A Gaussian correlation inequality for plurisubharmonic functions

F. Barthe and D. Cordero-Erausquin

May 14, 2024

Abstract

A positive correlation inequality is established for circular-invariant plurisubharmonic functions, with respect to complex Gaussian measures. The main ingredients of the proofs are the Ornstein-Uhlenbeck semigroup, and another natural semigroup associated to the Gaussian $\bar{\partial}$-Laplacian.

1 Introduction

The motivation of the present work comes from a Gaussian moment inequality in \mathbb{C}^{n} due to Arias de Reyna [2]. We will show that his result is in fact a very particular case of a new correlation inequality, which can be seen as the complex analogue of the following correlation inequality for convex functions in \mathbb{R}^{n} due to $\mathrm{Hu}[8]:$ if μ is a centered Gaussian measure on \mathbb{R}^{n} and if $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions in $L^{2}(\mu)$ and f is even, then

$$
\int f g d \mu \geq \int f d \mu \int g d \mu
$$

We will say that a function on \mathbb{C}^{n} is circular-symmetric if it is invariant under the action of S^{1} (i.e. multiplication by complex numbers of modulus one) ; in other words a function f defined on \mathbb{C}^{n} is circular-symmetric if

$$
f\left(e^{i \theta} w\right)=f(w) \quad \forall \theta \in \mathbb{R}, \quad \forall w \in \mathbb{C}^{n}
$$

A function $u: \mathbb{C}^{n} \rightarrow[-\infty,+\infty$) is plurisubharmonic (psh) if it is upper semi-continuous and for all $a, b \in \mathbb{C}^{n}$ the function $z \in \mathbb{C} \mapsto u(a+z b)$ is subharmonic. Classically, a twice continuously differentiable function $u: \mathbb{C}^{n} \rightarrow \mathbb{R}$ is psh if and only if for all $w, z \in \mathbb{C}^{n}$

$$
\sum_{j, k} \partial_{z_{j} \overline{z_{k}}}^{2} u(z) w_{j} \overline{w_{k}} \geq 0
$$

where

$$
\partial_{z_{j}}=\frac{1}{2}\left(\partial_{x_{j}}-i \partial_{y_{j}}\right) \quad \text { and } \quad \partial_{\overline{z_{j}}}=\frac{1}{2}\left(\partial_{x_{j}}+i \partial_{y_{j}}\right)
$$

$z=x+i y$ with $x, y \in \mathbb{R}^{n}$. The later condition means that the complex Hessian $D_{\mathbb{C}}^{2} u$ is pointwize Hermitian semi-definite positive. Functions of the form $\log |F|$ with F is holomorphic on \mathbb{C}^{n} are known to be psh. We refer e.g. to the textbook [7, Chapter 4] for more details. Let us note that combining Jensen's inequality and the definition of subharmonicity, we see that a convex increasing function of a psh function is again psh; in particular if $\log (g)$ is psh then g is psh.

We consider the standard complex Gaussian measure γ on \mathbb{C}^{n},

$$
d \gamma(w)=d \gamma_{n}(w)=\pi^{-n} e^{-w \cdot \bar{w}} d \ell(w)=\pi^{-n} e^{-|w|^{2}} d \ell(w)
$$

where ℓ denotes the Lebesgue measure on $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$ and for $w, w^{\prime} \in \mathbb{C}^{n}$

$$
w \cdot w^{\prime}=\sum w_{j} w_{j}^{\prime}
$$

For convenience, let us introduce the following class of $L^{2}(\gamma)$ functions with controlled growth at infinity:

$$
\mathcal{G}:=\left\{f: \mathbb{C}^{n} \rightarrow \mathbb{C} ; f \in L_{l o c}^{2}(\lambda) \text { and } \exists \epsilon, c, C>0 \text { such that }|f(w)| \leq e^{c|w|^{2-\epsilon}}, \forall|w| \geq C\right\}
$$

In particular any function (locally L^{2}) dominated by a polynomial function, or even an exponential $e^{c|w|}$, on $\mathbb{R}^{2 n}$ belongs to \mathcal{G}. Our main result reads as follows:

Theorem 1 (Correlation for psh functions). Let $f, g: \mathbb{C}^{n} \rightarrow[-\infty, \infty)$ be two plurisubharmonic functions belonging to \mathcal{G}. If f is circular-symmetric, then

$$
\int f g d \gamma \geq \int f d \gamma \int g d \gamma
$$

One can extend the result by approximation to more general psh functions in $L^{2}(\gamma)$. The inequality also extends to arbitrary centered complex Gaussian measure, which are images of γ by \mathbb{C}-linear maps. Indeed composing a psh function with a \mathbb{C}-linear map gives another psh function.

Let us give some direct consequences of this theorem. First, we see that when F, G are holomorphic functions, or simply complex polynomial functions, belonging to $L^{2}(\gamma)$ and F is homogeneous, then for any $\alpha, \beta \geq 0$ we have

$$
\int|F|^{\alpha}|G|^{\beta} d \gamma \geq \int|F|^{\alpha} d \gamma \int|G|^{\beta} d \gamma
$$

Indeed, if F is holomorphic $f=|F|^{\beta}$ is psh, and if F is homogeneous, then f is also circularsymmetric. This argument can also be used for products of the form

$$
f:=\left|F_{1}\right|^{\alpha_{1}} \ldots\left|F_{k}\right|^{\alpha_{k}}
$$

where the F_{j} are holomorphic and the α_{j} 's are nonnegative real numbers, so that f is \log-psh, in the sense that

$$
\log f(w)=\sum_{\ell=1}^{k} \alpha_{\ell} \log \left|F_{\ell}(w)\right|
$$

is psh. This implies that f is also psh, and if the holomorphic functions F_{j} are homogeneous then f is also circular-symmetric.

Theorem 2. Let F_{1}, \ldots, F_{N} be a family of homogeneous polymomial functions on \mathbb{C}^{n}. Then for any $\alpha, \ldots, \alpha_{N} \geq 0$ and $k \leq N-1$ we have

$$
\int \prod_{j=1}^{N}\left|F_{j}\right|^{\alpha_{j}} d \gamma \geq\left(\int \prod_{j=1}^{k}\left|F_{j}\right|^{\alpha_{j}} d \gamma\right)\left(\int \prod_{j=k+1}^{N}\left|F_{j}\right|^{\alpha_{j}} d \gamma\right) \geq \prod_{j=1}^{N} \int\left|F_{j}\right|^{\alpha_{j}} d \gamma
$$

A standard complex Gaussian vector in \mathbb{C}^{n} is a random vector taking values in \mathbb{C}^{n} according to the distribution $\gamma=\gamma_{n}$. A random vector $X=\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{C}^{N}$ is a centered complex Gaussian vector if there is an n, a standard complex Gaussian vector G in \mathbb{C}^{n} and a \mathbb{C}-linear map $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{N}$ such that $X=A G$. It turns out that the law for X is then characterized by its complex covariance matrix $\left(\mathbb{E}\left(X_{k} \overline{X_{\ell}}\right)\right)_{1 \leq k, \ell \leq N}$. Denoting by $a_{1}, \ldots a_{N} \in \mathbb{C}^{n}$ the rows the matrix of A in the canonical basis, $X_{j}=G \cdot a_{j}$. Applying the latter theorem to the complex linear forms $F_{j}(w)=w \cdot a_{j}$ yields the following result.

Theorem 3. Let $\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{C}^{N}$ be a centered complex Gaussian vector, and let $\alpha_{1}, \ldots, \alpha_{N} \in$ \mathbb{R}^{+}. Then, for any $k \leq N-1$

$$
\begin{equation*}
\mathbb{E} \prod_{j=1}^{N}\left|X_{j}\right|^{\alpha_{j}} \geq\left(\mathbb{E} \prod_{j=1}^{k}\left|X_{j}\right|^{\alpha_{j}}\right)\left(\mathbb{E} \prod_{j=k+1}^{N}\left|X_{j}\right|^{\alpha_{j}}\right) \tag{1}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\mathbb{E} \prod_{j=1}^{N}\left|X_{j}\right|^{\alpha_{j}} \geq \prod_{j=1}^{N} \mathbb{E}\left|X_{j}\right|^{\alpha_{j}} \tag{2}
\end{equation*}
$$

In other words, among centered complex Gaussian vectors $\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{C}^{N}$ with fixed diagonal covariance (i.e. $\left(\mathbb{E}\left|X_{j}\right|^{2}\right)_{j \leq N}$ fixed) the expectation of $\prod_{j=1}^{N}\left|X_{j}\right|^{\alpha_{j}}$ is minimal when the variables are independent.

Inequality (2) is an extension of an inequality of Arias de Reyna [2], who established the particular case where all the $\alpha_{j}=2 p_{j}$ are even integers by rewriting the left hand side in terms of a permanent of a $2 m$ matrix ($m=\sum p_{j}$) and using an inequality for permanents due to Lieb. Actually, Inequality (1) in the case where the α_{j} are even integers is equivalent to Lieb's permanent inequality, so in particular we are giving a new proof of this inequality.

In the next section we will introduce the tools that will be used in the proof, that is two semigroups: the usual Ornstein-Uhlenbeck semi-group and another natural semi-group associated to the $\overline{\bar{\partial}}$ operator (the generator of which could be called, depending from the context, Landau or magnetic Laplacian). In the last section we give the proof of our correlation inequality.

2 Semi-groups

To get the result, we will let the circular-symmetric psh function evolve along the OrnsteinUhlenbeck semi-group on $\mathbb{C}^{n}=\mathbb{R}^{n}+i \mathbb{R}^{n} \simeq \mathbb{R}^{2 n}$ associated with the measure γ and the scalar product : $\left\langle w, w^{\prime}\right\rangle=\Re\left(w \cdot \overline{w^{\prime}}\right)$. We recall that its generator is given, for smooth functions f, writing $w=x+i y, x, y \in \mathbb{R}^{n}$, by

$$
\begin{aligned}
L^{\mathrm{ou}} f(w) & :=\frac{1}{4} \Delta f(w)-\frac{1}{2}\langle w, \nabla\rangle f(w) \\
& =\sum_{j=1}^{n} \frac{1}{4}\left(\partial_{x_{j} x_{j}}^{2} f(w)+\partial_{y_{j} y_{j}}^{2} f(w)\right)-\frac{1}{2}\left(x_{j} \partial_{x_{j}} f(w)+y_{j} \partial_{y_{j}} f(w)\right)
\end{aligned}
$$

Note that the normalization differs slightly from the usual one on $\mathbb{R}^{2 n}$ because our Gaussian measure has complex covariance Id_{n} but real covariance equal to $\frac{1}{2} \mathrm{Id}_{2 n}$. Accordingly, the spectrum of $-L^{\text {ou }}$ on $L^{2}(\gamma)$ is here $\frac{1}{2} \mathbb{N}=\left\{0, \frac{1}{2}, 1, \ldots\right\}$. The Ornstein-Uhlenbeck semi-group $P_{t}^{\text {ou }}=e^{t L^{\text {ou }}}$ admits the representation, for suitable functions $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$,

$$
\begin{align*}
P_{t}^{\text {ou }} f(z) & =\int f\left(e^{-t / 2} z+\sqrt{1-e^{-t}} w\right) d \gamma(w) \tag{3}\\
& =\pi^{-n}\left(1-e^{-t}\right)^{-n} \int f(w) e^{-\frac{1}{1-e^{-t}}\left|w-e^{-t / 2} z\right|^{2}} d \ell(w)
\end{align*}
$$

As usual in semi-group methods, it is convenient to work with a nice stable space of functions. Here, we can for instance consider

$$
\mathcal{G}^{\infty}:=\left\{f \in C^{\infty}\left(\mathbb{C}^{n}\right) ; f \text { and all its derivatives belong to } \mathcal{G}\right\}
$$

As is common we will define $P_{t}^{\text {ou }} f$ for any $f \in L^{2}(\gamma)$ and $t>0$ by (3). Then it is classical and elementary to check that for $f \in \mathcal{G}$, say, the map $(t, z) \mapsto P_{t}^{\text {ou }} f(z)$ is smooth on $(0, \infty) \times \mathbb{C}^{n}$, with $P_{t}^{\text {ou }} f \in \mathcal{G}^{\infty}$ and $\partial_{t} P_{t}^{\text {ou }} f=L^{\text {ou }} P_{t}^{\text {ou }} f$ for every $t>0$, and $P_{t}^{\text {ou }} f \rightarrow f$ in $L^{2}(\gamma)$ as $t \rightarrow 0$. We refer to
[1, Section 2.3] and [4, Section 2.7.1] for details. Let us also mention here that with the definition (3) it is readily checked that properties like convexity, subharmonicity, pluri-subharmonicity are preserved along P_{t}^{ou}.

Another natural operator will be used. Indeed, since pluri-subharmonicity is characterized through a " $\partial_{z \bar{z}}^{2}$ operation", we shall also use the following differential operator on smooth functions f on \mathbb{C}^{n} :

$$
L f=\sum_{j=1}^{n}\left(\partial_{z_{j} \overline{z_{j}}}^{2} f-\overline{z_{j}} \partial_{\overline{z_{j}}} f\right)=\sum_{j=1}^{n} e^{|z|^{2}} \partial_{z_{j}}\left(e^{-|z|^{2}} \partial_{\overline{z_{j}}} f\right)
$$

Note that $L f=0$ if f is holomorphic. Formally $L=-\bar{\partial}^{*} \bar{\partial}$ on $L^{2}(\gamma)$ equipped with the Hermitian structure $(f, g)=\int f \bar{g} d \gamma$. More precisely, denoting for a differentiable function

$$
\partial_{\bar{z}} f=\left(\partial_{\overline{z_{1}}} f, \ldots, \partial_{\overline{z_{n}}} f\right) \quad \text { and } \quad \partial_{z} f:=\left(\partial_{z_{1}} f, \ldots, \partial_{z_{n}} f\right)
$$

we have the following standard fact.
Fact 4 (Integration by parts). For regular enough functions $f, g: \mathbb{C}^{n} \rightarrow \mathbb{C}$, for instance for functions in \mathcal{G}^{∞}, we have

$$
\begin{equation*}
\int(L f) \bar{g} d \gamma=-\int \partial_{\bar{z}} f \cdot \overline{\partial_{\bar{z}} g} d \gamma \tag{4}
\end{equation*}
$$

and in particular $\int(L f) \bar{f} d \gamma=-\int\left|\partial_{\bar{z}} f\right|^{2} d \gamma \leq 0$. We can also write

$$
\begin{equation*}
\int(L f) g d \gamma=-\int \partial_{\bar{z}} f \cdot \partial_{z} g d \gamma=\int f(\bar{L} g) d \gamma \tag{5}
\end{equation*}
$$

where $\bar{L} f:=\sum_{j=1}^{n}\left(\partial_{z_{j} \overline{z_{j}}}^{2} f-z_{j} \partial_{z_{j}} f\right)$.
Indeed, it suffices to sum over j the equations

$$
\begin{aligned}
\int\left[e^{|z|^{2}} \partial_{z_{j}}\left(e^{-|z|^{2}} \partial_{\overline{z_{j}}} f\right)\right] \bar{g} d \gamma & =\pi^{-n} \int \partial_{z_{j}}\left(e^{-|z|^{2}} \partial_{\overline{z_{j}}} f\right) \bar{g} d \lambda(z) \\
& =-\int \partial_{\overline{z_{j}}} f \partial_{z_{j}} \bar{g} d \gamma=-\int \partial_{\overline{z_{j}}} f \overline{\partial_{\overline{z_{j}}} g} d \gamma
\end{aligned}
$$

The assumption that $f, g \in \mathcal{G}^{\infty}$ guarantees that the boundary terms (at infinity) in the integration by parts vanish.

As a consequence of (4), we see that the Gaussian measure γ is invariant for L, and actually that L is a symmetric nonpositive operator on $L^{2}(\gamma)$ with the above-mentioned Hermitian structure. The kernel of L is the Bargmann space \mathcal{H}_{0} formed by the holomorphic functions on \mathbb{C}^{n} that belong to $L^{2}(\gamma)$.

We want to work with the semi-group $P_{t}=e^{t L}$ which is also Hermitian (formally):

$$
\begin{equation*}
\int\left(P_{t} f\right) \bar{g} d \gamma=\int f \overline{P_{t} g} d \gamma \tag{6}
\end{equation*}
$$

Remark 5 (Spectral theory for L). Although we will not explicitly use it, let us discuss a bit, in a non rigorous way, the (well known) spectral analysis of L on the complex Hilbert space $L^{2}(\gamma)$. This analysis is indeed fairly standard using the ideas introduced by Landau (see the example of the harmonic oscillator in [6] or [10, Chapter 4]). Following for instance the presentation given in [5, Section 4], consider the "annihilation" operators $a_{j}=\partial_{\overline{z_{j}}}$ and their adjoints, the "creation" operators $b_{j}:=a_{j}^{*}=\overline{z_{j}}-\partial_{z_{j}}$. Then $L=-\sum_{j \leq n} b_{j} \circ a_{j}$, with $\left[a_{j}, b_{j}\right]=1$, and all these operators commute for distinct indices j. Plainly, if a function f and a scalar $\lambda \in \mathbb{C}$ satisfy $-L f=\lambda f$, then $-L\left(a_{j} f\right)=(\lambda-1) a_{j} f$ and $-L\left(b_{j} f\right)=(\lambda+1) b_{j} f$. This implies that the spectrum of $-L$ is \mathbb{N} and that the eigenspace associated to the eigenvalue $k \in \mathbb{N}$ is given by the sum of the spaces $b^{m} \mathcal{H}_{0}$ with $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n},|m|:=\sum_{j \leq n} m_{j}=k$ and the convention $b^{m}:=b_{1}^{m_{1}} \circ \ldots \circ b_{n}^{m_{n}}$.

Moreover, if we introduce the classical projection $\Pi_{0}: L^{2}(\gamma) \rightarrow \mathcal{H}_{0}$ onto holomorphic functions, which is known (see e.g. [10, Chapter 4]) to be given by

$$
\begin{equation*}
\Pi_{0} f(z):=\int f(w) e^{z \cdot \bar{w}} d \gamma(w)=\int f(z+w) e^{-\bar{z} \cdot w} d \gamma(w) \tag{7}
\end{equation*}
$$

then the projector Π_{k} on the k-eigenspace can be expressed in terms of Π_{0} and the creation and annihilation operators. This allows to compute the reproducing kernel of Π_{k}, in terms of classical families of orthogonal polynomials. Next, one can sum over k and obtain the kernel $K_{t}(z, w)$ for $e^{t L}=\sum_{k} e^{-k t} \Pi_{k}$. Only the formula for K_{t} will be useful in the sequel and we shall actually check below that this suggested formula is indeed the kernel of $e^{t L}$.

An explicit formula for the kernel K_{t} of $e^{t L}$ can be found in [3]: setting

$$
\begin{equation*}
K_{t}(z, w):=\frac{1}{\pi^{n}\left(1-e^{-t}\right)^{n}} \exp \left(z \cdot \bar{w}-\frac{e^{-t}|z-w|^{2}}{1-e^{-t}}-|w|^{2}\right) \tag{8}
\end{equation*}
$$

then

$$
\begin{align*}
P_{t} f(z) & =\int f(w) K_{t}(z, w) d \ell(w) \tag{9}\\
& =\left(1-e^{-t}\right)^{-n} \int f(w) e^{z \cdot \bar{w}-\frac{e^{-t}|z-w|^{2}}{1-e^{-t}}} d \gamma(w)
\end{align*}
$$

Next, let us note that by performing the change of variable $w=z+\sqrt{1-e^{-t}} \xi$ for fixed z we find

$$
\begin{equation*}
P_{t} f(z)=\int f\left(z+\sqrt{1-e^{-t}} \xi\right) e^{-\sqrt{1-e^{-t}} \bar{z} \cdot \xi} d \gamma(\xi) \tag{10}
\end{equation*}
$$

On this formula, we see immediately that $P_{0}=\mathrm{Id}$ and $P_{\infty}=\Pi_{0}$ given by (7).
To avoid discussions regarding unbounded operators and existence of semi-groups, we will proceed in the opposite direction and use the previous formula to define $P_{t} f$. Actually, to be fair, we should mention that later, in the proof of our result, we only need to work with smooth functions $f \in \mathcal{G}^{\infty}$; these functions provide nice initial data, ensuring existence and uniqueness of strong solutions for the semi-group equation. Nevertheless, we feel it is of independent interest to start from the integral formula (9) or (10). The drawback is that some properties that are obvious (formally) for $e^{t L} f$ need to be checked thoroughly when using this kernel representation, in particular because the kernel (8) is not Markovian.

Definition-Proposition 6. Given $f \in L^{2}(\gamma), t>0$ and $z \in \mathbb{C}^{n}$, we define $P_{t} f(z)$ by formula (9). We then have for $f \in L^{2}(\gamma)$ that
(i) for any $t>0, P_{t} f \in L^{2}(\gamma)$ and for any $s>0$

$$
P_{s}\left(P_{t} f\right)=P_{s+t} f
$$

Moreover, for a given $f \in \mathcal{G}$:
(ii) the function $(t, z) \rightarrow P_{t} f(z)$ is smooth on $(0, \infty) \times \mathbb{C}^{n}$ and

$$
\begin{equation*}
\partial_{t} P_{t} f=L P_{t} f \tag{11}
\end{equation*}
$$

(iii) $\left\|P_{t} f\right\|_{L^{2}(\gamma)} \leq\|f\|_{L^{2}(\gamma)}$
(iv) $P_{t} f \rightarrow f$ in $L^{2}(\gamma)$ as $t \rightarrow 0$.

Proof. For $f \in L^{2}(\gamma)$, applying the Cauchy-Schwarz inequality in (9) we get the pointwise estimate $\left|P_{t} f(z)\right| \leq C(n, t, z)\|f\|_{L^{2}(\gamma)}$ for some constant $C(n, t, z)>0$ such that $C(n, t, \cdot) \in L^{2}(\gamma)$. The semi-group property can be checked in a pedestrian way, by noticing that

$$
\int K_{t}(z, w) K_{s}(\xi, z) d \ell(z)=K_{t+s}(\xi, w)
$$

This follows for instance from the observation that given $z, \xi \in \mathbb{C}^{n}$ and $c \in \mathbb{C}$ with $\Re(c)>0$,

$$
\begin{equation*}
\int e^{z \cdot w+\xi \cdot \bar{w}} e^{-c|w|^{2}} d \ell(w)=\pi^{n} c^{-n} e^{z \cdot \xi / c} \tag{12}
\end{equation*}
$$

In order to derive some properties of $P_{t} f$, the stronger integrability condition $f \in \mathcal{G}$ will be assumed.

It is readily checked that, for any fixed $w \in \mathbb{C}^{n}$ one has

$$
\partial_{t} K_{t}(\cdot, w)=L K_{t}(\cdot, w)
$$

Moreover, for $T, R, k>0$ fixed, there exists constants $c=c(T, R, k), C=C(T, R, k)$ such that for $F(t, z, w)=K_{t}(z, w)$, or any derivative of $K_{t}(z, w)$ with respect to t or z of order at most k, it holds that $|F(t, z, w)| \leq C e^{-c|w|^{2}}$ for all $w \in \mathbb{C}^{n}$, all $t \in\left(\frac{1}{T}, T\right)$ and all $|z| \leq R$. From this and the definition of \mathcal{G}, we can call upon dominated convergence to conclude to the smoothness of $(t, z) \rightarrow P_{t} f(z)$ and to the fact that $P_{t} f \in \mathcal{G}^{\infty}$ with $\partial_{t} P_{t} f=L P_{t} f$.

Regarding the contraction property (iii), we want to avoid direct computations or spectral arguments, and so we make a detour and use some obvious but important properties of P_{t}. Besides the semi-group property that we proved above, note that P_{t} is indeed Hermitian, in the sense (6), on $\mathcal{G} \subset L^{2}(\gamma)$; this can be seen directly from the integral formula (9) since $e^{-|z|^{2}} K_{t}(z, w)=$ $e^{-|w|^{2}} \overline{K_{t}(w, z)}$. Note also that $\left\|P_{t} f\right\|_{L^{2}(\gamma)}$ decreases for $t \in(0, \infty)$:

$$
\frac{d}{d t} \int\left|P_{t} f\right|^{2} d \gamma=2 \Re \int\left(L P_{t} f\right) \overline{P_{t} f} d \gamma=-2 \int\left|\partial_{\bar{z}} P_{t} f\right|^{2} d \gamma \leq 0
$$

Indeed, $P_{t} f \in \mathcal{G}^{\infty}$ for $t>0$ and the differentiation argument above (for $t \in\left[\frac{1}{T}, T\right]$) ensures that we can move the derivative inside the integral; we then use Fact 4.

So for our $f \in \mathcal{G}$ and $t>0$ we have

$$
\left\|P_{t} f\right\|_{L^{2}(\gamma)}^{2}=\int\left(P_{2 t} f\right) \bar{f} d \gamma \leq\left\|P_{2 t} f\right\|_{L^{2}(\gamma)}\|f\|_{L^{2}(\gamma)} \leq\left\|P_{t} f\right\|_{L^{2}(\gamma)}\|f\|_{L^{2}(\gamma)}
$$

which implies the contraction property in $L^{2}(\gamma)$.
Finally, to prove the continuity at $t=0$ in $L^{2}(\gamma)$ we first assume that f is smooth and compactly supported. Using (10) we see that $P_{t} f$ converge point-wise to f and that for $t \in(0,1)$ we have $\left|P_{t} f(z)\right| \leq C e^{c|z|}$ for some constant $c, C>0$; so we can conclude by dominated convergence. For $f \in \mathcal{G}$ and $\epsilon>0$, introduce g smooth compactly supported such that $\|f-g\|_{L^{2}(\gamma)} \leq \epsilon$ and let $\delta>0$ be such that $t \leq \delta$ ensures that $\left\|P_{t} g-g\right\|_{L^{2}(\gamma)} \leq \epsilon$ holds. For $t \leq \delta$,

$$
\left\|P_{t} f-f\right\|_{L^{2}(\gamma)} \leq\left\|P_{t} f-P_{t} g\right\|_{L^{2}(\gamma)}+\left\|P_{t} g-g\right\|_{L^{2}(\gamma)}+\|g-f\|_{L^{2}(\gamma)} \leq 2\|f-g\|_{L^{2}(\gamma)}+\epsilon \leq 3 \epsilon
$$

This establishes the desired continuity.
Remark 7 (Contraction property).

1. It could be interesting to approach some results using soft semi-group techniques in place of spectral Hilbertian tools. Sticking to our definition of P_{t} above, we have proved that $\left\|P_{t} f\right\|_{L^{2}(\gamma)} \leq\|f\|_{L^{2}(\gamma)}$ on the dense subspace \mathcal{G}, which together with the pointwise estimate given at the beginning of the proof above implies by density that

$$
\left\|P_{t}\right\|_{L^{2}(\gamma) \rightarrow L^{2}(\gamma)} \leq 1
$$

Since $P_{\infty}=\Pi_{0}$ in view of the formula (7), this inequality formally extends the estimate

$$
\left\|\Pi_{0}\right\|_{L^{2}(\gamma) \rightarrow L^{2}(\gamma)} \leq 1
$$

Actually, since Π_{0} is the orthogonal projection onto holomorphic functions in $L^{2}(\gamma)$, the convergence of P_{t} towards Π_{0} can be quantified rigorously, through Hörmander's L^{2} estimate [7, Chapter 4],

$$
\left\|\varphi-\Pi_{0} \varphi\right\|_{L^{2}(\gamma)}^{2} \leq\left\|\partial_{\bar{z}} \varphi\right\|_{L^{2}(\gamma)}^{2}=\int(-L \varphi) \varphi d \gamma
$$

valid for any suitable φ, for instance for $\varphi \in \mathcal{G}^{\infty}$. Note that from formula (10), P_{t} acts as the identity on holomorphic functions, so $P_{t} \Pi_{0}=\Pi_{0} P_{t}=\Pi_{0}$. Reproducing the connection between Poincaré's inequality and the convergence of Markov semi-groups (see [4]), a classical Grönwall type argument (using the previous lemma to justify the computation of $\left.\frac{d}{d t} \int \right\rvert\, P_{t}(f-$ $\left.\Pi_{0} f\right)\left.\right|^{2} d \gamma$) indeed ensures that for $f \in \mathcal{G}$ and $t \geq 0$

$$
\left\|P_{t} f-\Pi_{0} f\right\|_{L^{2}(\gamma)}^{2} \leq e^{-2 t}\left\|f-\Pi_{0} f\right\|_{L^{2}(\gamma)}^{2} .
$$

2. In analogy with the Markovian case $P_{t}^{\text {ou }}$ we may wonder if P_{t} is also a contraction on some $L^{p}(\gamma)$. However, for any $p \neq 2$ we have

$$
\left\|P_{t}\right\|_{L^{p}(\gamma) \rightarrow L^{p}(\gamma)}=+\infty
$$

as it can be seen by taking, in dimension $n=1$, for $a \in \mathbb{R}$,

$$
f_{a}(w):=e^{a w+\bar{w}}, \quad w \in \mathbb{C} .
$$

Indeed, repeated applications of (12) with $c=1$ show, setting $s_{t}:=\sqrt{1-e^{-t}}$ and using (10), that $P_{t} f_{a}(z)=e^{s_{t}^{2} a} e^{a z+\left(1-s_{t}^{2}\right) \bar{z}}$ and that

$$
\frac{\left\|P_{t} f_{a}\right\|_{L^{p}(\gamma)}^{p}}{\left\|f_{a}\right\|_{L^{p}(\gamma)}^{p}}=C(t, p) e^{a s_{t}^{2}\left(p-p^{2} / 2\right)}
$$

The next result describes how derivatives and P_{t} commute, an important issue in semi-group methods.

Lemma 8 (Commutation relations). For any suitable f, say $f \in \mathcal{G}^{\infty}$, and $t>0$ we have for every $1 \leq j \leq n$ and $z \in \mathbb{C}^{n}$,

$$
\partial_{z_{j}}\left(P_{t} f(z)\right)=P_{t}\left(\partial_{z_{j}} f\right)(z) \quad \text { and } \quad \partial_{\overline{z_{j}}}\left(P_{t} f(z)\right)=e^{-t} P_{t}\left(\partial_{\overline{z_{j}}} f\right)(z)
$$

Proof. We use (10). The first equality is obvious. For the second one, setting $s_{t}=\sqrt{1-e^{-t}}$, we have

$$
\partial_{\overline{z_{j}}}\left(P_{t} f\right)(z)=P_{t}\left(\partial_{\overline{z_{j}}} f\right)(z)-s_{t} \int f\left(z+s_{t} \xi\right) e^{-s_{t} \bar{z} \xi} \xi_{j} d \gamma(\xi)
$$

and

$$
\begin{aligned}
\pi^{-n} \int f\left(z+s_{t} \xi\right) e^{-s_{t} \bar{z} \xi} \xi_{j} e^{-\xi \cdot \bar{\xi}} d \ell(\xi) & =-\pi^{-n} \int f\left(z+s_{t} \xi\right) e^{-s_{t} \bar{z} \xi} \partial_{\bar{\xi}_{j}}\left(e^{-\xi \cdot \bar{\xi}}\right) d \ell(\xi) \\
& =s_{t} \int\left(\partial_{\bar{z}_{j}} f\right)\left(z+s_{t} \xi\right) e^{-s_{t} \bar{z} \xi} d \gamma(\xi)=s_{t} P_{t}\left(\partial_{\bar{z}_{j}} f\right)(z)
\end{aligned}
$$

Now, and for the rest of this section, we focus on the case of circular-symmetric functions. Given $\theta \in \mathbb{R}$ and a function f we denote f_{θ} the function $f_{\theta}(w)=f\left(e^{i \theta} w\right)$. Note that

$$
\begin{equation*}
P_{t}\left(f_{\theta}\right)=\left(P_{t} f\right)_{\theta} \tag{13}
\end{equation*}
$$

Recall that a function f is said to be circular-symmetric if $f_{\theta}=f$ for every θ. It is worth noting that a holomorphic function on \mathbb{C}^{n} is necessarily constant when circular-symmetric. Indeed if $h: \mathbb{C} \rightarrow \mathbb{C}$ has both properties then invariance and the Cauchy formula give $h(1)=\int_{0}^{2 \pi} h\left(e^{i \theta}\right) d \theta /(2 \pi)=h(0)$; next if $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic and circular symmetric, then for any $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, the function $h: z \in \mathbb{C} \mapsto f\left(z z_{1}, \ldots, z z_{n}\right)$ is also holomorphic and circular-symmetric, hence $f\left(z_{1}, \ldots, z_{n}\right)=h(1)=h(0)=f(0)$. Accordingly if $f \in L^{2}(\gamma)$ is circular-symmetric then $\Pi_{0} f \equiv$ $\int f d \gamma$ since the gaussian density is also circular-symmetric. Actually, much more can be said, as we shall see below.

Let us first investigate the relation between L and $L^{\text {ou }}$. Note that one can write

$$
\begin{equation*}
L f=L^{\mathrm{ou}} f+\frac{i}{2} \sum_{j=1}^{n}\left(y_{j} \partial_{x_{j}} f-x_{j} \partial_{y_{j}} f\right) \tag{14}
\end{equation*}
$$

So we have $L^{\text {ou }}=\Re(L)=\frac{L+\bar{L}}{2}$ where $\bar{L} f=\sum_{j=1}^{n}\left(\partial_{z_{j} \overline{z_{j}}}^{2} f-z_{j} \partial_{z_{j}} f\right)$ has a kernel formed by the anti-holomorphic functions. The operators L and \bar{L} are Hermitian symmetric, whereas $L^{\text {ou }}$ is symmetric for the real and the Hermitian product, and preserves the subspace of real valued functions. As we said, its spectrum is $-\frac{1}{2} \mathbb{N}$, as can be seen also from the formula $L^{\text {ou }}=\frac{L+\bar{L}}{2}$. Let us illustrate this on two examples, obtained by applying the creation operator $b_{1}=\overline{z_{1}}-\partial_{z_{1}}$ to the holomorphic functions $z \mapsto 1$, and $z \mapsto z_{1}$. The function $z \mapsto \overline{z_{1}}$ is an eigenfunction for L with eigenvalue -1 , for \bar{L} with eigenvalue 0 , and for $L^{\text {ou }}$ with eigenvalue $-1 / 2$. The function $z \mapsto\left|z_{1}\right|^{2}-1$ is an eigenfunction for L with eigenvalue -1 , for \bar{L} with eigenvalue -1 , and for $L^{\text {ou }}$ with eigenvalue -1 .

The special role played by circular-symmetric functions is due to the fact that these operators, and the associated semi-groups, coincide for them.

Lemma 9 (Action of L and P_{t} on circular-symmetric functions). If f is a smooth circularsymmetric function, then we have

$$
L f=\bar{L} f=L^{\mathrm{ou}} f
$$

In particular we have, when $f, g \in \mathcal{G}^{\infty}$ and f is circular-symmetric,

$$
\int(L f) g d \gamma=\int f L g d \gamma=-\int \partial_{z} f \cdot \partial_{\bar{z}} g d \gamma
$$

Also, if $f \in L^{2}(\gamma)$ is circular-symmetric then we have

$$
P_{t} f=P_{t}^{\mathrm{ou}} f
$$

for every $t \geq 0$.
Proof. Writing $w=x+i y, x, y \in \mathbb{R}^{n}$, the symmetry rewrites as $f((\cos (\theta) x-\sin (\theta) y)+i(\cos (\theta) y+$ $\sin (\theta) x))=f(x+i y)$. Taking the derivative at $\theta=0$ we find

$$
\sum_{j=1}^{n}\left(-y_{j} \partial_{x_{j}} f(x+i y)+x_{j} \partial_{y_{j}} f(x+i y)\right)=0
$$

and this for every $x, y \in \mathbb{R}^{n}$. This implies in view of (14) that $L f=L^{\text {ou }} f=\bar{L} f$. Next, for any smooth function g we have, using that $L f=\bar{L} f$ and (5),

$$
\int(L f) g d \gamma=\int(\bar{L} f) g d \gamma=\int f L g d \gamma=-\int \partial_{z} f \cdot \partial_{\bar{z}} g d \gamma
$$

Although it is formally trivial that equality of L and $L^{\text {ou }}$ on circular-symmetric functions implies equality of the semi-groups P_{t} and $P_{t}^{\text {ou }}$, a bit more should be said since we defined the semi-group using the explicit formula (9). And it is anyway instructive to compute the kernels on circularsymmetric functions. Denote by $K_{t}^{\text {ou }}$ the kernel of the Ornstein-Uhlenbeck semi-group that we recalled above: $K_{t}^{\text {ou }}(z, w)=\pi^{-n}\left(1-e^{-t}\right)^{-n} e^{-\frac{1}{1-e^{-t}}\left|w-e^{-t / 2} z\right|^{2}}$. So we have, setting $c_{t}:=e^{-t / 2}$ and $s_{t}:=\sqrt{1-e^{-t}}$,

$$
K_{t}^{\mathrm{ou}}(z, w)=\pi^{-n} s_{t}^{-2 n} e^{-s_{t}^{-2}|w|^{2}-s_{t}^{-2} c_{t}^{2}|z|^{2}} e^{s_{t}^{-2} c_{t}(w \cdot \bar{z}+\bar{w} \cdot z)}
$$

and

$$
K_{t}(z, w)=\pi^{-n} s_{t}^{-2 n} e^{-s_{t}^{-2}|w|^{2}-s_{t}^{-2} c_{t}^{2}|z|^{2}} e^{s_{t}^{-2}\left(c_{t}^{2} w \cdot \bar{z}+\bar{w} \cdot z\right)}
$$

Note that only the last exponentials differ in these two formulas. When f is circular-symmetric, in order to check that $P_{t} f=P_{t}^{\text {ou }} f$ it suffices to check that for fixed w, z, t one has

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{t}\left(z, e^{i \theta} w\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{t}^{\mathrm{ou}}\left(z, e^{i \theta} w\right) d \theta
$$

Observe that for $a, b \in \mathbb{C}$, we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{a e^{i \theta}+b e^{-i \theta}} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{p, q \in \mathbb{N}} \frac{a^{p} b^{q}}{p!q!} e^{i(p-q) \theta} d \theta=\sum_{n \geq 0} \frac{(a b)^{n}}{(n!)^{2}}=B(a b)
$$

with $B(x):=\sum_{n \geq 0} \frac{x^{n}}{(n!)^{2}}$. Therefore, we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{t}\left(z, e^{i \theta} w\right) d \theta & =\pi^{-n} s_{t}^{-2 n} e^{-s_{t}^{-2}|w|^{2}-s_{t}^{-2} c_{t}^{2}|z|^{2}} B\left(s_{t}^{-4} c_{t}^{2}|w \cdot \bar{z}|^{2}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{t}^{\mathrm{ou}}\left(z, e^{i \theta} w\right) d \theta
\end{aligned}
$$

as wanted.

3 Proof of Theorem 1

First, let us note that we can assume that g is smooth, and actually that $g \in \mathcal{G}^{\infty}$. Indeed, if $g \in \mathcal{G}$ then $P_{t}^{\text {ou }} g \in \mathcal{G}^{\infty}$ and we mentionned that $P_{t}^{\text {ou }} g$ converges to g in $L^{2}(\gamma)$ and therefore also in $L^{1}(\gamma)$, as $t \rightarrow 0$. Consequently, if we know the conclusion for a function in \mathcal{G}^{∞}, then

$$
\int f P_{t}^{\mathrm{ou}} g d \gamma \geq \int f d \gamma \int P_{t}^{\mathrm{ou}} g d \gamma
$$

and by passing to the limit when $t \rightarrow 0$ we know it also for $g \in \mathcal{G}$. For the same reason, we can assume that $f \in \mathcal{G}^{\infty}$, recalling that $P_{t}^{\text {ou }} f$ is circular-symmetric when f is.

So in the sequel, we are given two psh functions $f, g \in \mathcal{G}^{\infty}$, with f circular-symmetric.
As in the proof of the correlation for convex functions [8], we will compute some kind of second derivative in t for integrals involving $P_{t}^{\text {ou }} f$; recall that $\partial_{t} P_{t}^{\text {ou }} f=L^{\text {ou }} P_{t}^{\text {ou }} f$. The novelty is that, along the way, we will also use $P_{t} f$ which satisfies $\partial_{t} P_{t} f=L P_{t} f$ (Definition-Proposition 6).

Consider

$$
\alpha(t):=\int\left(P_{t}^{\text {ou }} f\right) g d \gamma=\int\left(P_{t} f\right) g d \gamma \in \mathbb{R}
$$

The function α is, by construction, smooth on $(0, \infty)$ and continuous on $[0, \infty)$ (see Lemma 6 for the continuity at zero). Since $P_{t}^{\text {ou }} f$ tends to the constant $\int f d \gamma$ when $t \rightarrow \infty$, we have

$$
\alpha(t) \rightarrow \int f d \gamma \int g d \gamma
$$

In order to conclude, it suffices to show that α decreases. Actually we will prove that α is convex; which is enough, since a convex function with a bounded limit at $+\infty$ cannot increase. It holds

$$
\begin{equation*}
\alpha^{\prime}(t)=\int\left(L^{\mathrm{ou}} P_{t}^{\mathrm{ou}} f\right) g d \gamma=\int\left(L P_{t} f\right) g d \gamma \tag{15}
\end{equation*}
$$

Since $P_{t} f$ is also circular-symmetric, we can invoke Lemma 9 and write

$$
\alpha^{\prime}(t)=-\int \partial_{z} P_{t} f \cdot \partial_{\bar{z}} g d \gamma
$$

Next, using the first commutation relation from Lemma 8 we get

$$
\alpha^{\prime}(t)=-\sum_{j=1}^{n} \int P_{t}\left(\partial_{z_{j}} f\right) \partial_{\bar{z}_{j}} g d \gamma
$$

We stress that $\partial_{z} f$ is no longer circular-symmetric, so we cannot exchange P_{t} and $P_{t}^{\text {ou }}$. The second derivative of α is, using Fact 4,
$\alpha^{\prime \prime}(t)=-\sum_{j=1}^{n} \int\left(L P_{t}\left(\partial_{z_{j}} f\right)\right) \partial_{\bar{z}_{j}} g d \gamma=\sum_{j=1}^{n} \int \partial_{\bar{z}}\left(P_{t}\left(\partial_{z_{j}} f\right)\right) \cdot \partial_{z}\left(\partial_{\bar{z}_{j}} g\right) d \gamma=\sum_{j, k=1}^{n} \int \partial_{\overline{z_{k}}} P_{t}\left(\partial_{z_{j}} f\right) \partial_{z_{k} \overline{z_{j}}}^{2} g d \gamma$.
Using the commutation relation from Lemma 8 we can write

$$
\alpha^{\prime \prime}(t)=\sum_{j, k=1}^{n} \int \partial_{\overline{z_{k}} z_{j}}^{2}\left(P_{t} f\right) \partial_{z_{k} \overline{z_{j}}}^{2} g d \gamma=\int \operatorname{Tr}\left(\left(D_{\mathbb{C}}^{2} P_{t} f\right)(z)\left(D_{\mathbb{C}}^{2} g\right)(z)\right) d \gamma
$$

where for a C^{2} function h on \mathbb{C}^{n} the notation $D_{\mathbb{C}}^{2} h(z)$ refers to the Hermitian matrix $\left(\partial_{z_{j} \overline{z_{k}}}^{2} h(z)\right)_{j, k \leq n}$. Since $P_{t} f=P_{t}^{\text {ou }} f$ and g are psh, the corresponding matrices are nonnegative Hermitian matrices, which means that the trace of their product is still nonnegative. This shows that $\alpha^{\prime \prime} \geq 0$ and finishes the proof of the theorem.

We would like to conclude with a discussion of the differences between the real case and the complex case. After all, we are computing second derivatives of the same object

$$
\alpha(t)=\int\left(P_{t}^{\mathrm{ou}} f\right) g d \gamma
$$

along the Ornstein-Uhlenbeck semi-group exactly as in the case of convex functions, so what is going on?

In both cases we prove that α decreases by showing that $\alpha^{\prime} \leq 0$ using the next derivative somehow, but we compute these derivatives differently. The argument for convex function goes as follows. A direct computation and usual commutation properties show that, if $\int \nabla f d \gamma=0$, which is the case when f is even, then

$$
\alpha^{\prime}(t)=-e^{-t / 2} \int_{t}^{\infty}\left(\int \operatorname{Tr}\left(\left(D^{2} P_{s}^{\mathrm{ou}} f\right)(z)\left(D^{2} g\right)(z)\right) d \gamma(z)\right) e^{s / 2} d s
$$

where D^{2} refers to the usual (real) Hessian on $\mathbb{R}^{2 n}$; from this we conclude to the correlation for convex functions. On the other hand, we have proved, when f is circular-symmetric, that

$$
\alpha^{\prime}(t)=-\int_{t}^{\infty}\left(\int \operatorname{Tr}\left(\left(D_{\mathbb{C}}^{2} P_{s}^{\mathrm{ou}} f\right)(z)\left(D_{\mathbb{C}}^{2} g\right)(z)\right) d \gamma(z)\right) d s
$$

Note that we have used here that $\alpha^{\prime}(t)$ tends to 0 when $t \rightarrow+\infty$: this follows from the fact that α is convex and has a finite limit at $+\infty$, and can also be seen from (15) since $P_{t}^{\text {ou }} f$ tends to a
constant when $t \rightarrow+\infty$. It is because we wanted to work with complex derivatives that we aimed at inserting L in place of $L^{\text {ou }}$; recall that $\partial_{z_{j}} f$ need not be circular-symmetric even when f is, although the second derivatives are again circular-symmetric.

Finally, let us observe that if we consider in dimension 1 the circular-symmetric psh functions $f(w)=|w|^{1 / 3}$ and $g(w)=|w|^{4}$ on $\mathbb{C} \simeq \mathbb{R}^{2}$, then

$$
\operatorname{Tr}\left(\left(D_{\mathbb{C}}^{2} f\right)\left(D_{\mathbb{C}}^{2} g\right)\right)=\frac{1}{16} \Delta f \Delta g \geq 0
$$

but a direct computation shows that

$$
\operatorname{Tr}\left(\left(D^{2} f\right)(z)\left(D^{2} g\right)(z)\right)=-\frac{4}{3}|z|^{1 / 3} \leq 0 \quad \forall z \in \mathbb{C}
$$

Of course, this discrepancy cannot hold at all times for $P_{t}^{\text {ou }} f$ in place of f (and moreover f is not smooth at zero, although this is not really an issue). But it suggests that the two formulas above for $\alpha^{\prime}(t)$ are indeed quite different.

Acknowledgements: We thank Laurent Charles, Vincent Guedj and Pascal Thomas for useful discussions, and for pointing out to us relevent references.

References

[1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C.Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses [Panoramas and Syntheses], 10. Société Mathématique de France, Paris, 2000.
[2] J. Arias-de-Reyna, Gaussian variables, polynomials and permanents, Linear Algebra Appl. 285 (1998), no. 1-3, 107-114.
[3] N. Askour, A. Intissar and Z. Mouayn, Explicit formulas for reproducing kernels of generalized Bargmann spaces of \mathbb{C}^{n}, J. Math. Phys. 41 (2000), no. 5, 3057-3067.
[4] D. Bakry, I. Gentil, Ivan and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 348. Springer, Cham, 2014.
[5] L. Charles, Landau levels on a compact manifold, preprint, Arxiv 2021.
[6] B. C. Hall, Quantum Theory for Mathematicians, Graduate Texts in Mathematics 267, Springer, 2013.
[7] L. Hörmander, Notions of convexity, Progress in Mathematics 127, Birkhäuser, Boston, 1994. viii +414 pp .
[8] Y. Hu, Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities, J. Theoret. Probab. 10 (1997), no. 4, 835-848.
[9] D. Malicet, I. Nourdin, G. Peccati, G. Poly, Squared chaotic random variables: new moment inequalities with applications, J. Funct. Anal. 270 (2016), no. 2, 649-670.
[10] Y. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., EMS, Zürich, 2011.

Franck Barthe: Institut de Mathématiques de Toulouse (UMR 5219). Université de Toulouse \& CNRS. UPS, F-31062 Toulouse Cedex 9, France.

Dario Cordero-Erausquin: Institut de Mathématiques de Jussieu (UMR 7586), Sorbonne Université \& CNRS, 75252 Paris Cedex 5, France.

