
The Annals of Probability
2023, Vol. 51, No. 3, 987–1003
https://doi.org/10.1214/22-AOP1604
© Institute of Mathematical Statistics, 2023

IMPROVED LOG-CONCAVITY FOR ROTATIONALLY INVARIANT
MEASURES OF SYMMETRIC CONVEX SETS

BY DARIO CORDERO-ERAUSQUIN1,a AND LIRAN ROTEM2,b

1Institut de Mathématiques de Jussieu, Sorbonne Université, adario.cordero@imj-prg.fr
2Faculty of Mathematics, Technion – Israel Institute of Technology, blrotem@technion.ac.il

We prove that the (B) conjecture and the Gardner–Zvavitch conjecture
are true for all log-concave measures that are rotationally invariant, extend-
ing previous results known for Gaussian measures. Actually, our result apply
beyond the case of log-concave measures, for instance, to Cauchy measures
as well. For the proof, new sharp weighted Poincaré inequalities are obtained
for even probability measures that are log-concave with respect to a rotation-
ally invariant measure.

1. Introduction and main results. Improved log-concavity inequalities under the as-
sumption of symmetry have become a central topic in the Brunn–Minkowski theory of con-
vex bodies with several fascinating consequences and conjectures. Maybe one of the first
appearances of this phenomenon was the (B) inequality established in [10] for a centered
Gaussian measure γ on R

n. It states that for a symmetric convex set K ⊂ R
n (here symmetry

means origin-symmetry, i.e., K = −K), the function

(1) t → γ
(
etK

)
is log-concave on R.

A nonnegative function m is said to be log-concave if (− logm) is a convex function with
values in R ∪ {+∞}. The indicator of a convex set C is a log-concave function, and it is
common to denote the corresponding convex function by 1∞

C := − log 1C which is equal to 0
on K and to +∞ outside.

Property (1) was first conjectured by Banaszczyk and popularized by Latała [19]. It found
applications outside Brunn–Minkowski theory, for instance, in the setting of small ball esti-
mates in high dimensions; see [15, 20].

A Borel measure μ on R
n is said to satisfy the (B) property if (1) holds for every symmet-

ric convex set K ⊂ R
n with μ in place of γ . It is conjectured that every even log-concave

measure μ, and by this we mean dμ(x) = e−V (x) dx with V convex and even, satisfies the
(B) property. Prékopa’s theorem [23] implies that every log-concave measure μ satisfies a
Brunn–Minkowski inequality: For all convex sets K , L the function

(2) [0,1] � t → μ
(
(1 − t)K + tL

)
is log-concave.

This immediately implies that the function s → μ(sK) is log-concave on R
+. The conjecture

is a strengthening of this property under the extra assumption of symmetry. Saroglou [25]
showed that this (B) conjecture follows from another celebrated conjecture for symmetric
convex sets, namely, the log-Brunn–Minkowski conjecture [6]. Combining the results of [25]
and [6], it follows that the conjecture holds in R

2. Conversely, a certain strong form of the
(B) conjecture will also imply the log-Brunn–Minkowski conjecture [24].

In dimension n ≥ 3, very few examples of measures verifying the (B) inequality were
known, and until now they all somehow relied on the result for the Gaussian measure. These
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few non-Gaussian examples were obtained by Eskenazis, Nayar and Tkocz in [13] and will
be discussed in Section 6.

In a similar vein, a striking recent result of Eskenazis and Moschidis [12] gives the follow-
ing improvement of the log-concavity (2) to 1/n-concavity for a centered Gaussian measure
γ : if K and L are symmetric convex sets in R

n and λ ∈ [0,1], then

(3) γ
(
(1 − λ)K + tL

)1/n ≥ (1 − λ)γ (K)1/n + λγ (L)1/n.

This implies that the function [0,1] � t → γ ((1 − t)K + tL)1/n is concave (because we
work with convex sets). This property was conjectured by Gardner and Zvavitch [14], and
again it is connected to several natural problems in the geometry of convex bodies. Note that
here the prototype of a measure satisfying this property is the Lebesgue measure restricted
to a convex set by the Brunn–Minkowski inequality. It is remarkable that the Gaussian mea-
sure also behaves this way. One can ask whether every even log-concave measure satisfies
this Gardner–Zvavitch property. This conjecture will again be a corollary of the log-Brunn–
Minkowski conjecture [22], so in particular, it is known to hold in R2. Building on earlier
ideas of Kolesnikov and Milman [17, 18], Kolesnikov and Livshyts [16] proposed a conve-
nient spectral inequality that allowed them to show (3) with exponent 1

2n
(see Theorem 10

below). This was improved to the optimal exponent 1
n

in [12]. In [9] it was shown that (3)
holds for arbitrary rotation invariant log-concave measures, instead of γ but only when K

and L are small perturbations of a ball. In [21] Livshyts proved (3) for all even log-concave
measures but with the optimal exponent 1

n
replaced with a worse exponent cn = 1

n4+o(1) .
In the present paper, we show that there is nothing special about the Gaussian measure

and that properties (1) and (3) hold for every rotationally invariant log-concave measure on
R

n, providing the first large class of measures on R
n beyond Gaussian measures satisfying

the (B) conjecture and the Gardner–Zvavitch conjecture. Actually, we will go beyond log-
concave measures; for instance, we will show that the Cauchy measures also satisfy these
properties.

Let us fix some notation in order to state our results. We consider a finite dimensional
Euclidean space (Rn, | · |, 〈·, ·〉). For notational convenience we assume we work with the
standard structure—note that the problems we study are affine invariant. A Borel measure μ is
rotationally invariant if μ(A) = μ(RA) for every Borel set A and every linear map R ∈ O(n).
Since we are only considering measures that are absolutely continuous with respect to the
Lebesgue measure dx, this means that we are considering measures of the form

dμ(x) = e−w(|x|) dx

for some function w :R+ →R∪ {+∞}. In this setting we have

μ is log-concave ⇔ x → w
(|x|) is convex on R

n

⇔ w is increasing and convex on R
+

⇒ w increasing and t → w
(
et ) is convex on R.

This last condition will prove to be sufficient for establishing the results (here and every-
where in the paper, “increasing” is understood in the weak sense, i.e., as nondecreasing).
Note that for a smooth w, the log-concavity of μ amounts to the conditions w′ ≥ 0, w′′ ≥ 0,
whereas our weaker assumption is equivalent to w′ ≥ 0, sw′′(s) + w′(s) ≥ 0. Also, unless
w is constant (which is not a situation of interest) we will always have that w(t) → +∞ as
t → +∞.

Throughout the paper the notion of “being log-concave with respect to a measure” will
play an important role, and so let us introduce a specific notation for that.
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DEFINITION (Log-concavity preorder � on measures). Given two Borel measures μ, ν

on R
n, we say that ν is log-concave with respect to μ and write ν � μ if ν has a log-concave

density with respect to μ, that is,

dν(x) = e−v(x) dμ(x)

with v :Rn →R∪ {+∞} convex.

Of course, for any measure μ and any constant c > 0 we have cμ� μ; the central example
is μK � μ, where μK is the restriction of a measure μ to a convex set K ⊂ R

n, defined by
μK(A) = μ(A ∩ K), possibly renormalized into a probability measure when μ(K) < ∞. In
Bakry–Emery comparison geometry terms, one could say that ν � μ means that ν is more
curved than μ, although one must pay attention that no curvature is a priori imposed on μ. It
is, nonetheless, natural to ask whether some (well-chosen) functional inequality is valid for
the whole class of such ν’s. Our main contribution in this direction for rotationally invariant
measures will be Theorem 4 below.

We begin with the (B) conjecture. Actually, we are able to extend the same strong form
that was established for the Gaussian measure to every log-concave (and beyond) rotationally
invariant measure.

THEOREM 1. Let w : (0,∞) → (−∞,∞] be an increasing function such that t →
w(et ) is convex, and let μ be the measure on R

n with density e−w(|x|). Then, for every sym-
metric convex body K ⊆ R

n and every symmetric matrix A, the function

t �→ μ
(
etAK

)
is log-concave.

Let us mention that we will actually prove the following more general statement: under the
same assumptions on w, if v :Rn →R∪ {+∞} is an even convex function, then the function

(4) t →
∫
Rn

e−v(etAx)−w(|x|) dx is log-concave on R.

The theorem corresponds to the choice v = 1∞
K , replacing t by −t . This “functional” version

of the (B) property was previously studied in [11].
Note that the functions w(t) = wp(t) := tp/p satisfy the assumptions of the theorem for

all p > 0. Hence, the corresponding measures

dμp = e−|x|p/p dx

all have the strong (B) property. Taking w = 1∞[0,1] (i.e., p → +∞) we see that the uniform
measure on Bn

2 also has the strong (B) property. Recall we are free to pick any Euclidean
structure, or equivalently, we can work with measures on R

n of the form

(5) dμ(x) = e−w(〈Cx,x〉) dx,

where C is a symmetric positive matrix; one just has to be careful when stating the strong
(B) property, as in this case the symmetry condition on the matrix A is that CA = A∗C.
For the classical (B) property (A = Id), there is no issue here, and, in particular, the uniform
measure on an ellipsoid satisfies the (B) inequality. Note also that if E is an ellipsoid, we
may use (4) with A = Id, w = 1∞[0,1] and the norm associated to E . Performing the change
of variables y = etAx (whose Jacobian is log-linear and hence immaterial), we derive the
following corollary.
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COROLLARY 2. Let ν be an arbitrary even log-concave measure on R
n and E ⊂ R

n be
an ellipsoid. Then we have that

t → ν
(
etE

)
is log-concave on R.

It is also worth mentioning that by approximation, our results apply to degenerate nonneg-
ative quadratic forms as well, that is, to the case where the matrix C in (5) is degenerate. For

instance, we can consider measures of the form e
−w(

√
x2

1+···x2
k ) dx with k ≤ n.

Let us give some further examples of nonlog-concave measures that satisfy our assump-
tions and for which our results hold. For instance, by taking w(t) = a log t + w̃(t) for any
a ≥ 0 and w̃ satisfying our assumptions (possibly w̃ ≡ 0), we can consider measures of the
form

dμ(x) = |x|−ae−w̃(|x|) dx.

It is reasonable to impose local integrability (around zero) of the density, that is, 0 ≤ a < n,
for if not the measure of every symmetric convex body is +∞, and the result is, therefore,
less interesting. We can also take, for instance, w(t) = a log(1 + tb) for any a, b ≥ 0 and
work with measures of the form

dμ(x) = (
1 + |x|b)−a dx

which include Cauchy-type measures on R
n.

Note that our condition on the density e−w(|x|) of the rotationally measure μ is stable under
products, because the condition on the corresponding function w is stable under additions.
In particular, we can replace dx in the previous examples by a suitable rotationally invariant
measure. For example, we can restrict these measures to a centered Euclidean ball.

Let us now comment on the proof of the (B) inequality. It is well known that taking sec-
ond derivatives reduces Brunn–Minkowski type inequalities to spectral inequalities for some
differential operator. The proof of Theorem 1 follows a scheme similar to [10] which han-
dled the Gaussian case μ2 by establishing a connection with a “second eigenvalue problem”
associated to measures that are log-concave with respect to μ2. We will reduce the problem
to a spectral inequality of Brascamp–Lieb type in an improved form for even functions. By
examining the Gaussian case, one could seek an improvement in the constant of a “classical”
spectral inequality. However, we believe this would not be the right way to go (see the remark
at the end of Section 4). Moreover, already for our rotationally invariant measure μ, we do
not know the exact whole spectrum (unlike the Gaussian case), and we need anyway to work
with measures that are log-concave with respect to μ. We will instead establish the following
sharp spectral inequality from which the result follows.

THEOREM 3. Let w : [0,∞) → R be a C2-smooth increasing function such that t �→
w(et ) is convex. Define W : Rn → R by W(x) = w(|x|), and let ν be an even probability
measure with ν � e−W(x) dx.

Then, for every even C1 function f : Rn →R such that
∫ |f |2 dν < ∞, we have

Varν f ≤
∫ 〈(

∇2W + w′(|x|)
|x| Id

)−1
∇f,∇f

〉
dν.

Here and for the rest of the paper, we omit the dependence on the variable, except where
necessary. Also, as we will see in Section 3, the matrix ∇2W + w′(|x|)

|x| Id is always positive
semidefinite, but it can be singular (formulation should then be adapted, as explained in Re-
mark 9 below), although in applications we can assume by approximation that this situation
does not arise.
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One can check that equality holds in Theorem 3 when dν = e−W(x)∫
e−W dx, with

∫
e−W <

∞ and f (x) = 〈∇W,x〉 = w′(|x|)|x|. This can be seen without explicit computations by
inspecting the use of Theorem 3 in the proof of Theorem 1 in Section 4 and using the fact
that for K =R

n the function t �→ μ(etK) is constant and thus log-linear.
In the case of the Gaussian measure μ2 (i.e., w(t) = t2/2), this inequality reduces to the

fact that for an even probability measure ν � μ2, one has Varν f ≤ 1
2

∫ |∇f |2 dν for every
even smooth f .

The matrix ∇2W + w′(|x|)
|x| Id is a rank one perturbation of a scalar matrix (see (7) below), so

we can compute its inverse explicitly. The result is that under the assumptions of Theorem 3
we have the inequality

Varν f ≤
∫ ( |x|

2w′(|x|) |∇f |2 − |x|w′′(|x|) − w′(|x|)
2|x|w′(|x|)(|x|w′′(|x|) + w′(|x|))〈∇f, x〉2

)
dν.

For example, taking w(t) = wp(t) = tp/p, we see that for an even ν � μp we have

Varν f ≤
∫ (

1

2
|x|2−p|∇f |2 − p − 2

2p
· 〈∇f, x〉2

|x|p
)

dν.

Using the trivial bounds 0 ≤ 〈∇f, x〉2 ≤ |∇f |2|x|2, we can deduce the less precise but more
elegant inequality

Varν f ≤ max
{

1

p
,

1

2

}
·
∫

|x|2−p|∇f |2 dν.

This inequality is still sharp when ν = c · μp for 0 < p ≤ 2 and c a normalization constant
with equality when f (x) = |x|p . Similarly, taking wC(t) = a · log(1 + t2), we see that when
ν is log-concave with respect to the Cauchy-type measure dμC = 1

(1+|x|2)a dx, we obtain the
inequalities

Varν f ≤ 1

4a

∫ (
1 + |x|2)(|∇f |2 + 〈∇f, x〉2)

dν ≤ 1

4a

∫ (
1 + |x|2)2|∇f |2 dν.

Again, both of these inequalities are sharp when ν is the (normalized) reference measure
μC . This last inequality is similar in spirit to a result of Bobkov and Ledoux [2] for Cauchy
measures which is only sharp up to a universal constant but holds for noneven functions; this
was recently sharpened in [3] in the case a = n.

In the Gaussian case, the above-mentioned inequality Varν f ≤ 1
2

∫ |∇f |2 dν for f even
was at the heart of the argument in [10]. It was established using an L2 argument with a
Bochner integration by parts (a second argument using Cafferelli’s contraction property was
also given). The argument used the following classical Poincaré inequality which follows
from the variance Brascamp–Lieb inequality [7] or the Bakry–Emery criterion [1]: For a
probability measure ν with ν � μ2, one has for every smooth h that Varν h ≤ ∫ |∇h|2 dν.
For our general μ this inequality needs to be replaced by a weighted Poincaré inequality that
appears to be new, even in the simple case of of the measure e−w(|x|) dx for which it is sharp.
In fact, we will only prove such an inequality when the function is odd which is good enough
for our purposes.

THEOREM 4. Let w : (0,∞) → R be C1-smooth and increasing, and let ν be an even
finite measure on R

n with ν � e−w(|x|) dx.
Then, for every C1-smooth and odd function h :Rn →R, we have∫

w′(|x|)
|x| h2 dν ≤

∫
|∇h|2 dν.
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As we will see after the proof, equality holds in Theorem 4 when dν = e−w(|x|) dx and
h(x) = 〈x, θ〉 for a fixed θ ∈R

n.
In the two cases of interest from before w = wp and w = wC , Theorem 4 reduces to the

inequalities∫
|x|p−2h2 dν ≤

∫
|∇h|2 dν and

∫
h2

1 + |x|2 dν ≤ 1

2a

∫
|∇h|2 dν,

respectively. Both of these inequalities are sharp when dν = e−|x|p/p dx and dν = 1
(1+|x|2)a dx

with a > n/2 (condition for finiteness), respectively, with equality for linear functions.
It turns out that our weighted Poincaré inequality above (Theorem 4) allows us to solve

the problem of the Gardner–Zvavitch conjecture for rotationally invariant measures with the
same condition as for the (B) inequality.

THEOREM 5. Let w : [0,∞) → (−∞,∞] be an increasing function such that t �→ w(et )

is convex, and let μ be the measure on R
n with density e−w(|x|). Then, for every symmetric

convex bodies K,L ⊂ R
n and λ ∈ [0,1],

μ
(
(1 − λ)K + λL

)1/n ≥ (1 − λ)μ(K)1/n + λμ(L)1/n.

As before, our result includes all rotationally invariant log-concave measures but applies
also beyond this class; see the examples given above, such as Cauchy type measures.

There is some surprising phenomenon here that we would like to outline. It was observed
by Borell [4, 5] that if a measure μ with density f on R

n satisfies any kind of Brunn–
Minkowski inequality, even in the weakest form μ((1 − λ)K + λL) ≥ min{μ(K),μ(L)}
for every convex sets K , L and λ ∈ (0,1), then f must satisfy some concavity property. It
follows from Borell’s observation that the family of measures dμC = 1

(1+|x|2)a dx with a > 0
satisfy no Brunn–Minkowski inequality when 2a < n. However, when restricted to symmetric
convex sets, all these measures satisfy the strong Brunn–Minkowski inequality given by the
previous theorem.

The rest of the paper is devoted to the proofs of the main results and some further com-
ments and extensions. In the next section, we prove the weighted Poincaré inequality (Theo-
rem 4). Then in Section 3 we will use it to establish our spectral estimate of Brascamp–Lieb
type for even functions (Theorem 3). We show in Section 4 that this spectral estimate in
turn implies the strong (B) inequality (Theorem 1). In Section 5 we give the proof of the
dimensional Brunn–Minkowski inequality (Theorem 5). In the final Section 6, following an
argument of [13], we explain how to extend the (B) inequality to mixtures of rotationally
invariant measures, thus providing new examples of measures satisfying this property.

2. Weighted Poincaré inequalities. In this section we give the proof of Theorem 4. We
will proceed by integration in polar coordinates: for an integrable or nonnegative function F

on R
n, ∫

F(x)dx = cn

∫
Sn−1

∫ ∞
0

F(rθ) rn−1 dr dθ,

where dθ refers to the usual normalized measure on the sphere S
n−1 = {x : |x| = 1}. There-

fore, we will need two Poincaré-type inequalities, one for the spherical part and one for the
radial part.

In order to treat the spherical part, we will need the following weighted Poincaré inequality
on the sphere, that is, a particular case of a general result of Kolesnikov and Milman [17], as
we shall see.



IMPROVED LOG-CONCAVITY FOR ROTATIONALLY INVARIANT MEASURES 993

PROPOSITION 6. Let v : Rn → R be a convex C1 function, and let μ be the measure on
S

n−1 with density e−v . Then, for every C1 function g : Sn−1 → R with
∫
Sn−1 g dμ = 0, one

has ∫
Sn−1

(n − 1 − Rv)g2 dμ ≤
∫
Sn−1

|∇Sg|2 dμ.

Here and after, we use the notation Rv(x) = 〈∇v(x), x〉 for the radial derivative and ∇Sg

for the spherical gradient of g.
Indeed, generalizing a result of Colesanti [8], Kolesnikov and Milman proved the follow-

ing very general inequality.

THEOREM 7 ([17]). Let (M,g) be a compact, smooth, complete, connected and oriented
n-dimensional Riemannian manifold with boundary ∂M . Let dμ = e−v dVolM be a measure
on M , where v : M →R is C2-smooth.

Assume (M,g,μ) satisfies the CD(0,N) condition for some N such that 1
N

∈ [−∞, 1
n
],

and that II∂M � 0. Then, for every f ∈ C1(∂M), we have∫
∂M

Hμf 2 dμ∂M − N − 1

N
· (

∫
∂M f dμ∂M)2

μ(M)
≤

∫
∂M

〈
II−1

∂M∇∂Mf,∇∂Mf
〉
dμ∂M.

To explain the notation of the theorem, we say that (M,g,μ) satisfies the CD(0,N) con-
dition if

Ricg,μ := Ricg + ∇2v − 1

N − n
dv ⊗ dv � 0

as a 2-tensor, where Ricg denotes the classical Ricci curvature. Furthermore, II∂M denotes the
second fundamental form, and Hμ(x) = tr(II∂M(x)) − 〈∇v(x), ν(x)〉 denotes the weighted
mean curvature of ∂M at x ∈ ∂M , where ν(x) is the outer unit normal to ∂M at x.

To see why Proposition 6 follows from Theorem 7, we simply choose M = Bn
2 ⊂ R

n, the
unit Euclidean ball with the standard Euclidean metric. By approximation we may assume
v is C2. Then, for dμ = e−v dx, the weighted manifold (M,g,μ) satisfies the CD(0,∞)

condition since

Ricg,μ = 0 + ∇2v + 0 = ∇2v � 0.

Moreover, in this case IISn−1(x) is given by the standard inner product on R
n for all x ∈

S
n−1 = ∂Bn

2 , so

Hμ(x) = n − 1 − 〈∇v(x), x
〉 = n − 1 − Rv(x).

Plugging this into Theorem 7, one obtains Proposition 6.
Let us comment a bit more on this result. Kolesnikov and Milman obtained their inequality

using a general Reilly-type integration by parts formula for the solution u of the problem
�gu − 〈∇u,∇v〉 ≡ 1

μ(M)

∫
∂M f dμ∂M in the interior of M and the normal derivative of u on

∂M equal to f . However, when M is a convex body in R
n, this inequality can be derived in

a more elementary way by differentiating the Brunn–Minkowski inequality (2) for the log-
concave measure dμ = e−v dx; see [17] (in particular, Theorem 6.6) and [16] (in particular,
Proposition 3.2). When v = 0, this is exactly what was done in [8], but it is absolutely crucial
for us to have the correct inequality for the weight e−v .

The second ingredient we will need for the proof is the following one dimensional lemma.
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LEMMA 8. Let w,v : [0,∞) →R be continuous functions and C1 on (0,∞). Let f be a
C1 function on [0,∞) which is compactly supported (for simplicity) and satisfies f (0) = 0.
Then, for every α ≥ 0, we have∫ ∞

0

w′

t
f 2tαe−w−v dt ≤

∫ ∞
0

((
f ′)2 + α ·

(
f

t

)2
− v′ f 2

t

)
tαe−w−v dt.

PROOF. Since f is C1-smooth and f (0) = 0, we may write f (t) = t ·g(t) for a function
g continuous on [0,∞), C1 on (0,∞) and compactly supported. It follows using integration
by parts, since boundary terms vanish, that∫ ∞

0

w′

t
f 2tαe−w−v dt =

∫ ∞
0

w′g2tα+1e−w−v dt = −
∫ ∞

0

(
g2tα+1e−v)(

e−w)′ dt.

=
∫ ∞

0

(
g2tα+1e−v)′

e−w dt

=
∫ ∞

0

(
2tgg′ + (α + 1)g2 − v′g2t

)
tαe−w−v dt.

On the other hand, we have for the right-hand side,∫ ∞
0

((
f ′)2 + α ·

(
f

t

)2
− v′ f 2

t

)
tαe−w−v dt

=
∫ ∞

0

((
g + tg′)2 + α · g2 − v′tg2)

tαe−w−v dt

=
∫ ∞

0

(
g2 + 2tgg′ + t2(

g′)2 + αg2 − v′tg2)
tαe−w−v dt.

Comparing the two expressions, we see that the difference between the right-hand side and
the left-hand side is exactly

∫ ∞
0 (g′)2tα+2e−w−v dt which is clearly nonnegative. �

We are now ready to prove Theorem 4.

PROOF OF THEOREM 4. Our finite measure ν is of the form dν(x) = e−v(x)−w(|x|) dx

with v : Rn → R ∪ {+∞} convex. We can assume that our h satisfies ∇h ∈ L2(ν) since
otherwise there is nothing to prove.

We begin with some standard approximation arguments. First, let us note that we can
assume that h ∈ L2(ν). Actually, we can assume that h is bounded. Indeed, let us introduce
for every k ∈ N

∗ a C1 smooth nondecreasing odd function Rk : R → R such that Rk(t) = t

for t ∈ [0, k], Rk(t) ≡ k + 1 for t ≥ k + 2, Rk(t) ≤ t and R′
k(t) ≤ 1 for every t ∈ R

+. Then

the functions hk := Rk(h) satisfy hk = h on the open set {|h| < k}, |hk| ↑ |h| and |∇hk| ≤−→
|∇h|. Hence, by monotone and dominated convergence, respectively, we can pass from the
bounded functions hk to h in our inequality.

Next, we reduce to the case that h is compactly supported. The classical argument is to
introduce a smooth and radially decreasing function χ on R

n with values in [0,1] that is
compactly supported and equals to 1 in a neighborhood of 0 and to set χk(x) := χ(x/k). Then
χk ↑ 1 and |∇χk| ≤ C/k for some constant C > 0. On one hand, we have w′(|x|)

|x| (hχk)
2 ↑

w′(|x|)
|x| h2, and on the other hand,∫ ∣∣∇(hχk)

∣∣2 dν =
∫

|∇h|2χ2
k dν + 2

∫
hχk〈∇h,∇χk〉dν +

∫
h2|∇χk|2 dν

≤
∫

|∇h|2 dν + 2C

k

√∫
h2 dν

∫
|∇h|2 dν + C2

k2

∫
h2 dν,

and this upper bound converges to
∫ |∇h|2 dν, as wanted.



IMPROVED LOG-CONCAVITY FOR ROTATIONALLY INVARIANT MEASURES 995

Finally, we approximate w and v. By replacing w(t) with max(w(t),−k) and invoking
monotone convergence as k → ∞, we can assume that w is continuous on the closed ray
[0,∞) and C1 on (0,∞), except maybe at one point which is irrelevant. By standard approx-
imation we may also assume without loss of generality that v is smooth.

These remarks being made, we compute the integrals for our compactly supported function
h using polar coordinates. We obtain∫

w′(|x|)
|x| h2 dν = cn

∫
Sn−1

∫ ∞
0

w′(r)
r

h2(rθ)rn−1e−w(r)−v(rθ) dr dθ.

For a fixed θ ∈ S
n−1, we will now apply Lemma 8 with fθ (r) = h(rθ), vθ (r) = v(rθ) and

α = n − 1. Note that v′
θ (r) = 〈∇v(rθ), θ〉 = 1

r
Rv(rθ). Therefore, we can bound our integral

by

cn

∫
Sn−1

∫ ∞
0

(〈∇h(rθ), θ
〉2︸ ︷︷ ︸

I

+ (n − 1)

(
h(rθ)

r

)2
− 1

r
Rv(rθ) · h(rθ)2

r︸ ︷︷ ︸
II

)

× rn−1e−w(r)−v(rθ) dr dθ.

We will leave term I as is for now. In order to bound term II, we change the order of integra-
tion,

II = cn

∫ ∞
0

∫
Sn−1

(
n − 1 − Rv(rθ)

)(h(rθ)

r

)2
rn−1e−w(r)−v(rθ) dθ dr

= cn

∫ ∞
0

rn−1e−w(r)

(∫
Sn−1

(
n − 1 − Rv(rθ)

)(h(rθ)

r

)2
e−v(rθ) dθ

)
dr.

We now apply Proposition 6 to the inner integral, with vr(θ) = v(rθ), μr = e−vr dθ and
gr(θ) = h(rθ)

r
. Note that since vr is even and gr is odd, we indeed have

∫
Sn−1 gr dμr = 0 (this

is, in fact, the only place where we use the fact that h is odd). Also, note that Rvr(θ) = Rv(rθ)

and ∇Sgr(θ) = ∇Sh(rθ), where for a function h : Rn →R the notation

∇Sh(x) = ∇h(x) −
〈
∇h(x),

x

|x|
〉
· x

|x|
denotes the tangential part of the gradient of h. We may, therefore, apply the proposition and
conclude that

II ≤ cn

∫ ∞
0

rn−1e−w(r)
∫
Sn−1

∣∣∇Sh(rθ)
∣∣2e−v(rθ) dθ dr.

Using this estimate for II, we conclude that∫
w′(|x|)

|x| h2 dν ≤ cn

∫
Sn−1

∫ ∞
0

(〈∇h(rθ), θ
〉2 + ∣∣∇Sh(rθ)

∣∣2)
rn−1e−w(r)−v(rθ) dr dθ

= cn

∫
Sn−1

∫ ∞
0

∣∣∇h(rθ)
∣∣2rn−1e−w(r)−v(rθ) dr dθ

=
∫ ∣∣∇h(x)

∣∣2e−w(|x|)−v(x) dx =
∫

|∇h|2 dν,

completing the proof of Theorem 4. �

We remark that the proof above strongly uses the fact that h is odd to deduce that the func-
tions gre

−vr are all centered. It is possible that Theorem 4 is true under a weaker assumption
on h, but at the moment we do not know how to address this interesting question.
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To conclude this section, let us prove that when v = 0, that is, dν = e−w(|x|) dx, we have
equality in Theorem 4 for every linear function h(x) = 〈x, θ〉. By homogeneity and rotation
invariance, it is enough to consider the function h(x) = x1. Formally, the result follows by
integration by parts:∫

w′(|x|)
|x| h2 dν = −

∫
∂1

(
e−w(|x|))x1 dx =

∫
1 · e−w(|x|) dx =

∫
|∇h|2 dν.

To check this rigorously, introduce Aε,R = {x ∈ R
n : ε < |x| < R} for 0 < ε < R < ∞. Then

using polar coordinates and integration by parts, we have∫
Aε,R

w′(|x|)
|x| h2 dν = 1

n

∫
Aε,R

w′(|x|)
|x| |x|2e−w(|x|) dx

= cn

n

∫ R

ε
w′(r)rne−w(r) dr = −cn

n

∫ R

ε
rn(

e−w(r))′ dr

= cn

n
· (

εne−w(ε) − Rne−w(R)) + cn

∫ R

ε
rn−1e−w(r) dr

= cn

n
· (

εne−w(ε) − Rne−w(R)) +
∫
Aε,R

|∇h|2 dν.

(6)

Since the integrands are nonnegative, the integrals
∫
Aε,R

w′(|x|)
|x| h2 dν and

∫
Aε,R

|∇h|2 dν

have a limit when ε → 0+ and R → ∞, and the limits are finite since
∫ w′(|x|)

|x| h2 dν ≤∫ |∇h|2 dν < ∞. Therefore, the limits limε→0+ εne−w(ε) and limR→∞ Rne−w(R) also exist.
Since

∫ ∞
0 rn−1e−w(r) dr = 1

cn

∫
e−w(|x|) dx < ∞, both of these limits have to be 0. We may,

therefore, let ε → 0+, R → ∞ in (6) and deduce that∫
w′(|x|)

|x| h2 dν =
∫

|∇h|2 dν,

as claimed.

3. Improved Brascamp–Lieb inequality. In this section, we give the proof of The-
orem 3. So we are working with a probability measure ν whose density is of the form
e−W(x)−v(x) with W(x) = w(|x|) where w is smooth and satisfies the assumptions of the
theorem, and v is an arbitrary even convex function on R

n with values on R ∪ {+∞}. In the
applications, e−v will be the indicator of a symmetric convex set. But by approximation, we
can easily assume that v is finite and smooth on R

n.
The classical Hörmander–Brascamp–Lieb inequality states that for a smooth integrable f

one has

Varν f ≤
∫ 〈(∇2W + ∇2v

)−1∇f,∇f
〉
dν

≤
∫ 〈(∇2W

)−1∇f,∇f
〉
dν.

Since w′(|x|)
|x| · Id � 0, the conclusion of Theorem 3 is clearly stronger than this last inequal-

ity, but of course, we are assuming that f is even. Recall that f (x) = 〈(∇W + ∇v)(x), θ〉 is
an equality case in the first inequality, but this function is odd in our case.

A direct computation of ∇2W shows that, for every x �= 0,

∇2W(x) = w′′(|x|) x

|x| ⊗ x

|x| + w′(|x|)
|x| ·

(
Id − x

|x| ⊗ x

|x|
)
,
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so one can write

(7)

∇2W(x) + w′(|x|)
|x| · Id

=
(
w′′(|x|) + w′(|x|)

|x|
)

x

|x| ⊗ x

|x| + 2
w′(|x|)

|x| ·
(

Id − x

|x| ⊗ x

|x|
)
.

The condition that t �→ w(et ) is convex implies that w′′(s) + w′(s)
s

≥ 0 for all s > 0. Hence,

the expression above shows that ∇2W(x) + w′(|x|)
|x| · Id � 0, which we will use in the proof.

REMARK 9. In the statement of Theorem 3 and in its proof below, we encounter ex-
pression like 〈(∇2W + w′(|x|)

|x| · Id)−1a, a〉 for some a ∈ R
n. When the matrix is singular,

one should rather use the polar form Q◦
x(a) = sup{〈a, b〉2 : Qx(b) ≤ 1} ∈ [0,+∞] of the

quadratic form b �→ Qx(b) := 〈(∇2W + w′(|x|)
|x| · Id)b, b〉. Indeed, the only property we need

is that 1
2Q◦

x(a) + 1
2Qx(b) ≥ 〈a, b〉 for all a, b ∈ R

n.

PROOF OF THEOREM 3. With the notation above, consider the even function V := W +v

so that dν
dx

= e−V ; we already mentioned that by approximation v can be assumed to be C2-
smooth, so V is C2 as well. Since ν is log-concave with respect to e−W , it follows that
∇2V � ∇2W as positive definite matrices. Also, write A(x) = ∇2W(x) + w′(|x|)

|x| · Id.

Consider the operator Lu = �u − 〈∇V,∇u〉, that is, the Laplace operator ∇∗∇ on L2(ν).
We are given an even function f . We can add a constant to f and assume without loss
of generality that

∫
f dν = 0. It is well known then that f can be approximated in L2(ν)

by functions of the form Lu for smooth compactly supported u (see, for instance, [10]).
Moreover, since V is even and f is even, we can also assume that u is even. Therefore it is
enough to prove ∫ (

(Lu − f )2 − f 2 + 〈
A−1∇f,∇f

〉)
dν ≥ 0,

that is, ∫ (
(Lu)2 − 2Lu · f + 〈

A−1∇f,∇f
〉)

dν ≥ 0.

Integrating by parts, we see that∫
Lu · f dν = −

∫
〈∇u,∇f 〉dν,∫

(Lu)2 dν =
∫ (∥∥∇2u

∥∥2
2 + 〈(∇2V

) · ∇u,∇u
〉)

dν

≥
∫ (∥∥∇2u

∥∥2
2 + 〈(∇2W

) · ∇u,∇u
〉)

dν,

where ‖A‖2 = √
tr(AA∗) is the Hilbert–Schmidt norm. Therefore, it is enough to prove the

inequality ∫ (∥∥∇2u
∥∥2

2 + 〈(∇2W
)∇u,∇u

〉 + 2〈∇u,∇f 〉 + 〈
A−1∇f,∇f

〉)
dν ≥ 0.

We have the pointwise identity∣∣A− 1
2 ∇f + A

1
2 ∇u

∣∣2 = 〈
A−1∇f,∇f

〉 + 2〈∇f,∇u〉 + 〈A · ∇u,∇u〉,
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so our goal can be written as∫ (∥∥∇2u
∥∥2

2 + 〈(∇2W
)∇u,∇u

〉 + ∣∣A− 1
2 ∇f + A

1
2 ∇u

∣∣2 − 〈A · ∇u,∇u〉)dν ≥ 0.

As |A− 1
2 ∇f + A

1
2 ∇u|2 ≥ 0 (this corresponds to the duality relation recalled in Remark 9

above), it is, therefore, enough to prove that

(8)
∫

w′(|x|)
|x| |∇u|2 dν =

∫ 〈(
A − ∇2W

) · ∇u,∇u
〉
dν ≤

∫ ∥∥∇2u
∥∥2

2 dν.

But this follows form Theorem 4: Every derivative hi = ∂u
∂xi

is odd, so by Theorem 4 we have

∫
w′(|x|)

|x| h2
i dν ≤

∫
|∇hi |2 dν.

Summing over 1 ≤ i ≤ n, we obtain the desired inequality (8). �

4. The (B) property. In this section we prove Theorem 1 in the functional form (4).

PROOF OF THEOREM 1. By approximation we may assume w is well defined on [0,∞)

and C2-smooth there with w′′ > 0. Write W(x) := w(|x|).
As we said, we will prove the more general form (4). So we fix an arbitrary even convex

function v :Rn →R∪ {+∞}, and our goal is to prove that

(9) t �→
∫
Rn

e−v(etAy)−W(y) dy = e−t ·trA ·
∫
Rn

e−v(x)−W(e−tAx) dx

is log-concave. Since the function t �→ e−t ·trA is clearly log-linear and since the change of
variables t �→ −t preserves log-concavity, we are led to prove that the function

ρv(t) =
∫
Rn

e−v(x)−W(etAx) dx

is log-concave.
To do so, we need to show that ρv(t)ρ

′′
v (t) ≤ ρ′

v(t)
2 for every t ∈ R. However, from the

change of variables (9) one can check that ρv(t +h) = ρṽ(h), where ṽ(x) = v(e−tAx)+ t · trA
is again an even convex function. So we see it is enough to show that ρ(0)ρ′′(0) ≤ ρ ′(0)2 for
ρ := ρv and v is an arbitrary even convex function.

Computing these derivatives, we obtain

ρ′(t) = −
∫

e−W(etAx)〈∇W
(
etAx

)
,AetAx

〉
e−v(x) dx

ρ ′′(t) =
∫

e−W(etAx)〈∇W
(
etAx

)
,AetAx

〉2
e−v(x) dx

−
∫

e−W(etAx)(〈∇2W
(
etAx

) · AetAx,AetAx
〉 + 〈∇W

(
etAx

)
,A2etAx

〉)
e−v(x) dx,

so the condition ρ(0)ρ′′(0) ≤ ρ′(0)2 becomes∫
e−v(x) dμ(x) ·

∫ (〈∇W,Ax〉2 − 〈∇2W · Ax,Ax
〉 − 〈∇W,A2x

〉)
e−v(x) dμ(x)

≤
(∫

〈∇W,Ax〉e−v(x) dμ(x)

)2
.
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Introduce the probability measure

dν(x) = e−v(x)∫
e−v dμ

dμ(x).

Our aim is to prove that∫ (〈∇W,Ax〉2 − 〈∇2W · Ax,Ax
〉 − 〈∇W,A2x

〉)
dν ≤

(∫
〈∇W,Ax〉dν

)2
,

that is

(10)
∫

〈∇W,Ax〉2 dν −
(∫

〈∇W,Ax〉dν

)2
≤

∫ (〈∇2W · Ax,Ax
〉 + 〈∇W,A2x

〉)
dν.

Actually, this aimed inequality is really equivalent to the strong (B) inequality for μ. We
claim that this inequality follows from Theorem 3 for the function

f0(x) := 〈∇W(x),Ax
〉
.

Indeed, note first that Theorem 3 is applicable since ν is even and log-concave with respect
to μ and f0 is even. Next, we have to interpret correctly the right-hand side of (10). Note that

∇f0 = ∇2W · Ax + A · ∇W,

and so 〈∇2W · Ax,Ax
〉 + 〈∇W,A2x

〉 = 〈∇f0,Ax〉,
where we have used the symmetry of A. This means that (10) can be written as

Varν(f0) ≤
∫

〈∇f0,Ax〉dν(x).

But since ∇W(x) = w′(|x|)
|x| x, we can write

(11) ∇f0 =
(
∇2W + w′(|x|)

|x| Id
)
Ax

which implies that

〈∇f0,Ax〉 =
〈(

∇2W + w′(|x|)
|x| Id

)−1
∇f0,∇f0

〉
.

This shows that (10) follows from Theorem 3, as claimed. �

There is a hidden but crucial choice behind the apparently trivial relation (11). Indeed,
let us consider the simple case where w(t) = tp/p (so W(x) = |x|p/p) and A = Id. The
equivalent formulation (10) of the (B) inequality is then

Varν(f0) = Varν
(| · |p) ≤ p

∫
|x|p dν(x) =

∫
〈∇f0, x〉dν

for f0(x) = |x|p and ν an even probability measure which is log-concave with respect to
e−W(x) dx = e−|x|p/p dx. We see that there are several possible interpretations of the last
term, since we have both

x = p − 1

p

(∇2W
)−1 · ∇f0 and x = 1

p|x|p−2 ∇f0.

By the way, here we can invoke homogeneity to shorten computations since f0 = pW . Every
choice of a matrix-valued function B(x) such that B · x = ∇f0 leads to the natural question
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whether the corresponding Brascamp–Lieb-type inequality Varν(f ) ≤ ∫ 〈B−1∇f,∇f 〉dν

holds for every smooth even f ; This would imply the (B) inequality. The two formulas above
coincide in the case of the Gaussian measure (p = 2) but not in general. Our choice (11) is
some combination of the two:

x = (∇2W + |x|p−2Id
)−1∇f0(x).

5. Dimensional Brunn–Minkowski inequality. In this section we prove Theorem 5,
that is, the Gardner–Zvavitch conjecture for rotationally invariant measures. We heavily rely
on the computations done by Kolesnikov and Livshyts and on the ideas introduced by Eske-
nazis and Moschidis in their solution of the Gaussian case.

As for the Brunn–Minkowski inequality and the (B) inequality, we can prove this 1
n

-
concavity by computing the second derivative in the parameter λ. This was done by
Kolesnikov and Livshyts [16] (see Lemma 2.3), who found the following neat sufficient
condition; this result is somehow a substitute to the duality argument used in the proof of
Theorem 3. Below, the notation μK refers to the normalized restriction of a measure μ to a
set K with μ(K) < ∞.

THEOREM 10 ([16]). Let μ be a locally finite measure on R
n with density e−W . Assume

that for every symmetric convex body K ⊂ R
n and every smooth even function u : K → R

with Lu := �u − 〈∇W,∇u〉 ≡ 1 in K , we have∫ (∥∥∇2u
∥∥2

2 + 〈∇2W · ∇u,∇u
〉)

dμK ≥ 1

n
.

Then, for every symmetric convex bodies K,L ⊆R
n and every 0 ≤ λ ≤ 1, we have

μ
(
(1 − λ)K + λL

) 1
n ≥ (1 − λ)μ(K)

1
n + λμ(L)

1
n .

Let us mention that this formulation builds upon previous ideas introduced by Kolesnikov
and Milman in [17] and [18], in particular, the idea to obtain Poincaré-type inequalities on
the boundary of the given domain K by expressing a function on ∂K as a Neumann data of
a function in the interior of K .

We now establish the condition in Theorem 10 using our weighted Poincaré inequality
(Theorem 4). Loosely speaking, we have “Theorem 4 ⇒ Theorem 10 ⇒ Brunn–Minkowski,”
whereas previously we had “Theorem 4 ⇒ Theorem 3 ⇒ (B) inequality,” with the difference
that the formulation of Theorem 3 was specific to the rotationally invariant case and possibly
of independent interest.

PROOF OF THEOREM 5. Write W(x) = w(|x|), and assume by approximation that w is
smooth. We begin by following the argument of Eskenazis and Moschidis [12].

Define r = |x|2
2n

, and note that

∥∥∇2u
∥∥2

2 = ∥∥∇2(u − r)
∥∥2

2 + 2

n
�u − 1

n
.

Since Lu = 1, we have �u = 〈∇W,∇u〉 + 1, so

(12)
∥∥∇2u

∥∥2
2 = ∥∥∇2(u − r)

∥∥2
2 + 2

n
〈∇W,∇u〉 + 1

n
.

Next, we apply our weighted Poincaré inequality (Theorem 4). Since K is symmetric, the
measure μK is even, and of course, it is log-concave with respect to μ. Moreover, for every i

the derivative ∂i(u − r) is odd, since u − r is even. Hence,∫ ∣∣∇∂i(u − r)
∣∣2 dμK ≥

∫
w′(|x|)

|x|
(
∂i(u − r)

)2 dμK.
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Summing over 1 ≤ i ≤ n, we get∫ ∥∥∇2(u − r)
∥∥2

2 dμK ≥
∫

w′(|x|)
|x|

∣∣∇(u − r)
∣∣2 dμK

=
∫

w′(|x|)
|x|

(|∇u|2 − 2〈∇u,∇r〉 + |∇r|2)
dμK

≥
∫

w′(|x|)
|x|

(
|∇u|2 − 2

n
〈∇u,x〉

)
dμK

=
∫ (

w′(|x|)
|x| |∇u|2 − 2

n
〈∇W,∇u〉

)
dμK,

where in the last equality we used the fact that ∇W(x) = w′(|x|)
|x| x. Therefore, using (12), we

obtain∫ (∥∥∇2u
∥∥2

2 + 〈∇2W · ∇u,∇u
〉)

dμK ≥
∫ 〈(

∇2W + w′(|x|)
|x| Id

)
∇u,∇u

〉
dμK + 1

n

≥ 0 + 1

n
= 1

n
.

The last inequality is true since our assumption on w implies that the matrix (∇2W +
w′(|x|)

|x| Id) is nonnegative (see the computation in the beginning of Section 3).
By Theorem 10 we conclude that

μ
(
(1 − λ)K + λL

) 1
n ≥ (1 − λ)μ(K)

1
n + λμ(L)

1
n

for all symmetric K , L and all 0 ≤ λ ≤ 1. �

6. Mixtures. As was mentioned in the Introduction, before the results of this paper there
were very few examples of measures known to have the (B) property, except the Gaussian
measure. The only such examples we are aware of in dimension n ≥ 3 come from a result of
Eskenazis, Nayar and Tkocz [13] about Gaussian mixtures. We will now briefly explain and
slightly extend their result.

PROPOSITION 11. Let X = (X1,X2, . . . ,Xn) be a random vector with a probability
density on R

n which is rotationally invariant and log-concave. Let Y = (Y1, Y2, . . . , Yn) be a
random random vector on (R+)n independent of X with probability density h : (0,∞)n →R

such that (s1, s2, . . . , sn) �→ h(es1, es2, . . . , esn) is log-concave. Let ν denote the distribution
of (X1Y1,X2Y2, . . . ,XnYn). Then, for every symmetric convex body K ⊆R

n, the function

(t1, t2, . . . , tn) �→ ν
(
e�(t1,...,tn)K

)
is log-concave on R

n; In particular, t �→ ν(etK) is log-concave on R.

Here we use the notation �(t1, . . . , tn) for the diagonal matrix with entries t1, t2, . . . , tn on
its diagonal.

PROOF. For every Borel set K ⊆ R
n, we have

ν(K) = P
(
(X1Y1,X2Y2, . . . ,XnYn) ∈ K

)
=

∫
(0,∞)n

P
(
(y1X1, y2X2, . . . , ynXn) ∈ K

)
h(y)dy.
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We perform a change of variables e−s = y (i.e., e−si = yi for 1 ≤ i ≤ n). Then dy =
e−∑n

i=1 si ds, so

ν(K) =
∫
Rn

P
(
e−�(s1,...,sn) · X ∈ K

)
h
(
e−s)e−∑

si ds

=
∫
Rn

P
(
X ∈ e�(s1,...,sn)K

)
h
(
e−s)e−∑

si ds

=
∫
Rn

μ
(
e�(s1,...,sn)K

) · h(
e−s)e−∑

si ds,

where μ denotes the distribution of X.
Therefore, if we now assume that K is a symmetric convex body, then

ν
(
e�(t1,...,tn)K

) =
∫
Rn

μ
(
e�(s1+t1,...,sn+tn)K

) · h(
e−s)e−∑

si ds.

By Theorem 1 the function (t, s) �→ μ(e�(s1+t1,...,sn+tn)K) is log-concave on R
2n, so by our

assumption on h

(t, s) �→ μ
(
e�(s1+t1,...,sn+tn)K

)
h
(
e−s)e−∑

si

is also log-concave. It is a well-known corollary of the Prékopa inequality (2) that marginals
of log-concave functions are also log-concave. Hence, the function

t �→
∫
Rn

μ
(
e�(s1+t1,...,sn+tn)K

) · h(
e−s)e−∑

si ds = ν
(
e�(t1,...,tn)K

)
is log-concave. �

The result of [13] is identical to the proposition above, with an identical proof, except the
fact that they have to assume X is Gaussian in order to use the original result of [10], while we
can use instead Theorem 1. Of course, the assumption in the proposition that the distribution
μ of X is log-concave may be replaced with the weaker assumption on μ of Theorem 1.

Proposition 11 is only useful if one can identify measures ν which satisfy its assumptions.
It is shown in [13] that if 0 < p ≤ 1 and if ν has density proportional to e−‖x‖p

p = e−∑ |xi |p ,
then ν satisfies the assumptions of the proposition (with a Gaussian random vector X) and,
therefore, has the (B) property. The same is shown for the product measure ν = ν⊗n

1 , where
ν1 is the distribution of a p-stable random variable for 0 < p ≤ 1. No other examples are
constructed.

Since we now have more freedom in the choice of X, our proposition applies to more
measures ν than the theorem of [13]. However, at the moment we don’t have any natural
measure to propose that could be handled using this extra freedom.

Funding. The second author is partially supported by ISF Grant 1468/19 and BSF Grant
2016050.
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