DUALITY AND HEAT FLOW
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ABSTRACT. We reveal the relation between the Legendre transform of convex functions
and heat flow evolution, and how it applies to the functional Blaschke-Santalé inequality.
‘We also describe local maximizers in this inequality.

A well known and useful property of the Legendre transform is to linearize infimal
convolution. Here we describe its connection with Gaussian ’log’-convolution, shading
new light on convexity and duality.

Our initial motivation was to provide a streamlined semi-group approach to the func-
tional form of the Blaschke-Santalé inequality for symmetric convex bodies, in the wake
of the approach proposed by the two last authors. This functional inequality states that
for an even (convex) function ¢ : R" — R U {+oo}, with 0 < [e™¢ < oo,

(1) M(e™?) = / e / e < (am)n.

The left-hand side term is called the functional volume product and the inequality states
it is maximized when ¢ = |2|?/2, the fixed point of the Legendre’s transform,

¢*(z) :==supz -z — ¢(x), Vz € R”,

on the Euclidean space (R",-,| - |). Taking ¢(x) = ||z||%/2, where | - ||k is the gauge
associated to a symmetric convex body K C R", the geometric inequality vol( K )vol(K°) <
vol(BY)? is recovered; here K°® = {r ¢ R"; -y <1, Vy € K} and B} = {|-| < 1} (see
e.g. [11, 9]).

Inequality (1) was put forward by Keith Ball in his phd dissertation. It has been
extended to non-even functions in [1] and admits several proofs relying on geometric
arguments (see for instance [1, 7, 8]). A new, analytical, approach based on heat flow was
obtained in [14], where it is proven that M (e~?) increases when we let e~? evolve along
the Fokker-Planck flow. However the authors obtained this property at the limit, by using
the Laplace transform in place of the Legendre transform. We aim at providing a direct
approach, together with a characterization of strict monotonicity and local maximizers.

We shall be considering convex functions with 0 < [ e~? < oo, which implies that ¢
is coercive, in the sense that ¢(z) > alz| — b for all x € R™ for some constants a > 0,
b € R. In order to avoid technicalities, we shall actually assume that ¢ is super-linear
which means that lim sup, % = oo. This ensures that ¢* is finite, for instance.

The heat flow evolution Pu of a suitable function u on R™, is given for ¢ > 0 by
O (Pyu)(x) = Az Pyu. The Fokker-Planck evolution Quu is given by 0,(Qu)(z) = Az Quu+
divy(z Qiu). One can pass from one flow to the other by rescaling in time and space,
Quu(x) = e™Pa_ u(e! z), and it follows that, for u = e=?, M(Quu) = M (Pa2i_,u).
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Our main observation below is simple but most useful, as we shall see.
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Proposition. Let ¢ : R" — R U {oo} be a super-linear convex function, and let ¢y =
—log Pi(e~®) where P; is the heat semi-group. Let 1; = (¢¢)* denote the Legendre trans-
form of the convex function ¢,. Then for every z € R"™ and t > 0

(2) Othe(z) = |2* — Te(D2e) ™

One can derive a similar formula in the case of the Fokker-Planck flow, and also for
the Gaussian reformulation in terms of infimal convolution [10, 3] and Ornstein-Uhlenbeck
semi-group.

Proof of the Proposition. From the formula e~ = fe_‘m’) e"“”_y|2/4t( é’ 73 we have,
using that ¢ is convex coercive, that (¢,2) — ¢¢(x) is C* on (0,00) x R™. For ¢t > 0 fixed,
it is classical (for instance by Prékopa’s theorem, [2] or the earlier work [6]) that ¢; is

convex and actually that

e D2¢ > 0 at every x € R",

® ¢, is super-linear.
We shall provide a proof of these facts at the end of the note. In particular, ¢y = (¢)*
is finite and smooth on R", and V¢, is a diffeomorphism of R™ with inverse V;. We
next use the following simple relation, valid for any first order perturbation of a convex
function:

Ohe(z) = =0k pr(Vihe(2)).

To check this, take for instance the derivative in ¢ of ¥ (z) + ¢+ (Vi (2)) = z - Vipi(z) and
use that Vo, (Vi(z)) = z. In the case of heat flow we have

nhdi(y) = Ayde = [Vydel* = TeDyr = [Vynl.
The relation (2) follows. 0

As an example of application of the Proposition, let us go back to the Blaschke-Santald
inequality (1). We aim at reproducing the monotonicity of the functional volume prod-
uct along Fokker-Planck flow proved in [14] under the convexity assumption. For the
monotonicity without the convexity, we refer to [14]. We rather consider the heat flow
evolution

(1) = log M(P,(e~)) = log ( / e~ / ) =log / 9 / ),

where ¢ is an even super-linear convex function. We want to prove that « is non-decreasing.
Note that, after re-scaling, the functions converge to Gaussians which gives back (1). Here,
we concentrate on monotonicity, as our aim is to emphasize the method of the proof. It
is easily checked that d;e~¥* is locally uniformly in ¢ > 0 dominated by an integrable
function, so we have, using the Proposition, that

o (1) = / (=) f — /(Tr(D21/Jt) — |z|?) fe o

We now call upon the variance Brascamp-Lieb inequality [2] which states that for a C*-
smooth convex function V : R® — R with D?V > 0 almost-everywhere, denoting by

the probability on R™ with density %, the inequality

(3) Var,, (u) = / (u - /ud/utv)2 duy < /(D2V)1Vu -Vudpy,

holds for every smooth u € L?(uy). We apply this inequality with V = 1y and to the
linear functions  — x;, i < n, which are centered, [ zie V@) dg = 0, since vy is even.
Summing over i < n, we then get exactly that o/(t) > 0, for t > 0. At t = 0" we have
(4) (see Appendix), so « is non-decreasing on [0, 00), as wanted. Using ideas from [4], one
can adapt the argument to the non-even case.
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A closer look to the previous arguments allows also to settle the cases of equality,
and even better, to describe local maximizers, thus providing a functional version of the
geometric result in [12]. We say that a function f is a centered Gaussian function if
f(z) = K e %% where H is a positive matrix and K > 0.

Theorem. Let ¢ be an even convexr super-linear function and € > 0 such that
M(e=?) = sup {M(e_w) . 9 even convex with ||e”? — e_¢|]L1(Rn) < 6}.

Then e=? is a centered Gaussian function.

Proof. We keep the notation of the proof above. Since e~ ? = Pi(e™?) tends to e~ in
L'(R™), and since M (e~9*) increases, there must exists ¢y > 0 such that M(e %) =
M (e=?) for all t € [0, to]. Consequently o/(‘¢) = 0. This implies that the linear functions
are cases of equality in the Brascamp-Lieb inequality. However, the only centered equality
cases in (3) are the linear combinations of the 9;V, ¢ < n, which forms a space of dimension
at most n; this is a classical fact (one can call upon the discussion in the last section of [5]
for instance). Since the linear functions  — x; are linearly independent, it means that
each ;1,2 is a linear combination of the  — z;, j < n. This implies that D21/1t0 /2 18
constant on R". Since 1y /5 is even, it means that 1/, and thus ¢y, = ¢} are quadratic,

of the form z — Hz -z + C with H a positive matrix. Recall that e %0/2 = Pt0/2(6_¢) is
obtained by a convolution with a centered Gaussian function. By injectivity of the Fourier
transform on L'(R") (or invoking the more sophisticated Cramer Theorem), this forces
e~? to be a centered Gaussian function. g

If ¢ is an even convex super-linear function, the argument in the proof above also shows
that when e~ is not Gaussian, the volume product M (P;(e~?)) is strictly increasing in
t €0,00).

Let us conclude with a word on linear invariance. The presence of this large class of
invariance might have been seen as an obstacle to a semi-group approach of the Santald
inequality. However, we luckily have that the key inequality is the variance Brascamp-Lieb
inequality (our formula (2) points right to it, in fact), and this inequality possess indeed a
linear invariance, unlike usual Poincaré inequalities, say, which depend on the Euclidean
structure. In this regard, it is natural to investigate other linear invariant inequalities, as
in [9, 13].

We believe the result discussed in this note is only the beginning of a promising direction.
It is part of a work in progress on quantitative versions, and on other formulations and
applications of the principle we have put forward.

APPENDIX: TECHNICALITIES

We aim at proving the two properties of ¢; = —log P;(e~?) used in the proof of the
Proposition (for ¢ > 0 is fixed). Then we examine the limit as ¢ — 0% in the volume
product.

We start with the super-linearity of ¢;. Since ¢ is (bounded-below) super-linear, for an
arbitrary M > 0, there exists b = b(M ) such that for every z € R"

o(x) > M|z| —b.
Therefore we have, using |z + v/2ty| > || — v/2t|y| that

€_¢t(l’) <e e—M|x|/e\/§M|y| d’y(y) <e e—M\x|+tM2+\/2ntM’
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where « is the standard Gaussian measure, that is ¢y(z) > M|z| — b — tM? — \/2ntM.
Therefore there exists a K = K (M) such that for every |z| > K,

gbt(:r) > M

x| T2

This implies that ¢; is superlinear.

Next we prove the strict convexity of ¢, in the form D2?¢; > 0. Since e % =
Pt/g(Pt/2€_¢) and Pt/26_¢ is an integrable, positive, smooth, log-concave function, we
can assume that ¢ : R — R is a convex coercive (actually we just proved it is also super-
linear) twice continuously differentiable function. We can also assume that ¢ = 1/2, for
notational simplicity. For a fixed direction |§| = 1, we readily check from

o b1/2(@) _ / o) g—le—yl2/2__W
(27-‘-)71/2
that for any =z € R",
(chqﬁl/g)ﬁ 0 =1~ Varg, () (y-0)
where the variance is computed with respect to the probability measure
dy
f e—¢(z)e—|z—z|2/2 dz '

iz (y) = e~ ?W) e~ lz—ul*/2

Assume that, for some fixed x € R", we have (ngbl/g)ﬂ -8 = 0. We then have by the
Brascamp-Lieb inequality that

1= Varg,,,)(y - 0) < / (D26 +1d,) " 0 - O dpua(y) <1

since qub + Id,, > Id,,. As the density of u, is continuous and positive on R™, we must
have (D§¢+Idn)_19 -0 =1 =102, and thus (DSQS)G -0 = 0, at every y € R"; for this
recall that for a nonnegative matrix H we have (H 4+ 1d,)"'0 — 0 = — (H +1d,,)"* H#
and that (H +Id,)”" H is nonnegative. So for all y € R, the function ¢ — ¢(y + t6) is
affine, which contradicts coercivity, for instance.

Finally, as t — 0T, one formally expects ¢; — ¢ and so 1)y — 1. Let us prove rigorously
that
(4) liminf [ e ¥t > /ew.

t—0t
For every z,y, 2 € R" we have —¢(y) — |y —x|?/4t < (2) — 2y — |y — z|? /4t and therefore
bi(z) > —(2) 4+ 2 -z — t|z]%
This implies, by definition, that for every z € R",
Ye(2) < (2) + 12,
and so [ e~ > [e=¥@)~1* gy Then (4) follows by Fatou’s Lemma.
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