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Abstract. We reveal the relation between the Legendre transform of convex functions
and heat flow evolution, and how it applies to the functional Blaschke-Santaló inequality.
We also describe local maximizers in this inequality.

A well known and useful property of the Legendre transform is to linearize infimal
convolution. Here we describe its connection with Gaussian ’log’-convolution, shading
new light on convexity and duality.

Our initial motivation was to provide a streamlined semi-group approach to the func-
tional form of the Blaschke-Santaló inequality for symmetric convex bodies, in the wake
of the approach proposed by the two last authors. This functional inequality states that
for an even (convex) function ϕ : Rn → R ∪ {+∞}, with 0 <

∫
e−ϕ <∞,

(1) M(e−ϕ) :=

∫
Rn

e−ϕ
∫
Rn

e−ϕ
∗ ≤ (2π)n.

The left-hand side term is called the functional volume product and the inequality states
it is maximized when ϕ = |x|2/2, the fixed point of the Legendre’s transform,

ϕ∗(z) := sup
x
x · z − ϕ(x), ∀z ∈ Rn,

on the Euclidean space (Rn, ·, | · |). Taking ϕ(x) = ∥x∥2K/2, where ∥ · ∥K is the gauge
associated to a symmetric convex bodyK ⊂ Rn, the geometric inequality vol(K)vol(K◦) ≤
vol(Bn

2 )
2 is recovered; here K◦ = {x ∈ Rn ; x · y ≤ 1, ∀y ∈ K} and Bn

2 = {| · | ≤ 1} (see
e.g. [11, 9]).

Inequality (1) was put forward by Keith Ball in his phd dissertation. It has been
extended to non-even functions in [1] and admits several proofs relying on geometric
arguments (see for instance [1, 7, 8]). A new, analytical, approach based on heat flow was
obtained in [14], where it is proven that M(e−ϕ) increases when we let e−ϕ evolve along
the Fokker-Planck flow. However the authors obtained this property at the limit, by using
the Laplace transform in place of the Legendre transform. We aim at providing a direct
approach, together with a characterization of strict monotonicity and local maximizers.

We shall be considering convex functions with 0 <
∫
e−ϕ < ∞, which implies that ϕ

is coercive, in the sense that ϕ(x) ≥ a|x| − b for all x ∈ Rn for some constants a > 0,
b ∈ R. In order to avoid technicalities, we shall actually assume that ϕ is super-linear

which means that lim sup∞
ϕ(x)
|x| = ∞. This ensures that ϕ∗ is finite, for instance.

The heat flow evolution Ptu of a suitable function u on Rn, is given for t > 0 by
∂t(Ptu)(x) = ∆xPtu. The Fokker-Planck evolution Qtu is given by ∂t(Qtu)(x) = ∆xQtu+
divx(xQtu). One can pass from one flow to the other by rescaling in time and space,
Qtu(x) = entP e2t−1

2

u(et x), and it follows that, for u = e−ϕ, M(Qtu) =M(P e2t−1
2

u).

Our main observation below is simple but most useful, as we shall see.
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Proposition. Let ϕ : Rn → R ∪ {∞} be a super-linear convex function, and let ϕt =
− logPt(e

−ϕ) where Pt is the heat semi-group. Let ψt = (ϕt)
∗ denote the Legendre trans-

form of the convex function ϕt. Then for every z ∈ Rn and t > 0

(2) ∂tψt(z) = |z|2 − Tr(D2
zψt)

−1.

One can derive a similar formula in the case of the Fokker-Planck flow, and also for
the Gaussian reformulation in terms of infimal convolution [10, 3] and Ornstein-Uhlenbeck
semi-group.

Proof of the Proposition. From the formula e−ϕt(x) =
∫
e−ϕ(y) e−|x−y|2/4t dy

(4πt)n/2 we have,

using that ϕ is convex coercive, that (t, x) → ϕt(x) is C
∞ on (0,∞)×Rn. For t > 0 fixed,

it is classical (for instance by Prékopa’s theorem, [2] or the earlier work [6]) that ϕt is
convex and actually that

• D2
xϕt > 0 at every x ∈ Rn,

• ϕt is super-linear.

We shall provide a proof of these facts at the end of the note. In particular, ψt = (ϕt)
∗

is finite and smooth on Rn, and ∇ϕt is a diffeomorphism of Rn with inverse ∇ψt. We
next use the following simple relation, valid for any first order perturbation of a convex
function:

∂tψt(z) = −∂tϕt(∇ψt(z)).
To check this, take for instance the derivative in t of ψt(z) + ϕt(∇ψt(z)) = z · ∇ψt(z) and
use that ∇ϕt(∇ψt(z)) = z. In the case of heat flow we have

∂tϕt(y) = ∆yϕt − |∇yϕt|2 = TrD2
yϕt − |∇yϕt|2.

The relation (2) follows. □

As an example of application of the Proposition, let us go back to the Blaschke-Santaló
inequality (1). We aim at reproducing the monotonicity of the functional volume prod-
uct along Fokker-Planck flow proved in [14] under the convexity assumption. For the
monotonicity without the convexity, we refer to [14]. We rather consider the heat flow
evolution

α(t) := logM(Pt(e
−ϕ)) = log

(∫
e−ϕt

∫
e−ψt

)
= log

(∫
e−ϕ

∫
e−ψt

)
,

where ϕ is an even super-linear convex function. We want to prove that α is non-decreasing.
Note that, after re-scaling, the functions converge to Gaussians which gives back (1). Here,
we concentrate on monotonicity, as our aim is to emphasize the method of the proof. It
is easily checked that ∂te

−ψt is locally uniformly in t > 0 dominated by an integrable
function, so we have, using the Proposition, that

α′(t) =

∫
(−∂tψt)

e−ψt∫
e−ψt

=

∫
(Tr(D2

xψt)
−1 − |x|2)e

−ψt(x)dx∫
e−ψt

.

We now call upon the variance Brascamp-Lieb inequality [2] which states that for a C2-
smooth convex function V : Rn → R with D2V > 0 almost-everywhere, denoting by µV
the probability on Rn with density e−V∫

e−V , the inequality

(3) VarµV (u) =

∫ (
u−

∫
u dµV

)2
dµV ≤

∫
(D2V )−1∇u · ∇u dµV ,

holds for every smooth u ∈ L2(µV ). We apply this inequality with V = ψt and to the

linear functions x → xi, i ≤ n, which are centered,
∫
xie

−ψt(x) dx = 0, since ψt is even.
Summing over i ≤ n, we then get exactly that α′(t) ≥ 0, for t > 0. At t = 0+ we have
(4) (see Appendix), so α is non-decreasing on [0,∞), as wanted. Using ideas from [4], one
can adapt the argument to the non-even case.
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A closer look to the previous arguments allows also to settle the cases of equality,
and even better, to describe local maximizers, thus providing a functional version of the
geometric result in [12]. We say that a function f is a centered Gaussian function if
f(x) = K e−Hx·x where H is a positive matrix and K > 0.

Theorem. Let ϕ be an even convex super-linear function and ϵ > 0 such that

M(e−ϕ) = sup
{
M(e−ψ) ; ψ even convex with ∥e−ϕ − e−ψ∥L1(Rn) ≤ ϵ

}
.

Then e−ϕ is a centered Gaussian function.

Proof. We keep the notation of the proof above. Since e−ϕt = Pt(e
−ϕ) tends to e−ϕ in

L1(Rn), and since M(e−ϕt) increases, there must exists t0 > 0 such that M(e−ϕt) =
M(e−ϕ) for all t ∈ [0, t0]. Consequently α

′( t02 ) = 0. This implies that the linear functions
are cases of equality in the Brascamp-Lieb inequality. However, the only centered equality
cases in (3) are the linear combinations of the ∂iV , i ≤ n, which forms a space of dimension
at most n; this is a classical fact (one can call upon the discussion in the last section of [5]
for instance). Since the linear functions x → xj are linearly independent, it means that
each ∂iψt0/2 is a linear combination of the x → xj , j ≤ n. This implies that D2ψt0/2 is
constant on Rn. Since ψt0/2 is even, it means that ψt0/2 and thus ϕt0 = ψ∗

t0 are quadratic,

of the form x→ Hx · x+C with H a positive matrix. Recall that e−ϕt0/2 = Pt0/2(e
−ϕ) is

obtained by a convolution with a centered Gaussian function. By injectivity of the Fourier
transform on L1(Rn) (or invoking the more sophisticated Cramer Theorem), this forces
e−ϕ to be a centered Gaussian function. □

If ϕ is an even convex super-linear function, the argument in the proof above also shows
that when e−ϕ is not Gaussian, the volume product M(Pt(e

−ϕ)) is strictly increasing in
t ∈ [0,∞).

Let us conclude with a word on linear invariance. The presence of this large class of
invariance might have been seen as an obstacle to a semi-group approach of the Santaló
inequality. However, we luckily have that the key inequality is the variance Brascamp-Lieb
inequality (our formula (2) points right to it, in fact), and this inequality possess indeed a
linear invariance, unlike usual Poincaré inequalities, say, which depend on the Euclidean
structure. In this regard, it is natural to investigate other linear invariant inequalities, as
in [9, 13].

We believe the result discussed in this note is only the beginning of a promising direction.
It is part of a work in progress on quantitative versions, and on other formulations and
applications of the principle we have put forward.

Appendix: technicalities

We aim at proving the two properties of ϕt = − logPt(e
−ϕ) used in the proof of the

Proposition (for t > 0 is fixed). Then we examine the limit as t → 0+ in the volume
product.

We start with the super-linearity of ϕt. Since ϕ is (bounded-below) super-linear, for an
arbitrary M > 0, there exists b = b(M) such that for every x ∈ Rn

ϕ(x) ≥M |x| − b.

Therefore we have, using |x+
√
2ty| ≥ |x| −

√
2t|y| that

e−ϕt(x) ≤ ebe−M |x|
∫
e
√
2tM |y| dγ(y) ≤ ebe−M |x|+tM2+

√
2ntM ,
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where γ is the standard Gaussian measure, that is ϕt(x) ≥ M |x| − b − tM2 −
√
2ntM .

Therefore there exists a K = K(M) such that for every |x| ≥ K,

ϕt(x)

|x|
≥ M

2
.

This implies that ϕt is superlinear.
Next we prove the strict convexity of ϕt, in the form D2ϕt > 0. Since e−ϕt =

Pt/2(Pt/2e
−ϕ) and Pt/2e

−ϕ is an integrable, positive, smooth, log-concave function, we
can assume that ϕ : Rn → R is a convex coercive (actually we just proved it is also super-
linear) twice continuously differentiable function. We can also assume that t = 1/2, for
notational simplicity. For a fixed direction |θ| = 1, we readily check from

e−ϕ1/2(x) =

∫
e−ϕ(y)e−|x−y|2/2 dy

(2π)n/2

that for any x ∈ Rn,
(D2

xϕ1/2)θ · θ = 1−Vardµx(y)(y · θ)
where the variance is computed with respect to the probability measure

dµx(y) = e−ϕ(y)e−|x−y|2/2 dy∫
e−ϕ(z)e−|x−z|2/2 dz

.

Assume that, for some fixed x ∈ Rn, we have (D2
xϕ1/2)θ · θ = 0. We then have by the

Brascamp-Lieb inequality that

1 = Vardµx(y)(y · θ) ≤
∫ (

D2
yϕ+ Idn

)−1
θ · θ dµx(y) ≤ 1

since D2
yϕ + Idn ≥ Idn. As the density of µx is continuous and positive on Rn, we must

have
(
D2
yϕ+ Idn

)−1
θ · θ = 1 = |θ|2, and thus (D2

yϕ)θ · θ = 0, at every y ∈ Rn; for this

recall that for a nonnegative matrix H we have (H + Idn)
−1 θ − θ = − (H + Idn)

−1Hθ

and that (H + Idn)
−1H is nonnegative. So for all y ∈ Rn, the function t 7→ ϕ(y + tθ) is

affine, which contradicts coercivity, for instance.
Finally, as t→ 0+, one formally expects ϕt → ϕ and so ψt → ψ. Let us prove rigorously

that

(4) lim inf
t→0+

∫
e−ψt ≥

∫
e−ψ.

For every x, y, z ∈ Rn we have −ϕ(y)−|y−x|2/4t ≤ ψ(z)−z ·y−|y−x|2/4t and therefore

ϕt(x) ≥ −ψ(z) + z · x− t|z|2.
This implies, by definition, that for every z ∈ Rn,

ψt(z) ≤ ψ(z) + t|z|2,

and so
∫
e−ψt ≥

∫
e−ψ(x)−tx

2
dx. Then (4) follows by Fatou’s Lemma.
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