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Abstract. Let Cn = {−1, 1}n be the discrete hypercube equipped with the uniform probability
measure σn. We prove that if (E, ‖·‖E) is a Banach space of finite cotype and p ∈ [1,∞), then every
function f : Cn → E satisfies the dimension-free vector-valued Lp logarithmic Sobolev inequality

∥∥f − Ef
∥∥
Lp(logL)p/2(E)

6 Kp(E)

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

.

The finite cotype assumption is necessary for the conclusion to hold. This estimate is the hypercube
counterpart of a result of Ledoux (1988) in Gauss space and the optimal vector-valued version of a
deep inequality of Talagrand (1994). As an application, we use such vector-valued Lp logarithmic
Sobolev inequalities to derive new lower bounds for the bi-Lipschitz distortion of nonlinear quotients
of the Hamming cube into Banach spaces with prescribed Rademacher type.

1. Introduction

Let Cn be the Hamming cube {−1, 1}n equipped with the uniform probability measure σn and
let ψ : [0,∞) → [0,∞) be a strictly increasing, convex function with ψ(0) = 0. If (E, ‖ · ‖E) is a
normed space, we shall denote the ψ-Orlicz norm norm of an E-valued function f : Cn → E by

‖f‖Lψ(E)
def
= inf

{
γ > 0 :

∫

Cn

ψ
(
‖f(x)‖E/γ

)
dσn(x) 6 1

}
. (1)

Clearly, if ψ(t) = tp, then the Lψ(E) norm reduces to the vector-valued Lp(E) norm. Per standard
notation, if ψ(t) = tp logα(e + tp) for some α > 0, we denote Lψ(E) by Lp(logL)α(E). Moreover,
we will denote by Ef the expectation of f with respect to σn and when E = C we shall abbreviate
‖f‖Lp(logL)α(C) as ‖f‖Lp(logL)α . If i ∈ {1, . . . , n}, the i-th partial derivative of f is defined as

∀ x ∈ Cn, ∂if(x)
def
=

f(x)− f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)

2
. (2)

When E = C, we will denote the Lp norm of the gradient of a function f : Cn → C by

‖∇f‖Lp

def
=

(
∫

Cn

( n∑
i=1

|∂if(x)|2
)p/2

dσn(x)

)1/p

. (3)

Motivated by a quantitative version of Margulis’ graph connectivity theorem [?], Talagrand [?]
proved an important functional inequality asserting that for every p ∈ [1,∞) there exists Cp ∈ (0,∞)
such that for any n ∈ N, every function f : Cn → C satisfies

‖f − Ef‖Lp(logL)p/2 6 Cp‖∇f‖Lp . (4)
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When p = 2, this estimate is equivalent to the usual logarithmic Sobolev inequality on the discrete
hypercube up to the value of the implicit constant which follows from the classical works [?, ?] of
Bonami and Gross (see also Section 4.3 for comparison with the more classical formulation of this

inequality in terms of entropy). It is worth pointing out that Lp(logL)p/2 is the optimal Orlicz space
guaranteeing the validity of an inequality in the spirit of (4). As a direct consequence of the Lp

logarithmic Sobolev inequality (4), Talagrand also discovered the first proof of the dimension-free
Lp Poincaré inequality on the hypercube, according to which every f : Cn → C satisfies

‖f − Ef‖Lp 6 Cp‖∇f‖Lp . (5)

Refinements and extensions of (5) have been a central topic of research in discrete analysis after
Talagrand’s original proof (see, e.g., the works [?, ?, ?, ?, ?, ?, ?, ?, ?]).

In a striking recent article, Ivanisvili, van Handel and Volberg [?], obtained a vector-valued
extension of (5) with optimal assumptions on the target space. In [?, Theorem 1.5], they showed
that if a Banach space E has finite cotype (see [?, Chapter 9]) then for any p ∈ [1,∞) there exists
a constant Cp(E) such that for any n ∈ N, every function f : Cn → E satisfies

‖f − Ef‖Lp 6 Cp(E)

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

. (6)

Observe that this inequality indeed extends (5) since, when E = C, the right-hand side of (6) is
equivalent to ‖∇f‖Lp up to constants depending only on p by Khintchine’s inequality [?]. Vector-
valued inequalities of the form (6) where first studied in classical work of Pisier [?], who showed that
(6) is valid with Cp(E) replaced by a constant multiple of log n for an arbitrary target Banach space
E. In [?, Section 6], Talagrand constructed a Banach space for which the logarithmic factor cannot
be removed and thus the finite cotype assumption is necessary for the validity of the dimension-free
inequality (6) in view of the Maurey–Pisier theorem [?].

In contrast to the Poincaré inequality (5) which has been extensively studied in the context of
analysis in Banach spaces, vector-valued versions of Talagrand’s logarithmic Sobolev inequality (4)
have been elusive (even for the most well-known special case p = 2). The main purpose of the
present article is to unify Talagrand’s work [?] with the work of Ivanisvili, van Handel and Volberg
[?] by proving an optimal vector-valued version of (4). Our main result reads as follows.

Theorem 1. Let (E, ‖ · ‖E) be a Banach space of finite cotype and p ∈ [1,∞). There exists a
constant Kp(E) ∈ (0,∞) such that for any n ∈ N, every function f : Cn → E satisfies

∥∥f − Ef
∥∥
Lp(logL)p/2(E)

6 Kp(E)

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

. (7)

Our proof in fact yields a stonger dimension-free inequality in an arbitrary Banach space (see
Remark 7) in the spirit of [?, Theorem 1.4]. This allows us to derive the following refinement of
the classical Pisier inequality [?, Lemma 7.3] which may be of independent interest.

Corollary 2. For every p ∈ [1,∞) there exists Kp ∈ (0,∞) such that the following claim holds for
an arbitrary Banach space (E, ‖ · ‖E). For any n ∈ N, every function f : Cn → E satisfies

∥∥f − Ef
∥∥
Lp(logL)p/2(E)

6 Kp

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

+ 2(log n+ 1)

∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥
L1(E)

dσn(δ).

(8)
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It is worth emphasizing that (8) is a two-fold refinement of Pisier’s inequality. Besides the fact

that it allows us to derive an upper bound for the Lp(logL)p/2 Orlicz norm of the function f −Ef
instead of the usual Lp norm, the dimensional factor log n is multiplied by the vector-valued L1

norm of the gradient of f rather than the vector-valued Lp norm as in [?].

1.1. Self improvement of Poincaré inequalities for hypercontractive semigroups. As we
shall explain in detail in Section 2, the main intricacies arising in the proof of Theorem 1 are due to
the appearance of the vector-valued gradient on the right-hand side of inequality (7). In contrast
to that, much simpler reasoning allows us to prove that metric Poincaré inequalities (that is,
inequalities in which the right-hand side depends only on distances between values of the function)
for vector-valued functions can be boosted to metric logarithmic Sobolev type inequalities provided
that the additional scalar-valued inequality holds. This implication is summarized as

scalar log-Sobolev + vector Poincaré =⇒ vector log-Sobolev

and will be formalized in Proposition 9 below. For now, we register one consequence of it which
is the first vector-valued logarithmic Sobolev inequality on the symmetric group Sn generated by
transpositions for targets of martingale type 2 (see Section 4 for all the relevant definitions).

Theorem 3. Let Sn be the symmetric group on n elements equipped with the uniform probability
measure νn and Tn ⊆ Sn the generating set consisting of all transpositions. If (E, ‖·‖E) is a Banach
space of martingale type 2, then there exists a constant M(E) ∈ (0,∞) such that for any n ∈ N,
every function f : Sn → E satisfies∥∥f − Ef

∥∥2

L2(logL)(E)
6

M(E) log n

n− 1

∑
τ∈Tn

∫

Sn

∥∥f(π)− f(τ ◦ π)
∥∥2

E
dνn(π). (9)

This corollary improves upon the corresponding Poincaré inequality in the same setting which
follows from the work of Khot and Naor [?, Section 6] up to the (necessary) logarithmic factor.

Recall that if (Ω,µ) is a measure space, the entropy of a nonnegative function h : Ω→ R+ is

Ent(h)
def
=

∫

Ω

h log h dµ−

(
∫

Ω

h dµ

)
log

(
∫

Ω

h dµ

)
. (10)

Logarithmic Sobolev inequalities like (9) are usually stated in terms of entropy rather than Orlicz
norms but these formulations can be seen to be equivalent due to the elementary estimates

1

2
max

{
‖f‖2L2(E),Ent

(
‖f‖2E

)}
6 ‖f‖pL2(logL)(E) 6 14 max

{
‖f‖2L2(E),Ent

(
‖f‖2E

)}
, (11)

which hold for every function f : Ω→ E. We refer to Section 4.3 for more on this topic.

1.2. Distortion lower bounds for quotients. If (M, d) and (N, δ) are two metric spaces, the
bi-Lipschitz distortion of M into N, denoted by cN(M), is the least D > 1 for which there exists
σ ∈ (0,∞) and a mapping f : M → N satisfying

∀ x, y ∈M, σd(x, y) 6 δ(f(x), f(y)
)
6 σDd(x, y). (12)

Let Cn be the hypercube equipped with the Hamming metric %(x, y) = ‖x− y‖1. A geometrically
important application of the vector-valued Poincaré inequality (6) is that it yields optimal distortion
lower bounds for embeddings of (Cn, %) into normed spaces with prescribed Rademacher type. Recall
that (E, ‖ · ‖E) has Rademacher type p ∈ [1, 2] with constant T ∈ (0,∞) if for every n ∈ N and
every vectors x1, . . . , xn ∈ E, we have

∫

Cn

∥∥∥ n∑
i=1

εixi

∥∥∥p
E

dσn(ε) 6 T p
n∑

i=1

‖xi‖pE . (13)
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A classical argument due to Enflo [?, ?] combined with [?] shows that when a normed space E has

Rademacher type p with constant T , then cE(Cn) > cT−1n1−1/p, where c > 0 is universal.
Let R ⊆ Cn×Cn be an arbitrary equivalence relation and denote by Cn/R the set of all equivalence

classes of R equipped with the quotient metric, which is given by

∀ [ε], [δ] ∈ Cn/R, %Cn/R

(
[ε], [δ]

) def
= min

{
%(η1, ζ1) + · · ·+ %(ηk, ζk)

}
; (14)

here the minimum is taken over all k > 1 and η1, . . . ,ηk, ζ1, . . . , ζk ∈ Cn with η1 ∈ [ε], ζk ∈ [δ] and
[ζj ] = [ηj+1] for every j ∈ {1, . . . , k − 1}. We will also denote by ∂iR the boundary of R in the
direction i, that is

∀ i ∈ {1, . . . , n}, ∂iR
def
=
{
ε ∈ Cn :

(
ε, (ε1, . . . , εi−1,−εi, εi+1, . . . , εn)

)
/∈ R
}

(15)

Enflo’s argument combined with the results of [?] yields the general lower bound

cE
(
Cn/R

)
>
cT−1

∥∥%Cn/R([ε], [δ])
∥∥
Lp(Cn×Cn)(∑n

i=1 σn(∂iR)
)1/p (16)

for the bi-Lipschitz distortion of the quotient Cn/R into a normed space of Rademacher type p,
where c > 0 is a universal constant. As a consequence of the new vector-valued logarithmic Sobolev
inequalities, we will prove the following improved bound in Section 4.1 below.

Corollary 4. There exists a universal constant c > 0 such that if a normed space E has Rademacher
type p with constant T , then for any n ∈ N, we have

cE
(
Cn/R

)
>
cT−1

∥∥%Cn/R([ε], [δ])
∥∥
Lp(logL)p/2(Cn×Cn)(∑n

i=1 σn(∂iR)
)1/p . (17)

A different (incomparable) refinement of the lower bound (16) has been obtained by means of
the vector-valued influence inequalities in [?, Section 8]. Similar lower bounds can be obtained
from metric logarithmic Sobolev inequalities in full generality including, for instance, for quotients
of the symmetric group following the result of Theorem 3.

Acknowledgements. We are grateful to Michel Ledoux and Ramon van Handel for valuable
discussions and constructive feedback.

2. Preliminary discussion

2.1. Historical interlude. Before demonstrating the ideas leading to Theorem 1, we digress to
discuss the existing approaches to Lp logarithmic Sobolev inequalities in discrete and continuous
settings. The case p = 2 of inequality (4), which is equivalent to Bonami’s hypercontractive
inequality [?], is quite singular in that it can be proven in many distinct (and simple) ways which
do not extend to other values of p so we shall purposefully not address it separately.

In [?], Ledoux initiated the study of Lp logarithmic Sobolev inequalities by proving the exact
analogue of (4) in Gauss space (Rn,γn), where γn is the standard normal distribution. His work
thus improves upon the dimension-free Lp Poincaré inequality in Gauss space which had previously
been proven by Maurey and Pisier in [?]. Ledoux’s proof relies on the coarea formula and crucially
uses the Gaussian isoperimetric inequality [?, ?]. As Ledoux himself points out, his theorem was
only new in the endpoint case p = 1. For p ∈ (1,∞), the corresponding inequality also follows
by a concatenation of Meyer’s Riesz transform inequalities in Gauss space [?] (see also [?]) and a
delicate result of Bakry and Meyer [?] on the boundedness of operators of the form L−α in Orlicz
spaces, where L is the generator of a hypercontractive semigroup (see also [?]).

Moreover, Ledoux mentions in [?] that his results can be extended to a vector-valued setting (in
the spirit of [?]) but his proof never appeared in print. His approach (see Remark 8) in fact gives a
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bound for Ent(‖f‖2E) which, when combined with (11), yields a Gaussian version of Theorem 1 for
p = 2. In turn, this entropy bound is obtained by applying the scalar logarithmic Sobolev inequality
of [?] to the function ‖f‖E and using the chain rule to differentiate the norm. Overcoming the use
of a chain rule (which does not exist in the discrete setting) is the main novelty of Theorem 1.

Talagrand’s technique yielding (4) on the hypercube is reminiscent of Ledoux’s approach to the
inequality’s Gaussian counterpart. Indeed, the first step of his proof is an intricate induction which
implies an isoperimetric-type inequality [?, Theorem 1.1] for subsets of the discrete hypercube (see
also [?] for a recent refinement). Even though an immediate analogue of the coarea formula does
not exist in discrete spaces, in [?, Section 5] Talagrand uses a discrete layer cake representation
and suitable applications of his discrete isoperimetric inequality to deduce (4). Similarly to the
Gaussian case, a different proof of the Lp logarithmic Sobolev inequality (4) for p ∈ (1,∞) can be
obtained using Lust-Piquard’s dimension-free bounds for the Riesz transform on the hypercube [?].
It is worth emphasizing that the argument leading to (4) only requires a lower bound for the Riesz
transform which holds for every p ∈ (1,∞) as shown in [?, Theorem 1.1], whereas the corresponding
upper bound only holds for p > 2 (see [?, p. 283]). To the best of our knowledge these are the only
two known proofs to the logarithmic Sobolev inequality (4).

We note in passing that a different refinement of the L2 Poincaré inequality is Talagrand’s
influence inequality obtained in [?]. The original proof of the influence inequality relied on Parseval’s
identity for the Fourier–Walsh transform along with a clever layer cake decomposition and a use of
hypercontractivity, whereas a semigroup proof was later obtained in [?]. In [?], which is a precursor
to this work, we investigated vector-valued versions of Talagrand’s influence inequality, obtained
Lp analogues and extensions of it and studied its geometric consequences. Unlike Theorem 1, all
the vector-valued influence inequalities of [?] have either suboptimal assumptions on the target
space (e.g. some of them assume superreflexivity) or suboptimal exponents in the Orlicz spaces.

2.2. About the proof. Unlike the influence inequality which has been successfully generalized
to vector-valued functions, the two available arguments for Talagrand’s inequality (4) appear to
be limited to the scalar-valued case. Indeed, the original proof relying on a discrete isoperimetric
inequality stumbles upon the conceptual problem of understanding how to create a layer cake rep-
resentation for vector-valued functions. On the other hand, finding Banach space-valued extensions
of Lust-Piquard’s Riesz transform inequalities [?, ?] has been a long-standing open problem in har-
monic analysis which appears intractable with current methods (see the discussion in [?, Section 4]).
Nevertheless, an argument inspired by [?, ?] can yield inequalities similar to those of Theorem 1,
alas with a suboptimal Orlicz space on the left-hand side. This is further explained in Section 5.

Surprisingly, our proof of the optimal vector-valued logarithmic Sobolev inequality (7) does not
yield a new approach to the scalar inequality (4) but rather uses it as a black box. The starting
point is the observation that the Orlicz norm on the left-hand side of (7) can be controlled by a sum
of two terms, the first being an entropy-like term which captures the oscillations of ‖f −Ef‖E and
the second being further dominated by the L1 norm of f − Ef . The latter summand can thus be
controlled by the vector-valued L1 Poincaré inequality (6) of [?]. A direct application of Talagrand’s
inequality (4) is insufficient to control the remaining (scalar) Orlicz term by the vector-valued
gradient of f . Instead, we apply an inequality which is a technical step in Talagrand’s proof of (4),
which crucially controls said Orlicz norm by an asymmetric gradient of the norm of f . This finally
allows us to get the desired bound via a differentiation argument, inspired by Ledoux’s approach.

3. Proof of Theorem 1

The proof relies on the scalar Lp logarithmic Sobolev inequality (4) of [?]. In fact, rather than
the inequality itself, we shall use a stronger statement which appeared in Talagrand’s proof and is
a similar inequality with respect to an asymmetric gradient. For a function h : Cn → R, we shall
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consider the asymmetric gradient Mh : Cn → R+ of h that is given by

∀ x ∈ Cn, Mh(x) =

(
n∑

i=1

∂ih(x)2
+

)1/2

, (18)

where a+ = max{a, 0} for a real number a ∈ R. Crucially for his proof of (4), Talagrand proved
the following refined technical result which appears in [?, Proposition 5.1].

Proposition 5 (Talagrand). For every p ∈ [1,∞), there exists κp ∈ (0,∞) such that the following
holds for any n ∈ N. If h : Cn → R+ is a nonnegative function satisfying σn{h = 0} > 1

2 , then

‖h‖Lp(logL)p/2 6 κp
∥∥Mh∥∥

Lp
. (19)

Recall that any function f : Cn → E admits a unique Fourier–Walsh expansion of the form

∀ x ∈ Cn, f(x) =
∑

S⊆{1,...,n}

f̂(S)wS(x), (20)

where the Fourier coefficients f̂(S) ∈ E and the Walsh functions wS : Cn → {−1, 1} are given
by wS(x) =

∏
i∈S xi. By the expansion above, it is clear that any function f : Cn → E on the

hypercube admits a unique multilinear extension on Rn, that is, there exists a unique function
F : Rn → E such that F |Cn = f and F is affine in each variable.

We shall use the following pointwise estimate which is a consequence of convexity.

Lemma 6. Let (E, ‖ · ‖E) be a normed space. Then for any n ∈ N, every function f : Cn → E
satisfies the pointwise estimate

∀ x ∈ Cn, M‖f‖E(x) 6
(∫

Cn

∥∥∥ n∑
i=1

δi∂if(x)
∥∥∥2

E

)1/2
. (21)

Proof. Fix x ∈ Cn. Without loss of generality, we can always assume that E is finite-dimensional
as F takes values in span{F (x) : x ∈ Rn} = span{f(x) : x ∈ Cn} which has dimension at most 2n.
Therefore (by approximation), we can assume that f(x) 6= 0 and that ‖ · ‖E is smooth on E r {0},
that is, for every v ∈ E r {0} there exists D∗v ∈ E∗ with ‖D∗v‖E∗ 6 1 such that if β : (−η,η) → E
is a smooth function for some η > 0 with β(0) = v, then

d

dt

∣∣∣
t=0

∥∥β(t)
∥∥
E

=
〈
D∗v,

d

dt

∣∣∣
t=0
β(t)

〉
. (22)

Fix also i ∈ {1, . . . , n} and let F : Rn → E be the multilinear extension of f . The lemma will be a
consequence of the following two simple technical claims.

Claim. The function φi : R→ R+ given by

∀ s ∈ R, φi(s) =
∥∥F (x+ sei)

∥∥
E

(23)

is convex.

Proof. Indeed, by the multilinear expansion of F , we have

F (x+ sei) =
∑

S⊆{1...,n}:
i/∈S

f̂(S)wS(x) + (xi + s)
∑

S⊆{1...,n}:
i∈S

f̂(S)wSr{i}(x), (24)

which is an affine function in the variable s. Therefore, s 7→ ‖F (x+ sei)‖E is indeed convex. �

Claim. We have the following pointwise estimate

∂i‖f‖E(x)+ 6
∣∣∣∂‖F‖E
∂xi

(x)
∣∣∣. (25)
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Proof. We have assumed that ‖ · ‖E is smooth on E r {0} and f(x) 6= 0 so the right-hand side is
well-defined. We will distinguish two cases and include all the details for completeness.

Case 1. Suppose that xi = 1. Then, we will show that for every h > 0,

∂i‖f‖E(x)+ =

(
‖F (x)‖E − ‖F (x− 2ei)‖E

2

)
+

6

(
‖F (x+ hei)‖E − ‖F (x)‖E

h

)
+

(26)

and the conclusion follows by taking a limit of h→ 0+. Phrased in terms of the function φi of (23),
inequality (26) can be rewritten as

∀ h > 0,

(
φi(0)− φi(−2)

2

)
+

6

(
φi(h)− φi(0)

h

)
+

. (27)

If φi(0) 6 φi(−2), then the inequality holds trivially. On the other hand, if φi(0) > φi(−2), we get
from the convexity of φi that

φi(0) 6
2

2 + h
φi(h) +

h

2 + h
φi(−2), (28)

which can be rewritten as

φi(0)− φi(−2)

2
6
φi(h)− φi(0)

h
6

(
φi(h)− φi(0)

h

)
+

. (29)

Case 2. Suppose that xi = −1. Similarly, we will show that for every h > 0,

∂i‖f‖E(x)+ =

(
‖F (x)‖E − ‖F (x+ 2ei)‖E

2

)
+

6

(
‖F (x− hei)‖E − ‖F (x)‖E

h

)
+

. (30)

As before, we can assume that φi(0) > φi(2) and use convexity in the form of

φi(0) 6
2

2 + h
φi(−h) +

h

2 + h
φi(2), (31)

which can be rewritten as

φi(0)− φi(2)

2
6
φi(−h)− φi(0)

h
6

(
φi(−h)− φi(0)

h

)
+

. �

Combining the proven claim (25) with (22), we get that

M‖f‖E(x)2 =
n∑

i=1

∂i‖f‖E(x)2
+

(25)

6
n∑

i=1

(∂‖F‖E
∂xi

(x)
)2

=

∫

Cn

∣∣∣ n∑
i=1

δi
∂‖F‖E
∂xi

(x)
∣∣∣2 dσn(δ)

(22)
=

∫

Cn

∣∣∣ n∑
i=1

δi

〈
D∗f(x),

∂F

∂xi
(x)
〉∣∣∣2 dσn(δ) =

∫

Cn

∣∣∣〈D∗f(x),
n∑

i=1

δi
∂F

∂xi
(x)
〉∣∣∣2 dσn(δ)

6

∫

Cn

∥∥∥ n∑
i=1

δi
∂F

∂xi
(x)
∥∥∥2

E
dσn(δ).

(32)

Now notice that as x ∈ Cn, the multilinearity of F easily shows that

∂F

∂xi
(x) = xi∂if(x) (33)

and thus we can rewrite the above bound as

M‖f‖E(x)2 6

∫

Cn

∥∥∥ n∑
i=1

xiδi∂if(x)
∥∥∥2

E
dσn(δ) =

∫

Cn

∥∥∥ n∑
i=1

δi∂if(x)
∥∥∥2

E
dσn(δ), (34)

where in the last equality we used that the random vectors δ and (x1δ1, . . . , xnδn) have the same
distribution when δ is distributed according to σn and x ∈ Cn is fixed. �
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Equipped with the above, we can prove Theorem 1.

Proof of Theorem 1. Let f : Cn → E be any function, where E is a space of finite cotype, and
without loss of generality assume that Ef = 0. Moreover, consider the nonnegative function

h
def
= ‖f‖E : Cn → R+ and denote by m > 0 a median of h. Then, the function (h −m)+ satisfies

σn{(h−m)+ = 0} = σn{h 6 m} > 1
2 . Therefore, Proposition 5 yields the estimate∥∥(h−m)+

∥∥
Lp(logL)p/2

6 κp
∥∥M(h−m)+

∥∥
Lp
. (35)

Since m is a median of h, we have

m 6
1

σn{h > m}

∫

{h>m}
h dσn 6 2‖h‖L1 = 2‖f‖L1(E), (36)

and thus combining the above with the inequalities 0 6 h 6 (h−m)+ + m, we get

‖f‖Lp(logL)p/2(E) = ‖h‖Lp(logL)p/2 6
∥∥(h−m)+ + m

∥∥
Lp(logL)p/2

(35)∧(36)

6 κp
∥∥M(h−m)+

∥∥
Lp

+ 2‖f‖L1(E).
(37)

Claim. For any scalar function φ : Cn → R, we have the pointwise estimate

∀ x ∈ Cn, Mφ+(x) 6 Mφ(x). (38)

Proof. Since φ+(x) = max
{
φ(x), 0

}
, it suffices to show that for each x, y ∈ Cn,(

φ+(x)− φ+(y)
)

+
6
(
φ(x)− φ(y)

)
+
. (39)

Denoting by a = φ(x) and b = φ(y), the inequality can be rewritten as (a+ − b+)+ 6 (a − b)+. If
a+ 6 b+ the inequality is trivially true so we will assume that a+ > b+, which implies a > 0. In
this case, if b 6 0, then it amounts to a 6 a− b which holds and if b > 0 it becomes an identity. �

Combining (37) with inequality (38), we thus deduce that

‖f‖Lp(logL)p/2(E) 6 κp
∥∥Mh∥∥

Lp
+ 2‖f‖L1(E), (40)

since M(h −m) ≡ Mh. Moreover, by the L1 Poincaré inequality (6) of Ivanisvili, van Handel and
Volberg [?], the second term can be further upper bounded as

‖f‖L1(E) 6 C1(E)

∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥
L1(E)

dσn(δ) 6 C1(E)

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

, (41)

where we used that E has finite cotype. Finally, to control the first term in (40) we use the pointwise
inequality of Lemma 6 and Kahane’s inequality with sharp constant [?, ?] to obtain the estimate

∥∥Mh∥∥
Lp
6
∥∥∥(∫

Cn

∥∥∥ n∑
i=1

δi∂if(x)
∥∥∥2

E

)1/2∥∥∥
Lp

6
√

2

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

. (42)

This completes the proof of the theorem. �

The same arguments allow us to prove the refined Pisier inequality of Corollary 2.

Proof of Corollary 2. Recall that Pisier’s inequality [?, Lemma 7.3] (see also [?] for the value of the
multiplicative constant) asserts that for any r ∈ [1,∞), every f : Cn → E satisfies

‖f − Ef‖Lr(E) 6 (log n+ 1)

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥r
Lr(E)

dσn(δ)

)1/r

(43)
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Assuming again that Ef = 0, (40) combined with (42) and Pisier’s inequality for r = 1 gives the
desired upper bound in a general normed space. �

Remark 7. The above argument combined with the main result of Ivanisvili, van Handel and
Volberg [?] yields a mutual refinement of (7) and (8) for general Banach space targets. Following
[?], let ξ1(t), . . . , ξn(t) be i.i.d. random variables satisfying

P
{
ξi(t) = 1

}
=

1 + e−t

2
and P

{
ξi(t) = −1

}
=

1− e−t

2
(44)

and denote by δi(t)
def
= ξi(t)−e−t
√

1−e−2t
. In [?, Theorem 1.4], the authors showed the estimate

‖f − Ef‖Lr(E) 6
π

2

∫ ∞

0

(
E
∥∥∥ n∑

i=1

δi(t)∂if
∥∥∥r
Lr(E)

)1/r
dt√
e2t − 1

. (45)

Plugging this bound for r = 1 and (42) in (40) yields the stronger inequality

∥∥f − Ef
∥∥
Lp(logL)p/2(E)

6 κp

(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

+ π

∫ ∞

0

E
∥∥∥ n∑

i=1

δi(t)∂if
∥∥∥
L1(E)

dt√
e2t − 1

.

(46)

Remark 8. A Gaussian version of Theorem 1 was announced in Ledoux’s classical work [?] yet
the proof never appeared in print. In personal communications, Ledoux confirmed to us that his
claim in [?] was the following. For any normed space E and any n ∈ N, every smooth function
f : (Rn,γn)→ E satisfies the inequality

Ent
(
‖f‖2E

)
6 2

∫

Rn

∥∥∥ n∑
i=1

gi∂if
∥∥∥
L2(E)

dγn(g), (47)

where the entropy and L2(E) norm are both with respect to the standard Gaussian measure γn.
To see this, observe that Gross’ logarithmic Sobolev inequality applied to the function ‖f‖E yields

Ent
(
‖f‖2E

)
6 2

n∑
i=1

∥∥∂i‖f‖E∥∥2

L2
= 2

∫

Rn

∥∥∥ n∑
i=1

gi∂i‖f‖E
∥∥∥2

L2

dγn(g). (48)

Arguing as in the proof of Theorem 1, we can assume without loss of generality that ‖·‖E is smooth
on E r {0} and that f(x) 6= 0 almost surely, so that we have ∂i‖f‖E(x) = 〈D∗f(x), ∂if(x)〉 for some

linear functional D∗f(x) in the unit ball of E∗. Therefore,

Ent
(
‖f‖2E

)
6 2

∫∫

Rn×Rn

〈
D∗f(x),

n∑
i=1

gi∂if(x)
〉2

dγ2n(x, g) 6 2

∫

Rn

∥∥∥ n∑
i=1

gi∂if
∥∥∥2

L2(E)
dγn(g). (49)

The elementary inequality (11) (see also Section 4.3) combined with Ledoux’s inequality (47) and
the vector-valued Gaussian Poincaré inequality

∥∥f − Ef
∥∥
L2
6
π

2

(
∫

Rn

∥∥∥ n∑
i=1

gi∂if
∥∥∥2

L2(E)
dγn(g)

)1/2

(50)

of Maurey and Pisier [?, Corollary 2.4] implies the Gaussian version of Theorem 1 for p = 2 and
functions with values in an arbitrary normed space E. An extension of this estimate to all values of
p ∈ [1,∞) follows from the general inequality (46) by standard considerations involving the central
limit theorem, see e.g. [?, Remark 1.3].
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It is worth emphasizing that, as there is no chain rule for the discrete derivatives on the hyper-
cube, the main additional difficulty arising in the proof of Theorem 1 was the need to relate discrete
partial derivatives of ‖f‖E with classical partial derivatives of ‖F‖E . Each i-th partial derivative
turns out to only be controlled by a one-sided inequality on an (n− 1)-dimensional subcube of Cn

depending on i (Lemma 6) yet this is sufficient to bound the full gradient in view of Talagrand’s
asymmetric logarithmic Sobolev inequality (Proposition 5).

4. Self-improvement of Poincaré inequalities

In this Section we formalize the discussion of Section 1.1, where we claimed that metric Poincaré
inequalities for norms can be boosted to logarithmic Sobolev-type inequalities provided that the
corresponding scalar-valued inequality holds. More precisely, we prove the following proposition.

Proposition 9. Let p > 1 and α > 0. Fix a normed space (E, ‖ · ‖E), a probability space (Ω,µ)
and a measure β on Ω× Ω. Suppose that every bounded function f : Ω→ E satisfies∥∥f − Ef

∥∥p
Lp(E)

6

∫∫

Ω×Ω

∥∥f(x)− f(y)
∥∥p
E

dβ(x, y) (51)

and that every scalar bounded function h : Ω→ C satisfies∥∥h− Eh
∥∥p
Lp(logL)α

6 Cp

∫∫

Ω×Ω

∣∣h(x)− h(y)
∣∣p dβ(x, y) (52)

for some C > 0. Then, for every bounded function f : Ω→ E we have∥∥f − Ef
∥∥p
Lp(logL)α(E)

6 2p−1
(
Cp + 1)

∫∫

Ω×Ω

∥∥f(x)− f(y)
∥∥p
E

dβ(x, y). (53)

Proof. Assume that Ef = 0 and denote by h = ‖f‖E . Then, we have

‖f‖pLp(logL)α(E) = ‖h‖pLp(logL)α 6 2p−1
(∥∥h− Eh

∥∥p
Lp(logL)α

+
∣∣Eh∣∣p) (54)

by the triangle inequality for Orlicz norms and Hölder’s inequality (A+B)p 6 2p−1(Ap +Bp). To
control the first summand in (54), we use (52) and get∥∥h− Eh

∥∥p
Lp(logL)α

(52)

6 Cp

∫∫

Ω×Ω

∣∣h(x)− h(y)
∣∣p dβ(x, y)

= Cp

∫∫

Ω×Ω

∣∣‖f(x)‖E − ‖f(y)‖E
∣∣p dβ(x, y) 6 Cp

∫∫

Ω×Ω

∥∥f(x)− f(y)
∥∥p
E

dβ(x, y).

(55)

For the second summand, observe that (51) gives∣∣Eh∣∣p =
∣∣E‖f‖E∣∣p 6 E‖f‖pE

(51)

6

∫∫

Ω×Ω

∥∥f(x)− f(y)
∥∥p
E

dβ(x, y) (56)

and this concludes the proof. �

As an example, combining Proposition 9 with [?, ?, ?], we easily deduce a metric logarithmic
Sobolev inequality on the hypercube under Rademacher type assumptions. The same estimate also
follows directly from (46) but the proof via Proposition 9 is substantially simpler.

Corollary 10. For every p ∈ [1, 2] and every normed space (E, ‖ · ‖E) of Rademacher type p, there
exists τp(E) ∈ (0,∞) such that for any n ∈ N, every f : Cn → E satisfies

∥∥f − Ef
∥∥
Lp(logL)p/2(E)

6 τp(E)

(
n∑

i=1

∥∥∂if∥∥pLp(E)

)1/p

. (57)
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Moreover, τp(E) is proportional to the Rademacher type p constant of E.

4.1. Distortion lower bounds for quotients. Using Corollary 10, we will prove Corollary 4.

Proof of Corollary 4. Let R ⊆ Cn × Cn be an equivalence relation and consider an embedding
f : Cn/R→ E satisfying the bi-Lipschitz condition

∀ [ε], [δ] ∈ Cn/R, σ%Cn/R

(
[ε], [δ]

)
6
∥∥f([ε])− f([δ])∥∥

E
6 σD%Cn/R

(
[ε], [δ]

)
(58)

for some σ > 0 and D > 1. Also, consider the lift F : Cn → E of f given by F (ε) = f([ε]) for
ε ∈ Cn. Then, the lower Lipschitz condition on f , yields∥∥F (ε)− F (δ)

∥∥
Lp(logL)p/2(Cn×Cn;E)

=
∥∥f([ε])− f([δ])∥∥

Lp(logL)p/2(Cn×Cn;E)

(58)

> σ
∥∥%Cn/R

(
[ε], [δ]

)∥∥
Lp(logL)p/2(Cn×Cn)

.
(59)

On the other hand, by the triangle inequality and Corollary 10, we have

∥∥F (ε)− F (δ)
∥∥
Lp(logL)p/2(Cn×Cn;E)

6 2
∥∥F − EF

∥∥
Lp(logL)p/2(E)

6 2τp(E)

(
n∑

i=1

∥∥∂iF∥∥pLp(E)

)1/p

.

Now notice that for each i,∥∥∂iF∥∥pLp(E)
=

1

2p

∫

Cn

∥∥f([ε])− f([(ε1, . . . ,−εi, . . . , εn)]
)∥∥p

E
dσn(ε)

(58)

6 σpDpσn
(
∂iR
)
, (60)

as %Cn/R

(
[ε], [(ε1, . . . ,−εi, . . . , εn)]

)
= 2 if ε ∈ ∂iR and otherwise it is 0. Combining all the above

readily gives the desired lower bound on D. �

4.2. Proof of Theorem 3. Recall that a normed space (E, ‖ · ‖E) has martingale type 2 with
constant M ∈ (0,∞) if for any n ∈ N, any probability space (Ω,F,µ) and any filtration {Fi}ni=0 of
sub-σ-algebras of F, every E-valued martingale {Mi : Ω→ E}ni=0 adapted to {Fi}ni=0 satisfies

∥∥Mn −M0

∥∥2

L2(µ;E)
6M2

n∑
i=1

∥∥Mi −Mi−1

∥∥2

L2(µ;E)
. (61)

The least constant M > 0 for which (61) is satisfied shall be denoted by m2(E).
In [?, Section 6], Khot and Naor proved lower bounds for the bi-Lipschitz distortion of metric

spaces with prescribed length in the sense of Schechtman [?] into normed spaces of given martingale
type. An important example of such a metric space is the Cayley graph of the symmetric group Sn
equipped with generating set Tn consisting of all transpositions, as was proven in influential earlier
work of Maurey [?]. For their proof of the distortion lower bounds, Khot and Naor use a Poincaré
type inequality in such spaces. In the case of the symmetric group, the following inequality can be
extracted from the proof of [?, Theorem 7].

Theorem 11 (Khot–Naor). If (E, ‖ · ‖E) is a Banach space of martingale type 2, then for any
n ∈ N, every function f : Sn → E satisfies∥∥f − Ef

∥∥2

L2(E)
6

2m2(E)2

n− 1

∑
τ∈Tn

∫

Sn

∥∥f(π)− f(τ ◦ π)
∥∥2

E
dνn(π). (62)

To derive the vector-valued logarithmic Sobolev inequality of Theorem 3, we shall also need the
following scalar-valued result of Diaconis and Saloff-Coste [?, Section 4.3].
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Theorem 12 (Diaconis–Saloff-Coste). For any n ∈ N, every function f : Sn → R satisfies

Ent
(
f2
)
6

6 log n

n− 1

∑
τ∈Tn

∫

Sn

∣∣f(π)− f(τ ◦ π)
∣∣2 dνn(π). (63)

Proof of Theorem 3. In view of the inequality (11) (see also the more general Lemma 13) and the
scalar-valued case of inequality (62), Theorem 12 implies that every function f : Sn → R satisfies∥∥f − Ef

∥∥2

L2(logL)
6
C log n

n− 1

∑
τ∈Tn

∫

Sn

∣∣f(π)− f(τ ◦ π)
∣∣2 dνn(π), (64)

where C > 0 is a universal constant. Combining this with the vector-valued inequality of Theorem
11 and the general implication of Proposition 9, we deduce Theorem 3. �

4.3. Orlicz norms and α-entropies. In order to use Proposition 9 in concrete examples (includ-
ing Theorem 3), we needed the elementary estimate (11) relating the L2(logL) norm with entropy.
In this section, we extend this two-sided bound to more general Orlicz norms. If x ∈ (0,∞) and
α > 0, we use the ad hoc notation

logα x = sign(log x)| log x|α, (65)

so that x 7→ logα x is increasing on (0,∞). Finally, for a nonnegative function h : (Ω,µ)→ [0,∞),
and α > 0 we denote its α-entropy by

Entα(h) =

∫

Ω

h logα
( h
∫

Ω
h dµ

)
dµ, (66)

where 0 logα 0 will always be understood to be 0.
We shall need a two-sided estimate for Orlicz norms. The special case p = 2 and α = 1 is implicit

in the work [?, Section 4] of Bobkov and Götze. We have been generous with the dependence of
the constants on the various parameters involved.

Lemma 13. Fix p > 1 and α > 0. If (Ω,µ) is a probability space, (E, ‖ · ‖E) is a normed space
and f : Ω→ E is a measurable function, then we have

c−1
α max

{
‖f‖pLp(E),Entα

(
‖f‖pE

)}
6 ‖f‖pLp(logL)α(E) 6 Cα max

{
‖f‖pLp(E),Entα

(
‖f‖pE

)}
, (67)

where cα = 2(α−1)+
(
1 + (α/e)α

)
+ (α/e)α and

Cα = max
{

logα(e+ 1) + 2(α/e)α, 21/α+e−1
21/α−1

logα
(
e+ 21/α+e−1

21/α−1

)}
+ 2. (68)

Proof. Since all quantities involved depend only on ‖f‖E , we can assume without loss of generality
that f is scalar-valued and nonnegative. We start by proving the inequality on the left. Assume
that ‖f‖pLp(logL)α 6 1, that is,

∫

Ω

fp logα(e+ fp) dµ 6 1. (69)

The inequality log(e+ x) > 1 for x > 0 implies that
∫

Ω
fp dµ 6 1. To control the term Entα(fp),

observe that if A =
{
fp >
∫

Ω
fp dµ

}
, we have

Entα(fp) 6

∫

A

fp
(

log fp − log

∫

Ω

fp dµ
)α

dµ. (70)

We will break this integral in two parts. First, notice that
∫

A∩{f61}
fp
(

log fp − log

∫

Ω

fp dµ
)α

dµ 6
(∫

Ω

fp dµ
)(
− log

∫

Ω

fp dµ
)α
6
(α
e

)α
, (71)
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as x logα(1/x) 6
(
α/e

)α
for x ∈ (0, 1). For the remaining integral we write

∫

{f>1}
fp
(

log fp − log

∫

Ω

fp dµ
)α

dµ

6 2(α−1)+

∫

Ω

fp
(

logα fp − logα
(∫

Ω

fp dµ
))

dµ 6 2(α−1)+
(
1 + (α/e)α

)
,

(72)

where γ+ = max{γ, 0} and we used the inequality (A + B)α 6 2(α−1)+(Aα + Bα) which holds for
every A,B > 0. This proves the leftmost inequality of (67).

For the inequality on the right, assume that

max
{
‖f‖pLp

,Entα
(
fp
)}
6 1. (73)

Then, since
∫

Ω
fp dµ 6 1, the monotonicity of x 7→ logα x on (0,∞) gives

∫

Ω

fp logα fp dµ 6

∫

Ω

fp logα
( fp
∫

fp dµ

)
dµ = Entα

(
fp
)
6 1. (74)

At this point we shall use the elementary inequality

y logα(e+ y) 6 max
{

logα(e+ 1) + 2(α/e)α, 21/α+e−1
21/α−1

logα
(
e+ 21/α+e−1

21/α−1

)}
︸ ︷︷ ︸

Kα

+2y logα y (75)

which is valid for all y > 0. Indeed, assuming (75), we have

∫

Ω

fp logα(e+ fp) dµ
(75)

6 Kα + 2

∫

Ω

fp logα fp dµ
(74)

6 Kα + 2 (76)

and therefore
∫

Ω

fp

Kα + 2
logα

(
e+

fp

Kα + 2

)
dµ 6

1

Kα + 2

∫

Ω

fp logα(e+ fp) dµ 6 1. (77)

This implies that ‖f‖Lp(logL)α 6 (Kα + 2)1/p which is the desired estimate.
To prove the elementary inequality (75) we consider several cases. If 0 < y < 1,

y logα(e+ y) + 2y logα(1/y) 6 logα(e+ 1) + 2(α/e)α (78)

since the first summand is increasing and the second is bounded by 2(α/e)α. One the other hand,

if y > 21/α+e−1
21/α−1

and we denote by β = 21/α > 1, then we have

2 logα y = logα yβ > logα
(
β(y − 1) + 1

)
> logα(y + e) (79)

and thus (75) holds without the term Kα. Finally, if 1 < y < 21/α+e−1
21/α−1

, then we just use that

y logα(e+ y) 6
21/α + e− 1

21/α − 1
logα

(
e+

21/α + e− 1

21/α − 1

)
(80)

and (75) holds without the term 2y logα y. This completes the proof of the lemma. �
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5. Further remarks

5.1. Limitations of semigroup methods. We include here, mainly for pedagogical reasons, an
argument inspired by [?, ?] which leads to versions of Theorem 1 with a suboptimal Orlicz space
on the left-hand side. This material was obtained jointly with Ramon van Handel, whom we thank
for allowing us to include it here. We shall need the following technical result which is due to [?,
Lemma 44 and Remark 48]. Observe that the case p = 2 can be proven easily by an expansion in
the Walsh basis and Parseval’s identity.

Lemma 14. For every p ∈ (1,∞], there exists Ap ∈ (0,∞) such that for any n ∈ N, every function
h : Cn → C satisfies

∀ t > 0,
∥∥∇Pth

∥∥
Lp
6

Ap(
ep∗t − 1

)1/p∗ ‖h‖Lp , (81)

where p∗ = min{p, 2}.

By Talagrand’s logarithmic Sobolev inequality [?] and interpolation, we deduce the following
Orlicz space version of hypercontractivity.

Lemma 15. For every p ∈ (1,∞), there exists Lp ∈ (0,∞) such that the following holds. For any
normed space (E, ‖ · ‖E), any α ∈ [0, p/2] and any n ∈ N, every function f : Cn → E satisfies

∀ t ∈ (0, 1),
∥∥Ptf

∥∥
Lp(logL)α(E)

6
Lp

t2α/pp∗
‖f‖Lp(E), (82)

where p∗ = min{p, 2}.

Proof. The desired inequality is obvious for α = 0 since Pt is a contraction. Therefore, the general
claim would follow from the endpoint case α = p/2 by complex interpolation of Lp(logL)α Orlicz
spaces (which appears explicitly, e.g., in [?]). As Pt has a positive kernel, Jensen’s inequality implies
the pointwise bound ‖Ptf‖E 6 Pth, where h = ‖f‖E and thus we have∥∥Ptf

∥∥
Lp(logL)p/2(E)

6
∥∥Pth

∥∥
Lp(logL)p/2

6
∥∥Pth− Eh

∥∥
Lp(logL)p/2

+ Eh. (83)

As EPth = Eh, Talagrand’s inequality (4) gives∥∥Pth− Eh
∥∥
Lp(logL)p/2

(4)

6 Cp

∥∥∇Pth
∥∥
Lp

(81)

6
CpAp(

ep∗t − 1
)1/p∗ ‖f‖Lp(E). (84)

The proof follows by combining the above since additionally Eh = ‖f‖L1(E) 6 ‖f‖Lp(E). �

Equipped with these lemmas, we can now try to prove Theorem 1 by the methods of [?, ?].

Attempted proof of Theorem 1. Consider a function f : Cn → E and without loss of generality
assume that Ef = 0. Then,

‖f‖Lp(logL)α(E) = 2
∥∥∥∫ ∞

0

Pt∆Ptf dt
∥∥∥
Lp(logL)α(E)

6 2

∫ ∞

0

∥∥Pt∆Ptf
∥∥
Lp(logL)α(E)

dt

(82)

6 L̃p

∫ ∞

0

∥∥∆Ptf
∥∥
Lp(E)

max
{
t−2α/pp∗ , 1

}
dt.

(85)

The last estimate follows by combining (82) for t ∈ (0, 1) and the usual hypercontractive inequality

∀ t > 1,
∥∥Pt∆Ptf

∥∥
Lp(logL)α(E)

6 Kp,α

∥∥Pt∆Ptf
∥∥
L1+e2t(p−1)(E)

6 Kp,α

∥∥∆Ptf
∥∥
Lp(E)

, (86)
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where in the first inequality we used a bound between Orlicz norms which is valid for every function.
By the main technical bound of [?] as expressed in [?, Proposition 18], we deduce that

‖f‖Lp(logL)α(E) 6 L̃p

∫ ∞

0

(
E
∥∥∥ n∑

i=1

δi(t)∂if
∥∥∥p
Lp(E)

)1/p

max
{
t−2α/pp∗ , 1

} dt√
e2t − 1

, (87)

where the random variables δi(t) are defined in Remark 7. Assuming that the space has cotype
q ∈ [2,∞), it was shown in [?, Section 4] that(

E
∥∥∥ n∑

i=1

δi(t)∂if
∥∥∥p
Lp(E)

)1/p

6 Cp,qt
1

max{p,q}−
1
2

(
E
∥∥∥ n∑

i=1

δi∂if
∥∥∥p
Lp(E)

)1/p

(88)

and combining the above we finally get the estimate

‖f‖Lp(logL)α(E) 6 L̃pCp,q

(
∫ ∞

0

t
1

max{p,q}−
1
2 max

{
t−2α/pp∗ , 1

} dt√
e2t − 1

)(
E
∥∥∥ n∑

i=1

δi∂if
∥∥∥p
Lp(E)

)1/p

.

Observe however that this integral converges if and only if α < pp∗

2 max{p,q} 6
p
2 . Therefore, this

approach cannot recover the optimal Orlicz space attained in Theorem 1. �

5.2. Reductions for vector-valued influence inequalities. Conversely, the arguments used in
this paper may shed light to some of the questions left open in [?]. As a matter of fact, they readily
lead to two potentially useful reductions.

• In [?, Theorem 6] it was shown that when E is a Banach space of Rademacher type 2, then for
any ε ∈ (0, 1), we have the inequality∥∥f − Ef

∥∥2

L2(E)
6

C(E)

ε

n∑
i=1

∥∥∂if∥∥2

L2(logL)−1+ε(E)
(89)

and it remains unknown whether one is allowed to take ε = 0 as in the scalar case treated in [?]
without additional assumptions on the space E. Assuming as usual that Ef = 0 and denoting
h = ‖f‖E , we can first use the triangle inequality

‖f‖2L2(E) = ‖h‖2L2
6 2
(
‖h− Eh‖2L2

+ |Eh|2
)
. (90)

Then, we observe that by Talagrand’s scalar influence inequality the first summand satisfies

‖h− Eh‖2L2
6 C

n∑
i=1

∥∥∂ih∥∥2

L2(logL)−1 6 C
n∑

i=1

∥∥∂if∥∥2

L2(logL)−1(E)
, (91)

where in the last inequality we used the pointwise bound |∂ih| 6 ‖∂if‖E . Therefore, in order to
prove (89) with ε = 0 it is both necessary and sufficient to prove the strictly weaker estimate∥∥f − Ef

∥∥2

L1(E)
6 C(E)

n∑
i=1

∥∥∂if∥∥2

L2(logL)−1(E)
(92)

since the left-hand side is just |Eh|2.

• In [?] we also investigated the so-called L1 − Lp inequalities which are morally dual estimates to
Talagrand’s inequality (4). In the case of scalar-valued functions, [?, Theorem 33] asserts that for
any p ∈ (1,∞) there exists Cp > 0 such that every f : Cn → C satisfies∥∥f − Ef

∥∥
Lp
6 Cp

∥∥∇f∥∥
Lp(logL)−p/2 . (93)

Moreover, a semigroup argument similar to that of Section 5.1 proved an analogue of (93) with a
suboptimal Orlicz space on the right-hand side for functions with values in normed spaces of finite
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cotype, see [?, Theorem 29]. An inspection of the proof of Theorem 1 reveals that if one could
show a strengthening of (93) for real-valued functions with the asymmetric gradient Mf on the
right-hand side, this would also sharpen the vector-valued results of [?].

5.3. Beckner inequalities. In [?], Beckner put forth a family of functional inequalities in Gauss
space interpolating between the Poincaré and logarithmic Sobolev inequalities. More specifically,
he proved that for any n ∈ N and q ∈ [1, 2], every function f : Rn → R satisfies

‖f‖2L2
− ‖f‖2Lq

6 (2− q)
∥∥∇f∥∥2

L2
. (94)

Observe that dividing both sides by 2 − q and taking a limit as q → 2−, one recovers Gross’
logarithmic Sobolev inequality [?]. In fact, Beckner-type inequalities are equivalent (up to the value
of the constants) to logarithmic Sobolev inequalities. Indeed, the convexity of r 7→ log ‖f‖L1/r

for

r ∈ (0, 1] implies that the quantity

1
1
q −

1
2

(
‖f‖2L2

− ‖f‖2Lq

)
(95)

is increasing in q ∈ [1, 2). Combining this observation with Theorem 1, we deduce the following.

Corollary 16. Let (E, ‖ · ‖E) be a Banach space of finite cotype. There exists a constant B(E) ∈
(0,∞) such that for any n ∈ N and q ∈ [1, 2], every function f : Cn → E with Ef = 0 satisfies∥∥f∥∥2

L2(E)
−
∥∥f∥∥2

Lq(E)
6 B(E)(2− q)

∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥2

L2(E)
dσn(δ). (96)

One can obtain similar results in Gauss space or the symmetric group, using Theorem 3.

5.4. Functional isoperimetric-type inequalities. Talagrand’s isoperimetric inequality from [?]
asserts that any Boolean function f : {−1, 1}n → {−1, 1} satisfies

‖∇f‖L2 > cVar(f)
√

log
(
1/Var(f)

)
, (97)

where c > 0 is a universal constant. In the recent work [?], Beltran, Ivanisvili and Madrid put forth
some extensions of (97) for functions with values in spaces of finite cotype. Their proofs build on
the method of [?] and, similarly to the results of Section 5.1, the cotype of the target space appears
as an exponent in some of their estimates. We present here a result in this spirit which is a direct
consequence of Theorem 1 (observe also the analogy with the influence inequality [?, ?]).

Proposition 17. Let (E, ‖ · ‖E) be a Banach space of finite cotype and p ∈ [1,∞). There exists a
constant ηp(E) ∈ (0,∞) such that for any n ∈ N, every function f : Cn → E with Ef = 0 satisfies(
∫

Cn

∥∥∥ n∑
i=1

δi∂if
∥∥∥p
Lp(E)

dσn(δ)

)1/p

> ηp(E) · ‖f‖Lp(E)

(
1 +

√
log
(
‖f‖Lp(E)/‖f‖L1(E)

))
. (98)

Proof. In view of Theorem 1 it suffices to show that ‖f‖Lp(logL)p/2(E) is bounded below by the

right-hand side of (98). The more general estimate

‖f‖Lp(logL)α(E) > cp,α‖f‖Lp(E)

(
1 + logα/p

(
‖f‖Lp(E)/‖f‖L1(E)

))
(99)

follows by concatenating [?, Lemma 17] with the Hölder inequality

‖FG‖Lp/2
6 Cα‖F‖Lp(logL)α‖G‖Lp(logL)−α (100)

for Orlicz spaces. As we were unable to locate a reference for (100), we mention that it follows
immediately from the two-point inequality

(xy)p/2 6 Cα
2

(
xp logα(e+ xp) + yp log−α(e+ yp)

)
, (101)
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which is valid for every x, y > 0 and some fixed constant Cα > 0. �
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