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Abstract. We prove a general duality result showing that a Brascamp–Lieb type
inequality is equivalent to an inequality expressing subadditivity of the entropy, with
a complete correspondence of best constants and cases of equality. This opens a new
approach to the proof of Brascamp–Lieb type inequalities, via subadditivity of the
entropy. We illustrate the utility of this approach by proving a general inequality
expressing the subadditivity property of the entropy on Rn, and fully determining
the cases of equality. As a consequence of the duality mentioned above, we obtain
a simple new proof of the classical Brascamp–Lieb inequality, and also a fully ex-
plicit determination of all of the cases of equality. We also deduce several other
consequences of the general subadditivity inequality, including a generalization of
Hadamard’s inequality for determinants. Finally, we also prove a second duality
theorem relating superadditivity of the Fisher information and a sharp convolution
type inequality for the fundamental eigenvalues of Schrödinger operators. Though
we focus mainly on the case of random variables in Rn in this paper, we discuss
extensions to other settings as well.

1 Introduction

Let (Ω,S, µ) be a measure space, and let f be a probability density on (Ω,S, µ).
That is, f is a non-negative integrable function on Ω with

∫
Ω fdµ = 1. On the

convex subset of probability densities{
f :

∫
Ω

f ln(1 + f) dµ < ∞
}

, (1.1)

the entropy of f , S(f), is defined by

S(f) =
∫

Ω
f(x) ln f(x)dµ(x) .

With this sign convention for the entropy, the inequalities we derive are of super-
additive type; however, the terminology “subadditivity of the entropy” is too well
entrenched to use anything else.

Now let p : Ω → R be measurable. Let ν be a Borel measure on R, and define
f(p) to be the probability density on (R,B, ν) such that for all bounded continuous
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functions φ on R, ∫
Ω

φ(p(x))f(x) dµ(x) =
∫

R

φ(t)f(p)(t) dν(t) . (1.2)

In other words, the measure f(p) dν is the “push-forward” of the measure f dµ
under p:

p#(f dµ) = f(p) dν .

The entropy of S(f(p)) is defined just as S(f) was, except with (R,B, ν) replacing
(Ω,S, µ). We shall be concerned with the following two questions:

(1) Given m measurable functions p1, . . . , pm on Ω, and m non-negative numbers
c1, . . . , cm, is there a finite constant D such that

m∑
j=1

cjS(f(pj)) ≤ S(f) + D (1.3)

for all probability densities f with finite entropy (i.e. satisfying (1.1))?
(2) Given m measurable functions p1, . . . , pm on Ω, and m non-negative numbers

c1, . . . , cm, is there a finite constant D such that∫
Ω

m∏
j=1

fj

(
pj(x)

)
dµ(x) ≤ eD

m∏
j=1

( ∫
R

f
1/cj

j (t) dν(t)
)cj

(1.4)

for any m non-negative functions f1, . . . , fm on R?
For example, consider the case that Ω = Rn with its standard Euclidean struc-

ture, and µ is Lebesgue measure on Rn, while ν is Lebesgue measure on R. Suppose
that a1, . . . , am are m vectors that span Rn, and define

pj(x) = aj · x .

In this case, if we let X denote a random vector with values in Rn whose law has
the density f , then f(pj) is simply the density of the law of aj · X. If we define the
entropy of a random variable to be the entropy of its density, provided it has one,
we can rewrite this Euclidean version of (1.3) as

m∑
j=1

cjS(aj · X) ≤ S(X) + D .

In case m = n, cj = 1 for all j, and {a1, . . . , an} is an orthonormal basis of Rn, then
this inequality holds with D = 0, and is the classical subadditivity of the entropy
inequality.

It is even easier to recognize (1.4) as a classical result in this setting: It becomes∫
R

n

m∏
j=1

fj(aj · x) dµ(x) ≤ eD
m∏

j=1

( ∫
R

f
1/cj

j (t) dt

)cj

,

which is the classical Brascamp–Lieb inequality. A celebrated theorem of Brascamp
and Lieb [BrL] says that the best constant eD in this inequality can be computed
by using only centered Gaussian functions as trial functions. A new proof based on
optimal mass transport was given by Barthe [Ba] who also gave a characterization
(depending on the vectors aj and the constants cj) of when the constant is finite
together with a description of the optimizers in some situations. Carlen, Lieb and
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Loss [CLL1] introduced a new approach to the Brascamp–Lieb inequalities based on
heat flow (see also [BaC]). These authors also completed the gaps left by Barthe in
the description of the optimizers. Bennett, Carbery, Christ and Tao [BeCCT1] used
a similar approach to deal with the multi-dimensional versions of the Brascamp–
Lieb inequality (see also [BeCCT2] for a direct approach to the finiteness of the
constant eD). The paper [CLL1] (and [BeCCT1] in the multi-dimensional setting)
develops a “splitting procedure” that will prove useful in our situation too. But we
shall see that working with entropy clarifies many technical points.

There are a number of other examples, besides the classical one in the Euclidean
setting, where choices of (Ω, µ) and ν lead to inequalities of interest. For a second
example, take Ω = Sn−1, the unit sphere in Rn, and let µ be the uniform probability
measure on Sn−1. Then take ν to be the probability measure on R that is the law
of u · x, where u is any unit vector in Rn, so that for all continuous functions φ,∫

Sn−1

φ(u · x) dµ(x) =
∫

R

φ(t) dν(t) .

(By the rotational invariance of µ, this does not depend on the choice of u.) Now
let {e1, . . . , en} denote the standard orthonormal basis in Rn, and define pj(x) on
Sn−1 by pj(x) = ej · x. Then one has the optimal inequalities

n∑
j=1

1
2
S(f(pj)) ≤ S(f) , (1.5)

for any probability density f on (Ω, µ) with finite entropy, and∫
Sn−1

n∏
j=1

fj(ej · x) dµ(x) ≤
n∏

j=1

( ∫
Sn−1

f2
j (ej · x) dµ(x)

)1/2

=
n∏

j=1

( ∫
[−1,1]

f2
j (t) dν(t)

)1/2

, (1.6)

for any n non-negative functions f1, . . . , fn on [−1, 1]. See [CLL1] for the original
proofs of (1.5) and (1.6), in which (1.5) was deduced from (1.6). See [BaCM] for a
different and direct proof of (1.5).

Since we are concerned in this paper with the relation between subadditivity
of entropy and Brascamp–Lieb type inequalities, it is worth recalling the short ar-
gument from [CLL1] that provided the passage from (1.6) to (1.5): Let f be any
probability density on Sn−1, and let f(p1), f(p2), . . . , f(pn) be its n marginals, as above.

Then define another probability density g on Sn−1 by

g(x) :=
1
C

n∏
j=1

f
1/2
(pj)

(ej · x) where C :=
∫

Sn−1

n∏
j=1

f
1/2
(pj)

(ej · x) dµ(x) .

Then by positivity of the relative entropy (Jensen’s inequality), we have

0 ≤
∫

Sn−1

ln
(

f

g

)
f dµ = S(f)−

∫
Sn−1

( n∑
j=1

ln f
1/2
(pj)

(ej · x)
)
f(x) dµ(x)+ lnC

= S(f) − 1
2

∫
R

( n∑
j=1

f(pj) ln f(pj)

)
dν + lnC



376 E.A. CARLEN AND D. CORDERO–ERAUSQUIN GAFA 

= S(f) − 1
2

n∑
j=1

S
(
f(pj)

)
+ lnC . (1.7)

Finally, (1.6) implies that

C =
∫

Sn−1

n∏
j=1

f
1/2
(pj)

(ej · x) dµ(x) ≤
n∏

j=1

( ∫
Sn−1

f(pj)(ej · x) dµ(x)
)1/2

= 1

since each f(pj) is a probability density. Thus, ln(C) ≤ 0, so that (1.6) now fol-
lows from (1.7). This argument may give the impression that (1.6) is a “stronger”
inequality than (1.5), but as we shall see, this is not the case.

For a third example, take Ω = Sn, the symmetric group on n letters. Let µ be
the uniform probability measure on Sn, and take ν to be the uniform probability
measure on {1, 2, . . . , n}, so ν(i) = 1/n for all i. Define the functions pj : Ω →
{1, 2, . . . , n} ⊂ R by pj(σ) = σ(j) for any permutation σ of {1, 2, . . . , n} Then one
has the optimal inequalities

n∑
j=1

1
2
S

(
f(pj)

) ≤ S(f) , (1.8)

for any probability density f on (Ω, µ), and∫
Sn

n∏
j=1

fj

(
pj(σ)

)
dµ(σ) ≤

n∏
j=1

( ∫
Sn

f2
j (pj(σ)) dµ(σ)

)1/2

=
n∏

j=1

( n∑
i=1

f2
j (i)ν(i)

)1/2

, (1.9)

for any n non-negative functions f1, . . . , fn on {1, . . . , n}. See [CLL2] for the proof
of (1.9). One could then derive (1.8) using the exact same argument that was used
to derive (1.5) from (1.6).

There are more examples of interesting specializations of (1.3) and (1.4). How-
ever, these examples suffice to illustrate the context in which the present work is
set, and we now turn to the results. One basic result of this paper is the following:

The two questions concerning (1.3) and (1.4) that were raised above are in fact
one and the same: We shall prove here that the answer to one question is “yes” if
and only if the answer to the other question is “yes” – with the same constant D,
and with a complete correspondence of cases of equality.

Thus, if one’s goal is to prove a generalized Brascamp–Lieb type inequality,
one possible route is to directly prove the corresponding generalized subadditivity
of the entropy inequality. We shall demonstrate the utility of this approach by
giving a simple proof of the classical Brascamp–Lieb inequality on Rn, including a
determination of all of the cases of equality, through a direct analysis of the entropy.
We shall use rather elementary properties of the entropy (scaling properties and
conditional entropy) together with geometric properties of the Fisher information.
Moreover, the generalized subadditivity of the entropy inequality that we prove here
is new (in its full generality), and is interesting in and of itself. As we shall see, it
turns out to have a rich geometric structure. From the point of view of information
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theory, it might also be of interest to use the converse implication and to reinterpret
some Brascamp–Lieb inequalities (such as the sharp Young’s convolution inequality)
in terms of subadditivity inequalities for the entropy.

The rest of the paper is organized as follows. In section 2, we give the proof
that (1.3) and (1.4) are dual to one another, so that once one has one inequality
established with the cases of equality determined, one has the same for the other.
We shall state this duality in a very general setting.

In section 3, we prove the sharp version of the general Euclidean subadditivity
of the entropy inequality.

In section 4 we shall deduce some interesting consequences from this, including
a generalization of Hadamard’s inequality for the determinant.

The final section 5 gives another duality result showing that the superadditivity
inequalities for Fisher information are dual to certain convolution type inequalities
of ground state eigenvalues of Schrödinger operators. These inequalities appear to
be new. They may be of some intrinsic interest, but our interest in them here
is that a direct proof of the eigenvalue inequalities would yield a direct proof of
Fisher information inequalities that would in turn yield entropy and Brascamp–Lieb
inequalities.

2 Duality of the Brascamp–Lieb Inequality and Subadditivity of
the Entropy

We show that the Brascamp–Lieb inequality is dual to the subadditivity of the
entropy, so that once one has proved one of these inequalities with sharp constants,
one has the other with sharp constants too. In fact, we shall see that there is an
exact correspondence also for cases of equality, but in the next theorem, we focus
on the constants.

We shall state the result in a more general setting than the one described in
the introduction. We consider a reference measure space (Ω,S, µ) and a family
of measure spaces (Mj ,Mj , νj) together with measurable functions pj : Ω → Mj ,
j ≤ m. For a probability density f on Ω (with respect to µ), the marginal f(pj) is
thus defined as the probability density on Mj (with respect to νj) such that∫

Ω
φ
(
pj(x)

)
f(x) dµ(x) =

∫
Mj

φ(t)f(pj)(t) dνj(t) . (2.1)

for all bounded measurable functions φ on Mj ; accordingly the entropies are given
by

S(f) =
∫

Ω
f ln(f)dµ and S

(
f(pj)

)
=

∫
Mj

f(pj) ln
(
f(pj)

)
dνj .

As explained in the introduction, we are mainly interested in the case (Mj ,Mj , νj) =
(R,B, ν) for all j ≤ m, where ν is the Lebesgue measure on R.
Theorem 2.1. Let (Ω,S, µ) be a measure space, m ≥ 1 and for j ≤ m, let
(Mj ,Mj , νj) be a measure space together with a measurable function pj from Ω to
Mj . For any probability density f on Ω, let f(pj) the probability density on Mj be
defined as in (2.1). Finally, let {c1, . . . , cm} be any set of m non-negative numbers.
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Then for any D ∈ R, the following two assertions are equivalent:

1. For any m non-negative functions fj : Mj → R+, j ≤ m, we have∫
Ω

m∏
j=1

fj

(
pj(x)

)
dµ(x) ≤ eD

m∏
j=1

( ∫
Mj

f
1/cj

j (t) dνj(t)
)cj

. (2.2)

2. For every probability density f on (Ω,S, µ) with finite entropy, we have
m∑

j=1

cjS
(
f(pj)

) ≤ S(f) + D . (2.3)

The proof depends an a well-known expression for the entropy as a Legendre
transform: For any probability density f in Ω, and any function φ such that eφ is
integrable, ∫

Ω
f ln

(
eφ

f

)
dµ =

∫
Ω

fφ dµ −
∫

Ω
f ln f dµ .

On the other hand, by Jensen’s inequality,

ln
( ∫

Ω
eφ dµ

)
≥

∫
Ω

f ln
(

eφ

f

)
dµ .

Therefore, ∫
Ω

f ln f dµ + ln
( ∫

Ω
eφ dµ

)
≥

∫
Ω

fφ dµ , (2.4)

and there is equality if and only if eφ is a constant multiple of f on the support
of f . We shall use that this Legendre duality nicely combines with the operation of
taking marginals.
Proof of Theorem 2.1. First, assume (2.2). Consider any probability density f
on Ω, and any m functions φj on Mj , j ≤ m. Using (2.4) with φ defined on Ω by

φ(x) :=
m∑

j=1

cjφj

(
pj(x)

)
(2.5)

and (2.1) we get∫
Ω

f(x) ln f(x) dµ ≥
∫

Ω
f(x)

( m∑
j=1

cjφj

(
pj(x)

))
dµ−ln

( ∫
Ω

m∏
j=1

ecjφj(pj(x)) dµ(x)
)

=
m∑

j=1

cj

∫
Mj

f(pj)(t)φj(t) dνj(t) − ln
( ∫

Ω

m∏
j=1

ecjφj(pj(x)) dµ(x)
)

. (2.6)

Then from the assumption (2.2) applied with fj = eφj ,∫
Ω

m∏
j=1

ecjφj(pj(x)) dµ(x) ≤ eD
n∏

j=1

( ∫
Mj

eφj(t) dνj(t)
)cj

.

Therefore, (2.6) becomes∫
Ω

f(x) ln f(x) dµ(x)

≥
m∑

j=1

cj

( ∫
Mj

f(pj)(t)φj(t) dνj(t) − ln
( ∫

Mj

eφj(t) dνj(t)
))

− D . (2.7)
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Now the optimal choice φj = ln f(pj) leads to (2.3).
Conversely, suppose that (2.3) is true. Consider m functions φj on Mj , j ≤ m,

and define φ on Ω as in (2.5). Suppose that eφ is integrable, and choose f to be the
probability density

f(x) =
( ∫

Ω
eφ(x) dµ(x)

)−1

eφ(x), (2.8)

so that there is equality in (2.4). Then we have from (2.4) that

ln
( ∫

Ω

m∏
j=1

ecjφj(pj(x)) dµ(x)
)

=
∫

Ω
f(x)

( n∑
j=1

cjφj(pj(x))
)

dµ(x) −
∫

Ω
f(x) ln f(x) dµ(x)

=
m∑

j=1

cj

∫
Mj

f(pj)(t)φj(t) dνj(t) −
∫

Ω
f(x) ln f(x) dµ(x) . (2.9)

On the other hand, (2.3) reads as∫
Ω

f(x) ln f(x) dµ(x) ≥
n∑

j=1

cj

∫
Mj

f(pj)(t) ln f(pj)(t) dνj(t) − D , (2.10)

and so (2.9), and then (2.4) applied on (Mj , νj) with the probability density f(pj)
and the function φj for each j ≤ m, imply

ln
( ∫

Ω

m∏
j=1

ecjφj(pj(x)) dµ

)

≤
m∑

j=1

cj

( ∫
Mj

f(pj)(t)φj(t) dνj(t)−
∫

Mj

f(pj)(t) ln f(pj)(t) dνj(t)
)

+ D

≤
m∑

j=1

cj ln
( ∫

Mj

eφj(t) dνj(t)
)

+ D . (2.11)

Exponentiating both sides, we obtain (2.2). �
We next examine the relation between cases of equality in the two inequalities.

Theorem 2.2. Using the notation of the previous theorem, suppose that f is
a probability density on Ω for which equality holds in the subadditivity inequality
(2.3). Then the marginals f(p1), f(p2), . . . , f(pm) of f yield equality in the Brascamp–
Lieb inequality (2.2), and moreover, f and its marginals satisfy

f = e−D
m∏

j=1

(
f(pj)(pj(x))

)cj . (2.12)

Conversely, suppose that f1, . . . , fm are m probability densities (on Mj with re-
spect to νj for j = 1, . . . ,m, respectively) for which equality holds in the Brascamp–
Lieb inequality (2.2). Then the probability density f defined on Ω by

f(x) := e−D
n∏

j=1

(
fj(pj(x))

)cj
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yields equality in the subadditivity inequality (2.3) and moreover fj is the jth
marginal of f ; i.e. fj = f(pj) for j ≤ m .

Proof. Suppose that for some probability density f ,
∑m

i=1 ciS(f(pi)) − S(f) = D.
Then with this f , we must have equality in the first inequality in (2.6), which comes
from (2.4). By what we have said about the cases of equality in (2.4), this means
that φ, defined in (2.5) is a constant multiple of ln f . Moreover, to get equality in
(2.7), we were forced to choose φj = ln(f(pj)). This ensures that (2.12) is true.

Furthermore, to get equality in our intermediate application of the Brascamp–
Lieb inequality, we must have that {f(p1), . . . , f(pn)} is a set of extremals for the
Brascamp–Lieb inequality.

The other assertion follows in the same way. �

By what we have just established, one could try to prove the classical Brascamp–
Lieb inequality by first proving a general subadditivity of the entropy inequality for
random variables in Rn. We do this in the next section, and shall see that the de-
termination of all of the cases of equality is particularly transparent via this route.
While the Brascamp–Lieb inequality and subadditivity inequality are equivalent,
there is an extra richness to the investigation of the cases of equality in the subad-
ditivity inequality, as this involves statistical independence in a crucial way. Some
hint of this can be seen in the following simple example, which sets the stage for the
next section:

Let m = n, cj = 1 for all j, and {a1, . . . , an} be an orthonormal basis of Rn. Take
all reference measures to be Lebesgue measure. Then the Brascamp-Lieb inequality
reduces to an equality, by Fubini’s theorem, with D = 0, and any set of non-negative
integrable functions {f1, . . . , fn} provides a case of equality.

On the other hand the dual inequality, is the classical subadditivity of the entropy
inequality

m∑
i=1

S(X · ai) ≤ S(X) ,

and equality occurs exactly when the coordinates {X · a1, . . . , X · an} form a set of
independent random variables.

In this example, it may appear that the entropy inequality is the more compli-
cated of the two inequalities. However, the fact that statistical independence enters
the picture on the entropy side is quite helpful: We will make much use of simple
entropy inequalities that are saturated only for independent random variables in our
investigation of the cases of equality in the next section.

3 The General Subadditivity of the Entropy Inequality in Rn

Let Rn be equipped with its standard Euclidean structure. Let X denote a random
vector (or variable if n = 1) with values in Rn, and suppose that X has a density f .
We denote this correspondence between the random variable X and its density f by
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writing X ∼ f and set

S(X) = S(f) =
∫

R
n

f(x) ln f(x) dnx .

Thus, in this section, we are specializing the general context of the introduction
to the case in which Ω is Rn, and µ is Lebesgue measure. We shall also take ν to
be Lebesgue measure on R.

Given a non-zero vector a on Rn, identify a with the linear functional a(x) = a·x.
Then, if f ∼ X is a probability density on Rn, f(a), as defined by (1.2), is the density
of a · X, that is f(a) ∼ a · X, and

S(X · a) = S(f(a)) =
∫

R

f(a)(t) ln f(a)(t) dt .

Note that (1.2) specializes to the requirement that for every bounded and continuous
φ : R → R, ∫

R
n

φ(x · a)f(x) dnx =
∫

R

φ(t)f(a)(t) dt . (3.1)

It follows that, for all t ∈ R, f(a)(t) = 1
|a|

∫
{a·x=t} f(x) dn−1x. It is a direct conse-

quence of (3.1) that for all λ > 0,
f(λa)(t) = λ−1f(a)(λ

−1t) . (3.2)
With these preliminaries out of the way, we turn to the main question to be

addressed in this section: Consider m non-zero vectors a1, . . . , am in Rn, and m
numbers c1, . . . , cm with cj > 0 for all j. Then, we ask

Is there a finite constant D ∈ R so that
m∑

j=1

cjS(aj · X) ≤ S(X) + D (3.3)

for all random vectors X in Rn, and if so, what is the least such value of D, and
what are the cases of equality?

In general there is no finite constant D for which (3.3) is true for all X. There
are some simple requirements on {a1, . . . , am} and {c1, . . . , cm} for this to be the
case.

First of all, for (3.3) to hold for any finite constant D, the set of vectors
{a1, . . . , am} must span Rn. The following construction is useful for this and other
purposes: Let V be any proper subspace of Rn, and let V ⊥ be its orthogonal comple-
ment. Then for any number λ > 0, let XV,λ denote the centered Gaussian random
vector (see below for definition) such that

∀u ∈ V , E
(
(u · XV,λ)2

)
= λ and ∀u ∈ V ⊥ , E

(
(u · XV,λ)2

)
= 1 . (3.4)

Then
S(XV,λ) = −n

2
ln(2πe) − dim(V )

2
ln(λ) (3.5)

while, for any a in Rn,
S(a · XV,λ) = −1

2 ln(2πe) − 1
2 ln

(
λ|Pa|2 + |P⊥a|2) , (3.6)

where P is the orthogonal projection onto V , and P⊥ = I − P .
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Now take V to be the orthogonal complement of the span of {a1, . . . , am}. If the
latter is a proper subspace of Rn, then dim(V ) ≥ 1, and we see that for any finite D,
(3.3) would be violated for sufficiently large λ, since then |Paj |2 = 0 for each j.

Beyond this spanning condition, there are some simple compatibility conditions
that must be satisfied by the vectors aj and the numbers cj . First of all, it follows
from (3.2) that for all λ > 0,

S(λX) = S(X) − n ln(λ) and S(a · λX) = S(a · X) − ln(λ) .

Therefore, (3.3) can only hold when
m∑

j=1

cj = n . (3.7)

There is a further necessary condition that is somewhat less obvious. The key
observation to make is that the right-hand side of (3.6) tends to infinity as λ tends
to zero if and only if |P⊥a|2 = 0.

Consider any subset J of {1, . . . ,m}, and let
VJ := span{aj ; j ∈ J} .

Let GJ denote the Gaussian random variable XVJ ,λ defined by (3.4) when V = VJ .
Note that for each j ∈ J , |P⊥aj |2 = 0, so that, for such j,

S(aj · GJ) = −1
2 ln(2πe) − 1

2 ln
(|aj |2

) − 1
2 ln(λ) ,

which tends to infinity as λ tends to zero. Therefore, letting λ approach zero, we
see that the leading term in

∑m
j=1 cjS(aj · GJ) − S(GJ) is at least

1
2

(
dim(VJ) −

∑
j∈J

cj

)
ln(λ) .

(It is exactly this unless for some i /∈ J , ai ∈ VJ , in which case we could have taken
an even “worse” set J .) Hence, if dim(VJ) − ∑

j∈J cj < 0, there can be no upper
bound on

∑m
j=1 cjS(aj · G) − S(G). Therefore, (3.3) can only hold when it is the

case that, for all J , ∑
j∈J

cj ≤ dim(VJ) . (3.8)

In particular, we must have cj ≤ 1 for all j.
We shall give a simple proof that these necessary conditions are sufficient. The

following notation shall be used throughout the proof: Given any family {a1, . . . , am}
of vectors spanning Rn, let

A = [a1, . . . , am]
denote n × m matrix whose jth column is aj . We shall also use A to denote the
family {a1, . . . , am} of spanning vectors. Thinking of A as the matrix of a linear
transformation, computed in the canonical bases of Rn and Rm, will be useful in the
proofs of several lemmas below. Note that A has full (row) rank. Next, let c denote
the vector in Rm whose jth entry is cj . Finally, define the quantity D(A, c) by

D(A, c) := sup
X

{ m∑
j=1

cjS(aj · X) − S(X)
}

, (3.9)
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where the supremum is taken over all random vectors X with values in Rn and with
finite entropy. A random vector X for which this supremum is attained will be said
to be extremal and will be called an extremizer.

Notice that with A fixed, D(A, ·) is the pointwise supremum of a set of affine
functions, and as such, it is convex. We introduce

KA :=
{
c ∈ [0, 1]m ; c verifies (3.7) and (3.8) ∀J ⊂ {1, . . . ,m}} , (3.10)

which is clearly a convex subset of the hyperplane of Rm defined by (3.7). As we
have seen, D(A, c) is infinite outside KA. We shall also need later to distinguish
the interior of KA relative to the intersection of [0, 1]m and the hyperplane specified
by (3.7):

K◦
A :=

{
c ∈ KA ;

∑
j∈J

cj < dim(VJ) , ∀J � {1, . . . ,m} , J 	= ∅
}

. (3.11)

We shall make extensive use of the fact that KA and K◦
A are invariant under linear

transformation, in the sense that for any invertible linear operator T on Rn, we
obviously have KTA = KA and K◦

TA = K◦
A with the notation TA = [Ta1, . . . , Tam]

when A = [a1, . . . , am].
Also define DG(A, c), the Gaussian analog of (3.9), by

DG(A, c) := sup
G

{ m∑
j=1

cjS(aj · G) − S(G)
}

. (3.12)

in which the supremum is taken over all centered Gaussian random vectors G with
values in Rn. By a centered Gaussian random vector, we mean one that has a density
of the form

1
|det(C)|

(
1
2π

)n/2

e−|C
−1x|2/2

for some symmetric invertible matrix C on Rn. More generally, a Gaussian random
vector is a random vector of the form x0 + G with x0 ∈ Rn and G a centered
Gaussian random vector. We can restrict ourselves to centered random vectors
because the entropy is invariant under translation. A Gaussian random vector is
said to be isotropic if its covariance matrix is a multiple of the identity; it is said to
be standard if it is centered and if its covariance matrix is the identity (i.e. it is a
N (0, Id) Gaussian vector).

At this point, it is important to note that all the definitions made so far make
sense more generally on a finite-dimensional Euclidean space (E, · ). We have made
the identification E = Rn, which has the advantage of allowing us to work with
matrices. Later, we shall also need to work on subspaces of Rn, which are then
canonically equipped with the Euclidean structure inherited from Rn; we then need
to work with the corresponding Euclidean versions of the notions introduced above.

It is clear that DG(A, c) is also a convex function of c, and that DG(A, c) ≤
D(A, c). Also, since our proof that D(A, c) = ∞ for c /∈ KA used a centered
Gaussian random vector, it shows also that DG(A, c) = ∞ for c /∈ KA. In fact, we
have the following:



384 E.A. CARLEN AND D. CORDERO–ERAUSQUIN GAFA 

Theorem 3.1. For every family A = {a1, . . . , am} of m vectors spanning Rn and
every vector c in Rm with 0 ≤ cj ≤ 1 for all j, we have

D(A, c) = DG(A, c) ,

and furthermore D(A, c) is finite if and only if c ∈ KA.

The proof will be accomplished in three steps:
Step 1: We shall first consider the case in which the vectors aj are all unit vectors

uj satisfying the following special condition, put forward by K. Ball in the setting
of Brascamp–Lieb inequalities (see, e.g. [B]):

m∑
j=1

cj uj ⊗ uj = IdR
n , (3.13)

with cj ≥ 0. (Note that (3.7) automatically holds, as it can be seen by taking the
trace, and that cj ≤ 1 for all j ≤ m.) Under this condition, we give a simple proof of
Theorem 3.1 using an elementary superadditivity property of the Fisher information
and integration along the heat flow. The proof here draws on ideas from [BaCM].

Step 2: We shall show that for c ∈ K◦
A, there is a linear change of variables

that reduces this case to the one considered in the first step. While the lemma
that provides the existence of the change of variables would appear to be a simple
statement about linear algebra, the existence of this change of variables is intimately
connected with the existence of Gaussian optimizers for the subadditivity (and hence
the Brascamp–Lieb) inequality.

Step 3: We show that on KA\K◦
A, the variational problem in (3.9) may be “split”

into two problems of the same type, but each involving only a subsets of the original
vectors, and integration over a proper subspace of Rn. Repeating this splitting
operation, one eventually reduces to variational problems of the type considered in
the second step. This step is modeled after a similar splitting argument developed
in [CLL1], but as we shall see, the entropic version has advantages that will help us
determine all of the cases of equality.
Remark. If one is content to prove only that D(A, c) is finite if and only if c ∈ KA,
there is a very expeditious route: One can easily check the finiteness of D(A, c) at
the extreme points of c ∈ KA (where, as shown by Barthe, each cj is either 0 or
1). Then the convexity of D(A, c) implies finiteness on all of KA, and we know it
is infinite outside. Proving the equality D(A, c) = DG(A, c) on all of KA is more
subtle: The values of D(A, c) and DG(A, c) do jump as one crosses the boundary of
KA, and we see nothing to preclude D(A, c) from jumping up more than DG(A, c)
on the boundary. Thus, it is not only for the classification of the cases of equality
that we argue as we do in the third step: we do not know of any quick way to “pass
to the boundary” of KA and wrap up the proof of Theorem 3.1 after the second step
without developing the splitting argument.

We now begin with the first step. Here we shall use a simple superadditivity
result for the Fisher information: If X ∼ f is a random vector with a differentiable
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density f , define the Fisher information of X or of f by

I(X) = I(f) =
∫

R
n

|∇f |2
f

. (3.14)

This quantity is related to the entropy through the heat flow as follows: Let ∆
denote the Laplacian on Rn, and let G denote a standard Gaussian random vector
on Rn independent of X so that, if f ∼ X,

et∆f ∼ X +
√

tG .

Then we have the identity
d
dtS(et∆f) = −I(et∆f) ,

and in particular, the right-hand side is finite for all t > 0.
The basic inequality concerning the Fisher information that will yield us our

subadditivity result is the fact that for any unit vector u,

I(f(u)) = I(u · X) ≤
∫

R
n

|u · ∇f |2
f

, (3.15)

with equality if and only if f is the product of f(u) and a probability density g on
the orthogonal complement of u. This was proved in [C]; see Theorem 2 there with
p = 2. Let us include here for completeness a different proof taken from [BaCLM]
(were more abstract settings are studied). This proof requires more regularity than
the one in [C], but that is fine for our purpose, as we shall apply the inequality along
the heat flow.

Using the definition of the marginal (3.1) twice and Hölder’s inequality, we have

I
(
f(u)

)
= −

∫
R

f(u)
(
ln f(u)

)′′ dt = −
∫

R
n

f(x)
(
ln f(u)

)′′(x · u) dnx

=
∫

R
n

(f(u))′(x · u)(u · ∇f(x))
f(u)(x · u)

dnx

≤
√∫

R
n

[(f(u))′(x · u)]2

(f(u)(x · u))2
f(x) dnx

∫
R

n

(u · ∇f(x))2

f(x)
dnx

=

√∫
R

[(f(u))′]2

(f(u))2
f(u) dt

∫
R

n

(u · ∇f)2

f
dnx

=

√
I(f(u))

∫
R

n

(u · ∇f)2

f
dnx .

This proves (3.15). Equality in (3.15) requires equality in Hölder’s inequality and so
for some λ ∈ R we have (u ·∇) log f(x) = λ(log f(u))′(x ·u) for all x ∈ Rn; this λ has
to be 1 for equality to hold in (3.15) and therefore f(x) = f(u)(x · u)h(x − (x · u)u)
for some probability density h on u⊥.

From (3.15), we immediately deduce the superadditivity of information. But
before stating the result, let us state a definition needed to discuss the cases of
equality.
Definition 3.2 (Reducible spanning set). Let {a1, . . . , am} be any set of m vectors
spanning Rn. It is a reducible spanning set in case there are two proper subspaces
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V1 and V2 of Rn such that Rn = V1 ⊕ V2, and such that each aj belongs to either V1
or to V2. Otherwise, {a1, . . . , am} is called an irreducible spanning set.

Proposition 3.3. Consider any set {u1, . . . , um} of m unit vectors in Rn, such
that there are numbers {c1, . . . , cm}, with 0 ≤ cj ≤ 1 for each j ≤ m, so that the
decomposition of the identity (3.13) is satisfied. Let G denote a standard Gaussian
random vector.

Then for all random vectors X with finite Fisher information,
m∑

j=1

cj I(uj · X) ≤ I(X) , (3.16)

with equality if X = G, and for all random vectors X with finite entropy
m∑

j=1

cj S(uj · X) − S(X) ≤
m∑

j=1

cj S(uj · G) − S(G) = 0 . (3.17)

Moreover there is equality in these inequalities if and only if for each j ≤ m,
uj ·X and X − (uj ·X)uj are independent. Under the condition that n ≥ 2 and that
{u1, . . . , um} is an irreducible spanning set, then there is equality in these inequalities
if and only if X is an isotropic Gaussian random vector.

Note that this proposition in particular implies that D(U, c) = DG(U, c) = 0
when U = [u1, . . . , um] are unit vectors of Rn and c = (c1, . . . , cm) non-negative real
numbers satisfying (3.13).

The proof of (3.16) and (3.17) is elementary and follows [BaCM]. The determi-
nation of the cases of equality requires a bit more work, but it remains quiet direct
(compared to analogous result on the side of the Brascamp–Lieb inequality).
Proof. Inequality (3.16) follows immediately from (3.15) and condition (3.13) rewrit-
ten in the form

∀x ∈ Rn,
m∑

j=1

cj (x · uj)2 = |x|2.

Equality for X = G is obvious as G · ui is a standard Gaussian variable and so
the computation boils down to the equality

∑
cj = n. (For the same reason the

right-hand side of the inequality (3.17) is zero.)
As we have noted, the Fisher information of f is related to the entropy of f

through d
dtS(et∆f) = −I(et∆f). It is also easy to see (using that ∆ commutes

with translations) that if u is any unit vector, then f(u), the marginal of f along u

has the property that (et∆f)(u) = et∆f(u), where we keep the same notation of
the 1-dimensional heat semi-group (∆g = g′′ in dimension 1); we again have (in
dimension 1) that

d
dtS

(
(et∆f)(u)

)
= −I

(
(et∆f)(u)

)
.

Then since et∆f ∼ X +
√

tG, and because
∑m

j=1 cjS(uj ·X)− S(X) is invariant
under dilation, i.e. under the substitution X → λX, we get
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[ m∑
j=1

cjS(uj · G) − S(G)
]
−

[ m∑
j=1

cjS(uj · X) − S(X)
]

=
∫ ∞

0

[
I(et∆f) −

m∑
j=1

cjI
(
(et∆f)(uj)

)]
dt .

By Theorem 3.3, the integrand above is non-negative for all t, and so (3.17) is proved.
The condition for cases of equality in (3.15) tell us that there is equality in (3.16)

for a random vector X with finite Fisher information if and only if X verifies the
following property (P):

(P) ∀i ≤ m , X · ui and X − (X · ui)ui are independent .
If G is a standard Gaussian random vector independent of X, then X verifies (P)
if and only if, for all t > 0, X +

√
tG verifies (P). Thus for a random vector with

finite entropy, there is equality in (3.17) if and only if X verifies (P).
Our goal is now to characterize, when n ≥ 2, the random vectors verifying

(P) under the assumption that {u1, . . . , um} is an irreducible spanning set of unit
vectors. First note that if we prove that X +

√
tG is an isotropic Gaussian for all

t > 0, then so is X. Therefore, using again the stability of the property (P), we need
only consider random vectors X with smooth and strictly positive density. Secondly,
we can assume that no two vectors of the family {ui}i≤m are linearly dependent.
Indeed, by keeping only one representative for the subspaces Ruj , we construct a
subfamily of the vectors {ui}i≤m which span Rn and which remains irreducible.

So from now on let {u1, . . . , um} be an irreducible spanning set of unit vectors
of Rn (n ≥ 2), with no two vectors linearly dependent, and X a random vector
verifying (P) and with a smooth density f > 0. Thus for every i ≤ m there exists
two probability densities gi and hi, on R and u⊥i � Rn−1 respectively, such that

f(x) = gi(x · ui)hi

(
x − (x · ui)x

)
Writing F = log f , Gi = log gi and Hi = log hi for each i ≤ m, we have

F (x) = Gi(x · ui) + Hi

(
x − (x · ui)x

)
,

so that
(ui · ∇)F (x) = G′i(ui · x) .

Hence, for any j 	= i,
(uj · ∇)(ui · ∇)F (x) = (ui · uj)G′′i (ui · x) .

Interchanging the roles of i and j,
(uj · ∇)(ui · ∇)F (x) = (ui · uj)G′′j (uj · x) .

Evidently the left-hand side depends on x only thorough ui · x and only through
uj · x. But since ui and uj are linearly independent, this means that the left-hand
side is constant. Hence,

for every i 	= j, (ui · ∇)(ui · ∇)F is constant .
Furthermore, under the condition that {u1, . . . , um} is an irreducible spanning set, if
any one vector ui is removed from {u1, . . . , um}, the remaining vectors still span Rn.
For otherwise, since m ≥ n ≥ 2, we could take V1 to be the span of {ui}, and take
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V2 to be the span of {u1, . . . , um}\ui, and we would have Rn = V1 ⊕ V2. Thus each
ui decomposes in the generating family {uj}j �=i and therefore,

for every i, j ≤ m, (ui · ∇)(ui · ∇)F is constant.
But this implies that the Hessian of F is constant. Thus, X is Gaussian. To prove
that this Gaussian is isotropic, let C be the covariance matrix of X. Then property
(P) implies that each ui is an eigenvector of C. Since eigenvectors of symmetric
matrices are orthogonal if they have distinct eigenvalues, all of the eigenvalues must
be the same unless there is such a “splitting” of Rn into at least two (orthogonal)
subspaces that together contain all of the vectors uj . This would contradict the
hypothesis that {u1, . . . , um} is an irreducible spanning set. �

The following lemma will facilitate the application of the statement concerning
the cases of equality in Proposition 3.3:
Lemma 3.4. Let A = {a1, . . . , am} be any family of m vectors spanning Rn. If
{a1, . . . , am} is a reducible spanning set and D(A, c) is finite, then c /∈ K◦

A.

Proof. Let Rn = V1 ⊕ V2 be a decomposition of Rn into two proper subspaces such
that each aj is contained in one of them or the other. Let V be the orthogonal com-

plement of V1, Rn = V1
⊥⊕ V and let XV,λ be the Gaussian random variable defined

as in (3.4). Then by (3.5) and (3.6), with P denoting the orthogonal projection
onto V ,

m∑
j=1

cjS(aj · XV,λ) − S(XV,λ)

= −1
2

( ∑
j:aj∈V1

cj ln
(|aj |2

)
+

∑
j:aj∈V2

cj ln
(
λ|Paj |2 + |P⊥aj |2

))

+ 1
2dim(V ) ln(λ) , (3.18)

with Paj 	= 0 for j ∈ V2, since Px = 0 ⇒ x ∈ V1. Then, using that dim(V ) =
dim(V2), this expression (in λ) has the form

1
2

(
dim(V2) −

∑
j:aj∈V2

cj

)
ln(λ) + (terms bounded in λ > 1) ,

which is unbounded for large λ unless∑
j:aj∈V2

cj = dim(V2) .

This must be the case since by hypothesis that D(A, c) < ∞. Thus, c /∈ K◦
A. �

We have now completed the first step. We start the second by showing that the
change of variables matrix R does exist for c ∈ K◦

A. The existence of such a change
of variables can be deduced from results of Bennett–Carbery–Christ–Tao [BeCCT1].
However, the flow of logic in their deduction (and in [CLL1]) runs counter to ours:
They first show that such a change of variables exists whenever there are Gaussian
optimizers for the Brascamp–Lieb problem, and then show that Gaussian optimizers
exist for c ∈ K◦

A. Here, we need the change of variables at the outset of our analysis,
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and hence need a direct proof of this result. We now provide one, using a geometric
result of Barthe.
Lemma 3.5. Let A = {a1, . . . , am} be any family of m vectors that span Rn. Let
{c1, . . . , cm} be any m numbers verifying 0 ≤ cj ≤ 1 and satisfying (3.8). If c ∈ K◦

A,
then there exists an invertible symmetric n × n matrix R so that

m∑
j=1

cj

(
Raj

|Raj |
)
⊗

(
Raj

|Raj |
)

= IdR
n . (3.19)

When n ≥ 2, there is exactly one such matrix R satisfying the further requirements
that R be positive definite, and that trace(R2) = n. On the other hand, for c /∈ KA

no such matrix R exists.

Remark. After settling the cases of equality in Theorem 3.1 we shall derive
necessary and sufficient conditions for the existence of such a matrix R. Though the
conditions are simple and explicit, it turns out that the matrix R exists if and only
if the supremum in (3.12) is attained at some centered Gaussian G, and our proof
that the conditions we give are necessary and sufficient depends on this.

Proof. Take any diagonal m×m matrix S with positive diagonal entries sj , j ≤ m,
and define the n × n matrix RS by

RS =
(
(AS)(AS)t

)−1/2
.

This makes sense since (AS)(AS)t is a positive definite n × n matrix. Notice that
(RSAS)(RSAS)t = IdR

n , or, what is the same
m∑

j=1

s2
jRSaj ⊗ RSaj = IdR

n .

Therefore,
m∑

j=1

cj

(
sj√
cj

RSaj

)
⊗

(
sj√
cj

RSaj

)
= I .

We have what we seek if and only if, for each j, sj√
cj

RSaj is a unit vector, which

is the case if and only if, for each j, cj = s2
j |RSaj |2. By the definition of RS , this

means
cj = ej ·

[
(AS)t((AS)(AS)t)−1(AS)

]
ej (3.20)

where {e1, . . . , em} denotes the standard orthonormal basis in Rm. Note that
ej · (AS)t((AS)(AS)t)−1(AS)ej is also the jth diagonal entry of the orthogonal
projection in Rm onto the image of (AS)t.

It has been shown [Ba] (see [CLL1] for another proof and a statement in this
formulation) that there exists positive numbers s1, . . . , sm for which (3.20) is true
whenever c ∈ K◦

A, and that in this case, when n ≥ 2, the set of numbers is unique
up to a common multiple. Thus, for c ∈ K◦

A, such an R exists.
As for the uniqueness, note that given any such matrix R, we can change vari-

ables, replacing X → R−1X and aj → uj := |Raj |−1Raj . Then Proposition 3.3 may
be applied to deduce that the only extremizers for the new problem are isotropic
Gaussians. Undoing the change of variables, we see that the only extremizers of the
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original problem are Gaussians whose covariance is a multiple of R2. Thus, under
the further condition that R is positive definite (instead of simply symmetric), and
that the trace of R2 is fixed, R is uniquely determined.

The same change of variables argument (which is exploited systematically in
Lemma 3.6 below) shows, through Proposition 3.3, that if such a matrix R exists,
then D(A, c) < ∞. As we have seen, this is impossible when c /∈ KA. �

Remark. The first proof that there exists a solution, essentially unique, to (3.20)
whenever c ∈ K◦

A is due to Barthe [Ba]. However, he used a different characterization
of KA, and did not mention the condition (3.8). Another proof of this, based directly
on (3.8) was given in [CLL1], together with a proof that the characterization of KA

in Barthe’s paper is equivalent to the one based on (3.8).
With the change of variables provided by the previous lemma, we can finish the

second step and describe what happens when c ∈ K◦
A.

Lemma 3.6. For any family A = {a1, . . . , am} of m vectors spanning Rn, and all
vectors c in K◦

A,
D(A, c) = DG(A, c) ,

and there exist a Gaussian optimizer. Moreover, if n ≥ 2, then
m∑

j=1
cjS(aj · X)−S(X)

= D(A, c) if and only if X is Gaussian and its covariance is a constant multiple of
R2 where R is the unique positive definite matrix verifying (3.19) with Tr(R2) = n.

Remark. The condition “n ≥ 2”, which has already appeared several times,
is present because in one dimension, the subadditivity problem is trivial, so that
Gaussians play no special role. Indeed, assume we are given c1, . . . , cm ≥ 0 with the
condition that

∑
cj = 1 and A = {a1, . . . , am} a family of non-zero real numbers.

Then, setting

D := −
m∑

j=1

cj log |aj |

we have, for every random variable X on R with finite entropy,
m∑

j=1

cjS(ajX) − S(X) = D .

Therefore D(A, c) = D and every random variable X is an extremizer.

Proof. Let R be an invertible symmetric matrix verifying (3.19) provided by the
Lemma 3.5. Since for any random vector X with finite entropy, we have

S(X ·aj) = S

(
Raj

|Raj | · R
−1X

)
−ln

(|Raj |
)

and S(X) = S(R−1X)−ln
(|det(R)|) ,

we obtain
m∑

j=1

cjS(aj · X) − S(X) =
m∑

j=1

cjS

(
Raj

|Raj | · R
−1X

)
− S(R−1X)

−
m∑

j=1

cj ln
(|Raj |

)
+ ln

(|det(R)|) .
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Introduce the family of vectors uj := Raj/|Raj | for j ≤ m, and set U = [u1, . . . , um].
The previous equality implies that

D(A, c) = D(U, c) −
m∑

j=1

cj ln
(|Raj |

)
+ ln

(|det(R)|) . (3.21)

Thus we are reduced to studying the problem determining D(U, c) and the extremiz-
ers there (noting that X is an extremizer for D(A, c) if and only if R−1X is extremizer
an for D(U, c)). Note also that since the vectors {u1, . . . , um} are obtained from the
vectors {a1, . . . , am} by a non-singular linear transformation, they span Rn, and we
have K◦

U = K◦
A � c.

Since U = [u1, . . . , um] is a family of unit vectors verifying the decomposition of
the identity (3.13), we can apply Proposition 3.3 and get that

D(U, c) = DG(U, c) = 0 < ∞ , (3.22)
and every isotropic Gaussian vector is an extremizer. To prove that all optimizers
are Gaussian when n ≥ 2, note first that, by Lemma 3.4, c ∈ K◦

U implies that
{u1, . . . , um} is an irreducible spanning set. Therefore any optimizer of the varia-
tional problem defining D(U, c) is an isotropic Gaussian. (Then every optimizer for
D(A, c) is Gaussian whose covariance is a multiple of R2.) �

Remark. Note that the proof above also gives the following statement: If there
exists an invertible matrix R verifying (3.19) then (with no further assumptions on c
and A) we have that D(A, c) < +∞ and that RG is an extremizer for every standard
Gaussian vector G.

We now turn to the third step. When c ∈ KA\K◦
A, we will pick a non-empty

proper subset J of {1, . . . ,m} of least cardinality among subsets for which equality
holds in (3.8). We shall now show that the variational problem defining D(A, c)
splits into two such problems involving fewer vectors and random variables in a
lower-dimensional space. Repeated splittings, and what we have already proved, will
enable us to settle all questions concerning the variational problem defining D(A, c).
The splitting argument presented here is patterned on one developed in [CLL1] for
the Brascamp–Lieb inequality. However, as we shall see, in the subadditivity setting,
the argument leads to a clear and simple analysis of cases of equality. It relies on
properties of the conditional entropy.

As mentioned at the beginning of this section, we shall need to work on subspaces
of Rn and thus make use of the definition made above in the setting of Euclidean
spaces. For a given family A = {v1, . . . vk} of vectors on Rn, we introduce the
Euclidean subspace E := span(v1, . . . , vk) equipped with the induced Euclidean
structure from Rn (i.e. the scalar product is the same). For real numbers c1, . . . , ck

with 0 ≤ cj ≤ 1, the quantities D(A, c) and DG(A, c) are then implicitly assumed
to be defined on the Euclidean subspace E (the random vectors live on E and the
entropies are computed with respect to the Lebesgue measure on E, where the laws
of the vectors live). Accordingly, the set KA is to be understood as

KA :=
{

c ∈ [0, 1]k ;
k∑

j=1

cj = dim(E) and (3.8) holds ∀J ⊂ {1, . . . , k}
}

.
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Let us fix the following notation. Let A = {a1, . . . , am} be a family of of m ≥ 1
vectors spanning an Euclidean space E,

E = span
({aj ; j ∈ I})

(in a first step we shall have E = Rn). For family of m real numbers c ∈ KA and
a non-empty proper subset J of {1, . . . ,m} for which equality holds in (3.8), denote
by PJ the orthogonal projection onto VJ = span{aj ; j ∈ J} and let P⊥J = IdE − PJ

be the complementary projection. Define, for j ∈ Jc := {i ∈ {1, . . . ,m} ; i /∈ J} the
vector bj = P⊥J aj and

AJ = [aj ; j ∈ J ] and BJc = [bj ; j ∈ Jc]
the ordered (by ordering J and Jc as increasing subsequences of 1, . . . ,m) families
of vectors (aj)j∈J and (bj)j∈Jc . For any subset K of {1, . . . ,m}, and c ∈ Rm, let cK

denote the vector of R|K| whose coordinate are the (cj)j∈K (K being written as an
increasing subsequence of 1, . . . ,m). Since there is equality in (3.8) for J , we have

cJ ∈ KAJ
.

Note that VJ + VJc = E (a priori this sum is not direct) and so V ⊥J = P⊥J VJc . Thus
we have V ⊥J = span({bj : j ∈ Jc}t), i.e.

E = span
({aj ; j ∈ J}) ⊥⊕ span

({bj ; j ∈ Jc}) . (3.23)
And we also have

cJc ∈ KBJc .

Indeed, using (3.23) and equality in (3.8) for J , we have
∑

j∈Jc cj=dim(span{bj ; j∈Jc}),
and also for J̃ ⊂ Jc, since P⊥J aj = 0 for j ∈ J ,∑

j∈J̃

cj + dim(VJ) =
∑

j∈J∪J̃

cj

≤ dim
(
span{aj ; j ∈ J ∪ J̃})

= dim
(
span{PJaj + P⊥J aj ; j ∈ J ∪ J̃})

≤ dim
(
span{PJaj ; j ∈ J ∪ J̃}) + dim

(
span{P⊥J aj ; j ∈ J̃})

= dim(VJ) + dim
(
span{bj ; j ∈ J̃})

For an invertible operator T on Rn we shall use the standard notation
T−∗ := (T−1)∗ = (T ∗)−1

where T ∗x · y = x · Ty for all x, y ∈ Rn. With these definitions, we now state the
splitting lemma. Only the first part of the statement is needed to complete the proof
of Theorem 3.1; the rest will be used for the characterization of extremizers.
Lemma 3.7. Given any family A = {a1, . . . , am} of m vectors spanning Rn and
c ∈ KA \ K◦

A with cj > 0 for all j ≤ m, let J be a non-empty proper subset
of {1, . . . , m} for which equality holds in (3.8), and suppose that J has the least
cardinality among all such subsets. Then with AJ , cJ , BJc and cJc defined as above,
we have

D(A, c) = D(AJ , cJ) + D(BJc , cJc) , (3.24)
and if DG(BJc , cJc) = D(BJc , cJc), then DG(A, c) = D(A, c).
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Suppose next that there exists an extremizing random vector X; i.e. a random
vector X such that m∑

j=1

cj S(aj · X) − S(X) = D(A, c) . (3.25)

Then
Rn = VJ ⊕ VJc , (3.26)

and this direct sum is an orthogonal decomposition in the inner product given by
the covariance matrix of X; i.e. 〈x, y〉 = E[(x · (X − EX))(y · (X − EX))].

Moreover, if T is an (invertible) operator on Rn such that one has the orthogonal
decomposition

Rn = TVJ

⊥⊕ TVJc

(for instance T = H
1/2
X where HX is the covariance matrix of an extremizer X,

so that 〈x, y〉 = x · HXy), then X is an extremizer (3.25) if and only if T−∗X
decomposes as T−∗X = Y + Z where Y and Z are independent random vectors
with values in TVJ and TVJc , and which are extremizer for ([Taj ; j ∈ J ], cJ) and
([Taj ; j ∈ Jc], cJc), respectively.

The proof of this lemma relies on some well-known identities and inequalities
concerning conditional entropy that we now recall.

Let E and F be two Euclidean spaces (equipped with the Lebesgue measure). If
W and Y are two random vectors with values in E and F respectively, with a joint
density ρ(w, y) on E × F , let ρY (y) =

∫
E ρ(w, y) dw and ρW (w) =

∫
F ρ(w, y) dy be

the two marginal densities on F and E, which are of course the densities of W and
Y respectively.

Then the conditional density of W given Y is ρ(w|y) = ρ(w, y)/ρY (y). The
conditional entropy of W given Y = y is then defined to be

S(W |Y = y) =
∫

E
ρ(w|y) ln ρ(w|y) dw .

Since the entropy of (W,Y ), S(W,Y ), is given by

S(W,Y ) =
∫

E×F
ρ(w, y) ln ρ(w, y) dw dy ,

the identity
S(W,Y ) =

∫
F

S(W |Y = y)ρY (y) dy + S(Y ) (3.27)

follows directly from the definitions. Furthermore, by Jensen’s inequality

S(W ) ≤
∫

E
S(W |Y = y)ρY (y) dy , (3.28)

and there is equality if and only if W and Y are independent.
Proof of Lemma 3.7. Fix any random vector X with values in Rn and suppose that
S(X) is finite. We shall use the definition and notation given before the lemma.
Let PJ denote the orthogonal projection onto VJ , and recall that we have the de-
composition (3.23), so that P⊥J = IdR

n − PJ is also the orthogonal projection onto
span({bj : j ∈ Jc}) where bj = P⊥J (aj) for all j ∈ Jc. Let us introduce

Y = PJX and Z = P⊥J X
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so that X = Y + Z. Then S(X) = S(Y, Z) and so from (3.27),

S(X) =
∫

VJ

S(Z|Y = y)ρY (y) dy + S(Y ) . (3.29)

For each j ∈ J , we have aj · X = aj · Y , so that
S(aj · X) = S(aj · Y ) for j ∈ J . (3.30)

Note that for j ∈ Jc, bj 	= 0, or else aj ∈ VJ ; but this is impossible since cj > 0, and
we already have

∑�
j=1 cj = dim(VJ). We have, using the invariance of the entropy

under translation,
S(aj · X|Y = y) = S(aj · Z + aj · y|Y = y) = S(bj · Z|Y = y) for j ∈ Jc . (3.31)

Therefore, by applying (3.28) to (X · aj , Y ) on R × VJ , we get

S(aj · X) ≤
∫

VJ

S(bj · Z|Y = y)ρY (y) dy for j ∈ Jc . (3.32)

Now combining (3.29), (3.30) and (3.32), we have that
m∑

j=1

cjS(aj · X) − S(X) ≤
∫

VJ

[ ∑
j∈Jc

cjS(bj · Z|Y = y) − S(Z|Y = y)
]
ρY (y) dy

+
∑
j∈J

cjS(aj · Y ) − S(Y ) . (3.33)

It is clear from (3.33) and the definition of D(BJc , cJc) that
D(A, c) ≤ D(AJ , cJ) + D(BJc , cJc) .

To see that there is actually equality here, we use the fact that J is a critical set
of minimal cardinality. This implies that cJ ∈ K◦

AJ
, and by Lemma 3.6, there is a

centered Gaussian random vector Y for which∑
j∈J

cjS(aj · Y ) − S(Y ) = D(AJ , cJ) . (3.34)

Pick ε > 0 and let Z be any random variable with values in V ⊥J that is independent
of Y and such that ∑

j∈Jc

cjS(bj · Z) − S(Z) > D(BJc , cJc) − ε . (3.35)

For δ > 0, form the Rn valued random vector X = δY + Z. Since Y and Z
are orthogonal and independent, S(X) = S(δY, Z) = S(δY ) + S(Z). The scaling
invariance implies that (3.34) holds when Y is replaced by δY . Also, for j ∈ Jc,
as δ approaches zero, S(aj · X) = S(bj · Z + δaj · Y ) approaches S(bj · Z). (Note
that by the independence of Y and Z, bj · Z + δajY is simply a standard Gaussian
regularization of bj · Z.) It now follows that, for δ sufficiently small,

m∑
j=1

cjS(aj · X) − S(X) ≥ D(AJ , cJ) + D(BJc , cJc) − 2ε .

This implies that D(A, c) ≥ D(AJ , cJ) + D(BJc , cJc). We have implicitly assumed
that D(BJc , cJc) < +∞ (we shall later only need this case, actually), but the argu-
ment remains valid if D(BJc , cJc) = +∞. Thus (3.24) is established.
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Now suppose that DG(BJc , cJc) = D(BJc , cJc). Then we may further assume
that the random variable Z in the previous paragraph is a centered Gaussian random
variable. Combining this with the independent extremal centered Gaussian random
variable Y , provided by Lemma 3.6, we see that we may take the random variable X
in the previous paragraph to be a centered Gaussian. Hence, in this case, DG(A, c) =
D(A, c).

It remains to prove the last statements concerning the cases of equality.
We first assume that we are given a finite entropy random variable X for which

(3.25) is satisfied. By making a translation, we may assume that X is centered; i.e.
E(X) = 0. Furthermore, the covariance matrix is non-degenerate or else the law of
X would be concentrated on a proper subspace and this is inconsistent with finite
entropy. Since X satisfies (3.25), there must be equality in (3.33), and it must be
the case that ∑

j∈J

cjS(aj · Y ) − S(Y ) = D(AJ , cJ) (3.36)

and that for each y ∈ VJ ,∑
j∈Jc

cjS(bj · Z|Y = y) − S(Z|Y = y) = D(BJc , cJc) . (3.37)

And since X is centered, so is Y . Next, in addition to equality in (3.37), we must
have equality in (3.33). Since the only inequality used in deriving (3.33) was (3.32),
this in turn requires equality in (3.32) for each j ∈ Jc. By (3.31), this means that
for j ∈ Jc,

S(aj · X) =
∫

VJ

S(aj · X|Y = y)ρY (y) dy .

By the condition for equality in (3.28), this implies that for j ∈ Jc, aj ·X and Y are
independent random variables. But then for any y ∈ VJ , by independence

〈y, aj〉 = E
[
(y · Y )(aj · X)

]
= E(y · Y )E(aj · X) = 0 .

This shows that VJ and VJc are orthogonal subspaces in the inner product defined
in terms of the covariance. Thus their dimension sums exactly to n and so (3.26)
holds.

We now prove the final statement describing how extremizers split.
Note that, given an invertible operator T on Rn, a random vector X is ex-

tremal (3.25) for (A, c) if and only if T−∗X is extremal for (TA, c) with the notation
TA = [Ta1, . . . , Tam]. Indeed, since aj · X = Taj · T−∗X and S(T−∗X) =
S(X) + ln(|det(T )|) we have that (3.25) is equivalent to

m∑
j=1

cj S(Taj · T−∗X) − S(T−∗X) = D(TA, c)

and D(TA, c) = D(A, c) − ln(|det(T )|).
As in the statement of the lemma, let T be an invertible operator on Rn such

that Rn = TVJ

⊥⊕ TVJc . The previous remark explains the mechanism of replacing
A by TA and X by T−∗X. So after this transformation we are reduced to proving
the statement in the case T = Id. Therefore we assume from now on that

Rn = VJ

⊥⊕ VJc .
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We go back to the beginning of the proof and note that bj = aj for all j ∈ Jc: the
orthogonal projection does nothing in this case (P⊥J = PJc).

Assume X is an extremizer (3.25) which is decomposed as before as X = Y +Z.
Then as in the argument above we must have that∑

j∈J

cjS(aj · Y ) − S(Y ) = D(AJ , cJ) (3.38)

and that, for each y ∈ VJ ,∑
j∈Jc

cjS(aj · Z|Y = y) − S(Z|Y = y) = D(AJc , cJc) , (3.39)

with Y and aj ·X independent for every j ∈ Jc. Since aj ·X = aj ·Z for every j ∈ Jc

we have that aj ·Z is independent of Y for j ∈ Jc and so S(aj ·Z|Y = y) = S(aj ·Z).
Using this together with (3.28) for W = Z, we get, after integrating (3.39) with
respect to ρY (y) dy, and applying (3.28),

D(AJc , cJc) ≤
∑
j∈Jc

cjS(aj · Z) − S(Z) .

By the definition of D(AJc , cJc) this inequality must be an equality, i.e.∑
j∈Jc

cjS(aj · Z) − S(Z) = D(AJc , cJc) , (3.40)

and therefore, there must be equality in the application of (3.28) that we just made.
This implies that Z and Y are independent, as claimed.

Conversely, let X be a random vector such that X = Y +Z in the decomposition

Rn = VJ

⊥⊕ VJc with Y and Z independent and such that (3.38) and (3.40) holds.
Then we have (3.39) and we readily check that There is equality at every step. So
X is indeed an extremizer (3.25). �

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. By Lemma 3.6, whenever c ∈ K◦

A, DG(A, c) = D(A, c), and
there is a Gaussian optimizer.

Hence it remains to consider the case c ∈ KA \K◦
A. Then taking J to be a proper

non-empty subset of {1, . . . ,m} of least cardinality for which there is equality in
(3.8), we may “peel off” |J | vectors from our set, as in the first part of Lemma 3.7,
and reduce matters to the consideration of D(BJc , cJc). By that lemma, DG(A, c) =
D(A, c) whenever DG(BJc , cJc) = D(BJc , cJc). Now, if BJc and cJc are such that,
for every proper subset of the remaining indices, strict inequality holds in the analog
of (3.8), i.e. cJc ∈ K◦

AJc
, then DG(BJc , cJc) = D(BJc , cJc) follows from Lemma 3.6.

Otherwise, we “peel off” another proper subset of indices for which equality holds
in (3.8), and reduce to a problem with a strictly smaller number of vectors. In a
finite number of steps, this process must end. �

Our next theorem concerns the cases of equality in the subadditivity inequality.
As we have seen in Lemma 3.7, when there is equality, and no cj is zero, then either
c ∈ K◦

A, or the variational problem can be split into two problems of the same type,
but involving reduced number of vectors, and for random variables taking values in
subspaces of a reduced dimension.
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Of course, each of these reduced problems must also have an optimizer, and so
we can apply the same dichotomy to each of them. This leads to the following
definition:
Definition 3.8 (Totally reducible for c). Let A = {a1, . . . , am} be a family of
vectors that spans Rn and {c1, . . . , cm} a set of real numbers with 0 ≤ cj ≤ 1 for
j ≤ m. We say that {a1, . . . , am} is totally reducible for c if c ∈ KA and in case for
some k ≥ 1 there is a decomposition (possibly with k = 1)

{1, . . . ,m} = J0 ∪ J1 ∪ . . . ∪ Jk

where j ∈ J0 if and only if cj = 0, and
Rn = VJ1 ⊕ · · · ⊕ VJk

with VJi = span
({a� : 	 ∈ Ji}

)
,

such that, for each 1 ≤ i ≤ k, there is no non-empty proper subset of Ji that yields
equality in (3.8). Here, J0 may be empty, but for 1 ≤ i ≤ k, Ji is to be non-empty.

Note that, if {a1, . . . , am} is totally reducible for c, then we have, with the
notation of the definition, that for 1 ≤ k ≤ m,

cJi ∈ K◦
Ji

.

The analysis made so far proves the following theorem, which gives a complete
analysis of the cases of equality in the subadditivity inequality.
Theorem 3.9. Consider a family A = {a1, . . . , am} of vectors spanning Rn. Then
for any c ∈ KA, there exists a finite entropy random variable X for which

m∑
j=1

cjS(aj · X) − S(X) = D(A, c) , (3.41)

if and only if {a1, . . . , am} is totally reducible for c. In this case, if Rn = VJ1⊕· · ·⊕VJk

is the corresponding decomposition of Rn from Definition 3.8, let T be any symmetric
positive operator on Rn such that the following orthogonal decomposition holds

Rn = TVJ1

⊥⊕ · · · ⊥⊕ TVJk
. (3.42)

Then the extremizers (3.41) are exactly the random vectors X such that T−∗X
decompose as

T−∗X = X1 + · · · + Xk

where {X1, . . . , Xk} is an independent set of random variables with each Xi taking
values in TVJi and extremal for the corresponding problem ([Taj ; j ∈ Ji], cJi). More
precisely, for each i ≤ k, if dim(VJi) = 1, then Xi can be any finite entropy random
variable with values in TVJi . However, if dim(VJi) > 1, then Xi is necessarily
Gaussian, and its covariance is a constant multiple of R2

i , where Ri is the unique
positive definite linear transformation on TVJi such that∑
j∈Ji

cj

(
RiTaj

|RiTaj |
)
⊗

(
RiTaj

|RiTaj |
)

= IdTVJi
and trace(R2

i ) = dim(TVJi) = dim(VJi) .

Finally, if X is an extremizer (3.41) then the symmetric positive operator T defined
by x · T 2y = E[(x · (X −EX))(y · (X −EX))] satisfies the required condition (3.42).
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Proof. The proof relies on successive applications of the Lemmas 3.7 and 3.6. First
of all, note that the vectors aj for the indices j such that cj = 0 play no role in the
inequality, and so without loss of generality, we may discard these indices without
changing D(A, c), the extremizers and KA. So we will assume that cj > 0 for all
j ≤ m (this means J0 = ∅ in Definition 3.8).

Assume there exists an extremizer X, which, after translation, can be assumed
to be symmetric, and let T be the symmetric positive operator on Rn defined by
Tx · Ty = E[(x ·X)(y ·X)]. As explained in the proof of the Lemma 3.7 the change
of vectors X → T−∗X and aj → Taj reduces the problem to the case T = Id, which

means that X has unit covariance. Then from Lemma 3.7 we have Rn = VJ1

⊥⊕ VJc
1

for some set of indices J1, with cJ1 ∈ K◦
AJ1

and cJc
1
∈ KAJc

1
, and moreover in this

orthogonal decomposition X = X1 + Z with X1 and Z extremal for (AJ1 , cJ1) and
(AJc

1
, cJc

1
), respectively. We then apply Lemma 3.7 on the space VJc

1
to the vector

with unit covariance Z which is extremal. This gives for some J2 ⊂ Jc
1 another

orthogonal decomposition VJc
1

= VJ2

⊥⊕ VJc
2

where Jc
2 = {j ∈ Jc

1 ; j /∈ J2} with
cJ2 ∈ K◦

AJ2
. After a finite number k of step this process must end and we have

Rn = VJ1 ⊕ · · · ⊕ VJk

with cJi ∈ K◦
AJi

for i ≤ k. This shows that there exists an extremizer only when
{a1, . . . , am} is totally reducible for c. Note that we have also shown that this sum
is orthogonal w.r.t. the scalar product given by the covariance of an extremizer.

We assume from now that {a1, . . . , am} is totally reducible for c and that Rn =
VJ1 ⊕ · · · ⊕ VJk

is the corresponding decomposition of Rn from Definition 3.8. We
can assume that |J1| ≤ |J2| ≤ . . . ≤ |Jk|. Let T be any symmetric positive operator
on Rn such that the following orthogonal decomposition holds:

Rn = TVJ1

⊥⊕ · · · ⊥⊕ TVJk
.

Of course, there always exists such a linear map T . As before the change of vectors
X → T−∗X and aj → Taj reduces the problem to the case T = Id and

Rn = VJ1

⊥⊕ · · · ⊥⊕ VJk
.

With this orthogonal decomposition in hand, we can use Lemma 3.7 to successively
“peel-off” orthogonal blocks. We first apply this lemma to J1 and Jc

1 = J2∪ . . .∪Jk,

and then on the space VJc
1

= V ⊥J1
= VJ2

⊥⊕ · · · ⊥⊕ VJk
to J2, and so on. After k steps

we get that D(A, c) = D(AJ1 , cJ1) + . . . + D(AJk
, cJk

) and that a random vector X
is an extremizer if and only if it can be written as

X = X1 + . . . + Xk

where Xi has values in VJi and is extremal for (AJi , cJi), and with the property that
Xi is independent of (Xi+1, . . . , Xk) , for i = 1, . . . , k − 1 . (3.43)

(Note that in order to construct and extremizer X we start with an extremizer
Xk on VJk

and, then add an extremal independent Xk−1 on VJk
in order to get

an extremizer on VJk−1

⊥⊕ VJk
, and so on by repeated applications of Lemma 3.7).
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Observe that the independence property (3.43) is equivalent to the independence of
the set of random vectors {X1, . . . , Xk}. Next remember that for each i ≤ m we have
cJi ∈ K◦

Ji
. Thus Lemma 3.6 applies and when dim(VJi) > 1 then Xi is Gaussian

and its variance is imposed as stated. Recall that in dimension 1 the problem is
trivial and all random variables are extremal (in particular Gaussian variables are
extremal). �

Note that the previous theorem tells us in particular that when optimizers exist,
Gaussian optimizers exist (however this was not a necessary step in our approach).

Of course, by Theorems 2.1 and 2.2, we now also know that optimizers for the
classical Brascamp–Lieb inequality exist under the exact same conditions for op-
timality described in Theorem 3.9, and that moreover, the optimizers Brascamp–
Lieb inequality are exactly the marginals of the optimizing probability densities for
the subadditivity inequality. The full description of optimizers (in one-dimensional
Brascamp–Lieb inequalities) was given in [CLL1], building on a previous character-
ization by Barthe [Ba]. In the multi-dimensional case, building on Barthe’s work
too, Bennett–Carbery–Christ–Tao [BeCCT1] obtained some description, but the
problem was completely solved only recently by Valdimarsson [V].

4 Consequences of the General Subadditivity Inequality in Rn

There are several interesting consequences of Theorems 3.1 and 3.9. The first is a
generalization of Hadamard’s inequality for determinants.
Theorem 4.1. Consider any family A = {a1, . . . , am} of m vectors that span Rn,
any set of numbers {c1, . . . , cm} with 0 ≤ ci ≤ 1. Then with D(A, c) as above, for
any linear transformation T from Rn to Rn,

|det(T )| ≤ eD(A,c)
( m∏

j=1

∣∣T (aj)
∣∣cj

)
, (4.1)

and this inequality is sharp in that the constant eD(A,c) cannot be decreased. More-
over, for c ∈ K◦

A, there is transformation T with det(T ) = 1 for which equality holds
in (4.1), and, when n ≥ 2, if we take T to be positive, then T is unique (up to
multiplication by a positive scalar).

Remark. In the case that m = n, and the vectors {a1, . . . , am} are an orthonormal
basis, and c1 = · · · = cn = 1, this reduces Hadamard’s inequality for determinants.
In the special case

∑m
m=1 cjaj ⊗ aj = IdR

n , so that D(A, c) = 0, this result has been
proved by Ball [B], with a very simple proof.

For simplicity we have stated the existence of an extremal T only when c ∈ K◦
A,

but the right condition is that A is totally reducible for c, just as in Theorem 3.9.
Proof. By making a polar decomposition, we may assume without loss of generality
that T is positive definite. Let GT be the centered Gaussian random variable with
E(u · GT ) = |T (u)|2 for all vectors u in Rn. Then simply evaluating the left-hand
side of

∑m
j=1 cjS(a · GT ) − S(GT ) ≤ D(A, c), we obtain (4.1). Then Theorem 3.1

provides the rest. �
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Theorem 4.1 gives us one simple variational expression for D(A, c), namely

D(A, c) = sup
{

ln
( |det(T )|∏m

j=1 |T (aj)|cj

)
: T positive definite

}
.

There is however a simpler variational formula for D(A, c) over an even lower-
dimensional space, as suggested by the fact that eD(A,c) is also the sharp constant
in the Brascamp–Lieb inequality. By the classical theorem of Brascamp and Lieb,
eD(A,c) may be computing by taking the functions {f1, . . . , fm} in the Brascamp–
Lieb inequality to be centered Gaussians; i.e.{

f1(t), . . . , fm(t)
}

=
{
e−(s1t)2 , . . . , e−(smt)2} ,

and varying the m numbers s1, . . . , sm. This leads directly to the variational ex-
pression (4.2) for D(A, c). Let us recall that the existence of optimizers for this
problems was proved by Brascamp and Lieb [BrL] under the hypothesis that every
set of n vectors chosen from {a1, . . . , am} is linearly independent and later proved
by Barthe [Ba] for c ∈ K◦

A. The next theorem gives the complete result. Although
the variational formula (4.2) can be deduced by duality, we give a direct proof of it
starting from the subadditivity inequality.
Theorem 4.2. Consider any set {a1, . . . , am} of m vectors that span Rn, n ≥ 2.
Let {c1, . . . , cm} be any set of numbers with 0 ≤ ci ≤ 1 verifying (3.7). Let T denote
the m × m diagonal matrix whose jth diagonal entry is tj , and define the function
ΦA(t1, . . . , tm) by

ΦA(t1, . . . , tm) = ln det(AeT At) .

This is a convex function on Rm, and

D(A, c) +
m∑

j=1

cj ln(cj) =
1
2

sup
{t1,...,tm}

( m∑
j=1

cjtj − ΦA(t1, . . . , tm)
)

. (4.2)

The supremum in (4.2) is attained if and only if {a1, . . . , am} is totally reducible
for c. Moreover,

ΦA(t1, . . . , tm) = sup
{c1,...,cm}

( m∑
j=1

cjtj − 2
(

D(A, c) +
m∑

j=1

cj ln(cj)
))

. (4.3)

Proof. For an m × m diagonal matrix S with positive entries sj , introduce RS :=
((AS)(AS)t)−1/2 as in the proof of Lemma 3.5. Let G be a standard Gaussian
random vector on Rn (i.e. G ∈ N (0, Id)), and set GS = RSG. Then

m∑
j=1

cjS(aj · GS) − S(GS) = − ln
(
det(R−1

S )
) − 1

2

m∑
j=1

cj ln
(|RSaj |2

)
.

However,
|RSaj |2 = s−2

j

∣∣RS(sjaj)
∣∣2 = s−2

j

∣∣RS(SA)ej

∣∣2 = s−2
j ej · (AS)t

(
(AS)(AS)t

)−1(AS)ej ,

where ej is the jth standard basis vector in Rm. Recall that ej(AS)t((AS)(AS)t)−1 ·
(AS)ej is the jth diagonal entry of the orthogonal projection in Rm onto the image
of (AS)t. Since this orthogonal projection has rank n, its trace is n. Therefore, if
we define cj(S) = |RS(SA)ej |2, we have

m∑
j=1

cj(S) = n
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for all S. Thus, by Jensen’s inequality,
m∑

j=1

cj ln(cj) ≥
m∑

j=1

cj ln
(
cj(S)

)
,

with equality exactly when cj(S) = cj for all j. Therefore, for all S,

D(A, c)≥
m∑

j=1

cjS(aj ·GS)−S(GS)≥− ln
(
det(R−1

S )
)
+

1
2

m∑
j=1

cj ln(s2
j )−

1
2

m∑
j=1

cj ln(cj) .

so that

D(A, c) +
m∑

j=1

cj ln(cj) ≥ 1
2

( m∑
j=1

cj ln(s2
j ) − ln det(R−2

S )
)

.

Moreover, as we see from the proof of Lemma 3.5 (based on an observation by
Barthe) and Lemma 3.6 and the remarks made just above, there is equality when
c ∈ K◦

A and S = S0 is the choice of S (unique up to a multiple) for which (3.20) is
true. Let T denote the m×m diagonal matrix whose jth diagonal entry is tj = ln s2

j .
Then ln(det(R−2

S )) = ln(det(AeT At) and therefore, if we define the function ΦA by
ΦA(t1, . . . , tm) = ln det(AeT At) ,

we have, for every t1, . . . , tm ∈ R,

2
(

D(A, c) +
m∑

j=1

cj ln(cj)
)

+ ΦA(t1, . . . , tm) ≥
m∑

j=1

cjtj (4.4)

with equality, when c ∈ K◦
A for some choice of tj ’s. The function c → 2D(A, c) +

2
∑m

j=1 cj ln(cj) is convex (because, as mentioned at the beginning of the previous
section, the function c → D(a, c) is convex by definition), and its domain (i.e. where
it is < +∞) is KA. Therefore we get that

ΦA(t1, . . . , tm) = sup
c∈K◦A

{ m∑
j=1

cjtj − 2
(

D(A, c) +
m∑

j=1

cj ln(cj)
)}

= sup
c∈KA

{. . .}

= sup
c∈R

m
{. . .} .

This shows that ΦA is convex on Rm and that it is the Legendre transform of the
convex function c → 2D(A, c) + 2

∑m
j=1 cj ln(cj).

Moreover, for given A and c, equality in (4.4) for some t1, . . . , tm means that
for the corresponding values s1, . . . , sm, the Gaussian GS is an extremizer for the
variational problem defining D(A, c). By Theorem 3.9, tis means that {a1, . . . , am}
is totally reducible for c.

Conversely, if {a1, . . . , am} is totally reducible for c, then the variational problem
in (4.2) splits into a sum of independent and orthogonal (after a suitable linear
transformation T ) such problems, but of the interior type (i.e. c ∈ K◦

TA) for which
Barthe showed optimizers to exist. Equivalently, the next Theorem 4.3 ensures that
we can find a positive operator R for which the decomposition of the identity (3.19)
holds. Then, as mentioned in the remark after the proof of Lemma 3.6, the random
vector RG is extremal for D(A, c) and setting s2

j = cj/|Raj |2 we have that R = RS

and cj(S) = cj by construction (see the proof of Lemma 3.5). This guarantees
equality at all steps of our computation above and thus ensures equality in (4.4). �
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Remark. We have proved that

D(A, c) +
m∑

j=1

cj ln(cj) =
1
2
Φ∗A(c)

where Φ∗A denotes the Legendre transform of ΦA. Since ∇Φ∗A(∇ΦA(0)) = 0, the
choice c = ∇ΦA(0) minimizes Φ∗A(c), and hence D(A, c) +

∑m
j=1 cj ln(cj). There is

a misprint in [CLL1] in which it is stated (in slightly different notation) that this
choice of c minimizes D(A, c) itself.

We finally return to Lemma 3.5, as we are now in a position to give necessary
and sufficient conditions for the existence of the change of variables provided there.

Let A = {a1, . . . , am} be a family of m vectors spanning Rn, and let c be any
vector in Rm with 0 ≤ cj ≤ 1 for all j. Theorem 3.9 gives us necessary and sufficient
conditions for the existence of an extremal X for the subadditivity inequality. By
Theorem 2.2, these conditions are also necessary and sufficient for the existence of
extremals for the Brascamp–Lieb inequality. Moreover, we see that extremals for
the latter exist if and only if centered Gaussian extremals exist.

From here, it is easy to prove the following theorem which supersedes Lemma 3.5,
and gives necessary and sufficient conditions for the existence of the change of
variables considered there. This result was obtained (in the more general multi-
dimensional setting) by Bennett–Carbery–Christ–Tao [BeCCT1] along their study
of the Brascamp–Lieb extremizers; here we use the extremizers to the subadditivity
of entropy inequality. Though this theorem concerns a problem in linear algebra,
we do not know a direct proof of it in a purely linear algebra context, though there
may be one.
Theorem 4.3. Let {a1, . . . , am} be any collection of m vectors that span Rn for
n ≥ 2. Let {c1, . . . , cm} be any m numbers satisfying 0 ≤ cj ≤ 1 for each j. Then
there exists an an invertible symmetric matrix n × n matrix R so that

m∑
i=1

cj

(
Raj

|Raj |
)
⊗

(
Raj

|Raj |
)

= IdR
n

if and only if the set {a1, . . . , am} is totally reducible for c

Proof. The proof of Lemma 3.6 shows that whenever such a matrix R exists, there
exists an optimizer for the subadditivity inequality. Thus, by Theorem 3.9, the
condition that {a1, . . . , am} is totally reducible for c is necessary.

Conversely assume that {a1, . . . , am} is totally reducible for c and that Rn =
VJ1 ⊕ · · · ⊕ VJk

is the corresponding decomposition of Rn from Definition 3.8. We
can then find an invertible operator T on Rn such that the following orthogonal
decomposition holds

Rn = TVJ1

⊥⊕ · · · ⊥⊕ TVJk
.

Since we have cJi ∈ K◦
AJi

= K◦
TAJi

for i ≤ m (with TAJi = [Taj , j ∈ Ji]), we may
use Lemma 3.5 on each of the reduced orthogonal subspaces TVJi ; this gives us some
symmetric invertible operator Ri on TVJi and putting all these operators together
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we get a symmetric invertible operator R on Rn such that
m∑

i=1

cj

(
RTaj

|RTaj |
)
⊗

(
RTaj

|RTaj |
)

= IdR
n .

Then the positive symmetric operator R̃ =
√

T ∗R2T satisfies the desired property
m∑

i=1

cj

(
R̃aj

|R̃aj |

)
⊗

(
R̃aj

|R̃aj |

)
= IdR

n . �

5 A Convolution Inequality for Eigenvalues

We investigate here the dual of the superadditivity of Fisher information inequality
(3.16) in Proposition 3.3.

In section 2 we have shown that the Legendre transform of the entropy provides
an equivalence between subadditivity of the entropy and Brascamp–Lieb inequalities.
It turns out that the Fisher information is also a convex functional and its Legendre
transform is known to be the smallest eigenvalue of a Schrödinger operator. (This
is used extensively in the theory of large deviations, for example). We shall use this
fact to derive a subadditivity of the smallest eigenvalues of Schrödinger operators.

For any continuous bounded function V on Rn, define

λ(V ) = sup
{ ∫

R
n

V (x)φ2(x) dx − 4
∫

R
n

∣∣∇φ(x)
∣∣2 :

∫
R

n
φ2(x) dx = 1

}
. (5.1)

Then −λ(V ) is the “ground state” eigenvalue of
−4∆ − V ,

provided the bottom of the spectrum is an eigenvalue, and in any case, it is the
bottom of the spectrum.

Then since
I(f) =

∫
R

n

|∇f |2
f

dx = 4
∫

R
n

∣∣∇√
f
∣∣2 dx ,

we can rewrite (5.1) as

λ(V ) = sup
{ ∫

R
n

V (x)f(x) dx − I(f)
}

,

where the supremum is taken over all probability densities f . This gives us the
analog of (2.4) for Fisher information:∫

R
n

V (x)f(x) dx ≤ λ(V ) + I(f) , (5.2)

with equality if and only if f = φ2 where (−4∆ − V )φ = −λ(V )φ. (Here, by the
definition (5.1) of λ(V ), φ is the “ground state” eigenfunction.

Now let V1, . . . Vn be continuous functions on R, and define

V =
n∑

j=1

Vj(uj · x)

where {u1, . . . , un} is any orthonormal basis for Rn. Then

−4∆ − V =
n∑

j=1

( − 4(uj · ∇)2 − Vj(uj · x)
)
,
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so that, by separation of variables,

λ(V ) =
n∑

j=1

λ(Vj) .

The following result generalizes this to the case in which we have m unit vectors
{u1, . . . , um} satisfying (3.13).
Theorem 5.1. Let {u1, . . . , um} be any m unit vectors in Rn such that there are
positive numbers c1, . . . , cm satisfying

m∑
j=1

cjuj ⊗ uj = IdR
n .

For any m continuous bounded functions V1, . . . , Vm on R, define on Rn

V (x) =
m∑

j=1

V (uj · x) .

Then

λ(V ) ≤
m∑

j=1

cjλ

(
1
cj

Vj

)
. (5.3)

Proof. Choose an ε > 0 and a probability density f = φ2 such that∫
R

n
V (x)φ2(x) dx − 4

∫
R

n

∣∣∇φ(x)
∣∣2 ≥ λ(V ) − ε .

Then using (3.16),

λ(V ) − ε ≤
∫

R
n

f(x)
( m∑

j=1

Vj(uj · x)
)

dx − I(f)

=
m∑

j=1

∫
R

f(uj)(t)Vj(t) dt − I(f)

≤
m∑

j=1

∫
R

f(uj)(t)Vj(t) dt −
m∑

j=1

cjI
(
f(uj)

)

=
m∑

j=1

cj

( ∫
R

f(uj)(t)
(

1
cj

Vj

)
(t) dt − I

(
f(uj)

))

≤
m∑

j=1

cjλ

(
1
cj

Vj

)
,

Since ε > 0 is arbitrary, this proves the result. �
The inequality (5.3) is sharp since one can use another Legendre transform, as

in the proof of Theorem 2.1, and see that it implies the sharp inequality (3.16).
Inequality (5.3) could also be proved using a semi-group (or stochastic) method
inspired by the one used by Borell [Bo] in his study of Brunn–Minkowski type
inequalities (which, somehow, are the converse of the inequalities considered here);
this would be more complicated than starting from the inequality (3.16) for the
Fisher information, though.
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An analogous result for functions on the sphere could be given using the sharp
superadditivity of Fisher information inequality proved in [BaCM].
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Marie Curie - Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

cordero@math.jussieu.fr

Received: October 8, 2007
Accepted: January 13, 2008



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


