible fluid throughout
the manifold, the idea is to construct a dynamical path ρt joining ρ0 to ρ1
along which all fluid particles move geodesically. Mass conservation yields
‖ρt‖1 = 1, so if the path satisfies ρt ≤ h at the appropriate time the theorem
follows immediately. To achieve this bound, we would like to keep the
fluid particles as spread out as possible at each time along the path ρt .
Positive curvature facilitates this task while negative curvature impedes
it – accounting for the distortion factors vt(x, y) in (7) which level out
the playing field. However, we still must prevent the fluid particles from
focusing at any instant in space and time.

This goal can be realized in one of several equivalent ways, correspond-
ing roughly to the Eulerian versus Lagrangian choices of fluid variables.
The Eulerian approach would be to select a path (ρ, P) : M × [0, 1] −→
[0,∞] × TM minimizing Benamou and Brenier’s action integral [5]:

inf
ρ(·,0)= f
ρ(·,1)=g

{∫ 1

0

∫
M

P2(x, t)

ρ(x, t)
dvol(x) dt | ∂tρ + div P = 0

}
. (14)

Another characterization of the solution ρt is as the shortest path joining
f to g, when the space of Borel probability measures on M is metrized by
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the Wasserstein distance dW ( f, g)whose square coincides with the infimum
(14). Instead, we follow a Lagrangian approach yielding a third description
of the same path. It begins with a Borel map F : M −→ M pushing the mass
of f forward to g; indeed, among such maps, we choose the one which min-

imizes the average geodesic distance squared:
∫

M
d2(x, F(x)) f(x) dvol (x).

McCann showed this map to be unique [27], and to take the form F(x) =
expx(−∇φ(x)) where φ : M −→ R is d2/2-concave, meaning, roughly
speaking, (φ)cc = φ with the definitions c(x, y) := d2(x, y)/2 and

φc(y) := inf
x∈M

c(x, y)− φ(x). (15)

We introduce the parameter t ∈ [0, 1] to define a homotopy Ft(x) ∈
Zt(x, F1(x)) by

Ft(x) := expx(−t ∇φ(x)) (16)

from the identity F0(x) = x to the map F1. A Borel probability measure µt
is then defined on M by pushing the mass of f forward through Ft , denoted
µt := (Ft)#µ0 and meaning∫

M
b(x) dµt (x) :=

∫
M

b(Ft(x)) f(x) dvol (x) (17)

for every Borel test function b. After verifying that µt is absolutely continu-
ous with respect to volume, we denote its density byρt (x):=dµt(x)/dvol(x).
It remains to show that ρ−1/n

t (z) dominates the greater side of (7) when
y = F1(x). The proof relies on the optimality of F1 in (16), which yields
a pointwise estimate relating the Jacobian determinant Jt := det dFt(x) to J0

and J1 via concavity of det1/n( · ). As this Jacobian includes a derivative of
the exponential map, our argument naturally invokes the calculus of Jacobi
fields developed, e.g., in Gallot, Hulin and Lafontaine [16] or Jost [22], to
compute it along with the volume distortion (6).

Though the proof is conceptually simple, one needs to develop several
tools of non-smooth analysis to cope with the lack of information on reg-
ularity of the map F. Unlike the Euclidean case, no regularity results are
known for optimal transportation on manifolds. Therefore we generalize
the approach of McCann [25,26] to identify the Jacobian of F(x) almost
everywhere and derive a non-smooth change of variables theory for op-
timal transport on manifolds. We conclude with a second application of
this theory: demonstrating that convexity estimates satisfied by the fam-
ily of densities ρt on Euclidean space extend immediately to the Ricci
non-negative setting. Introduced for measures on Rn under the name dis-
placement convexity [25,26], such inequalities were formally derived on
Riemannian manifolds in recent work of Otto and Villani [28]. Theorem 6.2
is included below to justify some of their calculations.

Several applications of the Euclidean Prékopa-Leindler inequality can
be generalized to the Riemannian setting via Corollary 1.2. For instance, as
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mentioned in [9] and [14], Maurey’s property (τ) and its generalization by
Bobkov and Ledoux [8] can be extended to Riemannian manifolds whose
Ricci curvature has a strictly positive lower bound to recover the Bakry–
Emery [3] logarithmic Sobolev inequality, as well as transport and concen-
tration inequalities. This includes the following concentration of measure
inequality, similar to the one obtained by Gromov and Milman [19], on
a manifold M verifying Ric ≥ R > 0:∫

eλ[ f(x)−∫ fdσ] dσ(x) ≤ eR−1λ2

where f : M → R is 1-Lipschitz, λ ∈ R and dσ := dvol/vol[M] is the
normalized Riemannian volume measure.

Judging from Euclidean experience, we expect the nonsmooth differ-
entiability and change of variables theory we establish for optimal maps
to prove useful in many contexts. To begin, it shows these mappings rep-
resent each probability measure on a given manifold canonically as the
(nearly diffeomorphic) image of an arbitrary reference measure. Further-
more, it will be seen that the geometry of the optimal map is intrinsically
linked to the geometry of the underlying manifold, capturing detailed in-
formation about the curvature along geodesics relevant to the inequalities
that we prove. Among other prospective applications of optimal transporta-
tion methods, one can mention Sobolev inequalities, isoperimetric theo-
rems, logarithmic Sobolev inequalities (which imply rates of contraction
for semigroup flows and dissipative dynamical systems) and the related
displacement convexity discussed by Otto and Villani [28] for the entropy

functional H(ρ) :=
∫
ρ log ρ dvol +

∫
ρV dvol when V : M → R satis-

fies HessV + Ric ≥ λ. We imagine the differentiability, positivity, global
optimality and injectivity results established below for interpolating maps to
form the prerequisites for any subsequent study on the regularity of optimal
maps.

The organization of the paper is as follows. Section 2 is devoted to
recalling the relevant facts and terminology from Riemannian geometry, es-
tablishing the essential relationships between the exponential map, distance
functions, cut locus, and the volume distortion factors vt(x, y). McCann’s
theorem on optimal mass transport is recalled in Sect. 3, where we explore
some differential properties of c-concave functions. In particular, we prove
they admit a second order Taylor expansion almost everywhere – a Hessian,
in the sense of Aleksandrov [2] and Bangert [4]. Section 4 is devoted to the
study of the differential of mass transport and to establishing a change of
variables theorem for optimal maps. The penultimate Sect. 5 constructs the
interpolation along mass transport and establishes optimality and injectivity
properties which may hold independent interest. A final Sect. 6 gives the
proof of our Main Theorem, its corollaries, and the displacement convex-
ity result on Ricci nonnegative manifolds. The knowledgeable reader may
prefer to begin consulting Sect. 6 directly for a conceptual and schematic
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outline of our main arguments, only then referring back to the intervening
Sects. 2–5 as necessary to fill in the missing concepts, definitions, and fine
points of the proof.

This work represents part of the PhD thesis of the first named author at
the Université de Marne-la-Vallée. He wishes to express deep gratitude to
his advisor, Bernard Maurey, for providing ongoing guidance and support.

2 Riemannian geometry: exponential map, distance functions, and
volume distortion coefficients

This section is devoted to recalling some aspects of Riemannian geom-
etry, and using them to establish key lemmas required later. It begins with
a discussion of the exponential map and Riemannian distance function,
before relating the volume distortion factors vt(x, y) to derivatives of the
exponential map. These factors are bounded by comparison with spaces
of constant curvature in Corollary 2.2. The next lemma establishes crucial
positivity properties for derivatives of the Riemannian distance function
dy(·) := d(·, y), while a final proposition characterizes the cut locus of y
as the set of points where second differentiability fails for dy . This char-
acterization proves vital, for it implies that optimal transport never moves
positive mass from its initial location all the way to the cut locus: the
resulting degeneracies are confined to a set of measure zero.

For x ∈ M, the cut locus refers to the set cut(x) ⊂ M of all z ∈ M which
cannot be linked to x by an extendable minimizing geodesic, meaning z /∈
∪t∈(0,1)Zt(x,M). The exponential map expx : Tx M → M is differentiable
at any tangent vector v ∈ Tx M satisfying expx v /∈ cut(x) [16, §3.77], and
its differential Yx,v := d(expx)v gives a linear bijection between the tangent
spaces Tx M and Texpx v

M. We adopt the notation Y := Yx,v, suppressing
the dependence on x and on v. For any y ∈ M denote by dy(·) := d(·, y)
the distance function to y. The relationship between this distance and the
exponential map is summarized by the formula dy(expy v) = |v|, which
holds for any v from the star-shaped domain around 0 ∈ Ty M which does
not intersect (expy)

−1[cut(y)]. This shows the exponential map generates
the minimal geodesics through y, and that the function d2

y/2 is smooth
around any x �∈ cut(y). Where d2

y/2 is differentiable, its gradient is related
to the exponential map by the formula [27, Proposition 6],

y = expx

[−∇d2
y(x)/2

]
, (18)

and for x �∈ cut(y) its Hessian H = Hessxd2
y/2 can be viewed either

as a symmetric quadratic form on Tx M, or – more frequently – as a self-
adjoint operator H : Tx M −→ Tx M. Note that (18) requires the existence of
a minimal geodesic linking x to y, and it is for this reason that completeness
of the manifold is required.
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The coefficients vt (x, y) and v1−t(y, x) are linked to the differential of the
exponential map and the Hessian of the distance function by the following
lemma:

Lemma 2.1 (Volume distortion coefficients) Fix x, y ∈ M with x /∈
cut(y) and let γ(t) := expx(tv) be the minimal geodesic joining x = γ(0)
to y = γ(1). For t ∈ [0, 1] we introduce Y(t) := d(expx)tv and H(t) :=
Hessxd2

γ(t)/2. Then definition (6) implies

vt(x, y) = det Y(t)

det Y(1)
= det Y(t)Y(1)−1 > 0 (19)

and for t �= 1

v1−t(y, x) = det
Y(t)

(
H(t)− tH(1)

)
1− t

. (20)

Here the determinants are computed in Riemannian normal coordinates on
each tangent space, or equivalently by expressing the coordinates of Y(t)
and H(t) with respect to an orthonormal moving frame which has been
parallel transported along γ .

Proof. Equality (19) follows easily from the definition of vt(x, y). The
map Gt(u) := expx(tu) is a local diffeomorphism between a neighborhood
of v and a neighborhood of γ(t); by the chain rule its differential at v is
d(Gt)v = tY(t). Introduce the set Cr := {u ∈ Tx M | expx u ∈ Br(y)},
which shrinks nicely to v as r tends to 0, in the terminology of Rudin
(c.f. Claim 4.5 below). Since geodesics through x ∈ M correspond to
straight lines through 0 ∈ Tx M under the exponential map, Gt maps Cr
onto Zt(x, Br(y)) as long as Br(y) is disjoint from the cut locus cut(x).
Thus we get

det
(
tY(t)

) = det d(Gt)v = ± lim
r→0

vol[Zt(x, Br(y))]
vol[Cr] .

The sign must positive since det Y(t) �= 0 for any t ∈ [0, 1] and Y(0) = I .
Using this equality at t = 1, since Z1(x, Br(y)) = Br(y),

0 �= det Y(t)

det Y(1)
= lim

r→0

vol[Zt(x, Br(y))]
tnvol[Br(y)] = lim

r→0

vol [Zt(x, Br(y))]
vol[Btr(y)] =: vt(x, y).

The second equality (20) follows from the first after characterizing
vt(x, y) as the determinant of a matrix of Jacobi fields. Let us therefore
say a few words about Jacobi fields. Let x, y ∈ M and γ(t) := expx tv be
a minimal geodesic joining x = γ(0) to y = γ(1). A Jacobi field is formally
defined as a vector field V along γ satisfying the linear differential equa-
tion V ′′(t) + R(V(t), γ̇ (t))γ̇ (t) = 0. Here the derivatives of vector fields
are the covariant derivatives along γ , R is the Riemann curvature tensor
on M, and γ̇ (t) the tangent vector to γ at t. In particular a Jacobi field along
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γ is uniquely determined by the initial conditions V(0) and V ′(0). When
there exists a non-zero Jacobi field along γ vanishing at endpoints, one
says that x and y are conjugate points. If x and y are conjugate points then
y ∈ cut(x) (as in [16, §3.78]). When x and y are not conjugate points, a Ja-
cobi field V along γ is characterized by V(0) and V(1). An equivalent and
more intuitive way of defining Jacobi fields is to consider variations of γ by
geodesics. Consider a smooth family γs of geodesic curves, which includes

the geodesic of interest γ0 := γ . Then the vector field V(t) := ∂

∂s

∣∣∣
s=0
γs(t)

which generates this variation is a Jacobi field along γ . Conversely, every
Jacobi field along γ can be obtained in this way.

Returning to the proof of the lemma: because expx generates all geodesics
through x, it is a well known fact that the matrix tY(t) is a matrix consisting
of Jacobi fields along γ [16]. (More precisely, tY(t)u is a Jacobi field along
γ whenever u ∈ Tx M.) Thus the linear combination tY(t)Y(1)−1 also forms
a matrix of Jacobi fields along γ which vanishes at γ(0) and coincides with
the identity matrix I at γ(1). We then have the following reformulation of
(19): if A(t) is the unique matrix of Jacobi fields along γ satisfying A(0) = 0
and A(1) = I , then

vt(x, y) := det
A(t)

t
·

Therefore if B(t) is the unique matrix of Jacobi fields along γ satisfying
B(0) = I and B(1) = 0, then

v1−t(y, x) = det
B(t)

1− t
· (21)

To establish (20) it is therefore sufficient to show that the matrix B(t) =
Y(t)

(
H(t)− tH(1)

)
is the required matrix of Jacobi fields. Fixing w ∈ Tx M,

we will prove that Y(t)
(
H(t) − tH(1)

)
w is a Jacobi field along γ . Recall

γ(t) = expx(tv) and denote by c(s) any curve such that c(0) = x and
ċ(0) = w (such as c(s) = expx(sw)). Now consider the following variation
of γ :

γs(t) := expc(s)

(− t∇d2
y(c(s))/2

)
.

The field of variation V(t) := ∂

∂s

∣∣∣
s=0
γs(t) is a Jacobi field along γ since all

the curvesγs are geodesics. Since (18) implies γs (1) = y whileγs(0) = c(s),
we have V(1) = 0 and V(0) = w. We write

γs(t) = expc(s)

(−∇d2
γ(t)(c(s))/2+ ∇h(c(s))

)
, (22)

where h(z) := d2
γ(t)(z)/2− td2

y(z)/2. Invoking (18) again shows the function

s −→ expc(s)

(−∇d2
γ(t)(c(s))/2

) = γ(t) (23)
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is independent of s. At s = 0, c(0) = x, ∇h(x) = 0 and ∇d2
γ(t)(x)/2 = tv.

Thus differentiating (22) at s = 0, the chain rule combines with (23) to
yield

V(t) = (d(expx)tvHessxh
)

c′(0)
= Y(t)

(
H(t)− tH(1)

)
w.

This shows that Y(t)
(
H(t) − tH(1)

)
w is a Jacobi field. Moreover B(t) =

Y(t)
(
H(t)− tH(1)

)
satisfies the desired boundary conditions: V(0) = w =

B(0)w and V(1) = 0. Thus (20) follows from (21) and the lemma is
established. ��

The previous characterization of vt together with the Bishop’s compari-
son theorem leads to an estimate of vt in terms of Ricci curvature.

Corollary 2.2 (Comparison bound on volume distortion) Assume that
Ric ≥ (n − 1)k throughout M for some k ∈ R. Then for x, y ∈ M with
y /∈ cut(x) and t ∈ (0, 1),

vt(x, y) ≥
(

Sk(td(x, y))

Sk(d(x, y))

)n−1

,

where Sk is from equation (10). Equality holds when M has constant sec-
tional curvature equal to k.

Proof. Let γ(t) := expx tv be the minimal geodesic joining x = γ(0)
to y = γ(1) from the lemma. Minimality implies this geodesic is free
from conjugate points; it is parameterized by arc length rescaled by |v| =
d(x, y). Thus the hypothesized Ricci bound yields Ricγ(t)(γ ′(t), γ ′(t)) ≥
(n− 1)k|v|2. Denoting the Jacobian determinant of the exponential map by
Jn−1(t) := d(expx)tv = det Y(t), Theorem 15 of Bishop and Crittenden [7,
§11.10] asserts that

t −→ (det Y(t)) (Sk(t|v|))−(n−1)

is a non-increasing function of t ∈ (0, 1]. From (19) this yields

vt(x, y) = det Y(t)

det Y(1)
≥
(

Sk(t|v|)
Sk(|v|)

)n−1

. (24)

If M has constant sectional curvature, a direct computation of the Jacobi
fields making up Y(t) yields equality in (24), thus concluding the corollary.

��
The following lemma is an elementary consequence of the triangle in-

equality which has a critical role to play in our proof. It provides half of the
positivity we eventually require to deduce the Jacobian inequality (74) from
the domination of means in Lemma 6.1. Note the relevance of the Hessian
H(t)− tH(1) to the distortion coefficient (20).
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Lemma 2.3 (Hessian positivity relating distance functions) Let γ(t) =
expx(tv) be the minimal geodesic linking x ∈ M to γ(1) /∈ cut(x). The
self-adjoint operator H(t)− tH(1) defined on Tx M by H(t) = Hessxd2

γ(t)/2
has non-negative eigenvalues.

Proof. We begin by recording the following claim which will also prove
useful later:

Claim 2.4 Let x, y, z ∈ M with z ∈ Zt(x, y) for some t ∈ (0, 1). Then for
all m ∈ M,

td2(m, y) ≤ d2(m, z)+ t(1− t)d2(x, y). (25)

This inequality is sharp, in the sense that choosing m = x produces a case
of equality.

Proof of claim. The triangle inequality combines with domination of the
arithmetic by the geometric mean to yield, for any ε > 0,

d2(m, y) ≤ d2(m, z)+ d2(z, y)+ 2d(m, z)d(z, y)
≤ (1+ ε−1)d2(m, z)+ (1+ ε)d2(z, y).

Choosing ε = t/(1 − t) and noting d(z, y) = (1 − t)d(x, y) establishes
the inequality (25). To see m = x produces a case of equality, invoke the
relation dz(m) = tdy(m) which follows from z ∈ Zt(m, y). �
End of the proof of the lemma. Since γ(t) ∈ Zt(x, y), re-expressing the
claim yields

α(m) := d2
γ(t)(m)/2+ t(1− t)d2

y(x)/2− td2
y(m)/2 ≥ 0

and attains the minimum value 0 = α(x). Since neither y and nor z = γ(t)
belongs to cut(x), differentiating twice yields Hessxα ≥ 0. This coincides
with the desired inequality. ��

In the sequel, it proves useful to characterize the cut locus cut(y) as
the set of points where the distance function d2

y/2 must fail to be smooth.
As mentioned above, d2

y/2 is as smooth as the manifold away from the cut
locus of y. But cut(y) consists of two kinds of points: (i) those connected
to y by multiple minimizing geodesics, and (ii) those which are conjugate
to y but do not fall into class (i). The point of the following proposition
is that differentiability of d2

y must fail – at first order in case (i), and at
second order in case (ii). Moreover, the failure occurs with a definite sign:
the Hessian diverges to −∞ while remaining bounded above, according to
Lemma 3.12.

Proposition 2.5 (Distances fail to be semiconvex at the cut locus) At
each x ∈ cut(y), the square distance ψ := d2

y/2 satisfies:

inf
0<|v|<1

ψ(expx v)+ ψ(expx −v)− 2ψ(x)

|v|2 = −∞. (26)
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Proof. For x ∈ cut(y) there are only two possibilities (see e.g. [16, §3.78]).

Case 1: There exist two distinct minimal geodesics joining x and y. This is
the easy case. If γ(t) = expx(tu) is a minimal geodesic joining x = γ(0) to
y = γ(1), then by [27, Proposition 6] −γ̇ (0) = −u is a supergradient of
ψ = d2

y/2 at x in the sense that for v→ 0 in Tx M,

ψ(expx v) ≤ ψ(x)+ 〈−u, v〉 + o(|v|). (27)

Of course we may write an equality in (27) when ψ is differentiable. But
precisely if there exists two minimal geodesics joining x to y, the function
ψ is not differentiable at x and the existence of two distinct supergradients
satisfying (27) immediately implies that the infimum (26) diverges to −∞.

Case 2: Only one minimal geodesic joins x to y, in which case x and y are
conjugate points, meaning some non-zero normal Jacobi field along this
geodesic vanishes at both endpoints. This case is more tricky and requires
the use of the second variation of energy formula. Our proof is directly
inspired by the characterization of the cut locus given in Gallot, Hulin and
Lafontaine [16, §3.73]. Assume the result of the lemma is false: i.e. there
exists a constant C > 0 such that

lim inf
v→0

ψ(expx v)+ ψ(expx −v)− 2ψ(x)

|v|2 ≥ −C. (28)

Let γ(t) = expx(tu) be the minimal geodesic joining x = γ(0) to y = γ(1).
Recall (see Jost [22, p 169]) that the index form I is a symmetric bilinear
form defined on the space of all vector fields X1 and X2 along γ by

I(X1, X2) :=
∫ 1

0

(〈X ′1(t), X ′2(t)〉 − 〈R(γ̇ (t), X2(t))X1(t), γ̇ (t)〉
)

dt

= −
∫ 1

0

〈
X1(t), X ′′2(t)+ R(X2(t), γ̇ (t))γ̇ (t)

〉
dt

+ [〈X1(t), X ′2(t)〉
]t=1

t=0 .

Here X(t) ∈ Tγ(t)M while X ′(t) denotes its covariant derivative along γ ; the
second identity follows from an integration by parts and the symmetries of
the Riemann tensor.

Let Y(t) be a non-zero normal Jacobi field along γ vanishing at 0 and 1.
By scaling the overall size of the manifold and the vector field independently,
it costs no generality to normalize the length of the geodesic so that d(x, y) =
|u| = 1, and take v := Y ′(0) – which is necessarily non-zero – to be a unit
vector. Let Z1 be a parallel vector field along γ with Z1(0) = Y ′(0) = v
and let Z(t) := (1− t)Z1(t). Fix α > 0 small enough that

− 2

α
+ I(Z, Z) < −C (29)
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and for this α consider

Yα(t) := Y(t)+ αZ(t) .

The field Yα is normal along γ . It satisfies Yα(0) = αv and Yα(1) = 0.
We introduce the following variation of the geodesic γ : for s close to 0,

γs(t) := f(s, t) := expγ(t)(sYα(t)) .

The energy of the curve γs is by definition E(s) := 1

2

∫ 1

0
|∂tγs(t)|2dt. The

curve γs joins the point expx(sαv) to y. The definition of geodesic distance
combined with Hölder’s inequality gives

ψ(expx sαv) = 1

2
d2(expx(sαv), y) ≤ 1

2

(∫ 1

0
|∂tγs(t)|dt

)2

≤ E(s). (30)

Note that for s = 0, since γ is a minimizing geodesic, there is equality in
(30). So our assumption (28) gives:

lim inf
s→0

E(s)+ E(−s)− 2E(0)

|α|2s2
≥ −C. (31)

On the other hand, we can compute the second derivative of E with the
second variation of energy formula (see e.g. Jost [22, p 164–165]),

E ′′(0) = −
∫ 1

0

〈
Yα(t),Y ′′α (t)+ R(Yα(t), γ̇ (t))γ̇ (t)

〉
(32)

+
[〈

Ds
∂ f

∂s
(s, t), γ̇ (t)

〉](s,t)=(0,1)
(s,t)=(0,0)

+ [〈Yα(t),Y ′α(t)
〉]t=1

t=0 .

Here Ds
∂ f

∂s
(s, t) is the covariant derivative of

∂ f

∂s
(s, t) with respect to s.

Since s→ f(s, t) is a geodesic (for fixed t) we have Ds
∂ f

∂s
(s, t) = 0. Thus

E ′′(0) = I(Yα,Yα)
= I(Y,Y )+ 2αI(Z,Y )+ α2 I(Z, Z).

Observe that I(Y,Y ) = 0 since Y is a Jacobi field vanishing at endpoints
and I(Z,Y ) = [〈Z(t),Y ′(t)〉]t=1

t=0 = −|v|2 = −1. Thus E ′′(0) = −2α +
α2 I(Z, Z) in equation (31), which contradicts (29), concluding the proof of
the proposition. ��
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3 Background on mass transport and properties of c-concave
functions

3.1 Mass transport and c-concave functions

This section recalls the theory of optimal mass transportation developed
in the Riemannian context by McCann [27]. We fix the cost function
c(x, y) := d2(x, y)/2 = d2

y(x)/2 throughout. To begin, we recall a gen-
eralized Legendre transformation adapted to this choice of cost.

Definition 3.1 (c-transforms and the subset � c(X,Y ) of c-concave func-
tions) Let X and Y be two compact subsets of M. The set � c(X,Y )
of c-concave functions (relative to X and Y) is the set of functions φ :
X → R ∪ {−∞} not identically −∞, for which there exists a function
ψ : Y → R ∪ {−∞} such that

φ(x) = inf
y∈Y

c(x, y)− ψ(y) ∀x ∈ X. (33)

We refer to φ as the c-transform ofψ and abbreviate (33) by writing φ = ψc.
Similarly, given φ ∈ � c(X,Y ), we define its c-transform φc ∈ � c(Y, X) by

φc(y) := inf
x∈X

c(x, y)− φ(x) ∀y ∈ Y. (34)

We hope no confusion results from the tacit dependence of these trans-
formations on the domain of the function being transformed. For φ ∈
� c(X,Y ), it follows easily from (34) as in Rachev and Rüschendorf [31,
§3.3] that

φ(x) = inf
y∈Y

c(x, y)− φc(y) ∀x ∈ X, (35)

which we abbreviate by writing φcc = φ, suppressing the domains of defin-
ition once more. As in [27], Lipschitz continuity of φc follows merely from
compactness of X and the locally Lipschitzian character of c(x, y), whether
or not φ : X −→ R ∪ {−∞} is continuous. Thus it costs no generality to
assume ψ and φ are continuous and real-valued in definition (33), in view
of (35).

For two Radon measures µ and ν on M, we say a map T : M −→ M
definedµ-a.e. pushesµ forward to ν (or transportsµ onto ν) if ν is the image
measure ofµ under T , denoted ν = T#µwhere (T#µ)(B) := µ(T−1(B)) for
all Borel sets B ⊂ M. The definition of the push-forward T#µ can equally
well be expressed by asserting∫

b(y) d(T#µ)(y) =
∫

b(T(x)) dµ(x) (36)

for all Borel functions b : M → R+. We state now the central result of
McCann [27, §5] on optimal mass transport.
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Theorem 3.2 (Optimal mass transport on manifolds [27]) Let M be
a complete, continuously curved Riemannian manifold. Fix two Borel prob-
ability measures µ  vol and ν on M, and two compact subsets X and
Y ⊂ M containing the support of µ and ν, respectively. Then there exists
φ ∈ � c(X,Y ) such that the map

F(x) := expx(−∇φ(x)) (37)

pushes µ forward to ν. This map is uniquely characterized among all maps
pushing µ forward ν by formula (37) with φ ∈ � c(X,Y ). Furthermore F is

the unique minimizer of the quadratic cost
∫

d2(x,G(x)) dµ(x) among all

Borel maps G : M → M pushing µ forward to ν (apart from variations on
sets of µ-measure zero).

The map F may be referred to either as the optimal map or optimal mass
transport between µ and ν.

Let us also recall one of the basic lemmas from its proof, which illumi-
nates the structure of the map F. Given two compact subsets X and Y ⊂ M
with φ ∈ � c(X,Y ), one sees every (x, y) ∈ X × Y satisfy

c(x, y)− φ(x)− φc(y) ≥ 0, (38)

with equality when φ(x) = inf
y′∈Y

c(x, y′)− φc(y′) = c(x, y)− φc(y).

Notation: Throughout the sequel it will be convenient to use the notation
X ⊂⊂ M to denote an open subset X of M whose closure X is compact.

Lemma 3.3 (Elementary properties of c-concave functions [27]) Fix
X ⊂⊂ M open and Y ⊂ M compact. For φ ∈ � c(X,Y ) define F(x) :=
expx(−∇φ(x)).
(a) The function φ is Lipschitz on X and hence differentiable almost every-

where on X.
(b) Fix any point x ∈ X where φ is differentiable. Then y = F(x) if and

only if y minimizes (38) among y′ ∈ Y. In the latter case one has
∇φ(x) = ∇d2

y(x)/2.

Proof. Detailed proofs can be found in [27, Lemmas 2 and 7]; (a) was
discussed above and is rather standard, but for completeness we sketch
here a proof of (b). Let y ∈ Y be a minimizer for (38), meaning φc(y) =
c(x, y)−φ(x), and let dy denote, as always, the distance function to y. Again
by (38)

d2
y(z)/2− φ(z)− φc(y) ≥ 0 (39)

for every z ∈ X with a minimum value of zero when z = x. Differentiation
of (39) at z = x yields

∇φ(x) = ∇d2
y(x)/2.

Thus (18) yields y = expx(−∇d2
y(x)/2) = expx(−∇φ(x)) = F(x).
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Conversely let y := F(x). Since Y is compact there exists y′ ∈ Y
minimizing (38). By the previous computations F(x) = y′ = y proving that
y minimizes (38). ��
Remark 3.4 (A priori Hessian bound for smooth c-concave functions)
In the previous proof, when φ is twice differentiable at x �∈ cut(F(x)),
computing second derivatives at the minimum z = x of (39) yields

Hessx
(
d2

y/2− φ
) ≥ 0

for y = F(x). Heuristically, this provides the second bit of positivity we
ultimately require to establish the Jacobian concavity estimate (74). In
the next subsection, we introduce a non-smooth notion of Hessian which
respects the above inequality.

A c-concave function is not necessarily differentiable everywhere and
thus the mass transport map F is not defined everywhere. However for
fixed x ∈ X, the Lipschitz continuity of φc asserted in Lemma 3.3 on the
compact set Y guarantees that some y ∈ Y minimizes (38). This motivates
the definition below, which provides a (possibly multivalued) extension of
the map F(x) = expx(−∇φ(x)) to all of X.

Definition 3.5 (c-superdifferential ∂cφ) Let X,Y be two compact sets
of M. For φ ∈ � c(X,Y ) and x ∈ X, the c-superdifferential of φ at x is the
non-empty set

∂cφ(x) := {y ∈ Y | φ(x)+ φc(y) = c(x, y)} (40)
= {y ∈ Y | φ(z) ≤ φ(x)+ c(z, y)− c(x, y) ∀z ∈ X }. (41)

Example 3.6 (Multivalued extension) If φ ∈ � c(X,Y ) is differentiable at
x ∈ X ⊂⊂ M, then ∂cφ(x) = {F(x)} = {expx(−∇φ(x))} according to
Lemma 3.3(b).

3.2 Semi-concavity and Hessians for c-concave functions

We next recall some tools of non-smooth analysis from the work of Ban-
gert [4] on topological manifolds, which allow us to handle the fact that
c-concave functions are not twice differentiable in the usual sense. Since
Bangert’s topological definitions are independent of coordinate choices, it
is convenient for us to frame our definitions in the Riemannian normal
coordinate charts given by the exponential map.

A function φ : Ω → R defined on an open subset Ω of M is said
to be superdifferentiable at x ∈ Ω with supergradient v ∈ Tx M if for
u → 0 ∈ Tx M,

φ(expx u) ≤ φ(x)+ 〈v, u〉 + o(|u|). (42)
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The superdifferential of φ at x refers to the convex set ∂φ(x) ⊂ Tx M of all
supergradients at x.

A typical example of a function which admits supergradients everywhere
is the square distance d2

y/2 to y ∈ M. Indeed, if γ is a minimal geodesic
joining x = γ(0) to y = γ(1), then −γ̇ (0) ∈ ∂(d2

y/2)(x) was established
in [27]. The following lemma combines with Definition 3.5 to extend this
property to c-concave functions:

Lemma 3.7 (c-supergradients imply supergradients) Fix X ⊂⊂ M
open, Y ⊂ M compact, and φ ∈ � c(X,Y ). Let (x, y) ∈ X × Y and
v ∈ Tx M satisfy |v| = d(x, y) and expx(−v) = y. If y ∈ ∂cφ(x) then
v ∈ ∂φ(x).
Proof. Fix (x, y) ∈ X × Y such that y ∈ ∂cφ(x). For every z ∈ X, (41)
implies

φ(z) ≤ φ(x)+ c(z, y)− c(x, y).

Any shortest vector v ∈ Tx M satisfying expx(−v) = y has length |v| =
d(x, y). Now [27, Proposition 6] generalizes (18) by asserting v∈∂(d2

y /2)(x).
Thus for z = expx u,

c(expx u, y)− c(x, y) ≤ 〈v, u〉 + o(|u|)
as u → 0. Combining the two inequalities yields the desired result (42). ��

The two previous examples are representatives of a much more general
class of functions admitting non-empty superdifferentials. Designated by
−φ ∈ F (Ω) in the notation of Bangert, we next introduce the semi-concave
functions. First recall that a geodesic ball Br(x) of radius r around x ∈ M is
said to be embedded if the exponential map expx : B̃x

r (0)→ Br(x) defines
a diffeomorphism from the open ball B̃x

r (0) ⊂ Tx M onto Br(x) ⊂ M.
A geodesic ball Br(x) around x is a convex embedded ball if it is embedded
and geodesically convex – meaning every pair of points y, z ∈ Br(x) are
joined by a unique geodesic of length less than 2r, and this geodesic is
contained in Br(x). Small enough balls are always convex embedded balls
according to [16, §2.90].

Definition 3.8 (Semi-concavity) Fix Ω ⊂ M open. A function φ : Ω→ R
is semi-concave at x0 ∈ Ω if there exists a convex embedded ball Br(x0)
and a smooth function V : Br(x0) → R such that φ + V is geodesically
concave throughout Br(x0). The function φ is semi-concave on Ω if it is
semi-concave at each point of Ω.

It is well-known that concave (and thus semi-concave) functions at
x ∈ M admit non-empty superdifferentials at all points near x. This allows
the following definition of the Hessian, as a derivative of supergradients
(equivalent to the normal coordinate multifunctions of [4, §4.1]):
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Definition 3.9 (Hessian) Let φ : Ω→ R be semi-concave on an open set
Ω ⊂ M. We say that φ has a Hessian H at x ∈ Ω if φ is differentiable at x
and there exists a self-adjoint operator H : Tx M → Tx M satisfying

sup
v∈∂φ(expx u)

|Πx,uv−∇φ(x)− Hu| = o(|u|) (43)

as u → 0 in Tx M. Here Πx,u : Texpx u M → Tx M denotes parallel transla-
tion to x along γ(t) := expx(tu). The Hessian of φ at x may also be denoted
by Hessxφ := H.

This definition coincides with the usual one for smooth functions. A more
intuitive understanding of the Hessian follows from the fact that existence
of a Hessian H at x for φ implies a second order Taylor expansion for φ
around x: as u → 0 ∈ Tx M,

φ(expx u) = φ(x)+ 〈∇φ(x), u〉 + 1

2
〈Hu, u〉 + o(|u|2). (44)

It is remarkable that the converse also holds true: if ψ is semi-concave
around x then (43) follows from (44). Even more remarkable is the following
theorem, proved by Aleksandrov [2] in the Euclidean case and on manifolds
by Bangert [4, §4.4]. (For modern proofs in Rn see [1] or [6].)

Theorem 3.10 (Aleksandrov-Bangert [4]) Let φ : Ω → M be semi-
concave function on an open set Ω ⊂ M. Then φ admits a Hessian almost
everywhere on Ω.

The observation enabling us to exploit this theory is that any c-concave
function is semi-concave. This is proved in the next proposition, after estab-
lishing uniform semi-concavity locally for the squared distance functions
d2

y as a special case. We require the following observation:

Lemma 3.11 (Local characterization of semi-concavity) Let φ : Ω→ R
be a continuous function and fix x0 ∈ Ω. Assume that there exists a neigh-
borhood U of x0 and a positive constant C such that for every x ∈ U and
u ∈ Tx M one has,

lim sup
r→0

φ(expx ru)+ φ(expx −ru)− 2φ(x)

r2
≤ C.

Then φ is semi-concave around x0.

Proof. The function h := d2
x0

is smooth around x0 and has Hessian 2I at
x0. So there exists a neighborhood V of x0 such that Hessxh > I for every
x ∈ V . Set ψ := Ch − φ and take a convex embedded ball B ⊂ U ∩ V
centered at x0. By construction every x ∈ B and u ∈ Tx M satisfy

lim inf
r→0

ψ(expx ru)+ ψ(expx −ru)− 2ψ(x)

r2
> 0. (45)
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We will prove that ψ is geodesically convex on B. Let γ : [0, 1] −→ M
be a geodesic contained in B and set f(t) = ψ(γ(t)). The function f :
[0, 1] −→ R is continuous. Applying (45) to x = γ(t) with u = γ̇ (t) we
get

lim inf
r→0

f(t + r)+ f(t − r)− 2 f(t)

r2
> 0 (46)

for every t ∈ (0, 1). But this implies convexity of f : indeed, for t0 , t1 ∈ [0, 1]
and s ∈ (0, 1) we shall prove f((1 − s)t0 + st1) ≤ (1 − s) f(t0) + s f(t1).
By subtracting an affine function, it costs no generality to assume that
f(t0) = f(t1) = 0. This does not affect inequality (46), and we need only
argue that f is non-positive on (t0, t1). To derive a contradiction, suppose the
continuous function f assumes a positive maximum f(t) > 0 at t ∈ (t0, t1).
Maximality ensures that for r small enough one has

f(t + r)+ f(t − r)− 2 f(t) ≤ 0

which contradicts (46). Thus f is convex on [0, 1] and ψ = Ch − φ is
geodesically convex throughout B. ��
Lemma 3.12 (Hessian bound for distance squared) Fix x, y ∈ M and
a minimal geodesic γ joining x to y. Suppose −k < 0 is a lower bound for
the sectional curvatures at every point of γ . Setting L(s) := s(tanh s)−1,
each u ∈ Tx M satisfies

lim sup
r→0

d2
y(expx ru)+ d2

y(expx −ru)− 2d2
y(x)

r2
≤ 2L

(√
k d(x, y)

)
.

Proof. This is direct consequence of the second variation formula. Indeed
assume γ is parametrized by arc length, with |γ̇ (t)| = 1 and joins the point
x = γ(0) to y = γ(�). Introduce the parallel transport u(t) of u ∈ Tx M
along γ and the vector field

X(t) := α(t)u(t) where α(t) := sinh(
√

k(�− t))

sinh(
√

k�)
·

The vector field X satisfies X(0) = u and X(�) = 0. Introduce the following
variation of the geodesic γ :

γr(t) := f(r, t) := expγ(t)(rX(t))

and note that γr (0) = expx(ru) and γr (�) = y. The definition of the geodesic
distance combined with Hölder’s inequality gives

d2
y(expx ru) ≤

(∫ �

0
|∂tγr(t)| dt

)2

≤ �
∫ �

0
|∂tγr(t)|2 dt =: 2�E(γr). (47)
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For r = 0 there is equality in (47) since γ0 = γ is a geodesic. Thus we have,

d2
y(expx ru)+ d2

y(expx −ru)− 2d2
y(x)

r2
≤ 2�

E(γr)+ E(γ−r)− 2E(γ0)

r2
.

(48)

The right hand side has a limit when r → 0 given by the second variation
formula (32), in which one boundary term vanishes since r −→ f(r, t) is
a geodesic for each t:

d2 E(γr)

dr2

∣∣∣∣
r=0

=
∫ �

0

[|X ′(t)|2 − R(X(t), γ̇ (t), X(t), γ̇ (t))
]

dt

=
∫ �

0

[
(α′(t))2 − (α(t))2 R(u(t), γ̇ (t), u(t), γ̇ (t))

]
dt

where X ′ is the covariant derivative of X along γ and R is the Riemann
tensor. Using the sectional curvature bound along γ we obtain

d2 E(γr)

dr2

∣∣∣∣
r=0

≤
∫ �

0

[
(α′)2 + kα2

]
dt

= (sinh(
√

k�))−2k
∫ �

0
cosh

(
2
√

k(t − �)) dt

= (sinh(
√

k�))−2

√
k

2
sinh(2

√
k�)

=
√

k cosh(
√

k�)

sinh(
√

k�)
.

Combined with (48) this proves the lemma. ��
Corollary 3.13 (Uniform semi-concavity of distance squared) Let X,
Y ⊂ M be compact. There exists a constant C > 0 such that every (x, y) ∈
X × Y and u ∈ Tx M satisfy

lim sup
r→0

d2
y(expx ru)+ d2

y(expx −ru)− 2d2
y(x)

r2
≤ C. (49)

Proof. Every x ∈ X and y ∈ Y is linked by a minimal geodesic since the
manifold M is complete. The union U of all such minimal geodesic segments
starting in X and ending in Y is a closed bounded set, by compactness of
X and Y . Thus one can find a uniform lower bound −k < 0 for sectional
curvatures on U . Inequality (49) follows from the previous lemma since the
diameter of X ∪ Y is finite. ��
Proposition 3.14 (c-concave functions are semi-concave) Fix X ⊂⊂ M
open and Y ⊂ M compact. A c-concave function φ ∈ � c(X,Y ) is semi-
concave on X (and hence admits a Hessian (43) almost everywhere in X).
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Proof. For x ∈ X, Definition 3.5 provides y ∈ ∂cφ(x) ⊂ Y . Every ±u ∈
Tx M satisfies (41):

φ(expx u) ≤ φ(x)+ d2
y(expx u)/2− d2

y(x)/2.

Corollary 3.13 now yields C > 0 such that every x ∈ X and u ∈ Tx M
satisfies

lim sup
r→0

φ(expx ru)− φ(expx −ru)− 2φ(x)

r2
≤ C.

By Lemma 3.11 this implies φ is semi-concave around each point of X.
Aleksandrov and Bangert’s Theorem 3.10 provides a Hessian almost every-
where. ��

4 The optimal transport Jacobian

Given two absolutely continuous probability measures µ, ν  vol with
respect to the Riemannian volume on M, denote their respective densities
by f(x) = dµ(x)/dvol (x) and g(y) = dν(y)/dvol(y). The goal of this
section is to show that the optimal transport map F : M −→ M pushing µ
forward to ν in Theorem 3.2 is differentiable almost everywhere (in a sense
made precise below) and its Jacobian determinant satisfies the equation

f(x) = g(F(x)) det dFx . (50)

The form F(x) = expx(−∇φ(x)) of the optimal map reduces this to
a Monge-Ampère equation in the Euclidean case. Our goal is to specify
a precise sense in which equation (50) holds f almost everywhere. As
a byproduct, we derive a change of variables theorem for the (not necessar-
ily Lipschitz) map F : M −→ M.

4.1 Non-smooth differentiation of mass transport

Example 3.6 demonstrates that the c-superdifferential ∂cφ ⊂ X × Y of
φ ∈ � c(X,Y ) provides a multivalued extension (40) of the map F(x) :=
expx(−∇φ(x)) to points x ∈ X where φ is not differentiable. The next
proposition uses ∂cφ to define a differential dFx for such optimal maps
F(x). From the chain rule for smooth functions, it is clear that dFx should
involve the derivative of the exponential map and the Hessian of φ.

Proposition 4.1 (Differentiating optimal transport) Fix X ⊂⊂ M be
open and Y ⊂ M compact. Letφ ∈ � c(X,Y ) and set F(z) := expz(−∇φ(z)).
Fix a point x ∈ X where φ admits a Hessian (43). Then:

(a) y := F(x) /∈ cut(x) and setting H := Hessxd2
y/2, one has H −Hessxφ

≥ 0.
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(b) Introduce Y := d(expx)−∇φ(x) and define dFx : Tx M −→ Ty M by
dFx := Y(H − Hessxφ). Then as u → 0 in Tx M,

sup
expy v∈∂cφ(expx u)
|v|=d(y,expy v)

|v− dFx(u)| = o(|u|). (51)

Proof of (a). Suppose φ admits a Hessian (43) at x ∈ X. Then φ is differ-
entiable at x and Example 3.6 shows that ∂cφ(x) = {F(x)} = {y}. Thus for
every z ∈X, (41) yields

φ(z) ≤ φ(x)+ d2
y(z)/2− d2

y(x)/2 . (52)

Taking z = expx(±u) and ψ := d2
y/2 gives

φ(expx u)+ φ(expx −u)− 2φ(x)

|u|2 ≤ ψ(expx u)+ ψ(expx −u)− 2ψ(x)

|u|2 .

As |u| → 0 the left hand side tends to 〈Hessxφ(u), u〉 by hypothesis, so
the right hand side is bounded below. Proposition 2.5 then ensures that
x �∈ cut(y), or equivalently y /∈ cut(x).

From (52) we also observe that the function

h(z) := d2
y(z)/2− φ(z) (53)

has a minimum at z = x. The Taylor expansion (44) then implies the
existence and non-negativity of its Hessian: Hessxh = H −Hessxφ ≥ 0. �
Proof of (b). Fix a unit tangent vector u ∈ Tx M and set xs = expx(su).
For ys ∈ ∂cφ(xs) we want to establish the estimate |vs − dFx(su)| = o(s),
where vs ∈ Ty M is the shortest vector such that ys = expy vs, and the error
term is independent of u.

Introduce us ∈ Txs M such that ys = expxs
us with |us| = d(xs, ys) and

let ws := us +∇d2
y(xs)/2. Then

ys = expxs

(−∇d2
y(xs)/2+ws

)
. (54)

Applying Lemma 3.7 to ys ∈ ∂cφ(xs) yields −us ∈ ∂φ(xs) and hence
ws ∈ ∂h(xs), where h is as in (53). Recall that h has a Hessian at x
satisfying dFx = YHessxh, which by definition (43) means

Πx,suws = sHessxh(u)+ o(s). (55)

Thus the curvews through (x, 0) ∈ TM is differentiable at s = 0 and we can
identify the vertical component of its tangent vector as ẇs=0 = Hessxh(u).
Recall from (18) that the function z → expz(−∇d2

y(z)/2) = y is constant
outside cut(y). Differentiating (54) using the chain rule then yields

ẏs=0 = d(expx0
)−∇d2

y (x0)/2 (ẇ0)

= Y ẇ0

= dFx(u).
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The appearance of Y = d(exp)−∇φ(x) in the second identity follows from
∇h(x0) = 0 in (53). Finally, since y0 = y we have

ys = expy

(
s ẏ0 + o(s)

)
= expy

(
sdFx(u)+ o(s)

) = expy vs.

The size of the error term o(s) here does not depend on the unit vector u
since it did not depend on u in (55). Comparison with (51) ends the proof
of the proposition. ��

4.2 Jacobian equation and optimal changes of variables

Having established an almost everywhere notion for the differential dFx of
an optimal map F : M −→ M, we now verify the Jacobian equation (50).

Theorem 4.2 (Jacobian identity a.e.) Let µ  vol and ν  vol be
two compactly supported Borel probability measures and denote their
L1(M, vol) densities by f and g, respectively. Fix domains X ⊂⊂ M
and Y ⊂⊂ M containing the support of µ and ν, respectively. Suppose
φ ∈ � c(X,Y) induces F : X −→ Y defined by F(x) := expx(−∇φ(x))
which pushes µ forward to ν. Then there exists a Borel set K ⊂ X of full
measure for µ such that

(a) φ admits a Hessian Hessxφ at each x ∈ K, and hence F(x) /∈ cut(x).
(b) For x ∈ K, setting Y := d(expx)−∇φ(x) and H := Hessxd2

F(x)/2, one
has

f(x) = g(F(x)) det[Y(H − Hessxφ)] �= 0.

Proof. Recall that φc ∈ � c(Y,X). Absolute continuity of both measures µ
and ν ensures that F∗(y) := expy(−∇φc(y)) is the optimal mass transport
pushing ν forward to µ, as in [27, Corollary 10]. The map F∗ is almost
everywhere the inverse of F since, for all (x, y) ∈ X × Y, we have the
equivalence y ∈ ∂cφ(x)⇔ x ∈ ∂cφc(y).

Introduce the sets:

Eφ := {x ∈ X | Hessxφ exists }
Eφc := { y ∈ Y | Hessyφ

c exists }.
Note that the map F is well defined on Eφ and that for x ∈ Eφ Proposi-
tion 4.1(a) yields F(x) /∈ cut(x) and Hessx(d2

F(x)/2−φ) ≥ 0. One can make
the same observation for φc on Eφc . Therefore introduce

Ẽφ :=
{
x ∈ Eφ

∣∣Hessx
(
d2

F(x)/2− φ
)
> 0

}
Ẽφc := {y ∈ Eφc

∣∣ Hessy
(
d2

F∗(y)/2− φc
)
> 0

}
Ω := {x ∈ Ẽφ

∣∣F(x) ∈ Ẽφc

}
.
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For x ∈ Eφ we set, as before, Y := d(expx)−∇φ(x) and H := Hessx∇d2
F(x)/2

and

dFx := Y(H − Hessxφ). (56)

For x ∈ Ẽφ, the linear map dFx : Tx M −→ TF(x)M is a bijection, since
Y is injective when expx(−∇φ(x)) �∈ cut(x). For y ∈ Eφc we define dF∗y
analogously. The proof of the theorem will be carried out in three steps:

Claim 4.3 (Inverse function theorem for optimal maps) Let x ∈ Eφ such
that F(x) ∈ Eφc . Then (a) x ∈ Ω, (b) det dFx > 0, and (c) dF∗F(x) = (dFx)

−1.

Claim 4.4 (Density of nice points) µ(Ẽφ) = µ(Ω) = 1.

Claim 4.5 (Equivalence of algebraic and geometric Jacobians) Let x∈Ω.
Then ∂cφ(Br(x)) shrinks nicely to y := F(x) when r → 0 and

lim
r→0

vol [∂cφ(Br(x))]
vol [Br(x)]

= det dFx . (57)

Here shrinks nicely means there exists R(r) → 0 as r → 0 such that
∂cφ(Br(x)) ⊂ BR(r)(y) fills a non-zero volume fraction of BR(r)(y) in the
limit; c.f. Rudin [32].

We postpone the proofs of these three claims until after the proof of the
theorem. Setting

K :=
{

x ∈ Ω

∣∣∣∣ x is a Lebesgue point of f where f(x) �= 0
and F(x) is a Lebesgue point of g

}
,

part (a) of the theorem follows from Proposition 4.1(a). Recall that
L1(M, vol) functions have Lebesgue points vol-a.e. on M. Absolute conti-
nuity of measures µ and ν combines with Claim 4.4 and the definition of
mass transport F to give µ(K ) = 1.

To address (b), let us fix x ∈ K . Since x is a Lebesgue point of f one
has

f(x) = lim
r→0

µ[Br(x)]
vol[Br(x)] . (58)

By Claim 4.5, ∂cφ(Br(x)) shrinks nicely to F(x), so local differentiation of
measures together with the fact that F(x) is a Lebesgue point for g implies

lim
r→0

ν[∂cφ(Br(x))]
vol [∂cφ(Br(x))] = g(F(x)). (59)

Observe that Example 3.6 yields F−1(V ) ⊂ X ∩ ∂cφc(V ), and the differ-
ence has zero volume since it consists only of points where the Lipschitz
function φ fails to be differentiable. Absolute continuity of µ yields ν[V ] =
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µ[F−1(V )] = µ[∂cφ(V )] since F pushes µ forward to ν. A similar argu-
ment invoking absolute continuity of ν shows µ[Br(x)] = ν[∂cφ(Br(x))]
since F∗ : Y −→ X pushes ν forward to µ. Thus (59) becomes

lim
r→0

µ[Br(x)]
vol [∂cφ(Br(x))] = g(F(x)). (60)

Claim 4.5 combined with (58) and (60) gives

f(x) = lim
r→0

µ[Br(x)]
vol[Br(x)]

= lim
r→0

µ[Br(x)]
vol[∂cφ(Br(x))]

vol [∂cφ(Br(x))]
vol [Br(x)]

= g(F(x)) det dFx .

This completes the proof of the theorem. ��
Proof of Claim 4.3. We begin by observing the definition of Ω shows
det dFx has the same sign as det Y , which can be seen to be positive from
(19) since Y(0) = I . Thus part (b) of the claim will follow from part
(a). Now fix x ∈ Eφ such that y := F(x) ∈ Eφc and u ∈ Tx M. Let
xs = expx(su) for s → 0 and ys ∈ M such that ys ∈ ∂cφ(xs). If vs is the
smallest vector of Ty M such that ys = expy vs, Proposition 4.1(b) gives
vs = sdFx(u)+ o(s). We can then apply the same argument for φc at F(x)
to get: su = dF∗F(x)vs + o(s) = sdF∗F(x)dFxu + o(s). Taking s → 0 gives
dF∗F(x)dFxu = u, which shows that dFx and dF∗F(x) are inverse to each other,
so that x ∈ Ẽφ by (56). Similarly F(x) ∈ Ẽφc and so parts (c), (a) and hence
(b) of the claim are all established. �
Proof of Claim 4.4. Claim 4.3 gives Ω = {x ∈ Eφ | F(x) ∈ Eφc} and so

µ(Ω) = µ(Eφ ∩ F−1(Eφc)
)
.

By definition of mass transport µ(F−1(Eφc)) = ν(Eφc). The result follows
from the semi-concavity established in Proposition 3.14 and Theorem 3.10
of Aleksandrov and Bangert, which combine with absolute continuity of
the measures µ and ν to ensure µ(Eφ) = ν(Eφc) = 1. �
Proof of Claim 4.5. Fix x ∈ Ω and set y = F(x). For z ∈ M let B̃z

r (0)
again denote the ball in Tz M of radius r centered at the origin of Tz M. Set
c1 = ‖dFx‖ and c2 = ‖(dFx)

−1‖. We first prove that for every ε > 0 there
exists δ > 0 such that for every r < δ one has

expy

(
(1+ εc1)

−1dFx B̃x
r (0)

) ⊂ ∂cφ (Br(x)) ⊂ expy

(
(1+ εc2)dFx B̃x

r (0)
)
.

(61)

Fix ε > 0 and let δ > 0 such that Proposition 4.1(b) applies to F
at x with an error term o(u) less than ε|u| whenever |u| < δ. Fixing
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r < δ, pick u ∈ B̃x
r (0) and suppose expy v ∈ ∂cφ(expx u) with |v| =

d(y, expy v). By Proposition 4.1, |v − dFx(u)|y ≤ ε|u|x ≤ εr showing
v ∈ dFx(u + ε(dFx)

−1 B̃y
r (0)) ⊂ (1 + εc2)dFx(B̃x

r (0)). Since u ∈ B̃x
r (0)

and expy v ∈ ∂cφ(expx u) were arbitrary, exponentiation yields the second
inclusion of (61):

∂cφ(Br(x)) ⊂ expy

(
(1+ εc2)dFx

(
B̃x

r (0)
))
. (62)

On the other hand, we may apply the same reasoning starting from
u ∈ (dFx)

−1 B̃y
r (0): as long as c2r < δ then the shortest vector v ∈ Ty M such

that expy v ∈ ∂cφ(expx u) satisfies v ∈ dFx(u)+εc2 B̃y
r (0) ⊂ (1+c2ε)B̃

y
r (0),

and exponentiation yields

∂cφ
(

expx

(
(dFx)

−1 B̃y
r (0)

)) ⊂ expy(1+ εc2)B̃
y
r (0).

Applying the same argument to φc at y = F(x) yields for small enough
r > 0,

∂cφc
(

expy

(
dFx B̃x

r (0)
)) ⊂ expx(1+ εc1)B̃

x
r (0),

where (dF∗y )−1 = dFx has been noted from Claim 4.3. Rescaling r by
a factor (1+εc1) gives ∂cφc(expy((1+εc1)

−1dFx B̃x
r (0))) ⊂ expx(B̃

x
r (0)) =

Bx(r). Since A ⊂ ∂cφ(∂cφc(A)), we get

expy(1+ εc1)
−1dFx

(
B̃x

r (0)
) ⊂ ∂cφ(Bx(r)).

Together with (62) this establishes (61). Note that (61) asserts that in the
Riemannian normal coordinates around y, ∂cφ(Br(x)) will be contained in
a scaled copy of a fixed ellipsoid, only slightly larger than one it contains;
the scale factor (1+ εc2)(1+ εc1) is as close to unity as we please for r > 0
small enough. Thus ∂cφ(Br(x)) shrinks nicely to y = F(x) and

lim
r→0

vol [∂cφ(Br(x))]
vol [Br(x)]

= lim
r→0

∣∣dFx B̃x
r (0)

∣∣∣∣B̃y
r (0)

∣∣ = ± det dFx .

But det dFx > 0 by Claim 4.3, so the proof of (57) is complete. �
Remark 4.6 (Improvements) Although not needed here, Claims 4.3 and 4.5
can be improved to yield stronger Inverse function and Jacobian theorems
for optimal maps. For example, assume φc(y) differentiable at F(x) ∈ Y
while φ admits a Hessian at x ∈ X. Then φc(y) admits a Hessian at F(x)
if and only if dFx : Tx M −→ TF(x)M is bijective. The proof is patterned
closely after the Euclidean Theorems A.1–2 [26].

Similarly, for investigating displacement convexity in Sect. 6, it will be
useful to record the follow change of variables theorem as a corollary to
Theorem 4.2.



A Riemannian interpolation inequality à la Borell, Brascamp and Lieb 247

Corollary 4.7 (Change of variables theorem for optimal maps) Choose
dµ = f dvol and dν = g dvol from Theorem 4.2, supported on domains
X ⊂⊂ M and Y ⊂⊂ M, with a map F(x) := expx(−∇φ(x)) and φ ∈
� c(X,Y) such that ν = F#µ. Define K ⊂ X with µ(K ) = 1 and the
Jacobian J(x) := det[Y(H − Hessxφ)] of F at x ∈ K as in the theorem. If
A(ρ) is a Borel function on [0,∞) with A(0) = 0 then∫

M
A(g(y)) dvol (y) =

∫
K

A

(
f(x)

J(x)

)
J(x) dvol (x).

(Either both integrals are undefined or both take the same value in R).

Proof. Using dν = g dvol , A(0) = 0, and the change of variables formula
(36) defining ν = F#µ, we find∫

M
A(g(y))dvol (y) =

∫
{g>0}

A(g(y))

g(y)
dν(y)

=
∫

M
1{g>0}(F(x))

A(g(F(x))

g(F(x))
dµ(x)

=
∫

K∩F−1({g>0})
A

(
f(x)

J(x)

)
J(x)

f(x)
dµ(x)

where the last equality follows from the Jacobian identity proved in Theo-
rem 4.2 on the set K ⊂ X. Since K ⊂ F−1({g > 0}) the corollary has been
established. ��

5 Optimal interpolating maps and densities

The next subject of our attention will be the family of maps Ft(x) =
expx(−t∇φ(x)) which interpolate along geodesics from the identity map
x = F0(x) to an optimal map y = F1(x). Ultimately, we shall want to
extend the differentiability a.e. and Jacobian formulas proved for t = 1 to
the interval t ∈ (0, 1). This is accomplished using results of the previous
section, after proving that the set of c-concave potentials is star-shaped
around 0, meaning (tφ)cc = tφ follows from φcc = φ. Theorem 3.2 then
shows Ft to be the optimal map from the measure dµ(x) := f(x)dvol(x)
to the image µt = (Ft)#µ defined by equation (36). However, to invoke the
results of the preceding section, it is also necessary to know µt is absolutely
continuous with respect to volume, having a density ρt ∈ L1(M, vol ) given
by its Radon-Nikodym derivative ρt(x) = dµt(x)/dvol(x). For this we need
to quantify injectivity of Ft : X −→ M. Establishing these facts are the
goals of the present section. We begin with star-shapedness of the set of
c-concave functions and injectivity of interpolant maps.

Lemma 5.1 (c-concave potentials form a star-shaped set) Fix t ∈ [0, 1]
and compact sets X ⊂ M and Y ⊂ M. Define Zt(X,Y ) = ⋃x∈X Zt(x,Y )
similarly to (5). If φ ∈ � c(X,Y ) then tφ ∈ � c(X, Zt(X,Y )).
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Proof. The lemma is nearly as trivial for t = 0 as for t = 1 because
0 ∈ � c(X, X). Therefore, fix t ∈ (0, 1) and y ∈ Y . We begin by considering
the special case φ(x) := c(x, y) = d2(x, y)/2 – also denoted by φ := d2

y/2
– and establishing the representation

td2
y(m)/2 = inf

z∈Zt (X,y)

{
d2

z (m)/2+ inf
{x∈X|z∈Zt(x,y)}

t(1− t)d2
y(x)/2

}
∀m ∈ X

(63)

of tφ as a c-concave function in � c(X, Zt(X, y)) ⊂ � c(X, Zt(X,Y )).
For any m, x ∈ X and z ∈ Zt(x, y), the triangle inequality (25) yields

td2
y(m) ≤ d2

z (m)+ t(1− t)d2
y(x). (64)

Multiplying by 1/2 shows tφ = td2
y/2 cannot exceed the double infimum

(63). Claim 2.4 also asserts that x = m produces equality in (64), thus
proving (63).

Having established the claim for the special case φ := d2
y/2, we move

on to the general case. Since φ = φcc by (35), obviously

tφ(x) = inf
y∈Y

tc(x, y)− tφc(y).

We have already shown that tc(x, y) = td2
y(x) is in � c(X, Zt(X,Y )) for

each y ∈ Y ; as an infimum of such functions, tφ is also c-concave and in
� c(X, Zt(X,Y )). ��

As an immediate corollary, Lemma 5.1 shows the interpolant map to be
optimal in the mass transport setting.

Corollary 5.2 (Interpolant optimality) Fix a Borel probability measure
µ  vol compactly supported in X ⊂⊂ M and a compact set Y ⊂ M.
Fix φ ∈ � c(X,Y ) and set Ft(x) := expx(−t∇φ(x)). For each t ∈ [0, 1],
the map Ft coincides with the optimal map pushing µ forward to the image
measure µt = (Ft)#µ defined by (36).

Proof. Setting X := X, Lemma 5.1 asserts tφ ∈ � c(X, Zt(X,Y )) hence
c-concave. Example 3.6 implies Ft(x) ∈ Zt(X,Y ) for each x ∈ X where
Ft(x) is defined – thus µ-a.e. since µ  vol, in view of Rademacher’s
theorem and Lemma 3.3(a). The map Ft pushes µ forward to µt by con-
struction; McCann’s Theorem 3.2 asserts the desired optimality, namely that
Ft minimizes average square distance transported among all maps pushing
µ forward to µt . ��
Lemma 5.3 (Interpolant injectivity) Let X ⊂⊂ M be open and Y ⊂ M
compact. Fix φ ∈ � c(X,Y ), t ∈ (0, 1) and set Ft(x) := expx(−t∇φ(x)).
If Ft(x) = Ft(x ′) at two points x, x ′ ∈ X of differentiability for φ, then
x ′ = x.
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Proof. Assume φ is differentiable at two points x, x ′ ∈ X having the same
image m := Ft(x) = Ft(x ′) under Ft . Setting y := F1(x) and y′ := F1(x ′)
implies m ∈ Zt(x, y) ∩ Zt(x ′, y′).

Squaring and summing, the triangle inequalities

dx(y
′) ≤ dx(m)+ dm(y

′) (65)
dx′(y) ≤ dx′(m)+ dm(y) (66)

yield

d2
x(y
′)+ d2

x′(y) ≤ d2
x(m)+ d2

m(y)+ d2
x′(m)+ d2

m(y
′)+ 2dxdy′(m)

+ 2dx′dy(m)

= d2
x(y)+ d2

x′(y
′)

+ 2[dxdy′ + dx′dy − dxdy − dx′dy′ ](m) (67)

= d2
x(y)+ d2

x′(y
′)− 2t(1− t)[dx(y)− dx′(y

′)]2 (68)

≤ d2
x(y)+ d2

x′(y
′). (69)

The last two equalities (67) and (68) follow from dx(y) = dx(m)/t =
dy(m)/(1− t) and similar expressions for dx′(y′). This inequality is in fact
a Riemannian parallelogram inequality (draw a picture!).

On the other hand, Example 3.6 combines with the differentiability of
φ to give y ∈ ∂cφ(x) and y′ ∈ ∂cφ(x ′). Smith and Knott’s characterization
of ∂cφ using c = d2/2-cyclical monotonicity (see [17, Theorem 2.7] and
references there) gives

c(x, y′)+ c(x ′, y) ≥ c(x, y)+ c(x ′, y′).

But this contradicts (69) unless equalities hold throughout (65–69). The first
equality (65) forces the minimal geodesic from x through m to extend to y′
as well as to y. On the other side of m, this same geodesic must pass through
x ′ as well as x, if equality (66) is to be satisfied. So m separates x, x ′ from
y, y′, all five points lying on a single geodesic. Finally dx(y) = dx′(y′) from
equality (69). Since m divides both of these equal length segments in ratio
t : (1− t), we conclude x = x ′ and y = y′. ��

The key property we shall require of µt is that it is given by a density
ρt = dµt/dvol with respect to Riemannian volume. It is enough to verify:

Proposition 5.4 (Absolute continuity of the interpolant) Let µ  vol
and ν  vol be absolutely continuous and compactly supported Borel prob-
ability measures on M. Fix open sets X ⊂⊂ M and Y ⊂⊂ M containing
the support of µ and ν, respectively, and choose φ ∈ � c(X,Y) such that F1
pushes µ forward to ν, where Ft(x) := expx(−t∇φ(x)). For each t ∈ (0, 1)
the image measure µt = (Ft)#µ defined by (36) is absolutely continuous
with respect to Riemannian volume.
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Proof. We reintroduce Eφ := {x ∈ X | Hessxφ exists}. The maps F := F1
and Ft are well defined on Eφ. For x ∈ Eφ we know by Proposition 4.1(a)
that F(x) /∈ cut(x) and so Ft(x) /∈ cut(x). Introduce also

Ẽt :=
{
x ∈ Eφ

∣∣Hessx
(
d2

Ft (x)/2− tφ
)
> 0

}
.

Claim 5.5 µ(Ẽt) = 1.

Proof of the claim. By Lemma 2.3, Hessx(d2
Ft (x)

/2− td2
F(x)/2) ≥ 0 and so

Ẽt ⊃ Ẽ1.

Since the measures µ and ν are absolutely continuous with respect to
Riemannian volume, Claim 4.4 can be applied and asserts Ẽφ := Ẽ1 has
full measure, so 1 = µ(Ẽφ) ≤ µ(Ẽt). �

We assume the set Ẽt is σ -compact. If it was not, using the regularity
of the measure µ, one could always replace it by some σ -compact subset
carrying the full measure of µ [32, §2.18].

We need to prove that for any Borel set A satisfying vol(A) = 0 we
have µt(A) = 0. By definition of mass transport and Claim 5.5 one has
µt(A) = µ(F−1

t (A)) = µ(F−1
t (A)∩ Ẽt). Since µ is absolutely continuous,

it is enough to show that

vol
(
F−1

t (A) ∩ Ẽt
) = 0. (70)

In other words, it is enough to show that the image (Ft)#vol Ẽt
of the

Riemannian volume measure on Ẽt is absolutely continuous (with respect
to Riemannian volume). Here vol B denotes the restriction of the Riemannian
measure to any Borel set B ⊂ M. We start with:

Claim 5.6 (Lipschitz control on inverse interpolant) Let K be a compact
subset of Ẽt . For every x ∈ K there exists a constant kx > 0 such that for
every z ∈ K,

d(Ft(x), Ft(z)) ≥ kx d(x, z). (71)

Consequently, the image of vol K under Ft is an absolutely continuous
measure on K ′ := Ft(K ).

Proof of the claim. Lemma 5.3 shows Ft : K −→ K ′ is bijective. Lem-
ma 5.1 combines with (51) to yield a first order Taylor expansion for Ft at
each x ∈ K , so Ft is continuous on the compact set K . It follows that Ft :
K −→ K ′ := Ft(K ) is a homeomorphism. Our choice of K ⊂ Ẽt combines
with (19) to yield nonsingularity of the derivative d(Ft)x := Y(t)(H(t) −
tHessxφ) defined by Y(t) := d(expx)−t∇φ(x) and H(t) := Hessxd2

Ft (x)
/2.

Now assume the claim fails for some x ∈ K . Then there exist a sequence
xk such that

d(Ft(x), Ft(xk)) < d(x, xk)/k . (72)
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We can find a subsequence of (xk), also denoted by (xk), that converges to
some z ∈ K . By continuity and injectivity of Ft , z = x and so xk → x. Let
uk ∈ Tx M and wk ∈ TFt (x)M be the smallest vectors for which xk = expx uk
and Ft(xk) = expF(x) wk. By (72), |wk| = o(|uk|).

Since d(Ft)x is invertible, there exists constants c ≤ C such that every
u ∈ Tx M satisfies

c|u| ≤ |d(Ft)x(u)| ≤ C|u|.
Proposition 4.1(b) asserts |wk − d(Ft)x(uk)| = o(|uk|) which implies that
|wk| is of the same order than |uk|, contradicting |wk| = o(|uk|). The first
part of the claim is therefore established.

Using standard arguments from measure theory, we shall now deduce
that the image of vol K under Ft is absolutely continuous. The previous
estimate (71) tells us that K =

⋃
k

Kk where

Kk = {x ∈ K | ∀z ∈ K, d(Ft(x), Ft(z)) ≥ 1

k
d(x, z) }.

Continuity of Ft shows the sets Kk to be closed, hence compact. But Ft :
Kk −→ K ′k := Ft(Kk) has the property that F−1

t is Lipschitz. By a classical
argument using the Vitali covering lemma, the Lipschitz map F−1

t cannot
increase the volume of any subset of K ′k by factor greater than kn . Thus the
image of vol Kk under Ft : Kk −→ K ′k is absolutely continuous. The image
of vol K under Ft is an increasing limit of the images of vol Kk under Ft and
so itself absolutely continuous, which concludes the proof of the claim. �
End of the proof of the proposition. To deduce the absolute continuity
of (Ft)#vol Ẽt

from Claim 5.6, write Ẽt =
⋃

K j as an increasing union
of compact sets K j . The image of vol Ẽt

under Ft is the increasing limit
of the images of K j under Ft which are absolutely continuous from the
claim. Consequently the image of vol Ẽt

under Ft is absolutely continuous.
For vol(A) = 0, (70) has now been verified. This implies the absolute
continuity desired for (Ft)#µ. ��

6 Proof of Main Theorem and its corollaries

We are finally in a position to pull together the technical ingredients de-
veloped in foregoing sections to establish our main objectives. The basic
tool for proving our inequalities are the interpolating maps Ft : M −→ M
of Sect. 5, which allow us to localize geometrical inequalities under an inte-
gral and reduce them to matrix inequalities derived from domination of the
geometric by the arithmetic mean. For such inequalities, non-negativity of
the matrices is crucial. Such local inequalities capture geometrical aspects
of the manifold through the appearance of volume distortion coefficients
vt(x, y) in the concavity statement (74) relating the Jacobian determinant
Jt(x) of the map Ft at x ∈ M to J0(x) = 1 and J1(x).
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Lemma 6.1 (Jacobian inequality) Fix X ⊂⊂ M open, Y ⊂ M compact,
and a c-concave potential φ ∈ � c(X,Y ). For each t ∈ [0, 1], define Ft :
X −→ Zt(X,Y ) by Ft(z) := expz(−t∇φ(x)). If φ admits a Hessian (43)
at x ∈X, then Y(t) := d(expx)−t∇φ(x) and H(t) := Hessxd2

Ft (x)
/2 both exist

and the Jacobian determinant

Jt(x) := det Y(t)
(
H(t)− tHessxφ

)
(73)

satisfies

J1/n
t (x) ≥ (1− t)

[
v1−t(F(x), x)

]1/n + t
[
vt(x, F(x))

]1/n
J1/n

1 (x). (74)

Note that Lemma 5.1 and Proposition 4.1 identify Jt (x) = det dFt(x) defined
by (73) as the Jacobian determinant of the map Ft : X −→ Zt(X,Y ).

Proof. Fix a point x ∈ X where φ admits a Hessian in the sense of
Bangert and Aleksandrov (43). Proposition 4.1 asserts F1(x) �∈ cut(x) and
Lemma 3.3 implies d(x, F1(x)) = |∇φ(x)|, so we conclude Ft(x) �∈ cut(x)
for t ∈ [0, 1]. Thus Y(t) := d(expx)−t∇φ(x) and H(t) := Hessxd2

Ft (x)
/2 are

both well-defined.
Inequality (74) is trivial when t = 1, so fix t ∈ [0, 1) and write

Jt(x) = det Y(t) det
[
(1− t)

H(t)− tH(1)

1− t
+ t

(
H(1)− Hessxφ

)]
. (75)

Non-negativity of the matrices H(t) − tH(1) and H(1) − Hessxφ follow
from the triangle inequality via Lemma 2.3 and c-concavity of φ via Propo-
sition 4.1(a), respectively. Moreover, concavity of det1/n( · ) on the set of
non-negative n × n real symmetric matrices is a well-known consequence
of the domination of the geometric by the arithmetic mean. Combining
1/n-concavity of the determinant with (75) yields

J1/n
t (x) ≥ (det1/nY(t)

)
×
(
(1− t)det1/n H(t)− tH(1)

1− t
+ t det1/n (H(1)− Hessxφ)

)

= (1− t)det1/n Y(t)
(
H(t)− tH(1)

)
1− t

+ t det1/nY(t)
(
H(1)− Hessxφ

)
= (1− t)det1/n Y(t)

(
H(t)− tH(1)

)
1− t

+ t det1/nY(t)Y(1)−1 J1/n
1 (x).

The lemma follows from identification of the volume distortion factors
(19–20) in Lemma 2.1, after noticing t −→ Ft(x) is the minimal geodesic
linking x to F(x). ��
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Proof of Main Theorem. Fix f, g, h ≥ 0 on M satisfying hypothesis (7).
We first address the case in which the sets A and B carrying unit mass for
f and g are both bounded subsets of M. Introduce absolutely continuous
probability measures µ and ν whose densities are given by f 1A and g 1B,
respectively. Choose open sets X and Y such that A ⊂⊂ X ⊂⊂ M and
B ⊂⊂ Y ⊂⊂ M, and set X := X and Y := Y. There exists φ ∈ � c(X,Y )
such that F(x) := expx(−∇φ(x)) is the optimal mass transport pushing
µ forward to ν, according to Theorem 3.2. We introduce the interpolant
map Ft := expx(−t∇φ(x)) and the image µt = (Ft)#µ, which is given by
a density ρt := dµt/dvol in view of Proposition 5.4.

Throughout the proof t is fixed, but we may write f = ρ0, g = ρ1, and
F = F1. Since tφ ∈ � c(X, Zt(X,Y )) by Lemma 5.1, Theorem 4.2 applies
to both F1 and Ft . It asserts the Jacobian identities

f(x) = g(F(x))J1(x) �= 0 (76)
f(x) = ρt(Ft(x))Jt(x) �= 0 (77)

hold on a set K ⊂ X of measure 1 for µ; for x ∈ K , φ admits a Hessian
(43) and Jt(x) and J1(x) are defined by (73). Applying Lemma 6.1 to (77)
yields

1

ρt(Ft((x))1/n
≥ (1− t)

[
v1−t(F(x), x)

f(x)

]1/n

+ t

[
vt(x, F(x))

J1(x)

f(x)

]1/n

.

(78)

Now the set L := K ∩ A ∩ F−1(B) has full measure for µ. For x ∈ L
we have Ft(x) ∈ Zt(x, F(x)) and hypothesis (7) yields

1

h(Ft(x))1/n
≤ (1− t)

[
v1−t(F(x), x)

f(x)

]1/n

+ t

[
vt(x, F(x))

g(F(x))

]1/n

. (79)

Comparing (78–79) with (76) shows

h(Ft(x)) ≥ ρt(Ft(x)) (80)

for all x ∈ L . Regularity of the measure µ permits us to replace L if
necessary by a negligibly smaller set which is σ -compact. Continuity of
Ft on K is implied by its differentiability there (51), thus Ft(L) is σ -
compact, hence Borel. Since (Ft)#µ0 = µt , (36) and (80) imply the desired
conclusion:∫

Ft (L)
h(z) dvol(z) ≥

∫
M

1Ft (L)ρt dvol

=
∫

A
1Ft (L)(Ft(x)) f(x)dvol(x) ≥ µ(L) = 1. (81)

Note if µ[A] = ν[B] = ε > 0 instead of 1, the conclusion from (7) would
have been

∫
M h ≥ ε instead of (81).
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We now turn to the case in which A and B ⊂ M are unbounded. In
this case there exist bounded sets Aε ⊂ A and Bε ⊂ B chosen so that
µ[Aε] = ν[Bε] = 1− ε. If h satisfies (7) for all (x, y) ∈ A× B, it certainly
satisfies it for all (x, y) ∈ Aε×Bε. From the previous argument we conclude∫

M h ≥ 1− ε. Since ε > 0 was arbitrary the theorem has been established.
��

Proof of Corollary 1.1. Fix p ≥ −1/n and t ∈ [0, 1]. Let f, g, h : M −→
R+ be non-negative functions. First assume f, g ∈ L1(M, vol ) and p >
−1/n. Also assume ‖ f ‖1 and ‖g‖1 are non-zero; otherwise the conclusion
is a trivial consequence of our convention M p

t (‖ f ‖1, ‖g‖1) := 0. Normalize
f̂ := f/‖ f ‖1 and ĝ := g/‖g‖1, and define ĥ as in (84). If we can only show
f̂ , ĝ and ĥ satisfy hypothesis (7) the desired corollary follows immediately
from the conclusion

∫
M ĥ ≥ 1 of our Main Theorem.

To do this, we employ two standard properties of p-means: Hölder’s
inequality for a two point space, which asserts that for a, b, c, d > 0 and
exponents p−1 + q−1 = r−1 satisfying p + q ≥ 0, see e.g. Gardner [18,
Lemma 10.1],

M p
t (a, b)Mq

t (c, d) ≥Mr
t (ac, bd), and (82)

M p
t (a, b)

−1 =M−p
t

(
1

a
,

1

b

)
. (83)

From (83) and hypothesis (8)

ĥ(z) :=M
p

1+n p
t (‖ f ‖1, ‖g‖1)

−1 h(z) (84)

≥ M
−p

1+n p
t

(
1

‖ f ‖1
,

1

‖g‖1

)
M p

t

(
f(x)

v1−t(y, x)
,

g(y)

vt(x, y)

)
(85)

≥ M−1/n
t

(
f̂ (x)

v1−t(y, x)
,

ĝ(y)

vt(x, y)

)
(86)

= M1/n
t

(
v1−t(y, x)

f̂ (x)
,
vt(x, y)

ĝ(y)

)−1

, (87)

where Hölder’s inequality has been applied with q = −p/(1 + n p) and
r = −1/n. Comparing (87) with (7), it is clear that the theorem applies to
f̂ , ĝ and ĥ yielding ‖ĥ‖1 ≥ 1 and hence the desired inequality (9).

The cases ‖ f ‖1 = +∞ or ‖g‖1 = +∞ are handled by approximation
from below as at the end of the proof of the Main Theorem. A similarly
argument applies to p = −1/n, provided we interpret (9) to mean ‖h‖1 ≥
M−∞

t (‖ f ‖1, ‖g‖1) := min{‖ f ‖1, ‖g‖1} in this case. This concludes the
proof of the corollary. ��
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Proof of Corollary 1.2. For (x, y) ∈ A × B, z ∈ Zt(x, y) and d := d(x, y)
hypothesis (12) asserts

h(z) ≥M0
t

((
Sk(d)

Sk((1− t)d)

)n−1

f(x),

(
Sk(d)

Sk(td)

)n−1

g(y)

)

≥M0
t

(
f(x)

v1−t(y, x)
,

g(y)

vt(x, y)

)

by the bound (11) proved in Lemma 2.2. The p-mean corollary (8–9)
now asserts ‖h‖1 ≥M0

t (‖ f ‖1, ‖g‖1) := ‖ f ‖1−t
1 ‖g‖t

1 establishing (13) and
completing the proof. ��

As a related application of techniques developed herein, we conclude
this paper by considering the behaviour of the functional

U(ρ) :=
∫

M
A(ρ(x)) dvol (x) (88)

along the path ρt ∈ L1(M, vol ) introduced in Sect. 5 to interpolate between
ρ0 and ρ1. In Euclidean space, this path is called the displacement interpo-
lation and the functional (88) is displacement convex if U(ρt) is a convex
function of t ∈ [0, 1] for every ρ0, ρ1 ∈ L1(M, vol ). A sufficient condition
for displacement convexity of U(ρt) in Rn is that A : [0,∞) −→ R∪{+∞}
satisfy [25,26]

λn A(λ−n) is convex non-increasing on λ ∈ (0,∞), with A(0) = 0. (89)

Typical examples include the entropy A(ρ) = ρ log ρ and Lq-norm A(ρ) =
(q − 1)−1ρ p for q ≥ (n − 1)/n. In very recent work, Otto and Villani [28]
gave a formal argument yielding strong versions of such inequalities on
a Riemannian manifold. To illustrate the relationship between their Eu-
lerian technique and our Lagrangian approach, the following theorem is
offered as a rigorous justification for one of their results: namely, the imme-
diate extension of Euclidean displacement convexity to Ricci non-negative
manifolds.

Theorem 6.2 (Displacement convexity on Ricci non-negative manifolds)
Let M be a continuously curved Riemannian manifold with Ric ≥ 0.
Fix Borel probability measures µ  vol and ν  vol on domains
X ⊂⊂ M and Y ⊂⊂ M, respectively. Suppose F1 pushes µ forward
to ν, where Ft(x) := expx(−t∇φ(x)) and φ ∈ � c(X,Y). Denote the dens-
ity of µt := (Ft)#µ from Proposition 5.4 by ρt = dµt/dvol . Convexity of
U(ρt) on t ∈ [0, 1] then follows from (88–89).

Proof. For any t ∈ [0, 1], Lemma 5.1 yields tφ ∈ � c(X, Zt(X,Y)) and
Corollary 4.7 provides a set Kt ⊂ X of full measure for µ0 = µ such that
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φ has a Hessian at each x ∈ Kt , ρ0(x) �= 0 and

U(ρt) :=
∫

M
A(ρt(z)) dvol(z) =

∫
Kt

A

(
ρ0(x)(

J1/n
t (x)

)n

)(
J1/n

t (x)
)n

dvol(x),

(90)

where Jt(x) �= 0 is defined in (73). Since Ric ≥ 0 the volume distortion fac-
tors satisfy vt(x, y) ≥ 1 for every x, y ∈ M. Thus for fixed x ∈ ∪t∈[0,1]Kt ,
Lemma 6.1 yields concavity of J1/n

t (x) on t ∈ [0, 1]. Composing this func-
tion with the convex non-increasing function (89) yields convexity of the
integrand in (90). Although the domain of integration appears to depend
on t, we derive

U(ρ(1−s)t+st ′) ≤ (1− s)U(ρt)+ sU(ρt ′)

by computing each of the three integrals over the negligibly smaller set
Kt ∩ Kt ′ ∩ K(1−s)t+st ′. This proves displacement convexity of U(ρ), and
concludes the paper. ��
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